Merge branch 'linux-2.6' into for-2.6.22
[powerpc.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
51
52 extern unsigned long _get_SP(void);
53
54 #ifndef CONFIG_SMP
55 struct task_struct *last_task_used_math = NULL;
56 struct task_struct *last_task_used_altivec = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61  * Make sure the floating-point register state in the
62  * the thread_struct is up to date for task tsk.
63  */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66         if (tsk->thread.regs) {
67                 /*
68                  * We need to disable preemption here because if we didn't,
69                  * another process could get scheduled after the regs->msr
70                  * test but before we have finished saving the FP registers
71                  * to the thread_struct.  That process could take over the
72                  * FPU, and then when we get scheduled again we would store
73                  * bogus values for the remaining FP registers.
74                  */
75                 preempt_disable();
76                 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78                         /*
79                          * This should only ever be called for current or
80                          * for a stopped child process.  Since we save away
81                          * the FP register state on context switch on SMP,
82                          * there is something wrong if a stopped child appears
83                          * to still have its FP state in the CPU registers.
84                          */
85                         BUG_ON(tsk != current);
86 #endif
87                         giveup_fpu(current);
88                 }
89                 preempt_enable();
90         }
91 }
92
93 void enable_kernel_fp(void)
94 {
95         WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99                 giveup_fpu(current);
100         else
101                 giveup_fpu(NULL);       /* just enables FP for kernel */
102 #else
103         giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 {
110         if (!tsk->thread.regs)
111                 return 0;
112         flush_fp_to_thread(current);
113
114         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115
116         return 1;
117 }
118
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
121 {
122         WARN_ON(preemptible());
123
124 #ifdef CONFIG_SMP
125         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126                 giveup_altivec(current);
127         else
128                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
129 #else
130         giveup_altivec(last_task_used_altivec);
131 #endif /* CONFIG_SMP */
132 }
133 EXPORT_SYMBOL(enable_kernel_altivec);
134
135 /*
136  * Make sure the VMX/Altivec register state in the
137  * the thread_struct is up to date for task tsk.
138  */
139 void flush_altivec_to_thread(struct task_struct *tsk)
140 {
141         if (tsk->thread.regs) {
142                 preempt_disable();
143                 if (tsk->thread.regs->msr & MSR_VEC) {
144 #ifdef CONFIG_SMP
145                         BUG_ON(tsk != current);
146 #endif
147                         giveup_altivec(current);
148                 }
149                 preempt_enable();
150         }
151 }
152
153 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154 {
155         flush_altivec_to_thread(current);
156         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
157         return 1;
158 }
159 #endif /* CONFIG_ALTIVEC */
160
161 #ifdef CONFIG_SPE
162
163 void enable_kernel_spe(void)
164 {
165         WARN_ON(preemptible());
166
167 #ifdef CONFIG_SMP
168         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
169                 giveup_spe(current);
170         else
171                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
172 #else
173         giveup_spe(last_task_used_spe);
174 #endif /* __SMP __ */
175 }
176 EXPORT_SYMBOL(enable_kernel_spe);
177
178 void flush_spe_to_thread(struct task_struct *tsk)
179 {
180         if (tsk->thread.regs) {
181                 preempt_disable();
182                 if (tsk->thread.regs->msr & MSR_SPE) {
183 #ifdef CONFIG_SMP
184                         BUG_ON(tsk != current);
185 #endif
186                         giveup_spe(current);
187                 }
188                 preempt_enable();
189         }
190 }
191
192 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193 {
194         flush_spe_to_thread(current);
195         /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196         memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
197         return 1;
198 }
199 #endif /* CONFIG_SPE */
200
201 #ifndef CONFIG_SMP
202 /*
203  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204  * and the current task has some state, discard it.
