[SPARC64]: Fix PCI rework to adhere to of_get_property() const return.
[powerpc.git] / arch / sparc64 / kernel / pci_sabre.c
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2  * pci_sabre.c: Sabre specific PCI controller support.
3  *
4  * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
6  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
23
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26
27 /* All SABRE registers are 64-bits.  The following accessor
28  * routines are how they are accessed.  The REG parameter
29  * is a physical address.
30  */
31 #define sabre_read(__reg) \
32 ({      u64 __ret; \
33         __asm__ __volatile__("ldxa [%1] %2, %0" \
34                              : "=r" (__ret) \
35                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36                              : "memory"); \
37         __ret; \
38 })
39 #define sabre_write(__reg, __val) \
40         __asm__ __volatile__("stxa %0, [%1] %2" \
41                              : /* no outputs */ \
42                              : "r" (__val), "r" (__reg), \
43                                "i" (ASI_PHYS_BYPASS_EC_E) \
44                              : "memory")
45
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR           0x0030UL
48 #define  SABRE_UEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
49 #define  SABRE_UEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
50 #define  SABRE_UEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
51 #define  SABRE_UEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
52 #define  SABRE_UEAFSR_SDTE       0x0200000000000000UL   /* Secondary DMA Translation Error */
53 #define  SABRE_UEAFSR_PDTE       0x0100000000000000UL   /* Primary DMA Translation Error */
54 #define  SABRE_UEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
55 #define  SABRE_UEAFSR_OFF        0x00000000e0000000UL   /* Offset (AFAR bits [5:3] */
56 #define  SABRE_UEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
57 #define SABRE_UECE_AFAR         0x0038UL
58 #define SABRE_CE_AFSR           0x0040UL
59 #define  SABRE_CEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
60 #define  SABRE_CEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
61 #define  SABRE_CEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
62 #define  SABRE_CEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
63 #define  SABRE_CEAFSR_ESYND      0x00ff000000000000UL   /* ECC Syndrome */
64 #define  SABRE_CEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
65 #define  SABRE_CEAFSR_OFF        0x00000000e0000000UL   /* Offset */
66 #define  SABRE_CEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS   0x0048UL        /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL     0x0200UL
69 #define  SABRE_IOMMUCTRL_ERRSTS  0x0000000006000000UL   /* Error status bits */
70 #define  SABRE_IOMMUCTRL_ERR     0x0000000001000000UL   /* Error present in IOTLB */
71 #define  SABRE_IOMMUCTRL_LCKEN   0x0000000000800000UL   /* IOTLB lock enable */
72 #define  SABRE_IOMMUCTRL_LCKPTR  0x0000000000780000UL   /* IOTLB lock pointer */
73 #define  SABRE_IOMMUCTRL_TSBSZ   0x0000000000070000UL   /* TSB Size */
74 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
75 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
76 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
77 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
78 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
79 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
80 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
81 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define  SABRE_IOMMUCTRL_TBWSZ   0x0000000000000004UL   /* TSB assumed page size */
83 #define  SABRE_IOMMUCTRL_DENAB   0x0000000000000002UL   /* Diagnostic Mode Enable */
84 #define  SABRE_IOMMUCTRL_ENAB    0x0000000000000001UL   /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE     0x0208UL
86 #define SABRE_IOMMU_FLUSH       0x0210UL
87 #define SABRE_IMAP_A_SLOT0      0x0c00UL
88 #define SABRE_IMAP_B_SLOT0      0x0c20UL
89 #define SABRE_IMAP_SCSI         0x1000UL
90 #define SABRE_IMAP_ETH          0x1008UL
91 #define SABRE_IMAP_BPP          0x1010UL
92 #define SABRE_IMAP_AU_REC       0x1018UL
93 #define SABRE_IMAP_AU_PLAY      0x1020UL
94 #define SABRE_IMAP_PFAIL        0x1028UL
95 #define SABRE_IMAP_KMS          0x1030UL
96 #define SABRE_IMAP_FLPY         0x1038UL
97 #define SABRE_IMAP_SHW          0x1040UL
98 #define SABRE_IMAP_KBD          0x1048UL
99 #define SABRE_IMAP_MS           0x1050UL
100 #define SABRE_IMAP_SER          0x1058UL
101 #define SABRE_IMAP_UE           0x1070UL
102 #define SABRE_IMAP_CE           0x1078UL
103 #define SABRE_IMAP_PCIERR       0x1080UL
104 #define SABRE_IMAP_GFX          0x1098UL
105 #define SABRE_IMAP_EUPA         0x10a0UL
106 #define SABRE_ICLR_A_SLOT0      0x1400UL
107 #define SABRE_ICLR_B_SLOT0      0x1480UL
108 #define SABRE_ICLR_SCSI         0x1800UL
109 #define SABRE_ICLR_ETH          0x1808UL
110 #define SABRE_ICLR_BPP          0x1810UL
111 #define SABRE_ICLR_AU_REC       0x1818UL
112 #define SABRE_ICLR_AU_PLAY      0x1820UL
113 #define SABRE_ICLR_PFAIL        0x1828UL
114 #define SABRE_ICLR_KMS          0x1830UL
115 #define SABRE_ICLR_FLPY         0x1838UL
116 #define SABRE_ICLR_SHW          0x1840UL
117 #define SABRE_ICLR_KBD          0x1848UL
118 #define SABRE_ICLR_MS           0x1850UL
119 #define SABRE_ICLR_SER          0x1858UL
120 #define SABRE_ICLR_UE           0x1870UL
121 #define SABRE_ICLR_CE           0x1878UL
122 #define SABRE_ICLR_PCIERR       0x1880UL
123 #define SABRE_WRSYNC            0x1c20UL
124 #define SABRE_PCICTRL           0x2000UL
