Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_asm.h>
35 #include <asm/kvm_coproc.h>
36 #include <asm/kvm_emulate.h>
37 #include <asm/kvm_host.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41
42 #include <trace/events/kvm.h>
43
44 #include "sys_regs.h"
45
46 #include "trace.h"
47
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60                                  struct sys_reg_params *params,
61                                  const struct sys_reg_desc *r)
62 {
63         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64         print_sys_reg_instr(params);
65         kvm_inject_undefined(vcpu);
66         return false;
67 }
68
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70                                struct sys_reg_params *params,
71                                const struct sys_reg_desc *r)
72 {
73         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74         print_sys_reg_instr(params);
75         kvm_inject_undefined(vcpu);
76         return false;
77 }
78
79 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
80 static u32 cache_levels;
81
82 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
83 #define CSSELR_MAX 12
84
85 /* Which cache CCSIDR represents depends on CSSELR value. */
86 static u32 get_ccsidr(u32 csselr)
87 {
88         u32 ccsidr;
89
90         /* Make sure noone else changes CSSELR during this! */
91         local_irq_disable();
92         write_sysreg(csselr, csselr_el1);
93         isb();
94         ccsidr = read_sysreg(ccsidr_el1);
95         local_irq_enable();
96
97         return ccsidr;
98 }
99
100 /*
101  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
102  */
103 static bool access_dcsw(struct kvm_vcpu *vcpu,
104                         struct sys_reg_params *p,
105                         const struct sys_reg_desc *r)
106 {
107         if (!p->is_write)
108                 return read_from_write_only(vcpu, p, r);
109
110         kvm_set_way_flush(vcpu);
111         return true;
112 }
113
114 /*
115  * Generic accessor for VM registers. Only called as long as HCR_TVM
116  * is set. If the guest enables the MMU, we stop trapping the VM
117  * sys_regs and leave it in complete control of the caches.
118  */
119 static bool access_vm_reg(struct kvm_vcpu *vcpu,
120                           struct sys_reg_params *p,
121                           const struct sys_reg_desc *r)
122 {
123         bool was_enabled = vcpu_has_cache_enabled(vcpu);
124
125         BUG_ON(!p->is_write);
126
127         if (!p->is_aarch32) {
128                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
129         } else {
130                 if (!p->is_32bit)
131                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
132                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
133         }
134
135         kvm_toggle_cache(vcpu, was_enabled);
136         return true;
137 }
138
139 /*
140  * Trap handler for the GICv3 SGI generation system register.
141  * Forward the request to the VGIC emulation.
142  * The cp15_64 code makes sure this automatically works
143  * for both AArch64 and AArch32 accesses.
144  */
145 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
146                            struct sys_reg_params *p,
147                            const struct sys_reg_desc *r)
148 {
149         if (!p->is_write)
150                 return read_from_write_only(vcpu, p, r);
151
152         vgic_v3_dispatch_sgi(vcpu, p->regval);
153
154         return true;
155 }
156
157 static bool access_gic_sre(struct kvm_vcpu *vcpu,
158                            struct sys_reg_params *p,
159                            const struct sys_reg_desc *r)
160 {
161         if (p->is_write)
162                 return ignore_write(vcpu, p);
163
164         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
165         return true;
166 }
167
168 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169                         struct sys_reg_params *p,
170                         const struct sys_reg_desc *r)
171 {
172         if (p->is_write)
173                 return ignore_write(vcpu, p);
174         else
175                 return read_zero(vcpu, p);
176 }
177
178 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179                            struct sys_reg_params *p,
180                            const struct sys_reg_desc *r)
181 {
182         if (p->is_write) {
183                 return ignore_write(vcpu, p);
184         } else {
185                 p->regval = (1 << 3);
186                 return true;
187         }
188 }
189
190 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191                                    struct sys_reg_params *p,
192                                    const struct sys_reg_desc *r)
193 {
194         if (p->is_write) {
195                 return ignore_write(vcpu, p);
196         } else {
197                 p->regval = read_sysreg(dbgauthstatus_el1);
198                 return true;
199         }
200 }
201
202 /*
203  * We want to avoid world-switching all the DBG registers all the
204  * time:
205  * 
206  * - If we've touched any debug register, it is likely that we're
207  *   going to touch more of them. It then makes sense to disable the
208  *   traps and start doing the save/restore dance
209  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
210  *   then mandatory to save/restore the registers, as the guest
211  *   depends on them.
212  * 
213  * For this, we use a DIRTY bit, indicating the guest has modified the
214  * debug registers, used as follow:
215  *
216  * On guest entry:
217  * - If the dirty bit is set (because we're coming back from trapping),
218  *   disable the traps, save host registers, restore guest registers.
219  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
220  *   set the dirty bit, disable the traps, save host registers,
221  *   restore guest registers.
222  * - Otherwise, enable the traps
223  *
224  * On guest exit:
225  * - If the dirty bit is set, save guest registers, restore host
226  *   registers and clear the dirty bit. This ensure that the host can
227  *   now use the debug registers.
228  */
229 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
230                             struct sys_reg_params *p,
231                             const struct sys_reg_desc *r)
232 {
233         if (p->is_write) {
234                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
235                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
236         } else {
237                 p->regval = vcpu_sys_reg(vcpu, r->reg);
238         }
239
240         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
241
242         return true;
243 }
244
245 /*
246  * reg_to_dbg/dbg_to_reg
247  *
248  * A 32 bit write to a debug register leave top bits alone
249  * A 32 bit read from a debug register only returns the bottom bits
250  *
251  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
252  * hyp.S code switches between host and guest values in future.
253  */
254 static void reg_to_dbg(struct kvm_vcpu *vcpu,
255                        struct sys_reg_params *p,
256                        u64 *dbg_reg)
257 {
258         u64 val = p->regval;
259
260         if (p->is_32bit) {
261                 val &= 0xffffffffUL;
262                 val |= ((*dbg_reg >> 32) << 32);
263         }
264
265         *dbg_reg = val;
266         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
267 }
268
269 static void dbg_to_reg(struct kvm_vcpu *vcpu,
270                        struct sys_reg_params *p,
271                        u64 *dbg_reg)
272 {
273         p->regval = *dbg_reg;
274         if (p->is_32bit)
275                 p->regval &= 0xffffffffUL;
276 }
277
278 static bool trap_bvr(struct kvm_vcpu *vcpu,
279                      struct sys_reg_params *p,
280                      const struct sys_reg_desc *rd)
281 {
282         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
283
284         if (p->is_write)
285                 reg_to_dbg(vcpu, p, dbg_reg);
286         else
287                 dbg_to_reg(vcpu, p, dbg_reg);
288
289         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
290
291         return true;
292 }
293
294 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
295                 const struct kvm_one_reg *reg, void __user *uaddr)
296 {
297         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
298
299         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
300                 return -EFAULT;
301         return 0;
302 }
303
304 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
305         const struct kvm_one_reg *reg, void __user *uaddr)
306 {
307         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
308
309         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
310                 return -EFAULT;
311         return 0;
312 }
313
314 static void reset_bvr(struct kvm_vcpu *vcpu,
315                       const struct sys_reg_desc *rd)
316 {
317         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
318 }
319
320 static bool trap_bcr(struct kvm_vcpu *vcpu,
321                      struct sys_reg_params *p,
322                      const struct sys_reg_desc *rd)
323 {
324         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
325
326         if (p->is_write)
327                 reg_to_dbg(vcpu, p, dbg_reg);
328         else
329                 dbg_to_reg(vcpu, p, dbg_reg);
330
331         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
332
333         return true;
334 }
335
336 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
337                 const struct kvm_one_reg *reg, void __user *uaddr)
338 {
339         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
340
341         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
342                 return -EFAULT;
343
344         return 0;
345 }
346
347 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
348         const struct kvm_one_reg *reg, void __user *uaddr)
349 {
350         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
351
352         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
353                 return -EFAULT;
354         return 0;
355 }
356
357 static void reset_bcr(struct kvm_vcpu *vcpu,
358                       const struct sys_reg_desc *rd)
359 {
360         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
361 }
362
363 static bool trap_wvr(struct kvm_vcpu *vcpu,
364                      struct sys_reg_params *p,
365                      const struct sys_reg_desc *rd)
366 {
367         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
368
369         if (p->is_write)
370                 reg_to_dbg(vcpu, p, dbg_reg);
371         else
372                 dbg_to_reg(vcpu, p, dbg_reg);
373
374         trace_trap_reg(__func__, rd->reg, p->is_write,
375                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
376
377         return true;
378 }
379
380 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
381                 const struct kvm_one_reg *reg, void __user *uaddr)
382 {
383         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
384
385         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
386                 return -EFAULT;
387         return 0;
388 }
389
390 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
391         const struct kvm_one_reg *reg, void __user *uaddr)
392 {
393         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
394
395         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
396                 return -EFAULT;
397         return 0;
398 }
399
400 static void reset_wvr(struct kvm_vcpu *vcpu,
401                       const struct sys_reg_desc *rd)
402 {
403         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
404 }
405
406 static bool trap_wcr(struct kvm_vcpu *vcpu,
407                      struct sys_reg_params *p,
408                      const struct sys_reg_desc *rd)
409 {
410         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
411
412         if (p->is_write)
413                 reg_to_dbg(vcpu, p, dbg_reg);
414         else
415                 dbg_to_reg(vcpu, p, dbg_reg);
416
417         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
418
419         return true;
420 }
421
422 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
423                 const struct kvm_one_reg *reg, void __user *uaddr)
424 {
425         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
426
427         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
428                 return -EFAULT;
429         return 0;
430 }
431
432 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
433         const struct kvm_one_reg *reg, void __user *uaddr)
434 {
435         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
436
437         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
438                 return -EFAULT;
439         return 0;
440 }
441
442 static void reset_wcr(struct kvm_vcpu *vcpu,
443                       const struct sys_reg_desc *rd)
444 {
445         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
446 }
447
448 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
449 {
450         vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
451 }
452
453 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
454 {
455         u64 mpidr;
456
457         /*
458          * Map the vcpu_id into the first three affinity level fields of
459          * the MPIDR. We limit the number of VCPUs in level 0 due to a
460          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
461          * of the GICv3 to be able to address each CPU directly when
462          * sending IPIs.