205  */
206 void discard_lazy_cpu_state(void)
207 {
208         preempt_disable();
209         if (last_task_used_math == current)
210                 last_task_used_math = NULL;
211 #ifdef CONFIG_ALTIVEC
212         if (last_task_used_altivec == current)
213                 last_task_used_altivec = NULL;
214 #endif /* CONFIG_ALTIVEC */
215 #ifdef CONFIG_SPE
216         if (last_task_used_spe == current)
217                 last_task_used_spe = NULL;
218 #endif
219         preempt_enable();
220 }
221 #endif /* CONFIG_SMP */
222
223 #ifdef CONFIG_PPC_MERGE         /* XXX for now */
224 int set_dabr(unsigned long dabr)
225 {
226         if (ppc_md.set_dabr)
227                 return ppc_md.set_dabr(dabr);
228
229         mtspr(SPRN_DABR, dabr);
230         return 0;
231 }
232 #endif
233
234 #ifdef CONFIG_PPC64
235 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
236 static DEFINE_PER_CPU(unsigned long, current_dabr);
237 #endif
238
239 struct task_struct *__switch_to(struct task_struct *prev,
240         struct task_struct *new)
241 {
242         struct thread_struct *new_thread, *old_thread;
243         unsigned long flags;
244         struct task_struct *last;
245
246 #ifdef CONFIG_SMP
247         /* avoid complexity of lazy save/restore of fpu
248          * by just saving it every time we switch out if
249          * this task used the fpu during the last quantum.
250          *
251          * If it tries to use the fpu again, it'll trap and
252          * reload its fp regs.  So we don't have to do a restore
253          * every switch, just a save.
254          *  -- Cort
255          */
256         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
257                 giveup_fpu(prev);
258 #ifdef CONFIG_ALTIVEC
259         /*
260          * If the previous thread used altivec in the last quantum
261          * (thus changing altivec regs) then save them.
262          * We used to check the VRSAVE register but not all apps
263          * set it, so we don't rely on it now (and in fact we need
264          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
265          *
266          * On SMP we always save/restore altivec regs just to avoid the
267          * complexity of changing processors.
268          *  -- Cort
269          */
270         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271                 giveup_altivec(prev);
272 #endif /* CONFIG_ALTIVEC */
273 #ifdef CONFIG_SPE
274         /*
275          * If the previous thread used spe in the last quantum
276          * (thus changing spe regs) then save them.
277          *
278          * On SMP we always save/restore spe regs just to avoid the
279          * complexity of changing processors.
280          */
281         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
282                 giveup_spe(prev);
283 #endif /* CONFIG_SPE */
284
285 #else  /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287         /* Avoid the trap.  On smp this this never happens since
288          * we don't set last_task_used_altivec -- Cort
289          */
290         if (new->thread.regs && last_task_used_altivec == new)
291                 new->thread.regs->msr |= MSR_VEC;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_SPE
294         /* Avoid the trap.  On smp this this never happens since
295          * we don't set last_task_used_spe
296          */
297         if (new->thread.regs && last_task_used_spe == new)
298                 new->thread.regs->msr |= MSR_SPE;
299 #endif /* CONFIG_SPE */
300
301 #endif /* CONFIG_SMP */
302
303 #ifdef CONFIG_PPC64     /* for now */
304         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305                 set_dabr(new->thread.dabr);
306                 __get_cpu_var(current_dabr) = new->thread.dabr;
307         }
308
309         flush_tlb_pending();
310 #endif
311
312         new_thread = &new->thread;
313         old_thread = &current->thread;
314
315 #ifdef CONFIG_PPC64
316         /*
317          * Collect processor utilization data per process
318          */
319         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
320                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
321                 long unsigned start_tb, current_tb;
322                 start_tb = old_thread->start_tb;
323                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
324                 old_thread->accum_tb += (current_tb - start_tb);
325                 new_thread->start_tb = current_tb;
326         }
327 #endif
328
329         local_irq_save(flags);
330
331         account_system_vtime(current);
332         account_process_vtime(current);
333         calculate_steal_time();
334
335         last = _switch(old_thread, new_thread);
336
337         local_irq_restore(flags);
338
339         return last;
340 }
341
342 static int instructions_to_print = 16;
343
344 static void show_instructions(struct pt_regs *regs)
345 {
346         int i;
347         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
348                         sizeof(int));
349
350         printk("Instruction dump:");
351
352         for (i = 0; i < instructions_to_print; i++) {
353                 int instr;
354
355                 if (!(i % 8))
356                         printk("\n");
357
358                 /* We use __get_user here *only* to avoid an OOPS on a
359                  * bad address because the pc *should* only be a
360                  * kernel address.
