[SPARC64]: Turn off TSB growing for now.
[powerpc.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
42 #include <asm/tsb.h>
43
44 extern void device_scan(void);
45
46 #define MAX_BANKS       32
47
48 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
49 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
50 static int pavail_ents __initdata;
51 static int pavail_rescan_ents __initdata;
52
53 static int cmp_p64(const void *a, const void *b)
54 {
55         const struct linux_prom64_registers *x = a, *y = b;
56
57         if (x->phys_addr > y->phys_addr)
58                 return 1;
59         if (x->phys_addr < y->phys_addr)
60                 return -1;
61         return 0;
62 }
63
64 static void __init read_obp_memory(const char *property,
65                                    struct linux_prom64_registers *regs,
66                                    int *num_ents)
67 {
68         int node = prom_finddevice("/memory");
69         int prop_size = prom_getproplen(node, property);
70         int ents, ret, i;
71
72         ents = prop_size / sizeof(struct linux_prom64_registers);
73         if (ents > MAX_BANKS) {
74                 prom_printf("The machine has more %s property entries than "
75                             "this kernel can support (%d).\n",
76                             property, MAX_BANKS);
77                 prom_halt();
78         }
79
80         ret = prom_getproperty(node, property, (char *) regs, prop_size);
81         if (ret == -1) {
82                 prom_printf("Couldn't get %s property from /memory.\n");
83                 prom_halt();
84         }
85
86         *num_ents = ents;
87
88         /* Sanitize what we got from the firmware, by page aligning
89          * everything.
90          */
91         for (i = 0; i < ents; i++) {
92                 unsigned long base, size;
93
94                 base = regs[i].phys_addr;
95                 size = regs[i].reg_size;
96
97                 size &= PAGE_MASK;
98                 if (base & ~PAGE_MASK) {
99                         unsigned long new_base = PAGE_ALIGN(base);
100
101                         size -= new_base - base;
102                         if ((long) size < 0L)
103                                 size = 0UL;
104                         base = new_base;
105                 }
106                 regs[i].phys_addr = base;
107                 regs[i].reg_size = size;
108         }
109         sort(regs, ents, sizeof(struct linux_prom64_registers),
110              cmp_p64, NULL);
111 }
112
113 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
114
115 /* Ugly, but necessary... -DaveM */
116 unsigned long phys_base __read_mostly;
117 unsigned long kern_base __read_mostly;
118 unsigned long kern_size __read_mostly;
119 unsigned long pfn_base __read_mostly;
120
121 /* get_new_mmu_context() uses "cache + 1".  */
122 DEFINE_SPINLOCK(ctx_alloc_lock);
123 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
124 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
125 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
126
127 /* References to special section boundaries */
128 extern char  _start[], _end[];
129
130 /* Initial ramdisk setup */
131 extern unsigned long sparc_ramdisk_image64;
132 extern unsigned int sparc_ramdisk_image;
133 extern unsigned int sparc_ramdisk_size;
134
135 struct page *mem_map_zero __read_mostly;
136
137 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
138
139 unsigned long sparc64_kern_pri_context __read_mostly;
140 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
141 unsigned long sparc64_kern_sec_context __read_mostly;
142
143 int bigkernel = 0;
144
145 kmem_cache_t *pgtable_cache __read_mostly;
146
147 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
148 {
149         clear_page(addr);
150 }
151
152 void pgtable_cache_init(void)
153 {
154         pgtable_cache = kmem_cache_create("pgtable_cache",
155                                           PAGE_SIZE, PAGE_SIZE,
156                                           SLAB_HWCACHE_ALIGN |
157                                           SLAB_MUST_HWCACHE_ALIGN,
158                                           zero_ctor,
159                                           NULL);
160         if (!pgtable_cache) {
161                 prom_printf("pgtable_cache_init(): Could not create!\n");
162                 prom_halt();
163         }
164 }
165
166 #ifdef CONFIG_DEBUG_DCFLUSH
167 atomic_t dcpage_flushes = ATOMIC_INIT(0);
168 #ifdef CONFIG_SMP
169 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
170 #endif
171 #endif
172
173 __inline__ void flush_dcache_page_impl(struct page *page)
174 {
175 #ifdef CONFIG_DEBUG_DCFLUSH
176         atomic_inc(&dcpage_flushes);
177 #endif
178
179 #ifdef DCACHE_ALIASING_POSSIBLE
180         __flush_dcache_page(page_address(page),
181                             ((tlb_type == spitfire) &&
182                              page_mapping(page) != NULL));
183 #else
184         if (page_mapping(page) != NULL &&
185             tlb_type == spitfire)
186                 __flush_icache_page(__pa(page_address(page)));
187 #endif
188 }
189
190 #define PG_dcache_dirty         PG_arch_1
191 #define PG_dcache_cpu_shift     24
192 #define PG_dcache_cpu_mask      (256 - 1)
193
194 #if NR_CPUS > 256
195 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
196 #endif
197