463          */
464         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
465         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
466         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
467         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
468 }
469
470 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
471 {
472         u64 pmcr, val;
473
474         pmcr = read_sysreg(pmcr_el0);
475         /*
476          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
477          * except PMCR.E resetting to zero.
478          */
479         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
480                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
481         vcpu_sys_reg(vcpu, PMCR_EL0) = val;
482 }
483
484 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
485 {
486         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
487         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
488
489         if (!enabled)
490                 kvm_inject_undefined(vcpu);
491
492         return !enabled;
493 }
494
495 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
496 {
497         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
498 }
499
500 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
501 {
502         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
503 }
504
505 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
506 {
507         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
508 }
509
510 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
511 {
512         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
513 }
514
515 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
516                         const struct sys_reg_desc *r)
517 {
518         u64 val;
519
520         if (!kvm_arm_pmu_v3_ready(vcpu))
521                 return trap_raz_wi(vcpu, p, r);
522
523         if (pmu_access_el0_disabled(vcpu))
524                 return false;
525
526         if (p->is_write) {
527                 /* Only update writeable bits of PMCR */
528                 val = vcpu_sys_reg(vcpu, PMCR_EL0);
529                 val &= ~ARMV8_PMU_PMCR_MASK;
530                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
531                 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
532                 kvm_pmu_handle_pmcr(vcpu, val);
533         } else {
534                 /* PMCR.P & PMCR.C are RAZ */
535                 val = vcpu_sys_reg(vcpu, PMCR_EL0)
536                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
537                 p->regval = val;
538         }
539
540         return true;
541 }
542
543 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
544                           const struct sys_reg_desc *r)
545 {
546         if (!kvm_arm_pmu_v3_ready(vcpu))
547                 return trap_raz_wi(vcpu, p, r);
548
549         if (pmu_access_event_counter_el0_disabled(vcpu))
550                 return false;
551
552         if (p->is_write)
553                 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
554         else
555                 /* return PMSELR.SEL field */
556                 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
557                             & ARMV8_PMU_COUNTER_MASK;
558
559         return true;
560 }
561
562 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
563                           const struct sys_reg_desc *r)
564 {
565         u64 pmceid;
566
567         if (!kvm_arm_pmu_v3_ready(vcpu))
568                 return trap_raz_wi(vcpu, p, r);
569
570         BUG_ON(p->is_write);
571
572         if (pmu_access_el0_disabled(vcpu))
573                 return false;
574
575         if (!(p->Op2 & 1))
576                 pmceid = read_sysreg(pmceid0_el0);
577         else
578                 pmceid = read_sysreg(pmceid1_el0);
579
580         p->regval = pmceid;
581
582         return true;
583 }
584
585 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
586 {
587         u64 pmcr, val;
588
589         pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
590         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
591         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
592                 kvm_inject_undefined(vcpu);
593                 return false;
594         }
595
596         return true;
597 }
598
599 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
600                               struct sys_reg_params *p,
601                               const struct sys_reg_desc *r)
602 {
603         u64 idx;
604
605         if (!kvm_arm_pmu_v3_ready(vcpu))
606                 return trap_raz_wi(vcpu, p, r);
607
608         if (r->CRn == 9 && r->CRm == 13) {
609                 if (r->Op2 == 2) {
610                         /* PMXEVCNTR_EL0 */
611                         if (pmu_access_event_counter_el0_disabled(vcpu))
612                                 return false;
613
614                         idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
615                               & ARMV8_PMU_COUNTER_MASK;
616                 } else if (r->Op2 == 0) {
617                         /* PMCCNTR_EL0 */
618                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
619                                 return false;
620
621                         idx = ARMV8_PMU_CYCLE_IDX;
622                 } else {
623                         return false;
624                 }
625         } else if (r->CRn == 0 && r->CRm == 9) {
626                 /* PMCCNTR */
627                 if (pmu_access_event_counter_el0_disabled(vcpu))
628                         return false;
629
630                 idx = ARMV8_PMU_CYCLE_IDX;
631         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
632                 /* PMEVCNTRn_EL0 */
633                 if (pmu_access_event_counter_el0_disabled(vcpu))
634                         return false;
635
636                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
637         } else {
638                 return false;
639         }
640
641         if (!pmu_counter_idx_valid(vcpu, idx))
642                 return false;
643
644         if (p->is_write) {
645                 if (pmu_access_el0_disabled(vcpu))
646                         return false;
647
648                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
649         } else {
650                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
651         }
652
653         return true;
654 }
655
656 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
657                                const struct sys_reg_desc *r)
658 {
659         u64 idx, reg;
660
661         if (!kvm_arm_pmu_v3_ready(vcpu))
662                 return trap_raz_wi(vcpu, p, r);
663
664         if (pmu_access_el0_disabled(vcpu))
665                 return false;
666
667         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
668                 /* PMXEVTYPER_EL0 */
669                 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
670                 reg = PMEVTYPER0_EL0 + idx;
671         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
672                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
673                 if (idx == ARMV8_PMU_CYCLE_IDX)
674                         reg = PMCCFILTR_EL0;
675                 else
676                         /* PMEVTYPERn_EL0 */
677                         reg = PMEVTYPER0_EL0 + idx;
678         } else {
679                 BUG();
680         }
681
682         if (!pmu_counter_idx_valid(vcpu, idx))
683                 return false;
684
685         if (p->is_write) {
686                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
687                 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
688         } else {
689                 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
690         }
691
692         return true;
693 }
694
695 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
696                            const struct sys_reg_desc *r)
697 {
698         u64 val, mask;
699
700         if (!kvm_arm_pmu_v3_ready(vcpu))
701                 return trap_raz_wi(vcpu, p, r);
702
703         if (pmu_access_el0_disabled(vcpu))
704                 return false;
705
706         mask = kvm_pmu_valid_counter_mask(vcpu);
707         if (p->is_write) {
708                 val = p->regval & mask;
709                 if (r->Op2 & 0x1) {
710                         /* accessing PMCNTENSET_EL0 */
711                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
712                         kvm_pmu_enable_counter(vcpu, val);
713                 } else {
714                         /* accessing PMCNTENCLR_EL0 */
715                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
716                         kvm_pmu_disable_counter(vcpu, val);
717                 }
718         } else {
719                 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
720         }
721
722         return true;
723 }
724
725 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
726                            const struct sys_reg_desc *r)
727 {
728         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
729
730         if (!kvm_arm_pmu_v3_ready(vcpu))
731                 return trap_raz_wi(vcpu, p, r);
732
733         if (!vcpu_mode_priv(vcpu)) {
734                 kvm_inject_undefined(vcpu);
735                 return false;
736         }
737
738         if (p->is_write) {
739                 u64 val = p->regval & mask;
740
741                 if (r->Op2 & 0x1)
742                         /* accessing PMINTENSET_EL1 */
743                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
744                 else
745                         /* accessing PMINTENCLR_EL1 */
746                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
747         } else {
748                 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
749         }
750
751         return true;
752 }
753
754 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
755                          const struct sys_reg_desc *r)
756 {