361                  */
362                 if (!__kernel_text_address(pc) ||
363                      __get_user(instr, (unsigned int __user *)pc)) {
364                         printk("XXXXXXXX ");
365                 } else {
366                         if (regs->nip == pc)
367                                 printk("<%08x> ", instr);
368                         else
369                                 printk("%08x ", instr);
370                 }
371
372                 pc += sizeof(int);
373         }
374
375         printk("\n");
376 }
377
378 static struct regbit {
379         unsigned long bit;
380         const char *name;
381 } msr_bits[] = {
382         {MSR_EE,        "EE"},
383         {MSR_PR,        "PR"},
384         {MSR_FP,        "FP"},
385         {MSR_ME,        "ME"},
386         {MSR_IR,        "IR"},
387         {MSR_DR,        "DR"},
388         {0,             NULL}
389 };
390
391 static void printbits(unsigned long val, struct regbit *bits)
392 {
393         const char *sep = "";
394
395         printk("<");
396         for (; bits->bit; ++bits)
397                 if (val & bits->bit) {
398                         printk("%s%s", sep, bits->name);
399                         sep = ",";
400                 }
401         printk(">");
402 }
403
404 #ifdef CONFIG_PPC64
405 #define REG             "%016lx"
406 #define REGS_PER_LINE   4
407 #define LAST_VOLATILE   13
408 #else
409 #define REG             "%08lx"
410 #define REGS_PER_LINE   8
411 #define LAST_VOLATILE   12
412 #endif
413
414 void show_regs(struct pt_regs * regs)
415 {
416         int i, trap;
417
418         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
419                regs->nip, regs->link, regs->ctr);
420         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
421                regs, regs->trap, print_tainted(), init_utsname()->release);
422         printk("MSR: "REG" ", regs->msr);
423         printbits(regs->msr, msr_bits);
424         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
425         trap = TRAP(regs);
426         if (trap == 0x300 || trap == 0x600)
427                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
428         printk("TASK = %p[%d] '%s' THREAD: %p",
429                current, current->pid, current->comm, task_thread_info(current));
430
431 #ifdef CONFIG_SMP
432         printk(" CPU: %d", smp_processor_id());
433 #endif /* CONFIG_SMP */
434
435         for (i = 0;  i < 32;  i++) {
436                 if ((i % REGS_PER_LINE) == 0)
437                         printk("\n" KERN_INFO "GPR%02d: ", i);
438                 printk(REG " ", regs->gpr[i]);
439                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
440                         break;
441         }
442         printk("\n");
443 #ifdef CONFIG_KALLSYMS
444         /*
445          * Lookup NIP late so we have the best change of getting the
446          * above info out without failing
447          */
448         printk("NIP ["REG"] ", regs->nip);
449         print_symbol("%s\n", regs->nip);
450         printk("LR ["REG"] ", regs->link);
451         print_symbol("%s\n", regs->link);
452 #endif
453         show_stack(current, (unsigned long *) regs->gpr[1]);
454         if (!user_mode(regs))
455                 show_instructions(regs);
456 }
457
458 void exit_thread(void)
459 {
460         discard_lazy_cpu_state();
461 }
462
463 void flush_thread(void)
464 {
465 #ifdef CONFIG_PPC64
466         struct thread_info *t = current_thread_info();
467
468         if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
469                 clear_ti_thread_flag(t, TIF_ABI_PENDING);
470                 if (test_ti_thread_flag(t, TIF_32BIT))
471                         clear_ti_thread_flag(t, TIF_32BIT);
472                 else
473                         set_ti_thread_flag(t, TIF_32BIT);
474         }
475 #endif
476
477         discard_lazy_cpu_state();
478
479 #ifdef CONFIG_PPC64     /* for now */
480         if (current->thread.dabr) {
481                 current->thread.dabr = 0;
482                 set_dabr(0);
483         }
484 #endif
485 }
486
487 void
488 release_thread(struct task_struct *t)
489 {
490 }
491
492 /*
493  * This gets called before we allocate a new thread and copy
494  * the current task into it.
