Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux] / arch / ia64 / mm / tlb.c
1 /*
2  * TLB support routines.
3  *
4  * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8  *              Modified RID allocation for SMP
9  *          Goutham Rao <goutham.rao@intel.com>
10  *              IPI based ptc implementation and A-step IPI implementation.
11  * Rohit Seth <rohit.seth@intel.com>
12  * Ken Chen <kenneth.w.chen@intel.com>
13  * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14  * Copyright (C) 2007 Intel Corp
15  *      Fenghua Yu <fenghua.yu@intel.com>
16  *      Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
17  */
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/mm.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26
27 #include <asm/delay.h>
28 #include <asm/mmu_context.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pal.h>
31 #include <asm/tlbflush.h>
32 #include <asm/dma.h>
33 #include <asm/processor.h>
34 #include <asm/sal.h>
35 #include <asm/tlb.h>
36
37 static struct {
38         u64 mask;               /* mask of supported purge page-sizes */
39         unsigned long max_bits; /* log2 of largest supported purge page-size */
40 } purge;
41
42 struct ia64_ctx ia64_ctx = {
43         .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
44         .next = 1,
45         .max_ctx = ~0U
46 };
47
48 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
49 DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
50 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
51
52 struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
53
54 /*
55  * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
56  * Called after cpu_init() has setup ia64_ctx.max_ctx based on
57  * maximum RID that is supported by boot CPU.
58  */
59 void __init
60 mmu_context_init (void)
61 {
62         ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
63                                          SMP_CACHE_BYTES);
64         ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
65                                            SMP_CACHE_BYTES);
66 }
67
68 /*
69  * Acquire the ia64_ctx.lock before calling this function!
70  */
71 void
72 wrap_mmu_context (struct mm_struct *mm)
73 {
74         int i, cpu;
75         unsigned long flush_bit;
76
77         for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
78                 flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
79                 ia64_ctx.bitmap[i] ^= flush_bit;
80         }
81  
82         /* use offset at 300 to skip daemons */
83         ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
84                                 ia64_ctx.max_ctx, 300);
85         ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
86                                 ia64_ctx.max_ctx, ia64_ctx.next);
87
88         /*
89          * can't call flush_tlb_all() here because of race condition
90          * with O(1) scheduler [EF]
91          */
92         cpu = get_cpu(); /* prevent preemption/migration */
93         for_each_online_cpu(i)
94                 if (i != cpu)
95                         per_cpu(ia64_need_tlb_flush, i) = 1;
96         put_cpu();
97         local_flush_tlb_all();
98 }
99
100 /*
101  * Implement "spinaphores" ... like counting semaphores, but they
102  * spin instead of sleeping.  If there are ever any other users for
103  * this primitive it can be moved up to a spinaphore.h header.
104  */
105 struct spinaphore {
106         unsigned long   ticket;
107         unsigned long   serve;
108 };
109
110 static inline void spinaphore_init(struct spinaphore *ss, int val)
111 {
112         ss->ticket = 0;
113         ss->serve = val;
114 }
115
116 static inline void down_spin(struct spinaphore *ss)
117 {
118         unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
119
120         if (time_before(t, ss->serve))
121                 return;
122
123         ia64_invala();
124
125         for (;;) {
126                 asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
127                 if (time_before(t, serve))
128                         return;
129                 cpu_relax();
130         }
131 }
132
133 static inline void up_spin(struct spinaphore *ss)
134 {
135         ia64_fetchadd(1, &ss->serve, rel);
136 }
137
138 static struct spinaphore ptcg_sem;
139 static u16 nptcg = 1;
140 static int need_ptcg_sem = 1;
141 static int toolatetochangeptcgsem = 0;
142
143 /*
144  * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
145  * purges which is reported from either PAL or SAL PALO.
146  *
147  * We don't have sanity checking for nptcg value. It's the user's responsibility
148  * for valid nptcg value on the platform. Otherwise, kernel may hang in some
149  * cases.