757         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
758
759         if (!kvm_arm_pmu_v3_ready(vcpu))
760                 return trap_raz_wi(vcpu, p, r);
761
762         if (pmu_access_el0_disabled(vcpu))
763                 return false;
764
765         if (p->is_write) {
766                 if (r->CRm & 0x2)
767                         /* accessing PMOVSSET_EL0 */
768                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
769                 else
770                         /* accessing PMOVSCLR_EL0 */
771                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
772         } else {
773                 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
774         }
775
776         return true;
777 }
778
779 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
780                            const struct sys_reg_desc *r)
781 {
782         u64 mask;
783
784         if (!kvm_arm_pmu_v3_ready(vcpu))
785                 return trap_raz_wi(vcpu, p, r);
786
787         if (!p->is_write)
788                 return read_from_write_only(vcpu, p, r);
789
790         if (pmu_write_swinc_el0_disabled(vcpu))
791                 return false;
792
793         mask = kvm_pmu_valid_counter_mask(vcpu);
794         kvm_pmu_software_increment(vcpu, p->regval & mask);
795         return true;
796 }
797
798 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
799                              const struct sys_reg_desc *r)
800 {
801         if (!kvm_arm_pmu_v3_ready(vcpu))
802                 return trap_raz_wi(vcpu, p, r);
803
804         if (p->is_write) {
805                 if (!vcpu_mode_priv(vcpu)) {
806                         kvm_inject_undefined(vcpu);
807                         return false;
808                 }
809
810                 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
811                                                     & ARMV8_PMU_USERENR_MASK;
812         } else {
813                 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
814                             & ARMV8_PMU_USERENR_MASK;
815         }
816
817         return true;
818 }
819
820 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
821 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
822         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
823           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
824         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
825           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
826         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
827           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
828         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
829           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
830
831 /* Macro to expand the PMEVCNTRn_EL0 register */
832 #define PMU_PMEVCNTR_EL0(n)                                             \
833         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
834           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
835
836 /* Macro to expand the PMEVTYPERn_EL0 register */
837 #define PMU_PMEVTYPER_EL0(n)                                            \
838         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
839           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
840
841 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
842                 struct sys_reg_params *p,
843                 const struct sys_reg_desc *r)
844 {
845         u64 now = kvm_phys_timer_read();
846         u64 cval;
847
848         if (p->is_write) {
849                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
850                                       p->regval + now);
851         } else {
852                 cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
853                 p->regval = cval - now;
854         }
855
856         return true;
857 }
858
859 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
860                 struct sys_reg_params *p,
861                 const struct sys_reg_desc *r)
862 {
863         if (p->is_write)
864                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
865         else
866                 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
867
868         return true;
869 }
870
871 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
872                 struct sys_reg_params *p,
873                 const struct sys_reg_desc *r)
874 {
875         if (p->is_write)
876                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
877         else
878                 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
879
880         return true;
881 }
882
883 /* Read a sanitised cpufeature ID register by sys_reg_desc */
884 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
885 {
886         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
887                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
888         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
889
890         if (id == SYS_ID_AA64PFR0_EL1) {
891                 if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
892                         pr_err_once("kvm [%i]: SVE unsupported for guests, suppressing\n",
893                                     task_pid_nr(current));
894
895                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
896         }
897
898         return val;
899 }
900
901 /* cpufeature ID register access trap handlers */
902
903 static bool __access_id_reg(struct kvm_vcpu *vcpu,
904                             struct sys_reg_params *p,
905                             const struct sys_reg_desc *r,
906                             bool raz)
907 {
908         if (p->is_write)
909                 return write_to_read_only(vcpu, p, r);
910
911         p->regval = read_id_reg(r, raz);
912         return true;
913 }
914
915 static bool access_id_reg(struct kvm_vcpu *vcpu,
916                           struct sys_reg_params *p,
917                           const struct sys_reg_desc *r)
918 {
919         return __access_id_reg(vcpu, p, r, false);
920 }
921
922 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
923                               struct sys_reg_params *p,
924                               const struct sys_reg_desc *r)
925 {
926         return __access_id_reg(vcpu, p, r, true);
927 }
928
929 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
930 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
931 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
932
933 /*
934  * cpufeature ID register user accessors
935  *
936  * For now, these registers are immutable for userspace, so no values
937  * are stored, and for set_id_reg() we don't allow the effective value
938  * to be changed.
939  */
940 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
941                         bool raz)
942 {
943         const u64 id = sys_reg_to_index(rd);
944         const u64 val = read_id_reg(rd, raz);
945
946         return reg_to_user(uaddr, &val, id);
947 }
948
949 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
950                         bool raz)
951 {
952         const u64 id = sys_reg_to_index(rd);
953         int err;
954         u64 val;
955
956         err = reg_from_user(&val, uaddr, id);
957         if (err)
958                 return err;
959
960         /* This is what we mean by invariant: you can't change it. */
961         if (val != read_id_reg(rd, raz))
962                 return -EINVAL;
963
964         return 0;
965 }
966
967 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
968                       const struct kvm_one_reg *reg, void __user *uaddr)
969 {
970         return __get_id_reg(rd, uaddr, false);
971 }
972
973 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
974                       const struct kvm_one_reg *reg, void __user *uaddr)
975 {
976         return __set_id_reg(rd, uaddr, false);
977 }
978
979 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
980                           const struct kvm_one_reg *reg, void __user *uaddr)
981 {
982         return __get_id_reg(rd, uaddr, true);
983 }
984
985 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
986                           const struct kvm_one_reg *reg, void __user *uaddr)
987 {
988         return __set_id_reg(rd, uaddr, true);
989 }
990
991 /* sys_reg_desc initialiser for known cpufeature ID registers */
992 #define ID_SANITISED(name) {                    \
993         SYS_DESC(SYS_##name),                   \
994         .access = access_id_reg,                \
995         .get_user = get_id_reg,                 \
996         .set_user = set_id_reg,                 \
997 }
998
999 /*
1000  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1001  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1002  * (1 <= crm < 8, 0 <= Op2 < 8).
1003  */
1004 #define ID_UNALLOCATED(crm, op2) {                      \
1005         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1006         .access = access_raz_id_reg,                    \
1007         .get_user = get_raz_id_reg,                     \
1008         .set_user = set_raz_id_reg,                     \
1009 }
1010
1011 /*
1012  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1013  * For now, these are exposed just like unallocated ID regs: they appear
1014  * RAZ for the guest.
1015  */
1016 #define ID_HIDDEN(name) {                       \
1017         SYS_DESC(SYS_##name),                   \
1018         .access = access_raz_id_reg,            \
1019         .get_user = get_raz_id_reg,             \
1020         .set_user = set_raz_id_reg,             \
1021 }
1022
1023 /*
1024  * Architected system registers.
1025  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1026  *
1027  * Debug handling: We do trap most, if not all debug related system
1028  * registers. The implementation is good enough to ensure that a guest
1029  * can use these with minimal performance degradation. The drawback is
1030  * that we don't implement any of the external debug, none of the
1031  * OSlock protocol. This should be revisited if we ever encounter a
1032  * more demanding guest...