495  */
496 void prepare_to_copy(struct task_struct *tsk)
497 {
498         flush_fp_to_thread(current);
499         flush_altivec_to_thread(current);
500         flush_spe_to_thread(current);
501 }
502
503 /*
504  * Copy a thread..
505  */
506 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
507                 unsigned long unused, struct task_struct *p,
508                 struct pt_regs *regs)
509 {
510         struct pt_regs *childregs, *kregs;
511         extern void ret_from_fork(void);
512         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
513
514         CHECK_FULL_REGS(regs);
515         /* Copy registers */
516         sp -= sizeof(struct pt_regs);
517         childregs = (struct pt_regs *) sp;
518         *childregs = *regs;
519         if ((childregs->msr & MSR_PR) == 0) {
520                 /* for kernel thread, set `current' and stackptr in new task */
521                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
522 #ifdef CONFIG_PPC32
523                 childregs->gpr[2] = (unsigned long) p;
524 #else
525                 clear_tsk_thread_flag(p, TIF_32BIT);
526 #endif
527                 p->thread.regs = NULL;  /* no user register state */
528         } else {
529                 childregs->gpr[1] = usp;
530                 p->thread.regs = childregs;
531                 if (clone_flags & CLONE_SETTLS) {
532 #ifdef CONFIG_PPC64
533                         if (!test_thread_flag(TIF_32BIT))
534                                 childregs->gpr[13] = childregs->gpr[6];
535                         else
536 #endif
537                                 childregs->gpr[2] = childregs->gpr[6];
538                 }
539         }
540         childregs->gpr[3] = 0;  /* Result from fork() */
541         sp -= STACK_FRAME_OVERHEAD;
542
543         /*
544          * The way this works is that at some point in the future
545          * some task will call _switch to switch to the new task.
546          * That will pop off the stack frame created below and start
547          * the new task running at ret_from_fork.  The new task will
548          * do some house keeping and then return from the fork or clone
549          * system call, using the stack frame created above.
550          */
551         sp -= sizeof(struct pt_regs);
552         kregs = (struct pt_regs *) sp;
553         sp -= STACK_FRAME_OVERHEAD;
554         p->thread.ksp = sp;
555
556 #ifdef CONFIG_PPC64
557         if (cpu_has_feature(CPU_FTR_SLB)) {
558                 unsigned long sp_vsid = get_kernel_vsid(sp);
559                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
560
561                 sp_vsid <<= SLB_VSID_SHIFT;
562                 sp_vsid |= SLB_VSID_KERNEL | llp;
563                 p->thread.ksp_vsid = sp_vsid;
564         }
565
566         /*
567          * The PPC64 ABI makes use of a TOC to contain function 
568          * pointers.  The function (ret_from_except) is actually a pointer
569          * to the TOC entry.  The first entry is a pointer to the actual
570          * function.
571          */
572         kregs->nip = *((unsigned long *)ret_from_fork);
573 #else
574         kregs->nip = (unsigned long)ret_from_fork;
575 #endif
576
577         return 0;
578 }
579
580 /*
581  * Set up a thread for executing a new program
582  */
583 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
584 {
585 #ifdef CONFIG_PPC64
586         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
587 #endif
588
589         set_fs(USER_DS);
590
591         /*
592          * If we exec out of a kernel thread then thread.regs will not be
593          * set.  Do it now.
594          */
595         if (!current->thread.regs) {
596                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
597                 current->thread.regs = regs - 1;
598         }
599
600         memset(regs->gpr, 0, sizeof(regs->gpr));
601         regs->ctr = 0;
602         regs->link = 0;
603         regs->xer = 0;
604         regs->ccr = 0;
605         regs->gpr[1] = sp;
606
607 #ifdef CONFIG_PPC32
608         regs->mq = 0;
609         regs->nip = start;
610         regs->msr = MSR_USER;
611 #else
612         if (!test_thread_flag(TIF_32BIT)) {
613                 unsigned long entry, toc;
614
615                 /* start is a relocated pointer to the function descriptor for
616                  * the elf _start routine.  The first entry in the function
617                  * descriptor is the entry address of _start and the second
618                  * entry is the TOC value we need to use.