125 #define  SABRE_PCICTRL_MRLEN     0x0000001000000000UL   /* Use MemoryReadLine for block loads/stores */
126 #define  SABRE_PCICTRL_SERR      0x0000000400000000UL   /* Set when SERR asserted on PCI bus */
127 #define  SABRE_PCICTRL_ARBPARK   0x0000000000200000UL   /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define  SABRE_PCICTRL_CPUPRIO   0x0000000000100000UL   /* Ultra-IIi granted every other bus cycle */
129 #define  SABRE_PCICTRL_ARBPRIO   0x00000000000f0000UL   /* Slot which is granted every other bus cycle */
130 #define  SABRE_PCICTRL_ERREN     0x0000000000000100UL   /* PCI Error Interrupt Enable */
131 #define  SABRE_PCICTRL_RTRYWE    0x0000000000000080UL   /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define  SABRE_PCICTRL_AEN       0x000000000000000fUL   /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR           0x2010UL
134 #define  SABRE_PIOAFSR_PMA       0x8000000000000000UL   /* Primary Master Abort */
135 #define  SABRE_PIOAFSR_PTA       0x4000000000000000UL   /* Primary Target Abort */
136 #define  SABRE_PIOAFSR_PRTRY     0x2000000000000000UL   /* Primary Excessive Retries */
137 #define  SABRE_PIOAFSR_PPERR     0x1000000000000000UL   /* Primary Parity Error */
138 #define  SABRE_PIOAFSR_SMA       0x0800000000000000UL   /* Secondary Master Abort */
139 #define  SABRE_PIOAFSR_STA       0x0400000000000000UL   /* Secondary Target Abort */
140 #define  SABRE_PIOAFSR_SRTRY     0x0200000000000000UL   /* Secondary Excessive Retries */
141 #define  SABRE_PIOAFSR_SPERR     0x0100000000000000UL   /* Secondary Parity Error */
142 #define  SABRE_PIOAFSR_BMSK      0x0000ffff00000000UL   /* Byte Mask */
143 #define  SABRE_PIOAFSR_BLK       0x0000000080000000UL   /* Was Block Operation */
144 #define SABRE_PIOAFAR           0x2018UL
145 #define SABRE_PCIDIAG           0x2020UL
146 #define  SABRE_PCIDIAG_DRTRY     0x0000000000000040UL   /* Disable PIO Retry Limit */
147 #define  SABRE_PCIDIAG_IPAPAR    0x0000000000000008UL   /* Invert PIO Address Parity */
148 #define  SABRE_PCIDIAG_IPDPAR    0x0000000000000004UL   /* Invert PIO Data Parity */
149 #define  SABRE_PCIDIAG_IDDPAR    0x0000000000000002UL   /* Invert DMA Data Parity */
150 #define  SABRE_PCIDIAG_ELPBK     0x0000000000000001UL   /* Loopback Enable - not supported */
151 #define SABRE_PCITASR           0x2028UL
152 #define  SABRE_PCITASR_EF        0x0000000000000080UL   /* Respond to 0xe0000000-0xffffffff */
153 #define  SABRE_PCITASR_CD        0x0000000000000040UL   /* Respond to 0xc0000000-0xdfffffff */
154 #define  SABRE_PCITASR_AB        0x0000000000000020UL   /* Respond to 0xa0000000-0xbfffffff */
155 #define  SABRE_PCITASR_89        0x0000000000000010UL   /* Respond to 0x80000000-0x9fffffff */
156 #define  SABRE_PCITASR_67        0x0000000000000008UL   /* Respond to 0x60000000-0x7fffffff */
157 #define  SABRE_PCITASR_45        0x0000000000000004UL   /* Respond to 0x40000000-0x5fffffff */
158 #define  SABRE_PCITASR_23        0x0000000000000002UL   /* Respond to 0x20000000-0x3fffffff */
159 #define  SABRE_PCITASR_01        0x0000000000000001UL   /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG       0x5000UL
161 #define SABRE_DMABUF_DIAGLO     0x5100UL
162 #define SABRE_DMABUF_DIAGHI     0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS    0x6000UL        /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS   0x8000UL        /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG      0xa400UL
166 #define SABRE_IOMMU_TCDIAG      0xa408UL
167 #define SABRE_IOMMU_TAG         0xa580UL
168 #define  SABRE_IOMMUTAG_ERRSTS   0x0000000001800000UL   /* Error status bits */
169 #define  SABRE_IOMMUTAG_ERR      0x0000000000400000UL   /* Error present */
170 #define  SABRE_IOMMUTAG_WRITE    0x0000000000200000UL   /* Page is writable */
171 #define  SABRE_IOMMUTAG_STREAM   0x0000000000100000UL   /* Streamable bit - unused */
172 #define  SABRE_IOMMUTAG_SIZE     0x0000000000080000UL   /* 0=8k 1=16k */
173 #define  SABRE_IOMMUTAG_VPN      0x000000000007ffffUL   /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA        0xa600UL
175 #define SABRE_IOMMUDATA_VALID    0x0000000040000000UL   /* Valid */
176 #define SABRE_IOMMUDATA_USED     0x0000000020000000UL   /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE    0x0000000010000000UL   /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN      0x00000000001fffffUL   /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE      0xa800UL
180 #define SABRE_OBIO_IRQSTATE     0xa808UL
181 #define SABRE_FFBCFG            0xf000UL
182 #define  SABRE_FFBCFG_SPRQS      0x000000000f000000     /* Slave P_RQST queue size */
183 #define  SABRE_FFBCFG_ONEREAD    0x0000000000004000     /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0           0xf010UL
185 #define  SABRE_MCCTRL0_RENAB     0x0000000080000000     /* Refresh Enable */
186 #define  SABRE_MCCTRL0_EENAB     0x0000000010000000     /* Enable all ECC functions */
187 #define  SABRE_MCCTRL0_11BIT     0x0000000000001000     /* Enable 11-bit column addressing */
188 #define  SABRE_MCCTRL0_DPP       0x0000000000000f00     /* DIMM Pair Present Bits */
189 #define  SABRE_MCCTRL0_RINTVL    0x00000000000000ff     /* Refresh Interval */
190 #define SABRE_MCCTRL1           0xf018UL
191 #define  SABRE_MCCTRL1_AMDC      0x0000000038000000     /* Advance Memdata Clock */
192 #define  SABRE_MCCTRL1_ARDC      0x0000000007000000     /* Advance DRAM Read Data Clock */
193 #define  SABRE_MCCTRL1_CSR       0x0000000000e00000     /* CAS to RAS delay for CBR refresh */
194 #define  SABRE_MCCTRL1_CASRW     0x00000000001c0000     /* CAS length for read/write */