198 #define dcache_dirty_cpu(page) \
199         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
200
201 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
202 {
203         unsigned long mask = this_cpu;
204         unsigned long non_cpu_bits;
205
206         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
207         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
208
209         __asm__ __volatile__("1:\n\t"
210                              "ldx       [%2], %%g7\n\t"
211                              "and       %%g7, %1, %%g1\n\t"
212                              "or        %%g1, %0, %%g1\n\t"
213                              "casx      [%2], %%g7, %%g1\n\t"
214                              "cmp       %%g7, %%g1\n\t"
215                              "membar    #StoreLoad | #StoreStore\n\t"
216                              "bne,pn    %%xcc, 1b\n\t"
217                              " nop"
218                              : /* no outputs */
219                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
220                              : "g1", "g7");
221 }
222
223 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
224 {
225         unsigned long mask = (1UL << PG_dcache_dirty);
226
227         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
228                              "1:\n\t"
229                              "ldx       [%2], %%g7\n\t"
230                              "srlx      %%g7, %4, %%g1\n\t"
231                              "and       %%g1, %3, %%g1\n\t"
232                              "cmp       %%g1, %0\n\t"
233                              "bne,pn    %%icc, 2f\n\t"
234                              " andn     %%g7, %1, %%g1\n\t"
235                              "casx      [%2], %%g7, %%g1\n\t"
236                              "cmp       %%g7, %%g1\n\t"
237                              "membar    #StoreLoad | #StoreStore\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop\n"
240                              "2:"
241                              : /* no outputs */
242                              : "r" (cpu), "r" (mask), "r" (&page->flags),
243                                "i" (PG_dcache_cpu_mask),
244                                "i" (PG_dcache_cpu_shift)
245                              : "g1", "g7");
246 }
247
248 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
249 {
250         unsigned long tsb_addr = (unsigned long) ent;
251
252         if (tlb_type == cheetah_plus)
253                 tsb_addr = __pa(tsb_addr);
254
255         __tsb_insert(tsb_addr, tag, pte);
256 }
257
258 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
259 {
260         struct mm_struct *mm;
261         struct page *page;
262         unsigned long pfn;
263         unsigned long pg_flags;
264
265         pfn = pte_pfn(pte);
266         if (pfn_valid(pfn) &&
267             (page = pfn_to_page(pfn), page_mapping(page)) &&
268             ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
269                 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
270                            PG_dcache_cpu_mask);
271                 int this_cpu = get_cpu();
272
273                 /* This is just to optimize away some function calls
274                  * in the SMP case.
275                  */
276                 if (cpu == this_cpu)
277                         flush_dcache_page_impl(page);
278                 else
279                         smp_flush_dcache_page_impl(page, cpu);
280
281                 clear_dcache_dirty_cpu(page, cpu);
282
283                 put_cpu();
284         }
285
286         mm = vma->vm_mm;
287         if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
288                 struct tsb *tsb;
289                 unsigned long tag;
290
291                 tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
292                                        (mm->context.tsb_nentries - 1UL)];
293                 tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
294                 tsb_insert(tsb, tag, pte_val(pte));
295         }
296 }
297
298 void flush_dcache_page(struct page *page)
299 {
300         struct address_space *mapping;
301         int this_cpu;
302
303         /* Do not bother with the expensive D-cache flush if it
304          * is merely the zero page.  The 'bigcore' testcase in GDB
305          * causes this case to run millions of times.
306          */
307         if (page == ZERO_PAGE(0))
308                 return;
309
310         this_cpu = get_cpu();
311
312         mapping = page_mapping(page);
313         if (mapping && !mapping_mapped(mapping)) {
314                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
315                 if (dirty) {
316                         int dirty_cpu = dcache_dirty_cpu(page);
317
318                         if (dirty_cpu == this_cpu)
319                                 goto out;
320                         smp_flush_dcache_page_impl(page, dirty_cpu);
321                 }
322                 set_dcache_dirty(page, this_cpu);
323         } else {
324                 /* We could delay the flush for the !page_mapping
325                  * case too.  But that case is for exec env/arg
326                  * pages and those are %99 certainly going to get
327                  * faulted into the tlb (and thus flushed) anyways.