619                  */
620                 __get_user(entry, (unsigned long __user *)start);
621                 __get_user(toc, (unsigned long __user *)start+1);
622
623                 /* Check whether the e_entry function descriptor entries
624                  * need to be relocated before we can use them.
625                  */
626                 if (load_addr != 0) {
627                         entry += load_addr;
628                         toc   += load_addr;
629                 }
630                 regs->nip = entry;
631                 regs->gpr[2] = toc;
632                 regs->msr = MSR_USER64;
633         } else {
634                 regs->nip = start;
635                 regs->gpr[2] = 0;
636                 regs->msr = MSR_USER32;
637         }
638 #endif
639
640         discard_lazy_cpu_state();
641         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
642         current->thread.fpscr.val = 0;
643 #ifdef CONFIG_ALTIVEC
644         memset(current->thread.vr, 0, sizeof(current->thread.vr));
645         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
646         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
647         current->thread.vrsave = 0;
648         current->thread.used_vr = 0;
649 #endif /* CONFIG_ALTIVEC */
650 #ifdef CONFIG_SPE
651         memset(current->thread.evr, 0, sizeof(current->thread.evr));
652         current->thread.acc = 0;
653         current->thread.spefscr = 0;
654         current->thread.used_spe = 0;
655 #endif /* CONFIG_SPE */
656 }
657
658 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
659                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
660
661 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
662 {
663         struct pt_regs *regs = tsk->thread.regs;
664
665         /* This is a bit hairy.  If we are an SPE enabled  processor
666          * (have embedded fp) we store the IEEE exception enable flags in
667          * fpexc_mode.  fpexc_mode is also used for setting FP exception
668          * mode (asyn, precise, disabled) for 'Classic' FP. */
669         if (val & PR_FP_EXC_SW_ENABLE) {
670 #ifdef CONFIG_SPE
671                 tsk->thread.fpexc_mode = val &
672                         (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
673                 return 0;
674 #else
675                 return -EINVAL;
676 #endif
677         }
678
679         /* on a CONFIG_SPE this does not hurt us.  The bits that
680          * __pack_fe01 use do not overlap with bits used for
681          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
682          * on CONFIG_SPE implementations are reserved so writing to
683          * them does not change anything */
684         if (val > PR_FP_EXC_PRECISE)
685                 return -EINVAL;
686         tsk->thread.fpexc_mode = __pack_fe01(val);
687         if (regs != NULL && (regs->msr & MSR_FP) != 0)
688                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
689                         | tsk->thread.fpexc_mode;
690         return 0;
691 }
692
693 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
694 {
695         unsigned int val;
696
697         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
698 #ifdef CONFIG_SPE
699                 val = tsk->thread.fpexc_mode;
700 #else
701                 return -EINVAL;
702 #endif
703         else
704                 val = __unpack_fe01(tsk->thread.fpexc_mode);
705         return put_user(val, (unsigned int __user *) adr);
706 }
707
708 int set_endian(struct task_struct *tsk, unsigned int val)
709 {
710         struct pt_regs *regs = tsk->thread.regs;
711
712         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
713             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
714                 return -EINVAL;
715
716         if (regs == NULL)
717                 return -EINVAL;
718
719         if (val == PR_ENDIAN_BIG)
720                 regs->msr &= ~MSR_LE;
721         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
722                 regs->msr |= MSR_LE;
723         else
724                 return -EINVAL;
725
726         return 0;
727 }
728
729 int get_endian(struct task_struct *tsk, unsigned long adr)
730 {
731         struct pt_regs *regs = tsk->thread.regs;
732         unsigned int val;
733
734         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
735             !cpu_has_feature(CPU_FTR_REAL_LE))