195 #define  SABRE_MCCTRL1_RCD       0x0000000000038000     /* RAS to CAS delay */
196 #define  SABRE_MCCTRL1_CP        0x0000000000007000     /* CAS Precharge */
197 #define  SABRE_MCCTRL1_RP        0x0000000000000e00     /* RAS Precharge */
198 #define  SABRE_MCCTRL1_RAS       0x00000000000001c0     /* Length of RAS for refresh */
199 #define  SABRE_MCCTRL1_CASRW2    0x0000000000000038     /* Must be same as CASRW */
200 #define  SABRE_MCCTRL1_RSC       0x0000000000000007     /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL         0xf020UL
202
203 #define SABRE_CONFIGSPACE       0x001000000UL
204 #define SABRE_IOSPACE           0x002000000UL
205 #define SABRE_IOSPACE_SIZE      0x000ffffffUL
206 #define SABRE_MEMSPACE          0x100000000UL
207 #define SABRE_MEMSPACE_SIZE     0x07fffffffUL
208
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210  * configuration space address format:
211  * 
212  *  32             24 23 16 15    11 10       8 7   2  1 0
213  * ---------------------------------------------------------
214  * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215  * ---------------------------------------------------------
216  */
217 #define SABRE_CONFIG_BASE(PBM)  \
218         ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
220         (((unsigned long)(BUS)   << 16) |       \
221          ((unsigned long)(DEVFN) << 8)  |       \
222          ((unsigned long)(REG)))
223
224 static int hummingbird_p;
225 static struct pci_bus *sabre_root_bus;
226
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228                                      unsigned char bus,
229                                      unsigned int devfn,
230                                      int where)
231 {
232         if (!pbm)
233                 return NULL;
234         return (void *)
235                 (SABRE_CONFIG_BASE(pbm) |
236                  SABRE_CONFIG_ENCODE(bus, devfn, where));
237 }
238
239 static int sabre_out_of_range(unsigned char devfn)
240 {
241         if (hummingbird_p)
242                 return 0;
243
244         return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245                 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246                 (PCI_SLOT(devfn) > 1));
247 }
248
249 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250                                 unsigned char bus,
251                                 unsigned char devfn)
252 {
253         if (hummingbird_p)
254                 return 0;
255
256         return ((pbm->parent == 0) ||
257                 ((pbm == &pbm->parent->pbm_A) &&
258                  (bus == pbm->pci_first_busno) &&
259                  PCI_SLOT(devfn) > 8));
260 }
261
262 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
263                                 int where, int size, u32 *value)
264 {
265         struct pci_pbm_info *pbm = bus_dev->sysdata;
266         unsigned char bus = bus_dev->number;
267         u32 *addr;
268         u16 tmp16;
269         u8 tmp8;
270
271         switch (size) {
272         case 1:
273                 *value = 0xff;
274                 break;
275         case 2:
276                 *value = 0xffff;
277                 break;
278         case 4:
279                 *value = 0xffffffff;
280                 break;
281         }
282
283         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
284         if (!addr)
285                 return PCIBIOS_SUCCESSFUL;
286
287         if (__sabre_out_of_range(pbm, bus, devfn))
288                 return PCIBIOS_SUCCESSFUL;
289
290         switch (size) {
291         case 1:
292                 pci_config_read8((u8 *) addr, &tmp8);
293                 *value = tmp8;
294                 break;
295
296         case 2:
297                 if (where & 0x01) {
298                         printk("pci_read_config_word: misaligned reg [%x]\n",
299                                where);
300                         return PCIBIOS_SUCCESSFUL;
301                 }
302                 pci_config_read16((u16 *) addr, &tmp16);
303                 *value = tmp16;
304                 break;
305
306         case 4:
307                 if (where & 0x03) {
308                         printk("pci_read_config_dword: misaligned reg [%x]\n",
309                                where);
310                         return PCIBIOS_SUCCESSFUL;
311                 }
312                 pci_config_read32(addr, value);
313                 break;
314         }
315
316         return PCIBIOS_SUCCESSFUL;
317 }
318
319 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
320                               int where, int size, u32 *value)
321 {
322         struct pci_pbm_info *pbm = bus->sysdata;
323
324         if (bus == pbm->pci_bus && devfn == 0x00)
325                 return pci_host_bridge_read_pci_cfg(bus, devfn, where,
326                                                     size, value);
327
328         if (!bus->number && sabre_out_of_range(devfn)) {
329                 switch (size) {
330                 case 1:
331                         *value = 0xff;
332                         break;
333                 case 2:
334                         *value = 0xffff;
335                         break;
336                 case 4:
337                         *value = 0xffffffff;
338                         break;
339                 }
340                 return PCIBIOS_SUCCESSFUL;
341         }
342
343         if (bus->number || PCI_SLOT(devfn))
344                 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
345
346         /* When accessing PCI config space of the PCI controller itself (bus
347          * 0, device slot 0, function 0) there are restrictions.  Each