1033  */
1034 static const struct sys_reg_desc sys_reg_descs[] = {
1035         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1036         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1037         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1038
1039         DBG_BCR_BVR_WCR_WVR_EL1(0),
1040         DBG_BCR_BVR_WCR_WVR_EL1(1),
1041         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1042         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1043         DBG_BCR_BVR_WCR_WVR_EL1(2),
1044         DBG_BCR_BVR_WCR_WVR_EL1(3),
1045         DBG_BCR_BVR_WCR_WVR_EL1(4),
1046         DBG_BCR_BVR_WCR_WVR_EL1(5),
1047         DBG_BCR_BVR_WCR_WVR_EL1(6),
1048         DBG_BCR_BVR_WCR_WVR_EL1(7),
1049         DBG_BCR_BVR_WCR_WVR_EL1(8),
1050         DBG_BCR_BVR_WCR_WVR_EL1(9),
1051         DBG_BCR_BVR_WCR_WVR_EL1(10),
1052         DBG_BCR_BVR_WCR_WVR_EL1(11),
1053         DBG_BCR_BVR_WCR_WVR_EL1(12),
1054         DBG_BCR_BVR_WCR_WVR_EL1(13),
1055         DBG_BCR_BVR_WCR_WVR_EL1(14),
1056         DBG_BCR_BVR_WCR_WVR_EL1(15),
1057
1058         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1059         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1060         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1061         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1062         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1063         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1064         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1065         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1066
1067         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1068         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1069         // DBGDTR[TR]X_EL0 share the same encoding
1070         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1071
1072         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1073
1074         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1075
1076         /*
1077          * ID regs: all ID_SANITISED() entries here must have corresponding
1078          * entries in arm64_ftr_regs[].
1079          */
1080
1081         /* AArch64 mappings of the AArch32 ID registers */
1082         /* CRm=1 */
1083         ID_SANITISED(ID_PFR0_EL1),
1084         ID_SANITISED(ID_PFR1_EL1),
1085         ID_SANITISED(ID_DFR0_EL1),
1086         ID_HIDDEN(ID_AFR0_EL1),
1087         ID_SANITISED(ID_MMFR0_EL1),
1088         ID_SANITISED(ID_MMFR1_EL1),
1089         ID_SANITISED(ID_MMFR2_EL1),
1090         ID_SANITISED(ID_MMFR3_EL1),
1091
1092         /* CRm=2 */
1093         ID_SANITISED(ID_ISAR0_EL1),
1094         ID_SANITISED(ID_ISAR1_EL1),
1095         ID_SANITISED(ID_ISAR2_EL1),
1096         ID_SANITISED(ID_ISAR3_EL1),
1097         ID_SANITISED(ID_ISAR4_EL1),
1098         ID_SANITISED(ID_ISAR5_EL1),
1099         ID_SANITISED(ID_MMFR4_EL1),
1100         ID_UNALLOCATED(2,7),
1101
1102         /* CRm=3 */
1103         ID_SANITISED(MVFR0_EL1),
1104         ID_SANITISED(MVFR1_EL1),
1105         ID_SANITISED(MVFR2_EL1),
1106         ID_UNALLOCATED(3,3),
1107         ID_UNALLOCATED(3,4),
1108         ID_UNALLOCATED(3,5),
1109         ID_UNALLOCATED(3,6),
1110         ID_UNALLOCATED(3,7),
1111
1112         /* AArch64 ID registers */
1113         /* CRm=4 */
1114         ID_SANITISED(ID_AA64PFR0_EL1),
1115         ID_SANITISED(ID_AA64PFR1_EL1),
1116         ID_UNALLOCATED(4,2),
1117         ID_UNALLOCATED(4,3),
1118         ID_UNALLOCATED(4,4),
1119         ID_UNALLOCATED(4,5),
1120         ID_UNALLOCATED(4,6),
1121         ID_UNALLOCATED(4,7),
1122
1123         /* CRm=5 */
1124         ID_SANITISED(ID_AA64DFR0_EL1),
1125         ID_SANITISED(ID_AA64DFR1_EL1),
1126         ID_UNALLOCATED(5,2),
1127         ID_UNALLOCATED(5,3),
1128         ID_HIDDEN(ID_AA64AFR0_EL1),
1129         ID_HIDDEN(ID_AA64AFR1_EL1),
1130         ID_UNALLOCATED(5,6),
1131         ID_UNALLOCATED(5,7),
1132
1133         /* CRm=6 */
1134         ID_SANITISED(ID_AA64ISAR0_EL1),
1135         ID_SANITISED(ID_AA64ISAR1_EL1),
1136         ID_UNALLOCATED(6,2),
1137         ID_UNALLOCATED(6,3),
1138         ID_UNALLOCATED(6,4),
1139         ID_UNALLOCATED(6,5),
1140         ID_UNALLOCATED(6,6),
1141         ID_UNALLOCATED(6,7),
1142
1143         /* CRm=7 */
1144         ID_SANITISED(ID_AA64MMFR0_EL1),
1145         ID_SANITISED(ID_AA64MMFR1_EL1),
1146         ID_SANITISED(ID_AA64MMFR2_EL1),
1147         ID_UNALLOCATED(7,3),
1148         ID_UNALLOCATED(7,4),
1149         ID_UNALLOCATED(7,5),
1150         ID_UNALLOCATED(7,6),
1151         ID_UNALLOCATED(7,7),
1152
1153         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1154         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1155         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1156         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1157         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1158
1159         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1160         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1161         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1162         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1163         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1164
1165         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1166         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1167
1168         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1169         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1170
1171         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1172
1173         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1174         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1175         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1176         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1177         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1178         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1179         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1180         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1181         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1182         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1183
1184         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1185         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1186
1187         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1188
1189         { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1190
1191         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1192         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1193         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1194         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1195         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1196         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1197         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1198         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1199         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1200         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1201         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1202         /*
1203          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1204          * in 32bit mode. Here we choose to reset it as zero for consistency.
1205          */
1206         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1207         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1208
1209         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1210         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1211
1212         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1213         { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1214         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1215
1216         /* PMEVCNTRn_EL0 */
1217         PMU_PMEVCNTR_EL0(0),
1218         PMU_PMEVCNTR_EL0(1),
1219         PMU_PMEVCNTR_EL0(2),
1220         PMU_PMEVCNTR_EL0(3),
1221         PMU_PMEVCNTR_EL0(4),
1222         PMU_PMEVCNTR_EL0(5),
1223         PMU_PMEVCNTR_EL0(6),
1224         PMU_PMEVCNTR_EL0(7),
1225         PMU_PMEVCNTR_EL0(8),
1226         PMU_PMEVCNTR_EL0(9),
1227         PMU_PMEVCNTR_EL0(10),
1228         PMU_PMEVCNTR_EL0(11),
1229         PMU_PMEVCNTR_EL0(12),
1230         PMU_PMEVCNTR_EL0(13),
1231         PMU_PMEVCNTR_EL0(14),
1232         PMU_PMEVCNTR_EL0(15),
1233         PMU_PMEVCNTR_EL0(16),
1234         PMU_PMEVCNTR_EL0(17),
1235         PMU_PMEVCNTR_EL0(18),
1236         PMU_PMEVCNTR_EL0(19),
1237         PMU_PMEVCNTR_EL0(20),
1238         PMU_PMEVCNTR_EL0(21),
1239         PMU_PMEVCNTR_EL0(22),
1240         PMU_PMEVCNTR_EL0(23),
1241         PMU_PMEVCNTR_EL0(24),
1242         PMU_PMEVCNTR_EL0(25),
1243         PMU_PMEVCNTR_EL0(26),
1244         PMU_PMEVCNTR_EL0(27),
1245         PMU_PMEVCNTR_EL0(28),
1246         PMU_PMEVCNTR_EL0(29),
1247         PMU_PMEVCNTR_EL0(30),
1248         /* PMEVTYPERn_EL0 */
1249         PMU_PMEVTYPER_EL0(0),
1250         PMU_PMEVTYPER_EL0(1),
1251         PMU_PMEVTYPER_EL0(2),
1252         PMU_PMEVTYPER_EL0(3),
1253         PMU_PMEVTYPER_EL0(4),
1254         PMU_PMEVTYPER_EL0(5),
1255         PMU_PMEVTYPER_EL0(6),
1256         PMU_PMEVTYPER_EL0(7),
1257         PMU_PMEVTYPER_EL0(8),
1258         PMU_PMEVTYPER_EL0(9),
1259         PMU_PMEVTYPER_EL0(10),
1260         PMU_PMEVTYPER_EL0(11),
1261         PMU_PMEVTYPER_EL0(12),
1262         PMU_PMEVTYPER_EL0(13),
1263         PMU_PMEVTYPER_EL0(14),
1264         PMU_PMEVTYPER_EL0(15),
1265         PMU_PMEVTYPER_EL0(16),
1266         PMU_PMEVTYPER_EL0(17),
1267         PMU_PMEVTYPER_EL0(18),
1268         PMU_PMEVTYPER_EL0(19),
1269         PMU_PMEVTYPER_EL0(20),
1270         PMU_PMEVTYPER_EL0(21),
1271         PMU_PMEVTYPER_EL0(22),
1272         PMU_PMEVTYPER_EL0(23),
1273         PMU_PMEVTYPER_EL0(24),
1274         PMU_PMEVTYPER_EL0(25),
1275         PMU_PMEVTYPER_EL0(26),
1276         PMU_PMEVTYPER_EL0(27),
1277         PMU_PMEVTYPER_EL0(28),
1278         PMU_PMEVTYPER_EL0(29),
1279         PMU_PMEVTYPER_EL0(30),
1280         /*
1281          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1282          * in 32bit mode. Here we choose to reset it as zero for consistency.
