64cdce81d86a519775981f0dd91a78c806a304e2
[powerpc.git] / arch / sparc64 / kernel / pci_sabre.c
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2  * pci_sabre.c: Sabre specific PCI controller support.
3  *
4  * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
6  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
23
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26
27 /* All SABRE registers are 64-bits.  The following accessor
28  * routines are how they are accessed.  The REG parameter
29  * is a physical address.
30  */
31 #define sabre_read(__reg) \
32 ({      u64 __ret; \
33         __asm__ __volatile__("ldxa [%1] %2, %0" \
34                              : "=r" (__ret) \
35                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36                              : "memory"); \
37         __ret; \
38 })
39 #define sabre_write(__reg, __val) \
40         __asm__ __volatile__("stxa %0, [%1] %2" \
41                              : /* no outputs */ \
42                              : "r" (__val), "r" (__reg), \
43                                "i" (ASI_PHYS_BYPASS_EC_E) \
44                              : "memory")
45
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR           0x0030UL
48 #define  SABRE_UEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
49 #define  SABRE_UEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
50 #define  SABRE_UEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
51 #define  SABRE_UEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
52 #define  SABRE_UEAFSR_SDTE       0x0200000000000000UL   /* Secondary DMA Translation Error */
53 #define  SABRE_UEAFSR_PDTE       0x0100000000000000UL   /* Primary DMA Translation Error */
54 #define  SABRE_UEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
55 #define  SABRE_UEAFSR_OFF        0x00000000e0000000UL   /* Offset (AFAR bits [5:3] */
56 #define  SABRE_UEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
57 #define SABRE_UECE_AFAR         0x0038UL
58 #define SABRE_CE_AFSR           0x0040UL
59 #define  SABRE_CEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
60 #define  SABRE_CEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
61 #define  SABRE_CEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
62 #define  SABRE_CEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
63 #define  SABRE_CEAFSR_ESYND      0x00ff000000000000UL   /* ECC Syndrome */
64 #define  SABRE_CEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
65 #define  SABRE_CEAFSR_OFF        0x00000000e0000000UL   /* Offset */
66 #define  SABRE_CEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS   0x0048UL        /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL     0x0200UL
69 #define  SABRE_IOMMUCTRL_ERRSTS  0x0000000006000000UL   /* Error status bits */
70 #define  SABRE_IOMMUCTRL_ERR     0x0000000001000000UL   /* Error present in IOTLB */
71 #define  SABRE_IOMMUCTRL_LCKEN   0x0000000000800000UL   /* IOTLB lock enable */
72 #define  SABRE_IOMMUCTRL_LCKPTR  0x0000000000780000UL   /* IOTLB lock pointer */
73 #define  SABRE_IOMMUCTRL_TSBSZ   0x0000000000070000UL   /* TSB Size */
74 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
75 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
76 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
77 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
78 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
79 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
80 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
81 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define  SABRE_IOMMUCTRL_TBWSZ   0x0000000000000004UL   /* TSB assumed page size */
83 #define  SABRE_IOMMUCTRL_DENAB   0x0000000000000002UL   /* Diagnostic Mode Enable */
84 #define  SABRE_IOMMUCTRL_ENAB    0x0000000000000001UL   /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE     0x0208UL
86 #define SABRE_IOMMU_FLUSH       0x0210UL
87 #define SABRE_IMAP_A_SLOT0      0x0c00UL
88 #define SABRE_IMAP_B_SLOT0      0x0c20UL
89 #define SABRE_IMAP_SCSI         0x1000UL
90 #define SABRE_IMAP_ETH          0x1008UL
91 #define SABRE_IMAP_BPP          0x1010UL
92 #define SABRE_IMAP_AU_REC       0x1018UL
93 #define SABRE_IMAP_AU_PLAY      0x1020UL
94 #define SABRE_IMAP_PFAIL        0x1028UL
95 #define SABRE_IMAP_KMS          0x1030UL
96 #define SABRE_IMAP_FLPY         0x1038UL
97 #define SABRE_IMAP_SHW          0x1040UL
98 #define SABRE_IMAP_KBD          0x1048UL
99 #define SABRE_IMAP_MS           0x1050UL
100 #define SABRE_IMAP_SER          0x1058UL
101 #define SABRE_IMAP_UE           0x1070UL
102 #define SABRE_IMAP_CE           0x1078UL
103 #define SABRE_IMAP_PCIERR       0x1080UL
104 #define SABRE_IMAP_GFX          0x1098UL
105 #define SABRE_IMAP_EUPA         0x10a0UL
106 #define SABRE_ICLR_A_SLOT0      0x1400UL
107 #define SABRE_ICLR_B_SLOT0      0x1480UL
108 #define SABRE_ICLR_SCSI         0x1800UL
109 #define SABRE_ICLR_ETH          0x1808UL
110 #define SABRE_ICLR_BPP          0x1810UL
111 #define SABRE_ICLR_AU_REC       0x1818UL
112 #define SABRE_ICLR_AU_PLAY      0x1820UL
113 #define SABRE_ICLR_PFAIL        0x1828UL
114 #define SABRE_ICLR_KMS          0x1830UL
115 #define SABRE_ICLR_FLPY         0x1838UL
116 #define SABRE_ICLR_SHW          0x1840UL
117 #define SABRE_ICLR_KBD          0x1848UL
118 #define SABRE_ICLR_MS           0x1850UL
119 #define SABRE_ICLR_SER          0x1858UL
120 #define SABRE_ICLR_UE           0x1870UL
121 #define SABRE_ICLR_CE           0x1878UL
122 #define SABRE_ICLR_PCIERR       0x1880UL
123 #define SABRE_WRSYNC            0x1c20UL
124 #define SABRE_PCICTRL           0x2000UL
125 #define  SABRE_PCICTRL_MRLEN     0x0000001000000000UL   /* Use MemoryReadLine for block loads/stores */