348          * register must be accessed as it's natural size.  Thus, for example
349          * the Vendor ID must be accessed as a 16-bit quantity.
350          */
351
352         switch (size) {
353         case 1:
354                 if (where < 8) {
355                         u32 tmp32;
356                         u16 tmp16;
357
358                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
359                         tmp16 = (u16) tmp32;
360                         if (where & 1)
361                                 *value = tmp16 >> 8;
362                         else
363                                 *value = tmp16 & 0xff;
364                 } else
365                         return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
366                 break;
367
368         case 2:
369                 if (where < 8)
370                         return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
371                 else {
372                         u32 tmp32;
373                         u8 tmp8;
374
375                         __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
376                         tmp8 = (u8) tmp32;
377                         *value = tmp8;
378                         __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
379                         tmp8 = (u8) tmp32;
380                         *value |= tmp8 << 8;
381                 }
382                 break;
383
384         case 4: {
385                 u32 tmp32;
386                 u16 tmp16;
387
388                 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
389                 tmp16 = (u16) tmp32;
390                 *value = tmp16;
391                 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
392                 tmp16 = (u16) tmp32;
393                 *value |= tmp16 << 16;
394                 break;
395         }
396         }
397         return PCIBIOS_SUCCESSFUL;
398 }
399
400 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
401                                  int where, int size, u32 value)
402 {
403         struct pci_pbm_info *pbm = bus_dev->sysdata;
404         unsigned char bus = bus_dev->number;
405         u32 *addr;
406
407         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
408         if (!addr)
409                 return PCIBIOS_SUCCESSFUL;
410
411         if (__sabre_out_of_range(pbm, bus, devfn))
412                 return PCIBIOS_SUCCESSFUL;
413
414         switch (size) {
415         case 1:
416                 pci_config_write8((u8 *) addr, value);
417                 break;
418
419         case 2:
420                 if (where & 0x01) {
421                         printk("pci_write_config_word: misaligned reg [%x]\n",
422                                where);
423                         return PCIBIOS_SUCCESSFUL;
424                 }
425                 pci_config_write16((u16 *) addr, value);
426                 break;
427
428         case 4:
429                 if (where & 0x03) {
430                         printk("pci_write_config_dword: misaligned reg [%x]\n",
431                                where);
432                         return PCIBIOS_SUCCESSFUL;
433                 }
434                 pci_config_write32(addr, value);
435                 break;
436         }
437
438         return PCIBIOS_SUCCESSFUL;
439 }
440
441 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
442                                int where, int size, u32 value)
443 {
444         struct pci_pbm_info *pbm = bus->sysdata;
445
446         if (bus == pbm->pci_bus && devfn == 0x00)
447                 return pci_host_bridge_write_pci_cfg(bus, devfn, where,
448                                                      size, value);
449
450         if (bus->number)
451                 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
452
453         if (sabre_out_of_range(devfn))
454                 return PCIBIOS_SUCCESSFUL;
455
456         switch (size) {
457         case 1:
458                 if (where < 8) {
459                         u32 tmp32;
460                         u16 tmp16;
461
462                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
463                         tmp16 = (u16) tmp32;
464                         if (where & 1) {
465                                 value &= 0x00ff;
466                                 value |= tmp16 << 8;
467                         } else {
468                                 value &= 0xff00;
469                                 value |= tmp16;
470                         }
471                         tmp32 = (u32) tmp16;
472                         return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
473                 } else
474                         return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
475                 break;
476         case 2:
477                 if (where < 8)
478                         return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
479                 else {
480                         __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
481                         __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
482                 }
483                 break;
484         case 4:
485                 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
486                 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
487                 break;
488         }
489         return PCIBIOS_SUCCESSFUL;
490 }
491
492 static struct pci_ops sabre_ops = {
493         .read =         sabre_read_pci_cfg,
494         .write =        sabre_write_pci_cfg,