1283          */
1284         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1285
1286         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1287         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1288         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1289 };
1290
1291 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1292                         struct sys_reg_params *p,
1293                         const struct sys_reg_desc *r)
1294 {
1295         if (p->is_write) {
1296                 return ignore_write(vcpu, p);
1297         } else {
1298                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1299                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1300                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1301
1302                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1303                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1304                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1305                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1306                 return true;
1307         }
1308 }
1309
1310 static bool trap_debug32(struct kvm_vcpu *vcpu,
1311                          struct sys_reg_params *p,
1312                          const struct sys_reg_desc *r)
1313 {
1314         if (p->is_write) {
1315                 vcpu_cp14(vcpu, r->reg) = p->regval;
1316                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1317         } else {
1318                 p->regval = vcpu_cp14(vcpu, r->reg);
1319         }
1320
1321         return true;
1322 }
1323
1324 /* AArch32 debug register mappings
1325  *
1326  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1327  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1328  *
1329  * All control registers and watchpoint value registers are mapped to
1330  * the lower 32 bits of their AArch64 equivalents. We share the trap
1331  * handlers with the above AArch64 code which checks what mode the
1332  * system is in.
1333  */
1334
1335 static bool trap_xvr(struct kvm_vcpu *vcpu,
1336                      struct sys_reg_params *p,
1337                      const struct sys_reg_desc *rd)
1338 {
1339         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1340
1341         if (p->is_write) {
1342                 u64 val = *dbg_reg;
1343
1344                 val &= 0xffffffffUL;
1345                 val |= p->regval << 32;
1346                 *dbg_reg = val;
1347
1348                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1349         } else {
1350                 p->regval = *dbg_reg >> 32;
1351         }
1352
1353         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1354
1355         return true;
1356 }
1357
1358 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1359         /* DBGBVRn */                                                   \
1360         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1361         /* DBGBCRn */                                                   \
1362         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1363         /* DBGWVRn */                                                   \
1364         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1365         /* DBGWCRn */                                                   \
1366         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1367
1368 #define DBGBXVR(n)                                                      \
1369         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1370
1371 /*
1372  * Trapped cp14 registers. We generally ignore most of the external
1373  * debug, on the principle that they don't really make sense to a
1374  * guest. Revisit this one day, would this principle change.
1375  */
1376 static const struct sys_reg_desc cp14_regs[] = {
1377         /* DBGIDR */
1378         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1379         /* DBGDTRRXext */
1380         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1381
1382         DBG_BCR_BVR_WCR_WVR(0),
1383         /* DBGDSCRint */
1384         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1385         DBG_BCR_BVR_WCR_WVR(1),
1386         /* DBGDCCINT */
1387         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1388         /* DBGDSCRext */
1389         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1390         DBG_BCR_BVR_WCR_WVR(2),
1391         /* DBGDTR[RT]Xint */
1392         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1393         /* DBGDTR[RT]Xext */
1394         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1395         DBG_BCR_BVR_WCR_WVR(3),
1396         DBG_BCR_BVR_WCR_WVR(4),
1397         DBG_BCR_BVR_WCR_WVR(5),
1398         /* DBGWFAR */
1399         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1400         /* DBGOSECCR */
1401         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1402         DBG_BCR_BVR_WCR_WVR(6),
1403         /* DBGVCR */
1404         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1405         DBG_BCR_BVR_WCR_WVR(7),
1406         DBG_BCR_BVR_WCR_WVR(8),
1407         DBG_BCR_BVR_WCR_WVR(9),
1408         DBG_BCR_BVR_WCR_WVR(10),
1409         DBG_BCR_BVR_WCR_WVR(11),
1410         DBG_BCR_BVR_WCR_WVR(12),
1411         DBG_BCR_BVR_WCR_WVR(13),
1412         DBG_BCR_BVR_WCR_WVR(14),
1413         DBG_BCR_BVR_WCR_WVR(15),
1414
1415         /* DBGDRAR (32bit) */
1416         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1417
1418         DBGBXVR(0),
1419         /* DBGOSLAR */
1420         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1421         DBGBXVR(1),
1422         /* DBGOSLSR */
1423         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1424         DBGBXVR(2),
1425         DBGBXVR(3),
1426         /* DBGOSDLR */
1427         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1428         DBGBXVR(4),
1429         /* DBGPRCR */
1430         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1431         DBGBXVR(5),
1432         DBGBXVR(6),
1433         DBGBXVR(7),
1434         DBGBXVR(8),
1435         DBGBXVR(9),
1436         DBGBXVR(10),
1437         DBGBXVR(11),
1438         DBGBXVR(12),
1439         DBGBXVR(13),
1440         DBGBXVR(14),
1441         DBGBXVR(15),
1442
1443         /* DBGDSAR (32bit) */
1444         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1445
1446         /* DBGDEVID2 */
1447         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1448         /* DBGDEVID1 */
1449         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1450         /* DBGDEVID */
1451         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1452         /* DBGCLAIMSET */
1453         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1454         /* DBGCLAIMCLR */
1455         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1456         /* DBGAUTHSTATUS */
1457         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1458 };
1459
1460 /* Trapped cp14 64bit registers */
1461 static const struct sys_reg_desc cp14_64_regs[] = {
1462         /* DBGDRAR (64bit) */
1463         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1464
1465         /* DBGDSAR (64bit) */
1466         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1467 };
1468
1469 /* Macro to expand the PMEVCNTRn register */
1470 #define PMU_PMEVCNTR(n)                                                 \
1471         /* PMEVCNTRn */                                                 \
1472         { Op1(0), CRn(0b1110),                                          \
1473           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1474           access_pmu_evcntr }
1475
1476 /* Macro to expand the PMEVTYPERn register */
1477 #define PMU_PMEVTYPER(n)                                                \
1478         /* PMEVTYPERn */                                                \
1479         { Op1(0), CRn(0b1110),                                          \
1480           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1481           access_pmu_evtyper }
1482
1483 /*
1484  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1485  * depending on the way they are accessed (as a 32bit or a 64bit
1486  * register).