126 #define  SABRE_PCICTRL_SERR      0x0000000400000000UL   /* Set when SERR asserted on PCI bus */
127 #define  SABRE_PCICTRL_ARBPARK   0x0000000000200000UL   /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define  SABRE_PCICTRL_CPUPRIO   0x0000000000100000UL   /* Ultra-IIi granted every other bus cycle */
129 #define  SABRE_PCICTRL_ARBPRIO   0x00000000000f0000UL   /* Slot which is granted every other bus cycle */
130 #define  SABRE_PCICTRL_ERREN     0x0000000000000100UL   /* PCI Error Interrupt Enable */
131 #define  SABRE_PCICTRL_RTRYWE    0x0000000000000080UL   /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define  SABRE_PCICTRL_AEN       0x000000000000000fUL   /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR           0x2010UL
134 #define  SABRE_PIOAFSR_PMA       0x8000000000000000UL   /* Primary Master Abort */
135 #define  SABRE_PIOAFSR_PTA       0x4000000000000000UL   /* Primary Target Abort */
136 #define  SABRE_PIOAFSR_PRTRY     0x2000000000000000UL   /* Primary Excessive Retries */
137 #define  SABRE_PIOAFSR_PPERR     0x1000000000000000UL   /* Primary Parity Error */
138 #define  SABRE_PIOAFSR_SMA       0x0800000000000000UL   /* Secondary Master Abort */
139 #define  SABRE_PIOAFSR_STA       0x0400000000000000UL   /* Secondary Target Abort */
140 #define  SABRE_PIOAFSR_SRTRY     0x0200000000000000UL   /* Secondary Excessive Retries */
141 #define  SABRE_PIOAFSR_SPERR     0x0100000000000000UL   /* Secondary Parity Error */
142 #define  SABRE_PIOAFSR_BMSK      0x0000ffff00000000UL   /* Byte Mask */
143 #define  SABRE_PIOAFSR_BLK       0x0000000080000000UL   /* Was Block Operation */
144 #define SABRE_PIOAFAR           0x2018UL
145 #define SABRE_PCIDIAG           0x2020UL
146 #define  SABRE_PCIDIAG_DRTRY     0x0000000000000040UL   /* Disable PIO Retry Limit */
147 #define  SABRE_PCIDIAG_IPAPAR    0x0000000000000008UL   /* Invert PIO Address Parity */
148 #define  SABRE_PCIDIAG_IPDPAR    0x0000000000000004UL   /* Invert PIO Data Parity */
149 #define  SABRE_PCIDIAG_IDDPAR    0x0000000000000002UL   /* Invert DMA Data Parity */
150 #define  SABRE_PCIDIAG_ELPBK     0x0000000000000001UL   /* Loopback Enable - not supported */
151 #define SABRE_PCITASR           0x2028UL
152 #define  SABRE_PCITASR_EF        0x0000000000000080UL   /* Respond to 0xe0000000-0xffffffff */
153 #define  SABRE_PCITASR_CD        0x0000000000000040UL   /* Respond to 0xc0000000-0xdfffffff */
154 #define  SABRE_PCITASR_AB        0x0000000000000020UL   /* Respond to 0xa0000000-0xbfffffff */
155 #define  SABRE_PCITASR_89        0x0000000000000010UL   /* Respond to 0x80000000-0x9fffffff */
156 #define  SABRE_PCITASR_67        0x0000000000000008UL   /* Respond to 0x60000000-0x7fffffff */
157 #define  SABRE_PCITASR_45        0x0000000000000004UL   /* Respond to 0x40000000-0x5fffffff */
158 #define  SABRE_PCITASR_23        0x0000000000000002UL   /* Respond to 0x20000000-0x3fffffff */
159 #define  SABRE_PCITASR_01        0x0000000000000001UL   /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG       0x5000UL
161 #define SABRE_DMABUF_DIAGLO     0x5100UL
162 #define SABRE_DMABUF_DIAGHI     0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS    0x6000UL        /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS   0x8000UL        /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG      0xa400UL
166 #define SABRE_IOMMU_TCDIAG      0xa408UL
167 #define SABRE_IOMMU_TAG         0xa580UL
168 #define  SABRE_IOMMUTAG_ERRSTS   0x0000000001800000UL   /* Error status bits */
169 #define  SABRE_IOMMUTAG_ERR      0x0000000000400000UL   /* Error present */
170 #define  SABRE_IOMMUTAG_WRITE    0x0000000000200000UL   /* Page is writable */
171 #define  SABRE_IOMMUTAG_STREAM   0x0000000000100000UL   /* Streamable bit - unused */
172 #define  SABRE_IOMMUTAG_SIZE     0x0000000000080000UL   /* 0=8k 1=16k */
173 #define  SABRE_IOMMUTAG_VPN      0x000000000007ffffUL   /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA        0xa600UL
175 #define SABRE_IOMMUDATA_VALID    0x0000000040000000UL   /* Valid */
176 #define SABRE_IOMMUDATA_USED     0x0000000020000000UL   /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE    0x0000000010000000UL   /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN      0x00000000001fffffUL   /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE      0xa800UL
180 #define SABRE_OBIO_IRQSTATE     0xa808UL
181 #define SABRE_FFBCFG            0xf000UL
182 #define  SABRE_FFBCFG_SPRQS      0x000000000f000000     /* Slave P_RQST queue size */
183 #define  SABRE_FFBCFG_ONEREAD    0x0000000000004000     /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0           0xf010UL
185 #define  SABRE_MCCTRL0_RENAB     0x0000000080000000     /* Refresh Enable */
186 #define  SABRE_MCCTRL0_EENAB     0x0000000010000000     /* Enable all ECC functions */
187 #define  SABRE_MCCTRL0_11BIT     0x0000000000001000     /* Enable 11-bit column addressing */
188 #define  SABRE_MCCTRL0_DPP       0x0000000000000f00     /* DIMM Pair Present Bits */
189 #define  SABRE_MCCTRL0_RINTVL    0x00000000000000ff     /* Refresh Interval */
190 #define SABRE_MCCTRL1           0xf018UL
191 #define  SABRE_MCCTRL1_AMDC      0x0000000038000000     /* Advance Memdata Clock */
192 #define  SABRE_MCCTRL1_ARDC      0x0000000007000000     /* Advance DRAM Read Data Clock */
193 #define  SABRE_MCCTRL1_CSR       0x0000000000e00000     /* CAS to RAS delay for CBR refresh */
194 #define  SABRE_MCCTRL1_CASRW     0x00000000001c0000     /* CAS length for read/write */
195 #define  SABRE_MCCTRL1_RCD       0x0000000000038000     /* RAS to CAS delay */
196 #define  SABRE_MCCTRL1_CP        0x0000000000007000     /* CAS Precharge */