495 };
496
497 /* SABRE error handling support. */
498 static void sabre_check_iommu_error(struct pci_controller_info *p,
499                                     unsigned long afsr,
500                                     unsigned long afar)
501 {
502         struct pci_iommu *iommu = p->pbm_A.iommu;
503         unsigned long iommu_tag[16];
504         unsigned long iommu_data[16];
505         unsigned long flags;
506         u64 control;
507         int i;
508
509         spin_lock_irqsave(&iommu->lock, flags);
510         control = sabre_read(iommu->iommu_control);
511         if (control & SABRE_IOMMUCTRL_ERR) {
512                 char *type_string;
513
514                 /* Clear the error encountered bit.
515                  * NOTE: On Sabre this is write 1 to clear,
516                  *       which is different from Psycho.
517                  */
518                 sabre_write(iommu->iommu_control, control);
519                 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
520                 case 1:
521                         type_string = "Invalid Error";
522                         break;
523                 case 3:
524                         type_string = "ECC Error";
525                         break;
526                 default:
527                         type_string = "Unknown";
528                         break;
529                 };
530                 printk("SABRE%d: IOMMU Error, type[%s]\n",
531                        p->index, type_string);
532
533                 /* Enter diagnostic mode and probe for error'd
534                  * entries in the IOTLB.
535                  */
536                 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
537                 sabre_write(iommu->iommu_control,
538                             (control | SABRE_IOMMUCTRL_DENAB));
539                 for (i = 0; i < 16; i++) {
540                         unsigned long base = p->pbm_A.controller_regs;
541
542                         iommu_tag[i] =
543                                 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
544                         iommu_data[i] =
545                                 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
546                         sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
547                         sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
548                 }
549                 sabre_write(iommu->iommu_control, control);
550
551                 for (i = 0; i < 16; i++) {
552                         unsigned long tag, data;
553
554                         tag = iommu_tag[i];
555                         if (!(tag & SABRE_IOMMUTAG_ERR))
556                                 continue;
557
558                         data = iommu_data[i];
559                         switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
560                         case 1:
561                                 type_string = "Invalid Error";
562                                 break;
563                         case 3:
564                                 type_string = "ECC Error";
565                                 break;
566                         default:
567                                 type_string = "Unknown";
568                                 break;
569                         };
570                         printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
571                                p->index, i, tag, type_string,
572                                ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
573                                ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
574                                ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
575                         printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
576                                p->index, i, data,
577                                ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
578                                ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
579                                ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
580                                ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
581                 }
582         }
583         spin_unlock_irqrestore(&iommu->lock, flags);
584 }
585
586 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
587 {
588         struct pci_controller_info *p = dev_id;
589         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
590         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
591         unsigned long afsr, afar, error_bits;
592         int reported;
593
594         /* Latch uncorrectable error status. */
595         afar = sabre_read(afar_reg);
596         afsr = sabre_read(afsr_reg);
597
598         /* Clear the primary/secondary error status bits. */
599         error_bits = afsr &
600                 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
601                  SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
602                  SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
603         if (!error_bits)
604                 return IRQ_NONE;
605         sabre_write(afsr_reg, error_bits);
606
607         /* Log the error. */
608         printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
609                p->index,
610                ((error_bits & SABRE_UEAFSR_PDRD) ?
611                 "DMA Read" :
612                 ((error_bits & SABRE_UEAFSR_PDWR) ?
613                  "DMA Write" : "???")),
614                ((error_bits & SABRE_UEAFSR_PDTE) ?