736                 return -EINVAL;
737
738         if (regs == NULL)
739                 return -EINVAL;
740
741         if (regs->msr & MSR_LE) {
742                 if (cpu_has_feature(CPU_FTR_REAL_LE))
743                         val = PR_ENDIAN_LITTLE;
744                 else
745                         val = PR_ENDIAN_PPC_LITTLE;
746         } else
747                 val = PR_ENDIAN_BIG;
748
749         return put_user(val, (unsigned int __user *)adr);
750 }
751
752 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
753 {
754         tsk->thread.align_ctl = val;
755         return 0;
756 }
757
758 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
759 {
760         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
761 }
762
763 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
764
765 int sys_clone(unsigned long clone_flags, unsigned long usp,
766               int __user *parent_tidp, void __user *child_threadptr,
767               int __user *child_tidp, int p6,
768               struct pt_regs *regs)
769 {
770         CHECK_FULL_REGS(regs);
771         if (usp == 0)
772                 usp = regs->gpr[1];     /* stack pointer for child */
773 #ifdef CONFIG_PPC64
774         if (test_thread_flag(TIF_32BIT)) {
775                 parent_tidp = TRUNC_PTR(parent_tidp);
776                 child_tidp = TRUNC_PTR(child_tidp);
777         }
778 #endif
779         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
780 }
781
782 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
783              unsigned long p4, unsigned long p5, unsigned long p6,
784              struct pt_regs *regs)
785 {
786         CHECK_FULL_REGS(regs);
787         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
788 }
789
790 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
791               unsigned long p4, unsigned long p5, unsigned long p6,
792               struct pt_regs *regs)
793 {
794         CHECK_FULL_REGS(regs);
795         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
796                         regs, 0, NULL, NULL);
797 }
798
799 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
800                unsigned long a3, unsigned long a4, unsigned long a5,
801                struct pt_regs *regs)
802 {
803         int error;
804         char *filename;
805
806         filename = getname((char __user *) a0);
807         error = PTR_ERR(filename);
808         if (IS_ERR(filename))
809                 goto out;
810         flush_fp_to_thread(current);
811         flush_altivec_to_thread(current);
812         flush_spe_to_thread(current);
813         error = do_execve(filename, (char __user * __user *) a1,
814                           (char __user * __user *) a2, regs);
815         if (error == 0) {
816                 task_lock(current);
817                 current->ptrace &= ~PT_DTRACE;
818                 task_unlock(current);
819         }
820         putname(filename);
821 out:
822         return error;
823 }
824
825 #ifdef CONFIG_IRQSTACKS
826 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
827                                   unsigned long nbytes)
828 {
829         unsigned long stack_page;
830         unsigned long cpu = task_cpu(p);
831
832         /*
833          * Avoid crashing if the stack has overflowed and corrupted
834          * task_cpu(p), which is in the thread_info struct.
835          */
836         if (cpu < NR_CPUS && cpu_possible(cpu)) {
837                 stack_page = (unsigned long) hardirq_ctx[cpu];
838                 if (sp >= stack_page + sizeof(struct thread_struct)
839                     && sp <= stack_page + THREAD_SIZE - nbytes)
840                         return 1;
841
842                 stack_page = (unsigned long) softirq_ctx[cpu];
843                 if (sp >= stack_page + sizeof(struct thread_struct)
844                     && sp <= stack_page + THREAD_SIZE - nbytes)
845                         return 1;
846         }
847         return 0;
848 }
849
850 #else
851 #define valid_irq_stack(sp, p, nb)      0
852 #endif /* CONFIG_IRQSTACKS */
853
854 int validate_sp(unsigned long sp, struct task_struct *p,
855                        unsigned long nbytes)
856 {
857         unsigned long stack_page = (unsigned long)task_stack_page(p);
858
859         if (sp >= stack_page + sizeof(struct thread_struct)
860             && sp <= stack_page + THREAD_SIZE - nbytes)
861                 return 1;
862
