sh: Kill off special boot_cpu_data.
[powerpc.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <asm/uaccess.h>
26 #include <asm/io.h>
27 #include <asm/page.h>
28 #include <asm/sections.h>
29 #include <asm/irq.h>
30 #include <asm/setup.h>
31 #include <asm/clock.h>
32 #include <asm/mmu_context.h>
33
34 extern void * __rd_start, * __rd_end;
35
36 /*
37  * Machine setup..
38  */
39
40 /*
41  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
42  * This value will be used at the very early stage of serial setup.
43  * The bigger value means no problem.
44  */
45 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
46         [0] = {
47                 .type                   = CPU_SH_NONE,
48                 .loops_per_jiffy        = 10000000,
49         },
50 };
51 EXPORT_SYMBOL(cpu_data);
52
53 /*
54  * The machine vector. First entry in .machvec.init, or clobbered by
55  * sh_mv= on the command line, prior to .machvec.init teardown.
56  */
57 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
58
59 #ifdef CONFIG_VT
60 struct screen_info screen_info;
61 #endif
62
63 extern int root_mountflags;
64
65 /*
66  * This is set up by the setup-routine at boot-time
67  */
68 #define PARAM   ((unsigned char *)empty_zero_page)
69
70 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
71 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
72 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
73 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
74 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
75 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
76 /* ... */
77 #define COMMAND_LINE ((char *) (PARAM+0x100))
78
79 #define RAMDISK_IMAGE_START_MASK        0x07FF
80 #define RAMDISK_PROMPT_FLAG             0x8000
81 #define RAMDISK_LOAD_FLAG               0x4000
82
83 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
84
85 static struct resource code_resource = { .name = "Kernel code", };
86 static struct resource data_resource = { .name = "Kernel data", };
87
88 unsigned long memory_start;
89 EXPORT_SYMBOL(memory_start);
90
91 unsigned long memory_end;
92 EXPORT_SYMBOL(memory_end);
93
94 static int __init early_parse_mem(char *p)
95 {
96         unsigned long size;
97
98         memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
99         size = memparse(p, &p);
100         memory_end = memory_start + size;
101
102         return 0;
103 }
104 early_param("mem", early_parse_mem);
105
106 /*
107  * Register fully available low RAM pages with the bootmem allocator.
108  */
109 static void __init register_bootmem_low_pages(void)
110 {
111         unsigned long curr_pfn, last_pfn, pages;
112
113         /*
114          * We are rounding up the start address of usable memory:
115          */
116         curr_pfn = PFN_UP(__MEMORY_START);
117
118         /*
119          * ... and at the end of the usable range downwards:
120          */
121         last_pfn = PFN_DOWN(__pa(memory_end));
122
123         if (last_pfn > max_low_pfn)
124                 last_pfn = max_low_pfn;
125
126         pages = last_pfn - curr_pfn;
127         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
128 }
129
130 void __init setup_bootmem_allocator(unsigned long free_pfn)
131 {
132         unsigned long bootmap_size;
133
134         /*
135          * Find a proper area for the bootmem bitmap. After this
136          * bootstrap step all allocations (until the page allocator
137          * is intact) must be done via bootmem_alloc().
138          */
139         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
140                                          min_low_pfn, max_low_pfn);
141
142         add_active_range(0, min_low_pfn, max_low_pfn);
143         register_bootmem_low_pages();
144
145         node_set_online(0);
146
147         /*
148          * Reserve the kernel text and
149          * Reserve the bootmem bitmap. We do this in two steps (first step
150          * was init_bootmem()), because this catches the (definitely buggy)
151          * case of us accidentally initializing the bootmem allocator with
152          * an invalid RAM area.
153          */
154         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
155                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
156
157         /*
158          * reserve physical page 0 - it's a special BIOS page on many boxes,
159          * enabling clean reboots, SMP operation, laptop functions.