615                 ":Translation Error" : ""));
616         printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
617                p->index,
618                (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
619                (afsr & SABRE_UEAFSR_OFF) >> 29UL,
620                ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
621         printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
622         printk("SABRE%d: UE Secondary errors [", p->index);
623         reported = 0;
624         if (afsr & SABRE_UEAFSR_SDRD) {
625                 reported++;
626                 printk("(DMA Read)");
627         }
628         if (afsr & SABRE_UEAFSR_SDWR) {
629                 reported++;
630                 printk("(DMA Write)");
631         }
632         if (afsr & SABRE_UEAFSR_SDTE) {
633                 reported++;
634                 printk("(Translation Error)");
635         }
636         if (!reported)
637                 printk("(none)");
638         printk("]\n");
639
640         /* Interrogate IOMMU for error status. */
641         sabre_check_iommu_error(p, afsr, afar);
642
643         return IRQ_HANDLED;
644 }
645
646 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
647 {
648         struct pci_controller_info *p = dev_id;
649         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
650         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
651         unsigned long afsr, afar, error_bits;
652         int reported;
653
654         /* Latch error status. */
655         afar = sabre_read(afar_reg);
656         afsr = sabre_read(afsr_reg);
657
658         /* Clear primary/secondary error status bits. */
659         error_bits = afsr &
660                 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
661                  SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
662         if (!error_bits)
663                 return IRQ_NONE;
664         sabre_write(afsr_reg, error_bits);
665
666         /* Log the error. */
667         printk("SABRE%d: Correctable Error, primary error type[%s]\n",
668                p->index,
669                ((error_bits & SABRE_CEAFSR_PDRD) ?
670                 "DMA Read" :
671                 ((error_bits & SABRE_CEAFSR_PDWR) ?
672                  "DMA Write" : "???")));
673
674         /* XXX Use syndrome and afar to print out module string just like
675          * XXX UDB CE trap handler does... -DaveM
676          */
677         printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
678                "was_block(%d)\n",
679                p->index,
680                (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
681                (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
682                (afsr & SABRE_CEAFSR_OFF) >> 29UL,
683                ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
684         printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
685         printk("SABRE%d: CE Secondary errors [", p->index);
686         reported = 0;
687         if (afsr & SABRE_CEAFSR_SDRD) {
688                 reported++;
689                 printk("(DMA Read)");
690         }
691         if (afsr & SABRE_CEAFSR_SDWR) {
692                 reported++;
693                 printk("(DMA Write)");
694         }
695         if (!reported)
696                 printk("(none)");
697         printk("]\n");
698
699         return IRQ_HANDLED;
700 }
701
702 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
703 {
704         unsigned long csr_reg, csr, csr_error_bits;
705         irqreturn_t ret = IRQ_NONE;
706         u16 stat;
707
708         csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
709         csr = sabre_read(csr_reg);
710         csr_error_bits =
711                 csr & SABRE_PCICTRL_SERR;
712         if (csr_error_bits) {
713                 /* Clear the errors.  */
714                 sabre_write(csr_reg, csr);
715
716                 /* Log 'em.  */
717                 if (csr_error_bits & SABRE_PCICTRL_SERR)
718                         printk("SABRE%d: PCI SERR signal asserted.\n",
719                                p->index);
720                 ret = IRQ_HANDLED;
721         }
722         pci_bus_read_config_word(sabre_root_bus, 0,
723                                  PCI_STATUS, &stat);
724         if (stat & (PCI_STATUS_PARITY |
725                     PCI_STATUS_SIG_TARGET_ABORT |
726                     PCI_STATUS_REC_TARGET_ABORT |
727                     PCI_STATUS_REC_MASTER_ABORT |
728                     PCI_STATUS_SIG_SYSTEM_ERROR)) {
729                 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
730                        p->index, stat);
731                 pci_bus_write_config_word(sabre_root_bus, 0,
732                                           PCI_STATUS, 0xffff);
733                 ret = IRQ_HANDLED;
734         }
735         return ret;
736 }
737
738 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
739 {
740         struct pci_controller_info *p = dev_id;
741         unsigned long afsr_reg, afar_reg;
742         unsigned long afsr, afar, error_bits;
743         int reported;
744
745         afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
746         afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
747
748         /* Latch error status. */
749         afar = sabre_read(afar_reg);
750         afsr = sabre_read(afsr_reg);
751
752         /* Clear primary/secondary error status bits. */
753         error_bits = afsr &
754                 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
755                  SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
756                  SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
757                  SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
758         if (!error_bits)
759                 return sabre_pcierr_intr_other(p);
760         sabre_write(afsr_reg, error_bits);
761
762         /* Log the error. */
763         printk("SABRE%d: PCI Error, primary error type[%s]\n",
764                p->index,
765                (((error_bits & SABRE_PIOAFSR_PMA) ?
766                  "Master Abort" :
767                  ((error_bits & SABRE_PIOAFSR_PTA) ?
768                   "Target Abort" :
769                   ((error_bits & SABRE_PIOAFSR_PRTRY) ?
770                    "Excessive Retries" :
771                    ((error_bits & SABRE_PIOAFSR_PPERR) ?