328                  */
329                 flush_dcache_page_impl(page);
330         }
331
332 out:
333         put_cpu();
334 }
335
336 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
337 {
338         /* Cheetah has coherent I-cache. */
339         if (tlb_type == spitfire) {
340                 unsigned long kaddr;
341
342                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
343                         __flush_icache_page(__get_phys(kaddr));
344         }
345 }
346
347 unsigned long page_to_pfn(struct page *page)
348 {
349         return (unsigned long) ((page - mem_map) + pfn_base);
350 }
351
352 struct page *pfn_to_page(unsigned long pfn)
353 {
354         return (mem_map + (pfn - pfn_base));
355 }
356
357 void show_mem(void)
358 {
359         printk("Mem-info:\n");
360         show_free_areas();
361         printk("Free swap:       %6ldkB\n",
362                nr_swap_pages << (PAGE_SHIFT-10));
363         printk("%ld pages of RAM\n", num_physpages);
364         printk("%d free pages\n", nr_free_pages());
365 }
366
367 void mmu_info(struct seq_file *m)
368 {
369         if (tlb_type == cheetah)
370                 seq_printf(m, "MMU Type\t: Cheetah\n");
371         else if (tlb_type == cheetah_plus)
372                 seq_printf(m, "MMU Type\t: Cheetah+\n");
373         else if (tlb_type == spitfire)
374                 seq_printf(m, "MMU Type\t: Spitfire\n");
375         else
376                 seq_printf(m, "MMU Type\t: ???\n");
377
378 #ifdef CONFIG_DEBUG_DCFLUSH
379         seq_printf(m, "DCPageFlushes\t: %d\n",
380                    atomic_read(&dcpage_flushes));
381 #ifdef CONFIG_SMP
382         seq_printf(m, "DCPageFlushesXC\t: %d\n",
383                    atomic_read(&dcpage_flushes_xcall));
384 #endif /* CONFIG_SMP */
385 #endif /* CONFIG_DEBUG_DCFLUSH */
386 }
387
388 struct linux_prom_translation {
389         unsigned long virt;
390         unsigned long size;
391         unsigned long data;
392 };
393
394 /* Exported for kernel TLB miss handling in ktlb.S */
395 struct linux_prom_translation prom_trans[512] __read_mostly;
396 unsigned int prom_trans_ents __read_mostly;
397
398 extern unsigned long prom_boot_page;
399 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
400 extern int prom_get_mmu_ihandle(void);
401 extern void register_prom_callbacks(void);
402
403 /* Exported for SMP bootup purposes. */
404 unsigned long kern_locked_tte_data;
405
406 /*
407  * Translate PROM's mapping we capture at boot time into physical address.
408  * The second parameter is only set from prom_callback() invocations.
409  */
410 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
411 {
412         int i;
413
414         for (i = 0; i < prom_trans_ents; i++) {
415                 struct linux_prom_translation *p = &prom_trans[i];
416
417                 if (promva >= p->virt &&
418                     promva < (p->virt + p->size)) {
419                         unsigned long base = p->data & _PAGE_PADDR;
420
421                         if (error)
422                                 *error = 0;
423                         return base + (promva & (8192 - 1));
424                 }
425         }
426         if (error)
427                 *error = 1;
428         return 0UL;
429 }
430
431 /* The obp translations are saved based on 8k pagesize, since obp can
432  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
433  * HI_OBP_ADDRESS range are handled in ktlb.S.
434  */
435 static inline int in_obp_range(unsigned long vaddr)
436 {
437         return (vaddr >= LOW_OBP_ADDRESS &&
438                 vaddr < HI_OBP_ADDRESS);
439 }
440
441 static int cmp_ptrans(const void *a, const void *b)
442 {
443         const struct linux_prom_translation *x = a, *y = b;
444
445         if (x->virt > y->virt)
446                 return 1;
447         if (x->virt < y->virt)
448                 return -1;
449         return 0;
450 }
451
452 /* Read OBP translations property into 'prom_trans[]'.  */
453 static void __init read_obp_translations(void)
454 {
455         int n, node, ents, first, last, i;
456
457         node = prom_finddevice("/virtual-memory");
458         n = prom_getproplen(node, "translations");
459         if (unlikely(n == 0 || n == -1)) {
460                 prom_printf("prom_mappings: Couldn't get size.\n");
461                 prom_halt();
462         }
463         if (unlikely(n > sizeof(prom_trans))) {
464                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
465                 prom_halt();
466         }
467
468         if ((n = prom_getproperty(node, "translations",
469                                   (char *)&prom_trans[0],
470                                   sizeof(prom_trans))) == -1) {
471                 prom_printf("prom_mappings: Couldn't get property.\n");
472                 prom_halt();
473         }
474
475         n = n / sizeof(struct linux_prom_translation);
476
477         ents = n;
478
479         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
480              cmp_ptrans, NULL);
481
482         /* Now kick out all the non-OBP entries.  */
483         for (i = 0; i < ents; i++) {
484                 if (in_obp_range(prom_trans[i].virt))
485                         break;
486         }
487         first = i;
488         for (; i < ents; i++) {
489                 if (!in_obp_range(prom_trans[i].virt))
490                         break;
491         }
492         last = i;
493
494         for (i = 0; i < (last - first); i++) {
495                 struct linux_prom_translation *src = &prom_trans[i + first];
496                 struct linux_prom_translation *dest = &prom_trans[i];
497
498                 *dest = *src;
499         }
500         for (; i < ents; i++) {
501                 struct linux_prom_translation *dest = &prom_trans[i];
502                 dest->virt = dest->size = dest->data = 0x0UL;
503         }
504
505         prom_trans_ents = last - first;
506
507         if (tlb_type == spitfire) {
508                 /* Clear diag TTE bits. */
509                 for (i = 0; i < prom_trans_ents; i++)
510                         prom_trans[i].data &= ~0x0003fe0000000000UL;
511         }