1487  */
1488 static const struct sys_reg_desc cp15_regs[] = {
1489         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1490
1491         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1492         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1493         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1494         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1495         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1496         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1497         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1498         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1499         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1500         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1501         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1502
1503         /*
1504          * DC{C,I,CI}SW operations:
1505          */
1506         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1507         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1508         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1509
1510         /* PMU */
1511         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1512         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1513         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1514         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1515         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1516         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1517         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1518         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1519         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1520         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1521         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1522         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1523         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1524         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1525         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1526
1527         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1528         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1529         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1530         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1531
1532         /* ICC_SRE */
1533         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1534
1535         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1536
1537         /* PMEVCNTRn */
1538         PMU_PMEVCNTR(0),
1539         PMU_PMEVCNTR(1),
1540         PMU_PMEVCNTR(2),
1541         PMU_PMEVCNTR(3),
1542         PMU_PMEVCNTR(4),
1543         PMU_PMEVCNTR(5),
1544         PMU_PMEVCNTR(6),
1545         PMU_PMEVCNTR(7),
1546         PMU_PMEVCNTR(8),
1547         PMU_PMEVCNTR(9),
1548         PMU_PMEVCNTR(10),
1549         PMU_PMEVCNTR(11),
1550         PMU_PMEVCNTR(12),
1551         PMU_PMEVCNTR(13),
1552         PMU_PMEVCNTR(14),
1553         PMU_PMEVCNTR(15),
1554         PMU_PMEVCNTR(16),
1555         PMU_PMEVCNTR(17),
1556         PMU_PMEVCNTR(18),
1557         PMU_PMEVCNTR(19),
1558         PMU_PMEVCNTR(20),
1559         PMU_PMEVCNTR(21),
1560         PMU_PMEVCNTR(22),
1561         PMU_PMEVCNTR(23),
1562         PMU_PMEVCNTR(24),
1563         PMU_PMEVCNTR(25),
1564         PMU_PMEVCNTR(26),
1565         PMU_PMEVCNTR(27),
1566         PMU_PMEVCNTR(28),
1567         PMU_PMEVCNTR(29),
1568         PMU_PMEVCNTR(30),
1569         /* PMEVTYPERn */
1570         PMU_PMEVTYPER(0),
1571         PMU_PMEVTYPER(1),
1572         PMU_PMEVTYPER(2),
1573         PMU_PMEVTYPER(3),
1574         PMU_PMEVTYPER(4),
1575         PMU_PMEVTYPER(5),
1576         PMU_PMEVTYPER(6),
1577         PMU_PMEVTYPER(7),
1578         PMU_PMEVTYPER(8),
1579         PMU_PMEVTYPER(9),
1580         PMU_PMEVTYPER(10),
1581         PMU_PMEVTYPER(11),
1582         PMU_PMEVTYPER(12),
1583         PMU_PMEVTYPER(13),
1584         PMU_PMEVTYPER(14),
1585         PMU_PMEVTYPER(15),
1586         PMU_PMEVTYPER(16),
1587         PMU_PMEVTYPER(17),
1588         PMU_PMEVTYPER(18),
1589         PMU_PMEVTYPER(19),
1590         PMU_PMEVTYPER(20),
1591         PMU_PMEVTYPER(21),
1592         PMU_PMEVTYPER(22),
1593         PMU_PMEVTYPER(23),
1594         PMU_PMEVTYPER(24),
1595         PMU_PMEVTYPER(25),
1596         PMU_PMEVTYPER(26),
1597         PMU_PMEVTYPER(27),
1598         PMU_PMEVTYPER(28),
1599         PMU_PMEVTYPER(29),
1600         PMU_PMEVTYPER(30),
1601         /* PMCCFILTR */
1602         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1603 };
1604
1605 static const struct sys_reg_desc cp15_64_regs[] = {
1606         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1607         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1608         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1609         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1610 };
1611
1612 /* Target specific emulation tables */
1613 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1614
1615 void kvm_register_target_sys_reg_table(unsigned int target,
1616                                        struct kvm_sys_reg_target_table *table)
1617 {
1618         target_tables[target] = table;
1619 }
1620
1621 /* Get specific register table for this target. */
1622 static const struct sys_reg_desc *get_target_table(unsigned target,
1623                                                    bool mode_is_64,
1624                                                    size_t *num)
1625 {
1626         struct kvm_sys_reg_target_table *table;
1627
1628         table = target_tables[target];
1629         if (mode_is_64) {
1630                 *num = table->table64.num;
1631                 return table->table64.table;
1632         } else {
1633                 *num = table->table32.num;
1634                 return table->table32.table;
1635         }
1636 }
1637
1638 #define reg_to_match_value(x)                                           \
1639         ({                                                              \
1640                 unsigned long val;                                      \
1641                 val  = (x)->Op0 << 14;                                  \
1642                 val |= (x)->Op1 << 11;                                  \
1643                 val |= (x)->CRn << 7;                                   \
1644                 val |= (x)->CRm << 3;                                   \
1645                 val |= (x)->Op2;                                        \
1646                 val;                                                    \
1647          })
1648
1649 static int match_sys_reg(const void *key, const void *elt)
1650 {
1651         const unsigned long pval = (unsigned long)key;
1652         const struct sys_reg_desc *r = elt;
1653
1654         return pval - reg_to_match_value(r);
1655 }
1656
1657 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1658                                          const struct sys_reg_desc table[],
1659                                          unsigned int num)
1660 {
1661         unsigned long pval = reg_to_match_value(params);
1662
1663         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1664 }
1665
1666 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1667 {
1668         kvm_inject_undefined(vcpu);
1669         return 1;
1670 }
1671
1672 static void perform_access(struct kvm_vcpu *vcpu,
1673                            struct sys_reg_params *params,
1674                            const struct sys_reg_desc *r)
1675 {
1676         /*
1677          * Not having an accessor means that we have configured a trap
1678          * that we don't know how to handle. This certainly qualifies
1679          * as a gross bug that should be fixed right away.
1680          */
1681         BUG_ON(!r->access);
1682
1683         /* Skip instruction if instructed so */
1684         if (likely(r->access(vcpu, params, r)))
1685                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1686 }
1687
1688 /*
1689  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1690  *                call the corresponding trap handler.
1691  *
1692  * @params: pointer to the descriptor of the access
1693  * @table: array of trap descriptors
1694  * @num: size of the trap descriptor array
1695  *
1696  * Return 0 if the access has been handled, and -1 if not.
1697  */
1698 static int emulate_cp(struct kvm_vcpu *vcpu,
1699                       struct sys_reg_params *params,
1700                       const struct sys_reg_desc *table,
1701                       size_t num)
1702 {
1703         const struct sys_reg_desc *r;
1704
1705         if (!table)
1706                 return -1;      /* Not handled */
1707
1708         r = find_reg(params, table, num);
1709
1710         if (r) {
1711                 perform_access(vcpu, params, r);
1712                 return 0;
1713         }
1714
1715         /* Not handled */
1716         return -1;
1717 }
1718
1719 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1720                                 struct sys_reg_params *params)
1721 {
1722         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1723         int cp = -1;
1724
1725         switch(hsr_ec) {
1726         case ESR_ELx_EC_CP15_32:
1727         case ESR_ELx_EC_CP15_64:
1728                 cp = 15;
1729                 break;
1730         case ESR_ELx_EC_CP14_MR:
1731         case ESR_ELx_EC_CP14_64:
1732                 cp = 14;
1733                 break;
1734         default:
1735                 WARN_ON(1);
1736         }
1737
1738         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1739                 cp, *vcpu_pc(vcpu));
1740         print_sys_reg_instr(params);
1741         kvm_inject_undefined(vcpu);
1742 }
1743
1744 /**
1745  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1746  * @vcpu: The VCPU pointer
1747  * @run:  The kvm_run struct
1748  */
1749 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1750                             const struct sys_reg_desc *global,
1751                             size_t nr_global,
1752                             const struct sys_reg_desc *target_specific,
1753                             size_t nr_specific)
1754 {
1755         struct sys_reg_params params;
1756         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1757         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1758         int Rt2 = (hsr >> 10) & 0x1f;
1759
1760         params.is_aarch32 = true;
1761         params.is_32bit = false;
1762         params.CRm = (hsr >> 1) & 0xf;
1763         params.is_write = ((hsr & 1) == 0);
1764
1765         params.Op0 = 0;
1766         params.Op1 = (hsr >> 16) & 0xf;
1767         params.Op2 = 0;
1768         params.CRn = 0;
1769
1770         /*
1771          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1772          * backends between AArch32 and AArch64, we get away with it.
1773          */
1774         if (params.is_write) {
1775                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1776                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1777         }
1778
1779         /*
1780          * Try to emulate the coprocessor access using the target
1781          * specific table first, and using the global table afterwards.
1782          * If either of the tables contains a handler, handle the
1783          * potential register operation in the case of a read and return
1784          * with success.