197 #define  SABRE_MCCTRL1_RP        0x0000000000000e00     /* RAS Precharge */
198 #define  SABRE_MCCTRL1_RAS       0x00000000000001c0     /* Length of RAS for refresh */
199 #define  SABRE_MCCTRL1_CASRW2    0x0000000000000038     /* Must be same as CASRW */
200 #define  SABRE_MCCTRL1_RSC       0x0000000000000007     /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL         0xf020UL
202
203 #define SABRE_CONFIGSPACE       0x001000000UL
204 #define SABRE_IOSPACE           0x002000000UL
205 #define SABRE_IOSPACE_SIZE      0x000ffffffUL
206 #define SABRE_MEMSPACE          0x100000000UL
207 #define SABRE_MEMSPACE_SIZE     0x07fffffffUL
208
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210  * configuration space address format:
211  * 
212  *  32             24 23 16 15    11 10       8 7   2  1 0
213  * ---------------------------------------------------------
214  * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215  * ---------------------------------------------------------
216  */
217 #define SABRE_CONFIG_BASE(PBM)  \
218         ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
220         (((unsigned long)(BUS)   << 16) |       \
221          ((unsigned long)(DEVFN) << 8)  |       \
222          ((unsigned long)(REG)))
223
224 static int hummingbird_p;
225 static struct pci_bus *sabre_root_bus;
226
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228                                      unsigned char bus,
229                                      unsigned int devfn,
230                                      int where)
231 {
232         if (!pbm)
233                 return NULL;
234         return (void *)
235                 (SABRE_CONFIG_BASE(pbm) |
236                  SABRE_CONFIG_ENCODE(bus, devfn, where));
237 }
238
239 static int sabre_out_of_range(unsigned char devfn)
240 {
241         if (hummingbird_p)
242                 return 0;
243
244         return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245                 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246                 (PCI_SLOT(devfn) > 1));
247 }
248
249 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250                                 unsigned char bus,
251                                 unsigned char devfn)
252 {
253         if (hummingbird_p)
254                 return 0;
255
256         return ((pbm->parent == 0) ||
257                 ((pbm == &pbm->parent->pbm_A) &&
258                  (bus == pbm->pci_first_busno) &&
259                  PCI_SLOT(devfn) > 8));
260 }
261
262 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
263                                 int where, int size, u32 *value)
264 {
265         struct pci_pbm_info *pbm = bus_dev->sysdata;
266         unsigned char bus = bus_dev->number;
267         u32 *addr;
268         u16 tmp16;
269         u8 tmp8;
270
271         switch (size) {
272         case 1:
273                 *value = 0xff;
274                 break;
275         case 2:
276                 *value = 0xffff;
277                 break;
278         case 4:
279                 *value = 0xffffffff;
280                 break;
281         }
282
283         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
284         if (!addr)
285                 return PCIBIOS_SUCCESSFUL;
286
287         if (__sabre_out_of_range(pbm, bus, devfn))
288                 return PCIBIOS_SUCCESSFUL;
289
290         switch (size) {
291         case 1:
292                 pci_config_read8((u8 *) addr, &tmp8);
293                 *value = tmp8;
294                 break;
295
296         case 2:
297                 if (where & 0x01) {
298                         printk("pci_read_config_word: misaligned reg [%x]\n",
299                                where);
300                         return PCIBIOS_SUCCESSFUL;
301                 }
302                 pci_config_read16((u16 *) addr, &tmp16);
303                 *value = tmp16;
304                 break;
305
306         case 4:
307                 if (where & 0x03) {
308                         printk("pci_read_config_dword: misaligned reg [%x]\n",
309                                where);
310                         return PCIBIOS_SUCCESSFUL;
311                 }
312                 pci_config_read32(addr, value);
313                 break;
314         }
315
316         return PCIBIOS_SUCCESSFUL;
317 }
318
319 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
320                               int where, int size, u32 *value)
321 {
322         if (!bus->number && sabre_out_of_range(devfn)) {
323                 switch (size) {
324                 case 1:
325                         *value = 0xff;
326                         break;
327                 case 2:
328                         *value = 0xffff;
329                         break;
330                 case 4:
331                         *value = 0xffffffff;
332                         break;
333                 }
334                 return PCIBIOS_SUCCESSFUL;
335         }
336
337         if (bus->number || PCI_SLOT(devfn))
338                 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
339
340         /* When accessing PCI config space of the PCI controller itself (bus
341          * 0, device slot 0, function 0) there are restrictions.  Each
342          * register must be accessed as it's natural size.  Thus, for example
343          * the Vendor ID must be accessed as a 16-bit quantity.
344          */
345
346         switch (size) {
347         case 1:
348                 if (where < 8) {
349                         u32 tmp32;
350                         u16 tmp16;
351
352                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