150  */
151 static int __init
152 set_nptcg(char *str)
153 {
154         int value = 0;
155
156         get_option(&str, &value);
157         setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
158
159         return 1;
160 }
161
162 __setup("nptcg=", set_nptcg);
163
164 /*
165  * Maximum number of simultaneous ptc.g purges in the system can
166  * be defined by PAL_VM_SUMMARY (in which case we should take
167  * the smallest value for any cpu in the system) or by the PAL
168  * override table (in which case we should ignore the value from
169  * PAL_VM_SUMMARY).
170  *
171  * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
172  * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
173  * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
174  *
175  * Complicating the logic here is the fact that num_possible_cpus()
176  * isn't fully setup until we start bringing cpus online.
177  */
178 void
179 setup_ptcg_sem(int max_purges, int nptcg_from)
180 {
181         static int kp_override;
182         static int palo_override;
183         static int firstcpu = 1;
184
185         if (toolatetochangeptcgsem) {
186                 if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
187                         BUG_ON(1 < nptcg);
188                 else
189                         BUG_ON(max_purges < nptcg);
190                 return;
191         }
192
193         if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
194                 kp_override = 1;
195                 nptcg = max_purges;
196                 goto resetsema;
197         }
198         if (kp_override) {
199                 need_ptcg_sem = num_possible_cpus() > nptcg;
200                 return;
201         }
202
203         if (nptcg_from == NPTCG_FROM_PALO) {
204                 palo_override = 1;
205
206                 /* In PALO max_purges == 0 really means it! */
207                 if (max_purges == 0)
208                         panic("Whoa! Platform does not support global TLB purges.\n");
209                 nptcg = max_purges;
210                 if (nptcg == PALO_MAX_TLB_PURGES) {
211                         need_ptcg_sem = 0;
212                         return;
213                 }
214                 goto resetsema;
215         }
216         if (palo_override) {
217                 if (nptcg != PALO_MAX_TLB_PURGES)
218                         need_ptcg_sem = (num_possible_cpus() > nptcg);
219                 return;
220         }
221
222         /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
223         if (max_purges == 0) max_purges = 1;
224
225         if (firstcpu) {
226                 nptcg = max_purges;
227                 firstcpu = 0;
228         }
229         if (max_purges < nptcg)
230                 nptcg = max_purges;
231         if (nptcg == PAL_MAX_PURGES) {
232                 need_ptcg_sem = 0;
233                 return;
234         } else
235                 need_ptcg_sem = (num_possible_cpus() > nptcg);
236
237 resetsema:
238         spinaphore_init(&ptcg_sem, max_purges);
239 }
240
241 void
242 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
243                        unsigned long end, unsigned long nbits)
244 {
245         struct mm_struct *active_mm = current->active_mm;
246
247         toolatetochangeptcgsem = 1;
248
249         if (mm != active_mm) {
250                 /* Restore region IDs for mm */
251                 if (mm && active_mm) {
252                         activate_context(mm);
253                 } else {
254                         flush_tlb_all();
255                         return;
256                 }
257         }
258
259         if (need_ptcg_sem)
260                 down_spin(&ptcg_sem);
261
262         do {
263                 /*
264                  * Flush ALAT entries also.