772                     "Parity Error" : "???"))))));
773         printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
774                p->index,
775                (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
776                (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
777         printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
778         printk("SABRE%d: PCI Secondary errors [", p->index);
779         reported = 0;
780         if (afsr & SABRE_PIOAFSR_SMA) {
781                 reported++;
782                 printk("(Master Abort)");
783         }
784         if (afsr & SABRE_PIOAFSR_STA) {
785                 reported++;
786                 printk("(Target Abort)");
787         }
788         if (afsr & SABRE_PIOAFSR_SRTRY) {
789                 reported++;
790                 printk("(Excessive Retries)");
791         }
792         if (afsr & SABRE_PIOAFSR_SPERR) {
793                 reported++;
794                 printk("(Parity Error)");
795         }
796         if (!reported)
797                 printk("(none)");
798         printk("]\n");
799
800         /* For the error types shown, scan both PCI buses for devices
801          * which have logged that error type.
802          */
803
804         /* If we see a Target Abort, this could be the result of an
805          * IOMMU translation error of some sort.  It is extremely
806          * useful to log this information as usually it indicates
807          * a bug in the IOMMU support code or a PCI device driver.
808          */
809         if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
810                 sabre_check_iommu_error(p, afsr, afar);
811                 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
812         }
813         if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
814                 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
815
816         /* For excessive retries, SABRE/PBM will abort the device
817          * and there is no way to specifically check for excessive
818          * retries in the config space status registers.  So what
819          * we hope is that we'll catch it via the master/target
820          * abort events.
821          */
822
823         if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
824                 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
825
826         return IRQ_HANDLED;
827 }
828
829 static void sabre_register_error_handlers(struct pci_controller_info *p)
830 {
831         struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
832         struct device_node *dp = pbm->prom_node;
833         struct of_device *op;
834         unsigned long base = pbm->controller_regs;
835         u64 tmp;
836
837         if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
838                 dp = dp->parent;
839
840         op = of_find_device_by_node(dp);
841         if (!op)
842                 return;
843
844         /* Sabre/Hummingbird IRQ property layout is:
845          * 0: PCI ERR
846          * 1: UE ERR
847          * 2: CE ERR
848          * 3: POWER FAIL
849          */
850         if (op->num_irqs < 4)
851                 return;
852
853         /* We clear the error bits in the appropriate AFSR before
854          * registering the handler so that we don't get spurious
855          * interrupts.
856          */
857         sabre_write(base + SABRE_UE_AFSR,
858                     (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
859                      SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
860                      SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
861
862         request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
863
864         sabre_write(base + SABRE_CE_AFSR,
865                     (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
866                      SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
867
868         request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
869         request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
870                     "SABRE PCIERR", p);
871
872         tmp = sabre_read(base + SABRE_PCICTRL);
873         tmp |= SABRE_PCICTRL_ERREN;
874         sabre_write(base + SABRE_PCICTRL, tmp);
875 }
876
877 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
878 {
879         struct pci_dev *pdev;
880
881         list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
882                 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
883                     pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
884                         u16 word16;
885
886                         pci_read_config_word(pdev, PCI_COMMAND, &word16);
887                         word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
888                                 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
889                                 PCI_COMMAND_IO;
890                         pci_write_config_word(pdev, PCI_COMMAND, word16);
891
892                         /* Status register bits are "write 1 to clear". */
893                         pci_write_config_word(pdev, PCI_STATUS, 0xffff);
894                         pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
895
896                         /* Use a primary/seconday latency timer value
897                          * of 64.
898                          */
899                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
900                         pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
901
902                         /* Enable reporting/forwarding of master aborts,
903                          * parity, and SERR.
904                          */
905                         pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
906                                               (PCI_BRIDGE_CTL_PARITY |
907                                                PCI_BRIDGE_CTL_SERR |
908                                                PCI_BRIDGE_CTL_MASTER_ABORT));
909                 }
910         }
911 }
912
913 static void sabre_scan_bus(struct pci_controller_info *p)
914 {
915         static int once;
916         struct pci_bus *pbus;
917
918         /* The APB bridge speaks to the Sabre host PCI bridge
919          * at 66Mhz, but the front side of APB runs at 33Mhz
920          * for both segments.
921          */
922         p->pbm_A.is_66mhz_capable = 0;
923
924         /* This driver has not been verified to handle
925          * multiple SABREs yet, so trap this.
926          *
927          * Also note that the SABRE host bridge is hardwired
928          * to live at bus 0.