353                         tmp16 = (u16) tmp32;
354                         if (where & 1)
355                                 *value = tmp16 >> 8;
356                         else
357                                 *value = tmp16 & 0xff;
358                 } else
359                         return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
360                 break;
361
362         case 2:
363                 if (where < 8)
364                         return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
365                 else {
366                         u32 tmp32;
367                         u8 tmp8;
368
369                         __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
370                         tmp8 = (u8) tmp32;
371                         *value = tmp8;
372                         __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
373                         tmp8 = (u8) tmp32;
374                         *value |= tmp8 << 8;
375                 }
376                 break;
377
378         case 4: {
379                 u32 tmp32;
380                 u16 tmp16;
381
382                 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
383                 tmp16 = (u16) tmp32;
384                 *value = tmp16;
385                 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
386                 tmp16 = (u16) tmp32;
387                 *value |= tmp16 << 16;
388                 break;
389         }
390         }
391         return PCIBIOS_SUCCESSFUL;
392 }
393
394 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
395                                  int where, int size, u32 value)
396 {
397         struct pci_pbm_info *pbm = bus_dev->sysdata;
398         unsigned char bus = bus_dev->number;
399         u32 *addr;
400
401         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
402         if (!addr)
403                 return PCIBIOS_SUCCESSFUL;
404
405         if (__sabre_out_of_range(pbm, bus, devfn))
406                 return PCIBIOS_SUCCESSFUL;
407
408         switch (size) {
409         case 1:
410                 pci_config_write8((u8 *) addr, value);
411                 break;
412
413         case 2:
414                 if (where & 0x01) {
415                         printk("pci_write_config_word: misaligned reg [%x]\n",
416                                where);
417                         return PCIBIOS_SUCCESSFUL;
418                 }
419                 pci_config_write16((u16 *) addr, value);
420                 break;
421
422         case 4:
423                 if (where & 0x03) {
424                         printk("pci_write_config_dword: misaligned reg [%x]\n",
425                                where);
426                         return PCIBIOS_SUCCESSFUL;
427                 }
428                 pci_config_write32(addr, value);
429                 break;
430         }
431
432         return PCIBIOS_SUCCESSFUL;
433 }
434
435 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
436                                int where, int size, u32 value)
437 {
438         if (bus->number)
439                 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
440
441         if (sabre_out_of_range(devfn))
442                 return PCIBIOS_SUCCESSFUL;
443
444         switch (size) {
445         case 1:
446                 if (where < 8) {
447                         u32 tmp32;
448                         u16 tmp16;
449
450                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
451                         tmp16 = (u16) tmp32;
452                         if (where & 1) {
453                                 value &= 0x00ff;
454                                 value |= tmp16 << 8;
455                         } else {
456                                 value &= 0xff00;
457                                 value |= tmp16;
458                         }
459                         tmp32 = (u32) tmp16;
460                         return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
461                 } else
462                         return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
463                 break;
464         case 2:
465                 if (where < 8)
466                         return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
467                 else {
468                         __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
469                         __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
470                 }
471                 break;
472         case 4:
473                 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
474                 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
475                 break;
476         }
477         return PCIBIOS_SUCCESSFUL;
478 }
479
480 static struct pci_ops sabre_ops = {
481         .read =         sabre_read_pci_cfg,
482         .write =        sabre_write_pci_cfg,
483 };
484
485 /* SABRE error handling support. */
486 static void sabre_check_iommu_error(struct pci_controller_info *p,
487                                     unsigned long afsr,
488                                     unsigned long afar)
489 {
490         struct pci_iommu *iommu = p->pbm_A.iommu;
491         unsigned long iommu_tag[16];
492         unsigned long iommu_data[16];
493         unsigned long flags;
494         u64 control;
495         int i;
496
497         spin_lock_irqsave(&iommu->lock, flags);
498         control = sabre_read(iommu->iommu_control);
499         if (control & SABRE_IOMMUCTRL_ERR) {
500                 char *type_string;
501
502                 /* Clear the error encountered bit.