160          */
161         reserve_bootmem(__MEMORY_START, PAGE_SIZE);
162
163         sparse_memory_present_with_active_regions(0);
164
165 #ifdef CONFIG_BLK_DEV_INITRD
166         ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
167         if (&__rd_start != &__rd_end) {
168                 LOADER_TYPE = 1;
169                 INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
170                                         __MEMORY_START;
171                 INITRD_SIZE = (unsigned long)&__rd_end -
172                               (unsigned long)&__rd_start;
173         }
174
175         if (LOADER_TYPE && INITRD_START) {
176                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
177                         reserve_bootmem(INITRD_START + __MEMORY_START,
178                                         INITRD_SIZE);
179                         initrd_start = INITRD_START + PAGE_OFFSET +
180                                         __MEMORY_START;
181                         initrd_end = initrd_start + INITRD_SIZE;
182                 } else {
183                         printk("initrd extends beyond end of memory "
184                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
185                                     INITRD_START + INITRD_SIZE,
186                                     max_low_pfn << PAGE_SHIFT);
187                         initrd_start = 0;
188                 }
189         }
190 #endif
191 #ifdef CONFIG_KEXEC
192         if (crashk_res.start != crashk_res.end)
193                 reserve_bootmem(crashk_res.start,
194                         crashk_res.end - crashk_res.start + 1);
195 #endif
196 }
197
198 #ifndef CONFIG_NEED_MULTIPLE_NODES
199 static void __init setup_memory(void)
200 {
201         unsigned long start_pfn;
202
203         /*
204          * Partially used pages are not usable - thus
205          * we are rounding upwards:
206          */
207         start_pfn = PFN_UP(__pa(_end));
208         setup_bootmem_allocator(start_pfn);
209 }
210 #else
211 extern void __init setup_memory(void);
212 #endif
213
214 void __init setup_arch(char **cmdline_p)
215 {
216         enable_mmu();
217
218         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
219
220 #ifdef CONFIG_BLK_DEV_RAM
221         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
222         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
223         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
224 #endif
225
226         if (!MOUNT_ROOT_RDONLY)
227                 root_mountflags &= ~MS_RDONLY;
228         init_mm.start_code = (unsigned long) _text;
229         init_mm.end_code = (unsigned long) _etext;
230         init_mm.end_data = (unsigned long) _edata;
231         init_mm.brk = (unsigned long) _end;
232
233         code_resource.start = virt_to_phys(_text);
234         code_resource.end = virt_to_phys(_etext)-1;
235         data_resource.start = virt_to_phys(_etext);
236         data_resource.end = virt_to_phys(_edata)-1;
237
238         memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
239         memory_end = memory_start + __MEMORY_SIZE;
240
241 #ifdef CONFIG_CMDLINE_BOOL
242         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
243 #else
244         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
245 #endif
246
247         /* Save unparsed command line copy for /proc/cmdline */
248         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
249         *cmdline_p = command_line;
250
251         parse_early_param();
252
253         sh_mv_setup();
254
255         /*
256          * Find the highest page frame number we have available
257          */
258         max_pfn = PFN_DOWN(__pa(memory_end));
259
260         /*
261          * Determine low and high memory ranges:
262          */
263         max_low_pfn = max_pfn;
264         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
265
266         nodes_clear(node_online_map);
267
268         /* Setup bootmem with available RAM */
269         setup_memory();
270         sparse_init();
271
272 #ifdef CONFIG_DUMMY_CONSOLE
273         conswitchp = &dummy_con;
274 #endif
275
276         /* Perform the machine specific initialisation */
277         if (likely(sh_mv.mv_setup))
278                 sh_mv.mv_setup(cmdline_p);
279
280         paging_init();
281 }
282
283 static const char *cpu_name[] = {