863         return valid_irq_stack(sp, p, nbytes);
864 }
865
866 #ifdef CONFIG_PPC64
867 #define MIN_STACK_FRAME 112     /* same as STACK_FRAME_OVERHEAD, in fact */
868 #define FRAME_LR_SAVE   2
869 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
870 #define REGS_MARKER     0x7265677368657265ul
871 #define FRAME_MARKER    12
872 #else
873 #define MIN_STACK_FRAME 16
874 #define FRAME_LR_SAVE   1
875 #define INT_FRAME_SIZE  (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
876 #define REGS_MARKER     0x72656773ul
877 #define FRAME_MARKER    2
878 #endif
879
880 EXPORT_SYMBOL(validate_sp);
881
882 unsigned long get_wchan(struct task_struct *p)
883 {
884         unsigned long ip, sp;
885         int count = 0;
886
887         if (!p || p == current || p->state == TASK_RUNNING)
888                 return 0;
889
890         sp = p->thread.ksp;
891         if (!validate_sp(sp, p, MIN_STACK_FRAME))
892                 return 0;
893
894         do {
895                 sp = *(unsigned long *)sp;
896                 if (!validate_sp(sp, p, MIN_STACK_FRAME))
897                         return 0;
898                 if (count > 0) {
899                         ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
900                         if (!in_sched_functions(ip))
901                                 return ip;
902                 }
903         } while (count++ < 16);
904         return 0;
905 }
906
907 static int kstack_depth_to_print = 64;
908
909 void show_stack(struct task_struct *tsk, unsigned long *stack)
910 {
911         unsigned long sp, ip, lr, newsp;
912         int count = 0;
913         int firstframe = 1;
914
915         sp = (unsigned long) stack;
916         if (tsk == NULL)
917                 tsk = current;
918         if (sp == 0) {
919                 if (tsk == current)
920                         asm("mr %0,1" : "=r" (sp));
921                 else
922                         sp = tsk->thread.ksp;
923         }
924
925         lr = 0;
926         printk("Call Trace:\n");
927         do {
928                 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
929                         return;
930
931                 stack = (unsigned long *) sp;
932                 newsp = stack[0];
933                 ip = stack[FRAME_LR_SAVE];
934                 if (!firstframe || ip != lr) {
935                         printk("["REG"] ["REG"] ", sp, ip);
936                         print_symbol("%s", ip);
937                         if (firstframe)
938                                 printk(" (unreliable)");
939                         printk("\n");
940                 }
941                 firstframe = 0;
942
943                 /*
944                  * See if this is an exception frame.
945                  * We look for the "regshere" marker in the current frame.
946                  */
947                 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
948                     && stack[FRAME_MARKER] == REGS_MARKER) {
949                         struct pt_regs *regs = (struct pt_regs *)
950                                 (sp + STACK_FRAME_OVERHEAD);
951                         printk("--- Exception: %lx", regs->trap);
952                         print_symbol(" at %s\n", regs->nip);
953                         lr = regs->link;
954                         print_symbol("    LR = %s\n", lr);
955                         firstframe = 1;
956                 }
957
958                 sp = newsp;
959         } while (count++ < kstack_depth_to_print);
960 }
961
962 void dump_stack(void)
963 {
964         show_stack(current, NULL);
965 }
966 EXPORT_SYMBOL(dump_stack);
967
968 #ifdef CONFIG_PPC64
969 void ppc64_runlatch_on(void)
970 {
971         unsigned long ctrl;
972
973         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
974                 HMT_medium();
975
976                 ctrl = mfspr(SPRN_CTRLF);
977                 ctrl |= CTRL_RUNLATCH;
978                 mtspr(SPRN_CTRLT, ctrl);
979
980                 set_thread_flag(TIF_RUNLATCH);
981         }
982 }
983
984 void ppc64_runlatch_off(void)
985 {
986         unsigned long ctrl;
987
988         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
989                 HMT_medium();
990
991                 clear_thread_flag(TIF_RUNLATCH);
992
993                 ctrl = mfspr(SPRN_CTRLF);
994                 ctrl &= ~CTRL_RUNLATCH;
995                 mtspr(SPRN_CTRLT, ctrl);
996         }
997 }
998 #endif