503                  * NOTE: On Sabre this is write 1 to clear,
504                  *       which is different from Psycho.
505                  */
506                 sabre_write(iommu->iommu_control, control);
507                 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
508                 case 1:
509                         type_string = "Invalid Error";
510                         break;
511                 case 3:
512                         type_string = "ECC Error";
513                         break;
514                 default:
515                         type_string = "Unknown";
516                         break;
517                 };
518                 printk("SABRE%d: IOMMU Error, type[%s]\n",
519                        p->index, type_string);
520
521                 /* Enter diagnostic mode and probe for error'd
522                  * entries in the IOTLB.
523                  */
524                 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
525                 sabre_write(iommu->iommu_control,
526                             (control | SABRE_IOMMUCTRL_DENAB));
527                 for (i = 0; i < 16; i++) {
528                         unsigned long base = p->pbm_A.controller_regs;
529
530                         iommu_tag[i] =
531                                 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
532                         iommu_data[i] =
533                                 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
534                         sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
535                         sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
536                 }
537                 sabre_write(iommu->iommu_control, control);
538
539                 for (i = 0; i < 16; i++) {
540                         unsigned long tag, data;
541
542                         tag = iommu_tag[i];
543                         if (!(tag & SABRE_IOMMUTAG_ERR))
544                                 continue;
545
546                         data = iommu_data[i];
547                         switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
548                         case 1:
549                                 type_string = "Invalid Error";
550                                 break;
551                         case 3:
552                                 type_string = "ECC Error";
553                                 break;
554                         default:
555                                 type_string = "Unknown";
556                                 break;
557                         };
558                         printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
559                                p->index, i, tag, type_string,
560                                ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
561                                ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
562                                ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
563                         printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
564                                p->index, i, data,
565                                ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
566                                ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
567                                ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
568                                ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
569                 }
570         }
571         spin_unlock_irqrestore(&iommu->lock, flags);
572 }
573
574 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
575 {
576         struct pci_controller_info *p = dev_id;
577         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
578         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
579         unsigned long afsr, afar, error_bits;
580         int reported;
581
582         /* Latch uncorrectable error status. */
583         afar = sabre_read(afar_reg);
584         afsr = sabre_read(afsr_reg);
585
586         /* Clear the primary/secondary error status bits. */
587         error_bits = afsr &
588                 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
589                  SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
590                  SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
591         if (!error_bits)
592                 return IRQ_NONE;
593         sabre_write(afsr_reg, error_bits);
594
595         /* Log the error. */
596         printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
597                p->index,
598                ((error_bits & SABRE_UEAFSR_PDRD) ?
599                 "DMA Read" :
600                 ((error_bits & SABRE_UEAFSR_PDWR) ?
601                  "DMA Write" : "???")),
602                ((error_bits & SABRE_UEAFSR_PDTE) ?
603                 ":Translation Error" : ""));
604         printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
605                p->index,
606                (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
607                (afsr & SABRE_UEAFSR_OFF) >> 29UL,
608                ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
609         printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
610         printk("SABRE%d: UE Secondary errors [", p->index);
611         reported = 0;
612         if (afsr & SABRE_UEAFSR_SDRD) {
613                 reported++;
614                 printk("(DMA Read)");
615         }
616         if (afsr & SABRE_UEAFSR_SDWR) {
617                 reported++;
618                 printk("(DMA Write)");
619         }
620         if (afsr & SABRE_UEAFSR_SDTE) {
621                 reported++;
622                 printk("(Translation Error)");
623         }
624         if (!reported)
625                 printk("(none)");
626         printk("]\n");
627
628         /* Interrogate IOMMU for error status. */
629         sabre_check_iommu_error(p, afsr, afar);
630
631         return IRQ_HANDLED;
632 }
633
634 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
635 {
636         struct pci_controller_info *p = dev_id;
637         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
638         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
639         unsigned long afsr, afar, error_bits;
640         int reported;
641
642         /* Latch error status. */
643         afar = sabre_read(afar_reg);
644         afsr = sabre_read(afsr_reg);
645
646         /* Clear primary/secondary error status bits. */
647         error_bits = afsr &
648                 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
649                  SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
650         if (!error_bits)
651                 return IRQ_NONE;
652         sabre_write(afsr_reg, error_bits);
653
654         /* Log the error. */
655         printk("SABRE%d: Correctable Error, primary error type[%s]\n",
656                p->index,
657                ((error_bits & SABRE_CEAFSR_PDRD) ?
658                 "DMA Read" :
659                 ((error_bits & SABRE_CEAFSR_PDWR) ?