929          */
930         if (once != 0) {
931                 prom_printf("SABRE: Multiple controllers unsupported.\n");
932                 prom_halt();
933         }
934         once++;
935
936         pbus = pci_scan_one_pbm(&p->pbm_A);
937         if (!pbus)
938                 return;
939
940         sabre_root_bus = pbus;
941
942         apb_init(p, pbus);
943
944         sabre_register_error_handlers(p);
945 }
946
947 static void sabre_iommu_init(struct pci_controller_info *p,
948                              int tsbsize, unsigned long dvma_offset,
949                              u32 dma_mask)
950 {
951         struct pci_iommu *iommu = p->pbm_A.iommu;
952         unsigned long i;
953         u64 control;
954
955         /* Register addresses. */
956         iommu->iommu_control  = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
957         iommu->iommu_tsbbase  = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
958         iommu->iommu_flush    = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
959         iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
960         /* Sabre's IOMMU lacks ctx flushing. */
961         iommu->iommu_ctxflush = 0;
962                                         
963         /* Invalidate TLB Entries. */
964         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
965         control |= SABRE_IOMMUCTRL_DENAB;
966         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
967
968         for(i = 0; i < 16; i++) {
969                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
970                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
971         }
972
973         /* Leave diag mode enabled for full-flushing done
974          * in pci_iommu.c
975          */
976         pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
977
978         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
979                     __pa(iommu->page_table));
980
981         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
982         control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
983         control |= SABRE_IOMMUCTRL_ENAB;
984         switch(tsbsize) {
985         case 64:
986                 control |= SABRE_IOMMU_TSBSZ_64K;
987                 break;
988         case 128:
989                 control |= SABRE_IOMMU_TSBSZ_128K;
990                 break;
991         default:
992                 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
993                 prom_halt();
994                 break;
995         }
996         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
997 }
998
999 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp)
1000 {
1001         struct pci_pbm_info *pbm;
1002
1003         pbm = &p->pbm_A;
1004         pbm->name = dp->full_name;
1005         printk("%s: SABRE PCI Bus Module\n", pbm->name);
1006
1007         pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1008         pbm->parent = p;
1009         pbm->prom_node = dp;
1010         pbm->pci_first_busno = p->pci_first_busno;
1011         pbm->pci_last_busno = p->pci_last_busno;
1012
1013         pci_determine_mem_io_space(pbm);
1014 }
1015
1016 void sabre_init(struct device_node *dp, char *model_name)
1017 {
1018         const struct linux_prom64_registers *pr_regs;
1019         struct pci_controller_info *p;
1020         struct pci_iommu *iommu;
1021         int tsbsize;
1022         const u32 *busrange;
1023         const u32 *vdma;
1024         u32 upa_portid, dma_mask;
1025         u64 clear_irq;
1026
1027         hummingbird_p = 0;
1028         if (!strcmp(model_name, "pci108e,a001"))
1029                 hummingbird_p = 1;
1030         else if (!strcmp(model_name, "SUNW,sabre")) {
1031                 const char *compat = of_get_property(dp, "compatible", NULL);
1032                 if (compat && !strcmp(compat, "pci108e,a001"))
1033                         hummingbird_p = 1;
1034                 if (!hummingbird_p) {
1035                         struct device_node *dp;
1036
1037                         /* Of course, Sun has to encode things a thousand
1038                          * different ways, inconsistently.
1039                          */
1040                         cpu_find_by_instance(0, &dp, NULL);
1041                         if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
1042                                 hummingbird_p = 1;
1043                 }
1044         }
1045
1046         p = kzalloc(sizeof(*p), GFP_ATOMIC);
1047         if (!p) {
1048                 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1049                 prom_halt();
1050         }
1051
1052         iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1053         if (!iommu) {
1054                 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1055                 prom_halt();
1056         }
1057         p->pbm_A.iommu = iommu;
1058
1059         upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
1060
1061         p->next = pci_controller_root;
1062         pci_controller_root = p;
1063
1064         p->pbm_A.portid = upa_portid;
1065         p->index = pci_num_controllers++;
1066         p->scan_bus = sabre_scan_bus;
1067         p->pci_ops = &sabre_ops;
1068
1069         /*
1070          * Map in SABRE register set and report the presence of this SABRE.
1071          */
1072         
1073         pr_regs = of_get_property(dp, "reg", NULL);
1074
1075         /*
1076          * First REG in property is base of entire SABRE register space.
1077          */
1078         p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1079
1080         /* Clear interrupts */
1081
1082         /* PCI first */
1083         for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1084                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1085
1086         /* Then OBIO */
1087         for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1088                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1089
1090         /* Error interrupts are enabled later after the bus scan. */
1091         sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1092                     (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
1093                      SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1094
1095         /* Now map in PCI config space for entire SABRE. */
1096         p->pbm_A.config_space =
1097                 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1098
1099         vdma = of_get_property(dp, "virtual-dma", NULL);
1100
1101         dma_mask = vdma[0];
1102         switch(vdma[1]) {
1103                 case 0x20000000:
1104                         dma_mask |= 0x1fffffff;
1105                         tsbsize = 64;
1106                         break;
1107                 case 0x40000000:
1108                         dma_mask |= 0x3fffffff;
1109                         tsbsize = 128;
1110                         break;
1111
1112                 case 0x80000000:
1113                         dma_mask |= 0x7fffffff;
1114                         tsbsize = 128;
1115                         break;
1116                 default:
1117                         prom_printf("SABRE: strange virtual-dma size.\n");
1118                         prom_halt();
1119         }
1120
1121         sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1122
1123         busrange = of_get_property(dp, "bus-range", NULL);
1124         p->pci_first_busno = busrange[0];
1125         p->pci_last_busno = busrange[1];
1126
1127         /*
1128          * Look for APB underneath.
1129          */
1130         sabre_pbm_init(p, dp);
1131 }