[IA64] show_mem() printk levels
[powerpc.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21
22 #include <asm/meminit.h>
23 #include <asm/pgalloc.h>
24 #include <asm/pgtable.h>
25 #include <asm/sections.h>
26 #include <asm/mca.h>
27
28 #ifdef CONFIG_VIRTUAL_MEM_MAP
29 static unsigned long num_dma_physpages;
30 static unsigned long max_gap;
31 #endif
32
33 /**
34  * show_mem - display a memory statistics summary
35  *
36  * Just walks the pages in the system and describes where they're allocated.
37  */
38 void
39 show_mem (void)
40 {
41         int i, total = 0, reserved = 0;
42         int shared = 0, cached = 0;
43
44         printk(KERN_INFO "Mem-info:\n");
45         show_free_areas();
46
47         printk(KERN_INFO "Free swap:       %6ldkB\n",
48                nr_swap_pages<<(PAGE_SHIFT-10));
49         i = max_mapnr;
50         for (i = 0; i < max_mapnr; i++) {
51                 if (!pfn_valid(i)) {
52 #ifdef CONFIG_VIRTUAL_MEM_MAP
53                         if (max_gap < LARGE_GAP)
54                                 continue;
55                         i = vmemmap_find_next_valid_pfn(0, i) - 1;
56 #endif
57                         continue;
58                 }
59                 total++;
60                 if (PageReserved(mem_map+i))
61                         reserved++;
62                 else if (PageSwapCache(mem_map+i))
63                         cached++;
64                 else if (page_count(mem_map + i))
65                         shared += page_count(mem_map + i) - 1;
66         }
67         printk(KERN_INFO "%d pages of RAM\n", total);
68         printk(KERN_INFO "%d reserved pages\n", reserved);
69         printk(KERN_INFO "%d pages shared\n", shared);
70         printk(KERN_INFO "%d pages swap cached\n", cached);
71         printk(KERN_INFO "%ld pages in page table cache\n",
72                pgtable_quicklist_total_size());
73 }
74
75 /* physical address where the bootmem map is located */
76 unsigned long bootmap_start;
77
78 /**
79  * find_max_pfn - adjust the maximum page number callback
80  * @start: start of range
81  * @end: end of range
82  * @arg: address of pointer to global max_pfn variable
83  *
84  * Passed as a callback function to efi_memmap_walk() to determine the highest
85  * available page frame number in the system.
86  */
87 int
88 find_max_pfn (unsigned long start, unsigned long end, void *arg)
89 {
90         unsigned long *max_pfnp = arg, pfn;
91
92         pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
93         if (pfn > *max_pfnp)
94                 *max_pfnp = pfn;
95         return 0;
96 }
97
98 /**
99  * find_bootmap_location - callback to find a memory area for the bootmap
100  * @start: start of region
101  * @end: end of region
102  * @arg: unused callback data
103  *
104  * Find a place to put the bootmap and return its starting address in
105  * bootmap_start.  This address must be page-aligned.
106  */
107 static int __init
108 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
109 {
110         unsigned long needed = *(unsigned long *)arg;
111         unsigned long range_start, range_end, free_start;
112         int i;
113
114 #if IGNORE_PFN0
115         if (start == PAGE_OFFSET) {
116                 start += PAGE_SIZE;
117                 if (start >= end)
118                         return 0;
119         }
120 #endif
121
122         free_start = PAGE_OFFSET;
123
124         for (i = 0; i < num_rsvd_regions; i++) {
125                 range_start = max(start, free_start);
126                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
127
128                 free_start = PAGE_ALIGN(rsvd_region[i].end);
129
130                 if (range_end <= range_start)
131                         continue; /* skip over empty range */
132
133                 if (range_end - range_start >= needed) {
134                         bootmap_start = __pa(range_start);
135                         return -1;      /* done */
136                 }
137
138                 /* nothing more available in this segment */
139                 if (range_end == end)
140                         return 0;
141         }
142         return 0;
143 }
144
145 /**
146  * find_memory - setup memory map
147  *
148  * Walk the EFI memory map and find usable memory for the system, taking
149  * into account reserved areas.