660                  "DMA Write" : "???")));
661
662         /* XXX Use syndrome and afar to print out module string just like
663          * XXX UDB CE trap handler does... -DaveM
664          */
665         printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
666                "was_block(%d)\n",
667                p->index,
668                (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
669                (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
670                (afsr & SABRE_CEAFSR_OFF) >> 29UL,
671                ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
672         printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
673         printk("SABRE%d: CE Secondary errors [", p->index);
674         reported = 0;
675         if (afsr & SABRE_CEAFSR_SDRD) {
676                 reported++;
677                 printk("(DMA Read)");
678         }
679         if (afsr & SABRE_CEAFSR_SDWR) {
680                 reported++;
681                 printk("(DMA Write)");
682         }
683         if (!reported)
684                 printk("(none)");
685         printk("]\n");
686
687         return IRQ_HANDLED;
688 }
689
690 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
691 {
692         unsigned long csr_reg, csr, csr_error_bits;
693         irqreturn_t ret = IRQ_NONE;
694         u16 stat;
695
696         csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
697         csr = sabre_read(csr_reg);
698         csr_error_bits =
699                 csr & SABRE_PCICTRL_SERR;
700         if (csr_error_bits) {
701                 /* Clear the errors.  */
702                 sabre_write(csr_reg, csr);
703
704                 /* Log 'em.  */
705                 if (csr_error_bits & SABRE_PCICTRL_SERR)
706                         printk("SABRE%d: PCI SERR signal asserted.\n",
707                                p->index);
708                 ret = IRQ_HANDLED;
709         }
710         pci_bus_read_config_word(sabre_root_bus, 0,
711                                  PCI_STATUS, &stat);
712         if (stat & (PCI_STATUS_PARITY |
713                     PCI_STATUS_SIG_TARGET_ABORT |
714                     PCI_STATUS_REC_TARGET_ABORT |
715                     PCI_STATUS_REC_MASTER_ABORT |
716                     PCI_STATUS_SIG_SYSTEM_ERROR)) {
717                 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
718                        p->index, stat);
719                 pci_bus_write_config_word(sabre_root_bus, 0,
720                                           PCI_STATUS, 0xffff);
721                 ret = IRQ_HANDLED;
722         }
723         return ret;
724 }
725
726 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
727 {
728         struct pci_controller_info *p = dev_id;
729         unsigned long afsr_reg, afar_reg;
730         unsigned long afsr, afar, error_bits;
731         int reported;
732
733         afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
734         afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
735
736         /* Latch error status. */
737         afar = sabre_read(afar_reg);
738         afsr = sabre_read(afsr_reg);
739
740         /* Clear primary/secondary error status bits. */
741         error_bits = afsr &
742                 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
743                  SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
744                  SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
745                  SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
746         if (!error_bits)
747                 return sabre_pcierr_intr_other(p);
748         sabre_write(afsr_reg, error_bits);
749
750         /* Log the error. */
751         printk("SABRE%d: PCI Error, primary error type[%s]\n",
752                p->index,
753                (((error_bits & SABRE_PIOAFSR_PMA) ?
754                  "Master Abort" :
755                  ((error_bits & SABRE_PIOAFSR_PTA) ?
756                   "Target Abort" :
757                   ((error_bits & SABRE_PIOAFSR_PRTRY) ?
758                    "Excessive Retries" :
759                    ((error_bits & SABRE_PIOAFSR_PPERR) ?
760                     "Parity Error" : "???"))))));
761         printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
762                p->index,
763                (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
764                (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
765         printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
766         printk("SABRE%d: PCI Secondary errors [", p->index);
767         reported = 0;
768         if (afsr & SABRE_PIOAFSR_SMA) {
769                 reported++;
770                 printk("(Master Abort)");
771         }
772         if (afsr & SABRE_PIOAFSR_STA) {
773                 reported++;
774                 printk("(Target Abort)");
775         }
776         if (afsr & SABRE_PIOAFSR_SRTRY) {
777                 reported++;
778                 printk("(Excessive Retries)");
779         }
780         if (afsr & SABRE_PIOAFSR_SPERR) {
781                 reported++;
782                 printk("(Parity Error)");
783         }
784         if (!reported)
785                 printk("(none)");
786         printk("]\n");
787
788         /* For the error types shown, scan both PCI buses for devices
789          * which have logged that error type.
790          */
791
792         /* If we see a Target Abort, this could be the result of an
793          * IOMMU translation error of some sort.  It is extremely
794          * useful to log this information as usually it indicates
795          * a bug in the IOMMU support code or a PCI device driver.
796          */
797         if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
798                 sabre_check_iommu_error(p, afsr, afar);
799                 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
800         }
801         if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
802                 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
803
804         /* For excessive retries, SABRE/PBM will abort the device
805          * and there is no way to specifically check for excessive
806          * retries in the config space status registers.  So what
807          * we hope is that we'll catch it via the master/target
808          * abort events.