1785          */
1786         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1787             !emulate_cp(vcpu, &params, global, nr_global)) {
1788                 /* Split up the value between registers for the read side */
1789                 if (!params.is_write) {
1790                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1791                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1792                 }
1793
1794                 return 1;
1795         }
1796
1797         unhandled_cp_access(vcpu, &params);
1798         return 1;
1799 }
1800
1801 /**
1802  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1803  * @vcpu: The VCPU pointer
1804  * @run:  The kvm_run struct
1805  */
1806 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1807                             const struct sys_reg_desc *global,
1808                             size_t nr_global,
1809                             const struct sys_reg_desc *target_specific,
1810                             size_t nr_specific)
1811 {
1812         struct sys_reg_params params;
1813         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1814         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1815
1816         params.is_aarch32 = true;
1817         params.is_32bit = true;
1818         params.CRm = (hsr >> 1) & 0xf;
1819         params.regval = vcpu_get_reg(vcpu, Rt);
1820         params.is_write = ((hsr & 1) == 0);
1821         params.CRn = (hsr >> 10) & 0xf;
1822         params.Op0 = 0;
1823         params.Op1 = (hsr >> 14) & 0x7;
1824         params.Op2 = (hsr >> 17) & 0x7;
1825
1826         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1827             !emulate_cp(vcpu, &params, global, nr_global)) {
1828                 if (!params.is_write)
1829                         vcpu_set_reg(vcpu, Rt, params.regval);
1830                 return 1;
1831         }
1832
1833         unhandled_cp_access(vcpu, &params);
1834         return 1;
1835 }
1836
1837 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1838 {
1839         const struct sys_reg_desc *target_specific;
1840         size_t num;
1841
1842         target_specific = get_target_table(vcpu->arch.target, false, &num);
1843         return kvm_handle_cp_64(vcpu,
1844                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1845                                 target_specific, num);
1846 }
1847
1848 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1849 {
1850         const struct sys_reg_desc *target_specific;
1851         size_t num;
1852
1853         target_specific = get_target_table(vcpu->arch.target, false, &num);
1854         return kvm_handle_cp_32(vcpu,
1855                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1856                                 target_specific, num);
1857 }
1858
1859 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1860 {
1861         return kvm_handle_cp_64(vcpu,
1862                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1863                                 NULL, 0);
1864 }
1865
1866 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1867 {
1868         return kvm_handle_cp_32(vcpu,
1869                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1870                                 NULL, 0);
1871 }
1872
1873 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1874                            struct sys_reg_params *params)
1875 {
1876         size_t num;
1877         const struct sys_reg_desc *table, *r;
1878
1879         table = get_target_table(vcpu->arch.target, true, &num);
1880
1881         /* Search target-specific then generic table. */
1882         r = find_reg(params, table, num);
1883         if (!r)
1884                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1885
1886         if (likely(r)) {
1887                 perform_access(vcpu, params, r);
1888         } else {
1889                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1890                         *vcpu_pc(vcpu));
1891                 print_sys_reg_instr(params);
1892                 kvm_inject_undefined(vcpu);
1893         }
1894         return 1;
1895 }
1896
1897 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1898                               const struct sys_reg_desc *table, size_t num)
1899 {
1900         unsigned long i;
1901
1902         for (i = 0; i < num; i++)
1903                 if (table[i].reset)
1904                         table[i].reset(vcpu, &table[i]);
1905 }
1906
1907 /**
1908  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1909  * @vcpu: The VCPU pointer
1910  * @run:  The kvm_run struct
1911  */
1912 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1913 {
1914         struct sys_reg_params params;
1915         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1916         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1917         int ret;
1918
1919         trace_kvm_handle_sys_reg(esr);
1920
1921         params.is_aarch32 = false;
1922         params.is_32bit = false;
1923         params.Op0 = (esr >> 20) & 3;
1924         params.Op1 = (esr >> 14) & 0x7;
1925         params.CRn = (esr >> 10) & 0xf;
1926         params.CRm = (esr >> 1) & 0xf;
1927         params.Op2 = (esr >> 17) & 0x7;
1928         params.regval = vcpu_get_reg(vcpu, Rt);
1929         params.is_write = !(esr & 1);
1930
1931         ret = emulate_sys_reg(vcpu, &params);
1932
1933         if (!params.is_write)
1934                 vcpu_set_reg(vcpu, Rt, params.regval);
1935         return ret;
1936 }
1937
1938 /******************************************************************************
1939  * Userspace API
1940  *****************************************************************************/
1941
1942 static bool index_to_params(u64 id, struct sys_reg_params *params)
1943 {
1944         switch (id & KVM_REG_SIZE_MASK) {
1945         case KVM_REG_SIZE_U64:
1946                 /* Any unused index bits means it's not valid. */
1947                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1948                               | KVM_REG_ARM_COPROC_MASK
1949                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1950                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1951                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1952                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1953                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1954                         return false;
1955                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1956                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1957                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1958                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1959                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1960                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1961                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1962                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1963                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1964                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1965                 return true;
1966         default:
1967                 return false;
1968         }
1969 }
1970
1971 const struct sys_reg_desc *find_reg_by_id(u64 id,
1972                                           struct sys_reg_params *params,
1973                                           const struct sys_reg_desc table[],
1974                                           unsigned int num)
1975 {
1976         if (!index_to_params(id, params))
1977                 return NULL;
1978
1979         return find_reg(params, table, num);
1980 }
1981
1982 /* Decode an index value, and find the sys_reg_desc entry. */
1983 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1984                                                     u64 id)
1985 {
1986         size_t num;
1987         const struct sys_reg_desc *table, *r;
1988         struct sys_reg_params params;
1989
1990         /* We only do sys_reg for now. */
1991         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1992                 return NULL;
1993
1994         table = get_target_table(vcpu->arch.target, true, &num);
1995         r = find_reg_by_id(id, &params, table, num);
1996         if (!r)
1997                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1998
1999         /* Not saved in the sys_reg array and not otherwise accessible? */
2000         if (r && !(r->reg || r->get_user))
2001                 r = NULL;
2002
2003         return r;
2004 }
2005
2006 /*
2007  * These are the invariant sys_reg registers: we let the guest see the
2008  * host versions of these, so they're part of the guest state.
2009  *
2010  * A future CPU may provide a mechanism to present different values to
2011  * the guest, or a future kvm may trap them.