150  */
151 void __init
152 find_memory (void)
153 {
154         unsigned long bootmap_size;
155
156         reserve_memory();
157
158         /* first find highest page frame number */
159         max_pfn = 0;
160         efi_memmap_walk(find_max_pfn, &max_pfn);
161
162         /* how many bytes to cover all the pages */
163         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
164
165         /* look for a location to hold the bootmap */
166         bootmap_start = ~0UL;
167         efi_memmap_walk(find_bootmap_location, &bootmap_size);
168         if (bootmap_start == ~0UL)
169                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
170
171         bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
172
173         /* Free all available memory, then mark bootmem-map as being in use. */
174         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
175         reserve_bootmem(bootmap_start, bootmap_size);
176
177         find_initrd();
178 }
179
180 #ifdef CONFIG_SMP
181 /**
182  * per_cpu_init - setup per-cpu variables
183  *
184  * Allocate and setup per-cpu data areas.
185  */
186 void * __cpuinit
187 per_cpu_init (void)
188 {
189         void *cpu_data;
190         int cpu;
191         static int first_time=1;
192
193         /*
194          * get_free_pages() cannot be used before cpu_init() done.  BSP
195          * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
196          * get_zeroed_page().
197          */
198         if (first_time) {
199                 first_time=0;
200                 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
201                                            PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
202                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
203                         memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
204                         __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
205                         cpu_data += PERCPU_PAGE_SIZE;
206                         per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
207                 }
208         }
209         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
210 }
211 #endif /* CONFIG_SMP */
212
213 static int
214 count_pages (u64 start, u64 end, void *arg)
215 {
216         unsigned long *count = arg;
217
218         *count += (end - start) >> PAGE_SHIFT;
219         return 0;
220 }
221
222 #ifdef CONFIG_VIRTUAL_MEM_MAP
223 static int
224 count_dma_pages (u64 start, u64 end, void *arg)
225 {
226         unsigned long *count = arg;
227
228         if (start < MAX_DMA_ADDRESS)
229                 *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
230         return 0;
231 }
232 #endif
233
234 /*
235  * Set up the page tables.
236  */
237
238 void __init
239 paging_init (void)
240 {
241         unsigned long max_dma;
242         unsigned long zones_size[MAX_NR_ZONES];
243 #ifdef CONFIG_VIRTUAL_MEM_MAP
244         unsigned long zholes_size[MAX_NR_ZONES];
245 #endif
246
247         /* initialize mem_map[] */
248
249         memset(zones_size, 0, sizeof(zones_size));
250
251         num_physpages = 0;
252         efi_memmap_walk(count_pages, &num_physpages);
253
254         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
255
256 #ifdef CONFIG_VIRTUAL_MEM_MAP
257         memset(zholes_size, 0, sizeof(zholes_size));
258
259         num_dma_physpages = 0;
260         efi_memmap_walk(count_dma_pages, &num_dma_physpages);
261
262         if (max_low_pfn < max_dma) {
263                 zones_size[ZONE_DMA] = max_low_pfn;
264                 zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
265         } else {
266                 zones_size[ZONE_DMA] = max_dma;
267                 zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
268                 if (num_physpages > num_dma_physpages) {
269                         zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
270                         zholes_size[ZONE_NORMAL] =
271                                 ((max_low_pfn - max_dma) -
272                                  (num_physpages - num_dma_physpages));
273                 }
274         }
275
276         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
277         if (max_gap < LARGE_GAP) {
278                 vmem_map = (struct page *) 0;
279                 free_area_init_node(0, NODE_DATA(0), zones_size, 0,
280                                     zholes_size);
281         } else {
282                 unsigned long map_size;
283
284                 /* allocate virtual_mem_map */
285
286                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
287                         sizeof(struct page));
288                 vmalloc_end -= map_size;
289                 vmem_map = (struct page *) vmalloc_end;
290                 efi_memmap_walk(create_mem_map_page_table, NULL);
291
292                 NODE_DATA(0)->node_mem_map = vmem_map;
293                 free_area_init_node(0, NODE_DATA(0), zones_size,
294                                     0, zholes_size);
295
296                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
297         }
298 #else /* !CONFIG_VIRTUAL_MEM_MAP */
299         if (max_low_pfn < max_dma)
300                 zones_size[ZONE_DMA] = max_low_pfn;
301         else {
302                 zones_size[ZONE_DMA] = max_dma;
303                 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
304         }
305         free_area_init(zones_size);
306 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
307         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
308 }