512 }
513
514 static void __init remap_kernel(void)
515 {
516         unsigned long phys_page, tte_vaddr, tte_data;
517         int tlb_ent = sparc64_highest_locked_tlbent();
518
519         tte_vaddr = (unsigned long) KERNBASE;
520         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
521         tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
522                                  _PAGE_CP | _PAGE_CV | _PAGE_P |
523                                  _PAGE_L | _PAGE_W));
524
525         kern_locked_tte_data = tte_data;
526
527         /* Now lock us into the TLBs via OBP. */
528         prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
529         prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
530         if (bigkernel) {
531                 tlb_ent -= 1;
532                 prom_dtlb_load(tlb_ent,
533                                tte_data + 0x400000, 
534                                tte_vaddr + 0x400000);
535                 prom_itlb_load(tlb_ent,
536                                tte_data + 0x400000, 
537                                tte_vaddr + 0x400000);
538         }
539         sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
540         if (tlb_type == cheetah_plus) {
541                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
542                                             CTX_CHEETAH_PLUS_NUC);
543                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
544                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
545         }
546 }
547
548
549 static void __init inherit_prom_mappings(void)
550 {
551         read_obp_translations();
552
553         /* Now fixup OBP's idea about where we really are mapped. */
554         prom_printf("Remapping the kernel... ");
555         remap_kernel();
556         prom_printf("done.\n");
557
558         prom_printf("Registering callbacks... ");
559         register_prom_callbacks();
560         prom_printf("done.\n");
561 }
562
563 void prom_world(int enter)
564 {
565         if (!enter)
566                 set_fs((mm_segment_t) { get_thread_current_ds() });
567
568         __asm__ __volatile__("flushw");
569 }
570
571 #ifdef DCACHE_ALIASING_POSSIBLE
572 void __flush_dcache_range(unsigned long start, unsigned long end)
573 {
574         unsigned long va;
575
576         if (tlb_type == spitfire) {
577                 int n = 0;
578
579                 for (va = start; va < end; va += 32) {
580                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
581                         if (++n >= 512)
582                                 break;
583                 }
584         } else {
585                 start = __pa(start);
586                 end = __pa(end);
587                 for (va = start; va < end; va += 32)
588                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
589                                              "membar #Sync"
590                                              : /* no outputs */
591                                              : "r" (va),
592                                                "i" (ASI_DCACHE_INVALIDATE));
593         }
594 }
595 #endif /* DCACHE_ALIASING_POSSIBLE */
596
597 /* If not locked, zap it. */
598 void __flush_tlb_all(void)
599 {
600         unsigned long pstate;
601         int i;
602
603         __asm__ __volatile__("flushw\n\t"
604                              "rdpr      %%pstate, %0\n\t"
605                              "wrpr      %0, %1, %%pstate"
606                              : "=r" (pstate)
607                              : "i" (PSTATE_IE));
608         if (tlb_type == spitfire) {
609                 for (i = 0; i < 64; i++) {
610                         /* Spitfire Errata #32 workaround */
611                         /* NOTE: Always runs on spitfire, so no
612                          *       cheetah+ page size encodings.
613                          */
614                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
615                                              "flush     %%g6"
616                                              : /* No outputs */
617                                              : "r" (0),
618                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
619
620                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
621                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
622                                                      "membar #Sync"
623                                                      : /* no outputs */
624                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
625                                 spitfire_put_dtlb_data(i, 0x0UL);
626                         }
627
628                         /* Spitfire Errata #32 workaround */
629                         /* NOTE: Always runs on spitfire, so no
630                          *       cheetah+ page size encodings.
631                          */
632                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
633                                              "flush     %%g6"
634                                              : /* No outputs */
635                                              : "r" (0),
636                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
637
638                         if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
639                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
640                                                      "membar #Sync"
641                                                      : /* no outputs */
642                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
643                                 spitfire_put_itlb_data(i, 0x0UL);
644                         }
645                 }
646         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647                 cheetah_flush_dtlb_all();
648                 cheetah_flush_itlb_all();
649         }
650         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
651                              : : "r" (pstate));
652 }
653
654 /* Caller does TLB context flushing on local CPU if necessary.