2012  */
2013
2014 #define FUNCTION_INVARIANT(reg)                                         \
2015         static void get_##reg(struct kvm_vcpu *v,                       \
2016                               const struct sys_reg_desc *r)             \
2017         {                                                               \
2018                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2019         }
2020
2021 FUNCTION_INVARIANT(midr_el1)
2022 FUNCTION_INVARIANT(ctr_el0)
2023 FUNCTION_INVARIANT(revidr_el1)
2024 FUNCTION_INVARIANT(clidr_el1)
2025 FUNCTION_INVARIANT(aidr_el1)
2026
2027 /* ->val is filled in by kvm_sys_reg_table_init() */
2028 static struct sys_reg_desc invariant_sys_regs[] = {
2029         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2030         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2031         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2032         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2033         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2034 };
2035
2036 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2037 {
2038         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2039                 return -EFAULT;
2040         return 0;
2041 }
2042
2043 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2044 {
2045         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2046                 return -EFAULT;
2047         return 0;
2048 }
2049
2050 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2051 {
2052         struct sys_reg_params params;
2053         const struct sys_reg_desc *r;
2054
2055         r = find_reg_by_id(id, &params, invariant_sys_regs,
2056                            ARRAY_SIZE(invariant_sys_regs));
2057         if (!r)
2058                 return -ENOENT;
2059
2060         return reg_to_user(uaddr, &r->val, id);
2061 }
2062
2063 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2064 {
2065         struct sys_reg_params params;
2066         const struct sys_reg_desc *r;
2067         int err;
2068         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2069
2070         r = find_reg_by_id(id, &params, invariant_sys_regs,
2071                            ARRAY_SIZE(invariant_sys_regs));
2072         if (!r)
2073                 return -ENOENT;
2074
2075         err = reg_from_user(&val, uaddr, id);
2076         if (err)
2077                 return err;
2078
2079         /* This is what we mean by invariant: you can't change it. */
2080         if (r->val != val)
2081                 return -EINVAL;
2082
2083         return 0;
2084 }
2085
2086 static bool is_valid_cache(u32 val)
2087 {
2088         u32 level, ctype;
2089
2090         if (val >= CSSELR_MAX)
2091                 return false;
2092
2093         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2094         level = (val >> 1);
2095         ctype = (cache_levels >> (level * 3)) & 7;
2096
2097         switch (ctype) {
2098         case 0: /* No cache */
2099                 return false;
2100         case 1: /* Instruction cache only */
2101                 return (val & 1);
2102         case 2: /* Data cache only */
2103         case 4: /* Unified cache */
2104                 return !(val & 1);
2105         case 3: /* Separate instruction and data caches */
2106                 return true;
2107         default: /* Reserved: we can't know instruction or data. */
2108                 return false;
2109         }
2110 }
2111
2112 static int demux_c15_get(u64 id, void __user *uaddr)
2113 {
2114         u32 val;
2115         u32 __user *uval = uaddr;
2116
2117         /* Fail if we have unknown bits set. */
2118         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2119                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2120                 return -ENOENT;
2121
2122         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2123         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2124                 if (KVM_REG_SIZE(id) != 4)
2125                         return -ENOENT;
2126                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2127                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2128                 if (!is_valid_cache(val))
2129                         return -ENOENT;
2130
2131                 return put_user(get_ccsidr(val), uval);
2132         default:
2133                 return -ENOENT;
2134         }
2135 }
2136
2137 static int demux_c15_set(u64 id, void __user *uaddr)
2138 {
2139         u32 val, newval;
2140         u32 __user *uval = uaddr;
2141
2142         /* Fail if we have unknown bits set. */
2143         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2144                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2145                 return -ENOENT;
2146
2147         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2148         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2149                 if (KVM_REG_SIZE(id) != 4)
2150                         return -ENOENT;
2151                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2152                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2153                 if (!is_valid_cache(val))
2154                         return -ENOENT;
2155
2156                 if (get_user(newval, uval))
2157                         return -EFAULT;
2158
2159                 /* This is also invariant: you can't change it. */
2160                 if (newval != get_ccsidr(val))
2161                         return -EINVAL;
2162                 return 0;
2163         default:
2164                 return -ENOENT;
2165         }
2166 }
2167
2168 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2169 {
2170         const struct sys_reg_desc *r;
2171         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2172
2173         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2174                 return demux_c15_get(reg->id, uaddr);
2175
2176         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2177                 return -ENOENT;
2178
2179         r = index_to_sys_reg_desc(vcpu, reg->id);
2180         if (!r)
2181                 return get_invariant_sys_reg(reg->id, uaddr);
2182
2183         if (r->get_user)
2184                 return (r->get_user)(vcpu, r, reg, uaddr);
2185
2186         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2187 }
2188
2189 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2190 {
2191         const struct sys_reg_desc *r;
2192         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2193
2194         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2195                 return demux_c15_set(reg->id, uaddr);
2196
2197         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2198                 return -ENOENT;
2199
2200         r = index_to_sys_reg_desc(vcpu, reg->id);
2201         if (!r)
2202                 return set_invariant_sys_reg(reg->id, uaddr);
2203
2204         if (r->set_user)
2205                 return (r->set_user)(vcpu, r, reg, uaddr);
2206
2207         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2208 }
2209
2210 static unsigned int num_demux_regs(void)
2211 {
2212         unsigned int i, count = 0;
2213
2214         for (i = 0; i < CSSELR_MAX; i++)
2215                 if (is_valid_cache(i))
2216                         count++;
2217
2218         return count;
2219 }
2220
2221 static int write_demux_regids(u64 __user *uindices)
2222 {
2223         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2224         unsigned int i;
2225
2226         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2227         for (i = 0; i < CSSELR_MAX; i++) {
2228                 if (!is_valid_cache(i))
2229                         continue;
2230                 if (put_user(val | i, uindices))
2231                         return -EFAULT;
2232                 uindices++;
2233         }
2234         return 0;
2235 }
2236
2237 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2238 {
2239         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2240                 KVM_REG_ARM64_SYSREG |
2241                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2242                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2243                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2244                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2245                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2246 }
2247
2248 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2249 {
2250         if (!*uind)
2251                 return true;
2252
2253         if (put_user(sys_reg_to_index(reg), *uind))
2254                 return false;
2255
2256         (*uind)++;
2257         return true;
2258 }
2259
2260 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2261                             u64 __user **uind,
2262                             unsigned int *total)
2263 {
2264         /*
2265          * Ignore registers we trap but don't save,
2266          * and for which no custom user accessor is provided.
2267          */
2268         if (!(rd->reg || rd->get_user))
2269                 return 0;
2270
2271         if (!copy_reg_to_user(rd, uind))
2272                 return -EFAULT;
2273
2274         (*total)++;
2275         return 0;
2276 }
2277
2278 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2279 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2280 {
2281         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2282         unsigned int total = 0;
2283         size_t num;
2284         int err;
2285
2286         /* We check for duplicates here, to allow arch-specific overrides. */
2287         i1 = get_target_table(vcpu->arch.target, true, &num);
2288         end1 = i1 + num;
2289         i2 = sys_reg_descs;
2290         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2291
2292         BUG_ON(i1 == end1 || i2 == end2);
2293
2294         /* Walk carefully, as both tables may refer to the same register. */
2295         while (i1 || i2) {
2296                 int cmp = cmp_sys_reg(i1, i2);
2297                 /* target-specific overrides generic entry. */
2298                 if (cmp <= 0)
2299                         err = walk_one_sys_reg(i1, &uind, &total);
2300                 else
2301                         err = walk_one_sys_reg(i2, &uind, &total);
2302
2303                 if (err)
2304                         return err;
2305
2306                 if (cmp <= 0 && ++i1 == end1)
2307                         i1 = NULL;
2308                 if (cmp >= 0 && ++i2 == end2)
2309                         i2 = NULL;
2310         }
2311         return total;
2312 }
2313
2314 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2315 {
2316         return ARRAY_SIZE(invariant_sys_regs)
2317                 + num_demux_regs()
2318                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2319 }
2320
2321 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2322 {
2323         unsigned int i;
2324         int err;
2325
2326         /* Then give them all the invariant registers' indices. */
2327         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2328                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2329                         return -EFAULT;
2330                 uindices++;
2331         }
2332
2333         err = walk_sys_regs(vcpu, uindices);
2334         if (err < 0)
2335                 return err;
2336         uindices += err;
2337
2338         return write_demux_regids(uindices);
2339 }
2340
2341 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2342 {
2343         unsigned int i;
2344
2345         for (i = 1; i < n; i++) {
2346                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2347                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2348                         return 1;
2349                 }
2350         }
2351
2352         return 0;
2353 }
2354
2355 void kvm_sys_reg_table_init(void)
2356 {
2357         unsigned int i;
2358         struct sys_reg_desc clidr;
2359
2360         /* Make sure tables are unique and in order. */
2361         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2362         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2363         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2364         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2365         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2366         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2367
2368         /* We abuse the reset function to overwrite the table itself. */
2369         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2370                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2371
2372         /*
2373          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2374          *
2375          *   If software reads the Cache Type fields from Ctype1
2376          *   upwards, once it has seen a value of 0b000, no caches
2377          *   exist at further-out levels of the hierarchy. So, for
2378          *   example, if Ctype3 is the first Cache Type field with a
2379          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2380          *   ignored.
2381          */
2382         get_clidr_el1(NULL, &clidr); /* Ugly... */
2383         cache_levels = clidr.val;
2384         for (i = 0; i < 7; i++)
2385                 if (((cache_levels >> (i*3)) & 7) == 0)
2386                         break;
2387         /* Clear all higher bits. */
2388         cache_levels &= (1 << (i*3))-1;
2389 }
2390
2391 /**
2392  * kvm_reset_sys_regs - sets system registers to reset value
2393  * @vcpu: The VCPU pointer
2394  *
2395  * This function finds the right table above and sets the registers on the
2396  * virtual CPU struct to their architecturally defined reset values.
2397  */
2398 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2399 {
2400         size_t num;
2401         const struct sys_reg_desc *table;
2402
2403         /* Catch someone adding a register without putting in reset entry. */
2404         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2405
2406         /* Generic chip reset first (so target could override). */
2407         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2408
2409         table = get_target_table(vcpu->arch.target, true, &num);
2410         reset_sys_reg_descs(vcpu, table, num);
2411
2412         for (num = 1; num < NR_SYS_REGS; num++)
2413                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2414                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
2415 }