284         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
285         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
286         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
287         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
288         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
289         [CPU_SH7729]    = "SH7729",     [CPU_SH7750]    = "SH7750",
290         [CPU_SH7750S]   = "SH7750S",    [CPU_SH7750R]   = "SH7750R",
291         [CPU_SH7751]    = "SH7751",     [CPU_SH7751R]   = "SH7751R",
292         [CPU_SH7760]    = "SH7760",
293         [CPU_ST40RA]    = "ST40RA",     [CPU_ST40GX1]   = "ST40GX1",
294         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
295         [CPU_SH7770]    = "SH7770",     [CPU_SH7780]    = "SH7780",
296         [CPU_SH7781]    = "SH7781",     [CPU_SH7343]    = "SH7343",
297         [CPU_SH7785]    = "SH7785",     [CPU_SH7722]    = "SH7722",
298         [CPU_SHX3]      = "SH-X3",      [CPU_SH_NONE]   = "Unknown"
299 };
300
301 const char *get_cpu_subtype(struct sh_cpuinfo *c)
302 {
303         return cpu_name[c->type];
304 }
305
306 #ifdef CONFIG_PROC_FS
307 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
308 static const char *cpu_flags[] = {
309         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
310         "ptea", "llsc", "l2", "op32", NULL
311 };
312
313 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
314 {
315         unsigned long i;
316
317         seq_printf(m, "cpu flags\t:");
318
319         if (!c->flags) {
320                 seq_printf(m, " %s\n", cpu_flags[0]);
321                 return;
322         }
323
324         for (i = 0; cpu_flags[i]; i++)
325                 if ((c->flags & (1 << i)))
326                         seq_printf(m, " %s", cpu_flags[i+1]);
327
328         seq_printf(m, "\n");
329 }
330
331 static void show_cacheinfo(struct seq_file *m, const char *type,
332                            struct cache_info info)
333 {
334         unsigned int cache_size;
335
336         cache_size = info.ways * info.sets * info.linesz;
337
338         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
339                    type, cache_size >> 10, info.ways);
340 }
341
342 /*
343  *      Get CPU information for use by the procfs.
344  */
345 static int show_cpuinfo(struct seq_file *m, void *v)
346 {
347         struct sh_cpuinfo *c = v;
348         unsigned int cpu = c - cpu_data;
349
350         if (!cpu_online(cpu))
351                 return 0;
352
353         if (cpu == 0)
354                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
355
356         seq_printf(m, "processor\t: %d\n", cpu);
357         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
358         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
359
360         show_cpuflags(m, c);
361
362         seq_printf(m, "cache type\t: ");
363
364         /*
365          * Check for what type of cache we have, we support both the
366          * unified cache on the SH-2 and SH-3, as well as the harvard
367          * style cache on the SH-4.
368          */
369         if (c->icache.flags & SH_CACHE_COMBINED) {
370                 seq_printf(m, "unified\n");
371                 show_cacheinfo(m, "cache", c->icache);
372         } else {
373                 seq_printf(m, "split (harvard)\n");
374                 show_cacheinfo(m, "icache", c->icache);
375                 show_cacheinfo(m, "dcache", c->dcache);
376         }
377
378         /* Optional secondary cache */
379         if (c->flags & CPU_HAS_L2_CACHE)
380                 show_cacheinfo(m, "scache", c->scache);
381
382         seq_printf(m, "bogomips\t: %lu.%02lu\n",
383                      c->loops_per_jiffy/(500000/HZ),
384                      (c->loops_per_jiffy/(5000/HZ)) % 100);
385
386         return 0;
387 }
388
389 static void *c_start(struct seq_file *m, loff_t *pos)
390 {
391         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
392 }
393 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
394 {
395         ++*pos;
396         return c_start(m, pos);
397 }
398 static void c_stop(struct seq_file *m, void *v)
399 {
400 }
401 struct seq_operations cpuinfo_op = {
402         .start  = c_start,
403         .next   = c_next,
404         .stop   = c_stop,
405         .show   = show_cpuinfo,
406 };
407 #endif /* CONFIG_PROC_FS */