655  * The caller also ensures that CTX_VALID(mm->context) is false.
656  *
657  * We must be careful about boundary cases so that we never
658  * let the user have CTX 0 (nucleus) or we ever use a CTX
659  * version of zero (and thus NO_CONTEXT would not be caught
660  * by version mis-match tests in mmu_context.h).
661  */
662 void get_new_mmu_context(struct mm_struct *mm)
663 {
664         unsigned long ctx, new_ctx;
665         unsigned long orig_pgsz_bits;
666         
667
668         spin_lock(&ctx_alloc_lock);
669         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
670         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
671         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
672         if (new_ctx >= (1 << CTX_NR_BITS)) {
673                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
674                 if (new_ctx >= ctx) {
675                         int i;
676                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
677                                 CTX_FIRST_VERSION;
678                         if (new_ctx == 1)
679                                 new_ctx = CTX_FIRST_VERSION;
680
681                         /* Don't call memset, for 16 entries that's just
682                          * plain silly...
683                          */
684                         mmu_context_bmap[0] = 3;
685                         mmu_context_bmap[1] = 0;
686                         mmu_context_bmap[2] = 0;
687                         mmu_context_bmap[3] = 0;
688                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
689                                 mmu_context_bmap[i + 0] = 0;
690                                 mmu_context_bmap[i + 1] = 0;
691                                 mmu_context_bmap[i + 2] = 0;
692                                 mmu_context_bmap[i + 3] = 0;
693                         }
694                         goto out;
695                 }
696         }
697         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
698         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
699 out:
700         tlb_context_cache = new_ctx;
701         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
702         spin_unlock(&ctx_alloc_lock);
703 }
704
705 void sparc_ultra_dump_itlb(void)
706 {
707         int slot;
708
709         if (tlb_type == spitfire) {
710                 printk ("Contents of itlb: ");
711                 for (slot = 0; slot < 14; slot++) printk ("    ");
712                 printk ("%2x:%016lx,%016lx\n",
713                         0,
714                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
715                 for (slot = 1; slot < 64; slot+=3) {
716                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
717                                 slot,
718                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
719                                 slot+1,
720                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
721                                 slot+2,
722                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
723                 }
724         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
725                 printk ("Contents of itlb0:\n");
726                 for (slot = 0; slot < 16; slot+=2) {
727                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
728                                 slot,
729                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
730                                 slot+1,
731                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
732                 }
733                 printk ("Contents of itlb2:\n");
734                 for (slot = 0; slot < 128; slot+=2) {
735                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
736                                 slot,
737                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
738                                 slot+1,
739                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
740                 }
741         }
742 }
743
744 void sparc_ultra_dump_dtlb(void)
745 {
746         int slot;
747
748         if (tlb_type == spitfire) {
749                 printk ("Contents of dtlb: ");
750                 for (slot = 0; slot < 14; slot++) printk ("    ");
751                 printk ("%2x:%016lx,%016lx\n", 0,
752                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
753                 for (slot = 1; slot < 64; slot+=3) {
754                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
755                                 slot,
756                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
757                                 slot+1,
758                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
759                                 slot+2,
760                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
761                 }
762         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
763                 printk ("Contents of dtlb0:\n");
764                 for (slot = 0; slot < 16; slot+=2) {
765                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
766                                 slot,
767                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
768                                 slot+1,
769                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
770                 }
771                 printk ("Contents of dtlb2:\n");
772                 for (slot = 0; slot < 512; slot+=2) {
773                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
774                                 slot,
775                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
776                                 slot+1,
777                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
778                 }
779                 if (tlb_type == cheetah_plus) {
780                         printk ("Contents of dtlb3:\n");
781                         for (slot = 0; slot < 512; slot+=2) {
782                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
783                                         slot,
784                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
785                                         slot+1,
786                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
787                         }
788                 }
789         }
790 }
791
792 static inline void spitfire_errata32(void)
793 {
794         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
795                              "flush     %%g6"
796                              : /* No outputs */
797                              : "r" (0),
798                                "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
799 }
800
801 extern unsigned long cmdline_memory_size;
802
803 unsigned long __init bootmem_init(unsigned long *pages_avail)
804 {
805         unsigned long bootmap_size, start_pfn, end_pfn;
806         unsigned long end_of_phys_memory = 0UL;
807         unsigned long bootmap_pfn, bytes_avail, size;
808         int i;
809
810 #ifdef CONFIG_DEBUG_BOOTMEM
811         prom_printf("bootmem_init: Scan pavail, ");
812 #endif
813
814         bytes_avail = 0UL;
815         for (i = 0; i < pavail_ents; i++) {
816                 end_of_phys_memory = pavail[i].phys_addr +
817                         pavail[i].reg_size;
818                 bytes_avail += pavail[i].reg_size;
819                 if (cmdline_memory_size) {
820                         if (bytes_avail > cmdline_memory_size) {
821                                 unsigned long slack = bytes_avail - cmdline_memory_size;
822
823                                 bytes_avail -= slack;
824                                 end_of_phys_memory -= slack;
825
826                                 pavail[i].reg_size -= slack;
827                                 if ((long)pavail[i].reg_size <= 0L) {
828                                         pavail[i].phys_addr = 0xdeadbeefUL;
829                                         pavail[i].reg_size = 0UL;
830                                         pavail_ents = i;
831                                 } else {
832                                         pavail[i+1].reg_size = 0Ul;
833                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
834                                         pavail_ents = i + 1;
835                                 }
836                                 break;
837                         }
838                 }
839         }
840
841         *pages_avail = bytes_avail >> PAGE_SHIFT;
842
843         /* Start with page aligned address of last symbol in kernel
844          * image.  The kernel is hard mapped below PAGE_OFFSET in a
845          * 4MB locked TLB translation.