809          */
810
811         if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
812                 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
813
814         return IRQ_HANDLED;
815 }
816
817 static void sabre_register_error_handlers(struct pci_controller_info *p)
818 {
819         struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
820         struct device_node *dp = pbm->prom_node;
821         struct of_device *op;
822         unsigned long base = pbm->controller_regs;
823         u64 tmp;
824
825         if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
826                 dp = dp->parent;
827
828         op = of_find_device_by_node(dp);
829         if (!op)
830                 return;
831
832         /* Sabre/Hummingbird IRQ property layout is:
833          * 0: PCI ERR
834          * 1: UE ERR
835          * 2: CE ERR
836          * 3: POWER FAIL
837          */
838         if (op->num_irqs < 4)
839                 return;
840
841         /* We clear the error bits in the appropriate AFSR before
842          * registering the handler so that we don't get spurious
843          * interrupts.
844          */
845         sabre_write(base + SABRE_UE_AFSR,
846                     (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
847                      SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
848                      SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
849
850         request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
851
852         sabre_write(base + SABRE_CE_AFSR,
853                     (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
854                      SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
855
856         request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
857         request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
858                     "SABRE PCIERR", p);
859
860         tmp = sabre_read(base + SABRE_PCICTRL);
861         tmp |= SABRE_PCICTRL_ERREN;
862         sabre_write(base + SABRE_PCICTRL, tmp);
863 }
864
865 static void sabre_base_address_update(struct pci_dev *pdev, int resource)
866 {
867         struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
868         struct resource *res;
869         unsigned long base;
870         u32 reg;
871         int where, size, is_64bit;
872
873         res = &pdev->resource[resource];
874         if (resource < 6) {
875                 where = PCI_BASE_ADDRESS_0 + (resource * 4);
876         } else if (resource == PCI_ROM_RESOURCE) {
877                 where = pdev->rom_base_reg;
878         } else {
879                 /* Somebody might have asked allocation of a non-standard resource */
880                 return;
881         }
882
883         is_64bit = 0;
884         if (res->flags & IORESOURCE_IO)
885                 base = pbm->controller_regs + SABRE_IOSPACE;
886         else {
887                 base = pbm->controller_regs + SABRE_MEMSPACE;
888                 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
889                     == PCI_BASE_ADDRESS_MEM_TYPE_64)
890                         is_64bit = 1;
891         }
892
893         size = res->end - res->start;
894         pci_read_config_dword(pdev, where, &reg);
895         reg = ((reg & size) |
896                (((u32)(res->start - base)) & ~size));
897         if (resource == PCI_ROM_RESOURCE) {
898                 reg |= PCI_ROM_ADDRESS_ENABLE;
899                 res->flags |= IORESOURCE_ROM_ENABLE;
900         }
901         pci_write_config_dword(pdev, where, reg);
902
903         /* This knows that the upper 32-bits of the address
904          * must be zero.  Our PCI common layer enforces this.
905          */
906         if (is_64bit)
907                 pci_write_config_dword(pdev, where + 4, 0);
908 }
909
910 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
911 {
912         struct pci_dev *pdev;
913
914         list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
915                 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
916                     pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
917                         u16 word16;
918
919                         pci_read_config_word(pdev, PCI_COMMAND, &word16);
920                         word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
921                                 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
922                                 PCI_COMMAND_IO;
923                         pci_write_config_word(pdev, PCI_COMMAND, word16);
924
925                         /* Status register bits are "write 1 to clear". */
926                         pci_write_config_word(pdev, PCI_STATUS, 0xffff);
927                         pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
928
929                         /* Use a primary/seconday latency timer value
930                          * of 64.
931                          */
932                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
933                         pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
934
935                         /* Enable reporting/forwarding of master aborts,
936                          * parity, and SERR.
937                          */
938                         pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
939                                               (PCI_BRIDGE_CTL_PARITY |
940                                                PCI_BRIDGE_CTL_SERR |
941                                                PCI_BRIDGE_CTL_MASTER_ABORT));
942                 }
943         }
944 }
945
946 static void sabre_scan_bus(struct pci_controller_info *p)
947 {
948         static int once;
949         struct pci_bus *pbus;
950
951         /* The APB bridge speaks to the Sabre host PCI bridge
952          * at 66Mhz, but the front side of APB runs at 33Mhz
953          * for both segments.
954          */
955         p->pbm_A.is_66mhz_capable = 0;
956
957         /* This driver has not been verified to handle
958          * multiple SABREs yet, so trap this.
959          *
960          * Also note that the SABRE host bridge is hardwired
961          * to live at bus 0.