265                  */
266                 ia64_ptcga(start, (nbits << 2));
267                 ia64_srlz_i();
268                 start += (1UL << nbits);
269         } while (start < end);
270
271         if (need_ptcg_sem)
272                 up_spin(&ptcg_sem);
273
274         if (mm != active_mm) {
275                 activate_context(active_mm);
276         }
277 }
278
279 void
280 local_flush_tlb_all (void)
281 {
282         unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
283
284         addr    = local_cpu_data->ptce_base;
285         count0  = local_cpu_data->ptce_count[0];
286         count1  = local_cpu_data->ptce_count[1];
287         stride0 = local_cpu_data->ptce_stride[0];
288         stride1 = local_cpu_data->ptce_stride[1];
289
290         local_irq_save(flags);
291         for (i = 0; i < count0; ++i) {
292                 for (j = 0; j < count1; ++j) {
293                         ia64_ptce(addr);
294                         addr += stride1;
295                 }
296                 addr += stride0;
297         }
298         local_irq_restore(flags);
299         ia64_srlz_i();                  /* srlz.i implies srlz.d */
300 }
301
302 void
303 flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
304                  unsigned long end)
305 {
306         struct mm_struct *mm = vma->vm_mm;
307         unsigned long size = end - start;
308         unsigned long nbits;
309
310 #ifndef CONFIG_SMP
311         if (mm != current->active_mm) {
312                 mm->context = 0;
313                 return;
314         }
315 #endif
316
317         nbits = ia64_fls(size + 0xfff);
318         while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
319                         (nbits < purge.max_bits))
320                 ++nbits;
321         if (nbits > purge.max_bits)
322                 nbits = purge.max_bits;
323         start &= ~((1UL << nbits) - 1);
324
325         preempt_disable();
326 #ifdef CONFIG_SMP
327         if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
328                 platform_global_tlb_purge(mm, start, end, nbits);
329                 preempt_enable();
330                 return;
331         }
332 #endif
333         do {
334                 ia64_ptcl(start, (nbits<<2));
335                 start += (1UL << nbits);
336         } while (start < end);
337         preempt_enable();
338         ia64_srlz_i();                  /* srlz.i implies srlz.d */
339 }
340 EXPORT_SYMBOL(flush_tlb_range);
341
342 void ia64_tlb_init(void)
343 {
344         ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
345         u64 tr_pgbits;
346         long status;
347         pal_vm_info_1_u_t vm_info_1;
348         pal_vm_info_2_u_t vm_info_2;
349         int cpu = smp_processor_id();
350
351         if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
352                 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
353                        "defaulting to architected purge page-sizes.\n", status);
354                 purge.mask = 0x115557000UL;
355         }
356         purge.max_bits = ia64_fls(purge.mask);
357
358         ia64_get_ptce(&ptce_info);
359         local_cpu_data->ptce_base = ptce_info.base;
360         local_cpu_data->ptce_count[0] = ptce_info.count[0];
361         local_cpu_data->ptce_count[1] = ptce_info.count[1];
362         local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
363         local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
364
365         local_flush_tlb_all();  /* nuke left overs from bootstrapping... */
366         status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
367
368         if (status) {
369                 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
370                 per_cpu(ia64_tr_num, cpu) = 8;
371                 return;
372         }
373         per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
374         if (per_cpu(ia64_tr_num, cpu) >
375                                 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
376                 per_cpu(ia64_tr_num, cpu) =
377                                 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
378         if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
379                 static int justonce = 1;
380                 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
381                 if (justonce) {
382                         justonce = 0;
383                         printk(KERN_DEBUG "TR register number exceeds "
384                                "IA64_TR_ALLOC_MAX!\n");
385                 }
386         }
387 }
388
389 /*
390  * is_tr_overlap
391  *
392  * Check overlap with inserted TRs.
393  */
394 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
395 {
396         u64 tr_log_size;
397         u64 tr_end;
398         u64 va_rr = ia64_get_rr(va);
399         u64 va_rid = RR_TO_RID(va_rr);
400         u64 va_end = va + (1<<log_size) - 1;
401
402         if (va_rid != RR_TO_RID(p->rr))
403                 return 0;
404         tr_log_size = (p->itir & 0xff) >> 2;
405         tr_end = p->ifa + (1<<tr_log_size) - 1;
406
407         if (va > tr_end || p->ifa > va_end)
408                 return 0;
409         return 1;
410
411 }
412
413 /*
414  * ia64_insert_tr in virtual mode. Allocate a TR slot
415  *
416  * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
417  *
418  * va   : virtual address.
419  * pte  : pte entries inserted.
420  * log_size: range to be covered.
421  *
422  * Return value:  <0 :  error No.
423  *
424  *                >=0 : slot number allocated for TR.
425  * Must be called with preemption disabled.