846          */
847         start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
848
849         bootmap_pfn = start_pfn;
850
851         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
852
853 #ifdef CONFIG_BLK_DEV_INITRD
854         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
855         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
856                 unsigned long ramdisk_image = sparc_ramdisk_image ?
857                         sparc_ramdisk_image : sparc_ramdisk_image64;
858                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
859                         ramdisk_image -= KERNBASE;
860                 initrd_start = ramdisk_image + phys_base;
861                 initrd_end = initrd_start + sparc_ramdisk_size;
862                 if (initrd_end > end_of_phys_memory) {
863                         printk(KERN_CRIT "initrd extends beyond end of memory "
864                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
865                                initrd_end, end_of_phys_memory);
866                         initrd_start = 0;
867                 }
868                 if (initrd_start) {
869                         if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
870                             initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
871                                 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
872                 }
873         }
874 #endif  
875         /* Initialize the boot-time allocator. */
876         max_pfn = max_low_pfn = end_pfn;
877         min_low_pfn = pfn_base;
878
879 #ifdef CONFIG_DEBUG_BOOTMEM
880         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
881                     min_low_pfn, bootmap_pfn, max_low_pfn);
882 #endif
883         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
884
885         /* Now register the available physical memory with the
886          * allocator.
887          */
888         for (i = 0; i < pavail_ents; i++) {
889 #ifdef CONFIG_DEBUG_BOOTMEM
890                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
891                             i, pavail[i].phys_addr, pavail[i].reg_size);
892 #endif
893                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
894         }
895
896 #ifdef CONFIG_BLK_DEV_INITRD
897         if (initrd_start) {
898                 size = initrd_end - initrd_start;
899
900                 /* Resert the initrd image area. */
901 #ifdef CONFIG_DEBUG_BOOTMEM
902                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
903                         initrd_start, initrd_end);
904 #endif
905                 reserve_bootmem(initrd_start, size);
906                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
907
908                 initrd_start += PAGE_OFFSET;
909                 initrd_end += PAGE_OFFSET;
910         }
911 #endif
912         /* Reserve the kernel text/data/bss. */
913 #ifdef CONFIG_DEBUG_BOOTMEM
914         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
915 #endif
916         reserve_bootmem(kern_base, kern_size);
917         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
918
919         /* Reserve the bootmem map.   We do not account for it
920          * in pages_avail because we will release that memory
921          * in free_all_bootmem.
922          */
923         size = bootmap_size;
924 #ifdef CONFIG_DEBUG_BOOTMEM
925         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
926                     (bootmap_pfn << PAGE_SHIFT), size);
927 #endif
928         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
929         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
930
931         return end_pfn;
932 }
933
934 #ifdef CONFIG_DEBUG_PAGEALLOC
935 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
936 {
937         unsigned long vstart = PAGE_OFFSET + pstart;
938         unsigned long vend = PAGE_OFFSET + pend;
939         unsigned long alloc_bytes = 0UL;
940
941         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
942                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
943                             vstart, vend);
944                 prom_halt();
945         }
946
947         while (vstart < vend) {
948                 unsigned long this_end, paddr = __pa(vstart);
949                 pgd_t *pgd = pgd_offset_k(vstart);
950                 pud_t *pud;
951                 pmd_t *pmd;
952                 pte_t *pte;
953
954                 pud = pud_offset(pgd, vstart);
955                 if (pud_none(*pud)) {
956                         pmd_t *new;
957
958                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
959                         alloc_bytes += PAGE_SIZE;
960                         pud_populate(&init_mm, pud, new);
961                 }
962
963                 pmd = pmd_offset(pud, vstart);
964                 if (!pmd_present(*pmd)) {
965                         pte_t *new;
966
967                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
968                         alloc_bytes += PAGE_SIZE;
969                         pmd_populate_kernel(&init_mm, pmd, new);
970                 }
971
972                 pte = pte_offset_kernel(pmd, vstart);
973                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
974                 if (this_end > vend)
975                         this_end = vend;
976
977                 while (vstart < this_end) {
978                         pte_val(*pte) = (paddr | pgprot_val(prot));
979
980                         vstart += PAGE_SIZE;
981                         paddr += PAGE_SIZE;
982                         pte++;
983                 }
984         }
985
986         return alloc_bytes;
987 }
988
989 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
990 static int pall_ents __initdata;