962          */
963         if (once != 0) {
964                 prom_printf("SABRE: Multiple controllers unsupported.\n");
965                 prom_halt();
966         }
967         once++;
968
969         pbus = pci_scan_one_pbm(&p->pbm_A);
970         if (!pbus)
971                 return;
972
973         sabre_root_bus = pbus;
974
975         apb_init(p, pbus);
976
977         sabre_register_error_handlers(p);
978 }
979
980 static void sabre_iommu_init(struct pci_controller_info *p,
981                              int tsbsize, unsigned long dvma_offset,
982                              u32 dma_mask)
983 {
984         struct pci_iommu *iommu = p->pbm_A.iommu;
985         unsigned long i;
986         u64 control;
987
988         /* Register addresses. */
989         iommu->iommu_control  = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
990         iommu->iommu_tsbbase  = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
991         iommu->iommu_flush    = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
992         iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
993         /* Sabre's IOMMU lacks ctx flushing. */
994         iommu->iommu_ctxflush = 0;
995                                         
996         /* Invalidate TLB Entries. */
997         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
998         control |= SABRE_IOMMUCTRL_DENAB;
999         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1000
1001         for(i = 0; i < 16; i++) {
1002                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1003                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1004         }
1005
1006         /* Leave diag mode enabled for full-flushing done
1007          * in pci_iommu.c
1008          */
1009         pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
1010
1011         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1012                     __pa(iommu->page_table));
1013
1014         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1015         control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1016         control |= SABRE_IOMMUCTRL_ENAB;
1017         switch(tsbsize) {
1018         case 64:
1019                 control |= SABRE_IOMMU_TSBSZ_64K;
1020                 break;
1021         case 128:
1022                 control |= SABRE_IOMMU_TSBSZ_128K;
1023                 break;
1024         default:
1025                 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1026                 prom_halt();
1027                 break;
1028         }
1029         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1030 }
1031
1032 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp)
1033 {
1034         struct pci_pbm_info *pbm;
1035
1036         pbm = &p->pbm_A;
1037         pbm->name = dp->full_name;
1038         printk("%s: SABRE PCI Bus Module\n", pbm->name);
1039
1040         pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1041         pbm->parent = p;
1042         pbm->prom_node = dp;
1043         pbm->pci_first_slot = 1;
1044         pbm->pci_first_busno = p->pci_first_busno;
1045         pbm->pci_last_busno = p->pci_last_busno;
1046
1047         pci_determine_mem_io_space(pbm);
1048 }
1049
1050 void sabre_init(struct device_node *dp, char *model_name)
1051 {
1052         struct linux_prom64_registers *pr_regs;
1053         struct pci_controller_info *p;
1054         struct pci_iommu *iommu;
1055         int tsbsize;
1056         u32 *busrange;
1057         u32 *vdma;
1058         u32 upa_portid, dma_mask;
1059         u64 clear_irq;
1060
1061         hummingbird_p = 0;
1062         if (!strcmp(model_name, "pci108e,a001"))
1063                 hummingbird_p = 1;
1064         else if (!strcmp(model_name, "SUNW,sabre")) {
1065                 const char *compat = of_get_property(dp, "compatible", NULL);
1066                 if (compat && !strcmp(compat, "pci108e,a001"))
1067                         hummingbird_p = 1;
1068                 if (!hummingbird_p) {
1069                         struct device_node *dp;
1070
1071                         /* Of course, Sun has to encode things a thousand
1072                          * different ways, inconsistently.
1073                          */
1074                         cpu_find_by_instance(0, &dp, NULL);
1075                         if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
1076                                 hummingbird_p = 1;
1077                 }
1078         }
1079
1080         p = kzalloc(sizeof(*p), GFP_ATOMIC);
1081         if (!p) {
1082                 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1083                 prom_halt();
1084         }
1085
1086         iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1087         if (!iommu) {
1088                 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1089                 prom_halt();
1090         }
1091         p->pbm_A.iommu = iommu;
1092
1093         upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
1094
1095         p->next = pci_controller_root;
1096         pci_controller_root = p;
1097
1098         p->pbm_A.portid = upa_portid;
1099         p->index = pci_num_controllers++;
1100         p->pbms_same_domain = 1;
1101         p->scan_bus = sabre_scan_bus;
1102         p->base_address_update = sabre_base_address_update;
1103         p->pci_ops = &sabre_ops;
1104
1105         /*
1106          * Map in SABRE register set and report the presence of this SABRE.
1107          */
1108         
1109         pr_regs = of_get_property(dp, "reg", NULL);
1110
1111         /*
1112          * First REG in property is base of entire SABRE register space.
1113          */
1114         p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1115
1116         /* Clear interrupts */
1117
1118         /* PCI first */
1119         for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1120                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1121
1122         /* Then OBIO */
1123         for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1124                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1125
1126         /* Error interrupts are enabled later after the bus scan. */
1127         sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1128                     (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
1129                      SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1130
1131         /* Now map in PCI config space for entire SABRE. */
1132         p->pbm_A.config_space =
1133                 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1134
1135         vdma = of_get_property(dp, "virtual-dma", NULL);
1136
1137         dma_mask = vdma[0];
1138         switch(vdma[1]) {
1139                 case 0x20000000:
1140                         dma_mask |= 0x1fffffff;
1141                         tsbsize = 64;
1142                         break;
1143                 case 0x40000000:
1144                         dma_mask |= 0x3fffffff;
1145                         tsbsize = 128;
1146                         break;
1147
1148                 case 0x80000000:
1149                         dma_mask |= 0x7fffffff;
1150                         tsbsize = 128;
1151                         break;
1152                 default:
1153                         prom_printf("SABRE: strange virtual-dma size.\n");
1154                         prom_halt();
1155         }
1156
1157         sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1158
1159         busrange = of_get_property(dp, "bus-range", NULL);
1160         p->pci_first_busno = busrange[0];
1161         p->pci_last_busno = busrange[1];
1162
1163         /*
1164          * Look for APB underneath.
1165          */
1166         sabre_pbm_init(p, dp);
1167 }