426  */
427 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
428 {
429         int i, r;
430         unsigned long psr;
431         struct ia64_tr_entry *p;
432         int cpu = smp_processor_id();
433
434         if (!ia64_idtrs[cpu]) {
435                 ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX,
436                                                 sizeof(struct ia64_tr_entry),
437                                                 GFP_KERNEL);
438                 if (!ia64_idtrs[cpu])
439                         return -ENOMEM;
440         }
441         r = -EINVAL;
442         /*Check overlap with existing TR entries*/
443         if (target_mask & 0x1) {
444                 p = ia64_idtrs[cpu];
445                 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
446                                                                 i++, p++) {
447                         if (p->pte & 0x1)
448                                 if (is_tr_overlap(p, va, log_size)) {
449                                         printk(KERN_DEBUG "Overlapped Entry"
450                                                 "Inserted for TR Register!!\n");
451                                         goto out;
452                         }
453                 }
454         }
455         if (target_mask & 0x2) {
456                 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
457                 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
458                                                                 i++, p++) {
459                         if (p->pte & 0x1)
460                                 if (is_tr_overlap(p, va, log_size)) {
461                                         printk(KERN_DEBUG "Overlapped Entry"
462                                                 "Inserted for TR Register!!\n");
463                                         goto out;
464                                 }
465                 }
466         }
467
468         for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
469                 switch (target_mask & 0x3) {
470                 case 1:
471                         if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
472                                 goto found;
473                         continue;
474                 case 2:
475                         if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
476                                 goto found;
477                         continue;
478                 case 3:
479                         if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
480                             !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
481                                 goto found;
482                         continue;
483                 default:
484                         r = -EINVAL;
485                         goto out;
486                 }
487         }
488 found:
489         if (i >= per_cpu(ia64_tr_num, cpu))
490                 return -EBUSY;
491
492         /*Record tr info for mca hander use!*/
493         if (i > per_cpu(ia64_tr_used, cpu))
494                 per_cpu(ia64_tr_used, cpu) = i;
495
496         psr = ia64_clear_ic();
497         if (target_mask & 0x1) {
498                 ia64_itr(0x1, i, va, pte, log_size);
499                 ia64_srlz_i();
500                 p = ia64_idtrs[cpu] + i;
501                 p->ifa = va;
502                 p->pte = pte;
503                 p->itir = log_size << 2;
504                 p->rr = ia64_get_rr(va);
505         }
506         if (target_mask & 0x2) {
507                 ia64_itr(0x2, i, va, pte, log_size);
508                 ia64_srlz_i();
509                 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
510                 p->ifa = va;
511                 p->pte = pte;
512                 p->itir = log_size << 2;
513                 p->rr = ia64_get_rr(va);
514         }
515         ia64_set_psr(psr);
516         r = i;
517 out:
518         return r;
519 }
520 EXPORT_SYMBOL_GPL(ia64_itr_entry);
521
522 /*
523  * ia64_purge_tr
524  *
525  * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
526  * slot: slot number to be freed.
527  *
528  * Must be called with preemption disabled.
529  */
530 void ia64_ptr_entry(u64 target_mask, int slot)
531 {
532         int cpu = smp_processor_id();
533         int i;
534         struct ia64_tr_entry *p;
535
536         if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
537                 return;
538
539         if (target_mask & 0x1) {
540                 p = ia64_idtrs[cpu] + slot;
541                 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
542                         p->pte = 0;
543                         ia64_ptr(0x1, p->ifa, p->itir>>2);
544                         ia64_srlz_i();
545                 }
546         }
547
548         if (target_mask & 0x2) {
549                 p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
550                 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
551                         p->pte = 0;
552                         ia64_ptr(0x2, p->ifa, p->itir>>2);
553                         ia64_srlz_i();
554                 }
555         }
556
557         for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
558                 if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
559                     ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
560                         break;
561         }
562         per_cpu(ia64_tr_used, cpu) = i;
563 }
564 EXPORT_SYMBOL_GPL(ia64_ptr_entry);