991
992 extern unsigned int kvmap_linear_patch[1];
993
994 static void __init kernel_physical_mapping_init(void)
995 {
996         unsigned long i, mem_alloced = 0UL;
997
998         read_obp_memory("reg", &pall[0], &pall_ents);
999
1000         for (i = 0; i < pall_ents; i++) {
1001                 unsigned long phys_start, phys_end;
1002
1003                 phys_start = pall[i].phys_addr;
1004                 phys_end = phys_start + pall[i].reg_size;
1005                 mem_alloced += kernel_map_range(phys_start, phys_end,
1006                                                 PAGE_KERNEL);
1007         }
1008
1009         printk("Allocated %ld bytes for kernel page tables.\n",
1010                mem_alloced);
1011
1012         kvmap_linear_patch[0] = 0x01000000; /* nop */
1013         flushi(&kvmap_linear_patch[0]);
1014
1015         __flush_tlb_all();
1016 }
1017
1018 void kernel_map_pages(struct page *page, int numpages, int enable)
1019 {
1020         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1021         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1022
1023         kernel_map_range(phys_start, phys_end,
1024                          (enable ? PAGE_KERNEL : __pgprot(0)));
1025
1026         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1027                                PAGE_OFFSET + phys_end);
1028
1029         /* we should perform an IPI and flush all tlbs,
1030          * but that can deadlock->flush only current cpu.
1031          */
1032         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1033                                  PAGE_OFFSET + phys_end);
1034 }
1035 #endif
1036
1037 unsigned long __init find_ecache_flush_span(unsigned long size)
1038 {
1039         int i;
1040
1041         for (i = 0; i < pavail_ents; i++) {
1042                 if (pavail[i].reg_size >= size)
1043                         return pavail[i].phys_addr;
1044         }
1045
1046         return ~0UL;
1047 }
1048
1049 static void __init tsb_phys_patch(void)
1050 {
1051         struct tsb_phys_patch_entry *p;
1052
1053         p = &__tsb_phys_patch;
1054         while (p < &__tsb_phys_patch_end) {
1055                 unsigned long addr = p->addr;
1056
1057                 *(unsigned int *) addr = p->insn;
1058                 wmb();
1059                 __asm__ __volatile__("flush     %0"
1060                                      : /* no outputs */
1061                                      : "r" (addr));
1062
1063                 p++;
1064         }
1065 }
1066
1067 /* paging_init() sets up the page tables */
1068
1069 extern void cheetah_ecache_flush_init(void);
1070
1071 static unsigned long last_valid_pfn;
1072 pgd_t swapper_pg_dir[2048];
1073
1074 void __init paging_init(void)
1075 {
1076         unsigned long end_pfn, pages_avail, shift;
1077         unsigned long real_end, i;
1078
1079         if (tlb_type == cheetah_plus)
1080                 tsb_phys_patch();
1081
1082         /* Find available physical memory... */
1083         read_obp_memory("available", &pavail[0], &pavail_ents);
1084
1085         phys_base = 0xffffffffffffffffUL;
1086         for (i = 0; i < pavail_ents; i++)
1087                 phys_base = min(phys_base, pavail[i].phys_addr);
1088
1089         pfn_base = phys_base >> PAGE_SHIFT;
1090
1091         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1092         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1093
1094         set_bit(0, mmu_context_bmap);
1095
1096         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1097
1098         real_end = (unsigned long)_end;
1099         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1100                 bigkernel = 1;
1101         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1102                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1103                 prom_halt();
1104         }
1105
1106         /* Set kernel pgd to upper alias so physical page computations
1107          * work.
1108          */
1109         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1110         
1111         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1112
1113         /* Now can init the kernel/bad page tables. */
1114         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1115                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1116         
1117         inherit_prom_mappings();
1118         
1119         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1120         setup_tba();
1121
1122         __flush_tlb_all();
1123
1124         /* Setup bootmem... */
1125         pages_avail = 0;
1126         last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1127
1128 #ifdef CONFIG_DEBUG_PAGEALLOC
1129         kernel_physical_mapping_init();
1130 #endif
1131
1132         {
1133                 unsigned long zones_size[MAX_NR_ZONES];
1134                 unsigned long zholes_size[MAX_NR_ZONES];
1135                 unsigned long npages;
1136                 int znum;
1137
1138                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1139                         zones_size[znum] = zholes_size[znum] = 0;
1140
1141                 npages = end_pfn - pfn_base;
1142                 zones_size[ZONE_DMA] = npages;
1143                 zholes_size[ZONE_DMA] = npages - pages_avail;
1144
1145                 free_area_init_node(0, &contig_page_data, zones_size,
1146                                     phys_base >> PAGE_SHIFT, zholes_size);
1147         }
1148
1149         device_scan();
1150 }
1151
1152 static void __init taint_real_pages(void)
1153 {
1154         int i;
1155
1156         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1157
1158         /* Find changes discovered in the physmem available rescan and
1159          * reserve the lost portions in the bootmem maps.
1160          */
1161         for (i = 0; i < pavail_ents; i++) {
1162                 unsigned long old_start, old_end;
1163
1164                 old_start = pavail[i].phys_addr;
1165                 old_end = old_start +
1166                         pavail[i].reg_size;
1167                 while (old_start < old_end) {
1168                         int n;
1169
1170                         for (n = 0; pavail_rescan_ents; n++) {
1171                                 unsigned long new_start, new_end;
1172
1173                                 new_start = pavail_rescan[n].phys_addr;
1174                                 new_end = new_start +
1175                                         pavail_rescan[n].reg_size;
1176
1177                                 if (new_start <= old_start &&
1178                                     new_end >= (old_start + PAGE_SIZE)) {
1179                                         set_bit(old_start >> 22,
1180                                                 sparc64_valid_addr_bitmap);
1181                                         goto do_next_page;
1182                                 }
1183                         }
1184                         reserve_bootmem(old_start, PAGE_SIZE);
1185
1186                 do_next_page:
1187                         old_start += PAGE_SIZE;
1188                 }
1189         }
1190 }
1191
1192 void __init mem_init(void)
1193 {
1194         unsigned long codepages, datapages, initpages;
1195         unsigned long addr, last;
1196         int i;
1197
1198         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1199         i += 1;
1200         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1201         if (sparc64_valid_addr_bitmap == NULL) {
1202                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1203                 prom_halt();
1204         }
1205         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1206
1207         addr = PAGE_OFFSET + kern_base;
1208         last = PAGE_ALIGN(kern_size) + addr;
1209         while (addr < last) {
1210                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1211                 addr += PAGE_SIZE;
1212         }
1213
1214         taint_real_pages();
1215
1216         max_mapnr = last_valid_pfn - pfn_base;
1217         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1218
1219 #ifdef CONFIG_DEBUG_BOOTMEM
1220         prom_printf("mem_init: Calling free_all_bootmem().\n");
1221 #endif
1222         totalram_pages = num_physpages = free_all_bootmem() - 1;
1223
1224         /*
1225          * Set up the zero page, mark it reserved, so that page count
1226          * is not manipulated when freeing the page from user ptes.
1227          */
1228         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1229         if (mem_map_zero == NULL) {
1230                 prom_printf("paging_init: Cannot alloc zero page.\n");
1231                 prom_halt();
1232         }
1233         SetPageReserved(mem_map_zero);
1234
1235         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1236         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1237         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1238         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1239         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1240         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1241
1242         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1243                nr_free_pages() << (PAGE_SHIFT-10),
1244                codepages << (PAGE_SHIFT-10),
1245                datapages << (PAGE_SHIFT-10), 
1246                initpages << (PAGE_SHIFT-10), 
1247                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1248
1249         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1250                 cheetah_ecache_flush_init();
1251 }
1252
1253 void free_initmem(void)
1254 {
1255         unsigned long addr, initend;
1256
1257         /*
1258          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1259          */
1260         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1261         initend = (unsigned long)(__init_end) & PAGE_MASK;
1262         for (; addr < initend; addr += PAGE_SIZE) {
1263                 unsigned long page;
1264                 struct page *p;
1265
1266                 page = (addr +
1267                         ((unsigned long) __va(kern_base)) -
1268                         ((unsigned long) KERNBASE));
1269                 memset((void *)addr, 0xcc, PAGE_SIZE);
1270                 p = virt_to_page(page);
1271
1272                 ClearPageReserved(p);
1273                 set_page_count(p, 1);
1274                 __free_page(p);
1275                 num_physpages++;
1276                 totalram_pages++;
1277         }
1278 }
1279
1280 #ifdef CONFIG_BLK_DEV_INITRD
1281 void free_initrd_mem(unsigned long start, unsigned long end)
1282 {
1283         if (start < end)
1284                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1285         for (; start < end; start += PAGE_SIZE) {
1286                 struct page *p = virt_to_page(start);
1287
1288                 ClearPageReserved(p);
1289                 set_page_count(p, 1);
1290                 __free_page(p);
1291                 num_physpages++;
1292                 totalram_pages++;
1293         }
1294 }
1295 #endif