[SPARC64]: Fix loop termination in mark_kpte_bitmap()
[powerpc.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/slab.h>
18 #include <linux/initrd.h>
19 #include <linux/swap.h>
20 #include <linux/pagemap.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45
46 extern void device_scan(void);
47
48 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
49 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
50 #define KPTE_BITMAP_BYTES       \
51         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
52
53 unsigned long kern_linear_pte_xor[2] __read_mostly;
54
55 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
56  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
57  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
58  */
59 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
60
61 /* A special kernel TSB for 4MB and 256MB linear mappings.  */
62 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
63
64 #define MAX_BANKS       32
65
66 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
67 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
68 static int pavail_ents __initdata;
69 static int pavail_rescan_ents __initdata;
70
71 static int cmp_p64(const void *a, const void *b)
72 {
73         const struct linux_prom64_registers *x = a, *y = b;
74
75         if (x->phys_addr > y->phys_addr)
76                 return 1;
77         if (x->phys_addr < y->phys_addr)
78                 return -1;
79         return 0;
80 }
81
82 static void __init read_obp_memory(const char *property,
83                                    struct linux_prom64_registers *regs,
84                                    int *num_ents)
85 {
86         int node = prom_finddevice("/memory");
87         int prop_size = prom_getproplen(node, property);
88         int ents, ret, i;
89
90         ents = prop_size / sizeof(struct linux_prom64_registers);
91         if (ents > MAX_BANKS) {
92                 prom_printf("The machine has more %s property entries than "
93                             "this kernel can support (%d).\n",
94                             property, MAX_BANKS);
95                 prom_halt();
96         }
97
98         ret = prom_getproperty(node, property, (char *) regs, prop_size);
99         if (ret == -1) {
100                 prom_printf("Couldn't get %s property from /memory.\n");
101                 prom_halt();
102         }
103
104         *num_ents = ents;
105
106         /* Sanitize what we got from the firmware, by page aligning
107          * everything.
108          */
109         for (i = 0; i < ents; i++) {
110                 unsigned long base, size;
111
112                 base = regs[i].phys_addr;
113                 size = regs[i].reg_size;
114
115                 size &= PAGE_MASK;
116                 if (base & ~PAGE_MASK) {
117                         unsigned long new_base = PAGE_ALIGN(base);
118
119                         size -= new_base - base;
120                         if ((long) size < 0L)
121                                 size = 0UL;
122                         base = new_base;
123                 }
124                 regs[i].phys_addr = base;
125                 regs[i].reg_size = size;
126         }
127         sort(regs, ents, sizeof(struct linux_prom64_registers),
128              cmp_p64, NULL);
129 }
130
131 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
132
133 /* Ugly, but necessary... -DaveM */
134 unsigned long phys_base __read_mostly;
135 unsigned long kern_base __read_mostly;
136 unsigned long kern_size __read_mostly;
137 unsigned long pfn_base __read_mostly;
138
139 /* get_new_mmu_context() uses "cache + 1".  */
140 DEFINE_SPINLOCK(ctx_alloc_lock);
141 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
142 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
143 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
144
145 /* References to special section boundaries */
146 extern char  _start[], _end[];
147
148 /* Initial ramdisk setup */
149 extern unsigned long sparc_ramdisk_image64;
150 extern unsigned int sparc_ramdisk_image;
151 extern unsigned int sparc_ramdisk_size;
152
153 struct page *mem_map_zero __read_mostly;
154
155 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
156
157 unsigned long sparc64_kern_pri_context __read_mostly;
158 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
159 unsigned long sparc64_kern_sec_context __read_mostly;
160
161 int bigkernel = 0;
162
163 kmem_cache_t *pgtable_cache __read_mostly;
164
165 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
166 {
167         clear_page(addr);
168 }
169
170 void pgtable_cache_init(void)
171 {
172         pgtable_cache = kmem_cache_create("pgtable_cache",
173                                           PAGE_SIZE, PAGE_SIZE,
174                                           SLAB_HWCACHE_ALIGN |
175                                           SLAB_MUST_HWCACHE_ALIGN,
176                                           zero_ctor,
177                                           NULL);
178         if (!pgtable_cache) {
179                 prom_printf("pgtable_cache_init(): Could not create!\n");
180                 prom_halt();
181         }
182 }
183
184 #ifdef CONFIG_DEBUG_DCFLUSH
185 atomic_t dcpage_flushes = ATOMIC_INIT(0);
186 #ifdef CONFIG_SMP
187 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
188 #endif
189 #endif
190
191 inline void flush_dcache_page_impl(struct page *page)
192 {
193         BUG_ON(tlb_type == hypervisor);
194 #ifdef CONFIG_DEBUG_DCFLUSH
195         atomic_inc(&dcpage_flushes);
196 #endif
197
198 #ifdef DCACHE_ALIASING_POSSIBLE
199         __flush_dcache_page(page_address(page),
200                             ((tlb_type == spitfire) &&
201                              page_mapping(page) != NULL));
202 #else
203         if (page_mapping(page) != NULL &&
204             tlb_type == spitfire)
205                 __flush_icache_page(__pa(page_address(page)));
206 #endif
207 }
208
209 #define PG_dcache_dirty         PG_arch_1
210 #define PG_dcache_cpu_shift     24
211 #define PG_dcache_cpu_mask      (256 - 1)
212
213 #if NR_CPUS > 256
214 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
215 #endif
216
217 #define dcache_dirty_cpu(page) \
218         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
219
220 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
221 {
222         unsigned long mask = this_cpu;
223         unsigned long non_cpu_bits;
224
225         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
226         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
227
228         __asm__ __volatile__("1:\n\t"
229                              "ldx       [%2], %%g7\n\t"
230                              "and       %%g7, %1, %%g1\n\t"
231                              "or        %%g1, %0, %%g1\n\t"
232                              "casx      [%2], %%g7, %%g1\n\t"
233                              "cmp       %%g7, %%g1\n\t"
234                              "membar    #StoreLoad | #StoreStore\n\t"
235                              "bne,pn    %%xcc, 1b\n\t"
236                              " nop"
237                              : /* no outputs */
238                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
239                              : "g1", "g7");
240 }
241
242 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
243 {
244         unsigned long mask = (1UL << PG_dcache_dirty);
245
246         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
247                              "1:\n\t"
248                              "ldx       [%2], %%g7\n\t"
249                              "srlx      %%g7, %4, %%g1\n\t"
250                              "and       %%g1, %3, %%g1\n\t"
251                              "cmp       %%g1, %0\n\t"
252                              "bne,pn    %%icc, 2f\n\t"
253                              " andn     %%g7, %1, %%g1\n\t"
254                              "casx      [%2], %%g7, %%g1\n\t"
255                              "cmp       %%g7, %%g1\n\t"
256                              "membar    #StoreLoad | #StoreStore\n\t"
257                              "bne,pn    %%xcc, 1b\n\t"
258                              " nop\n"
259                              "2:"
260                              : /* no outputs */
261                              : "r" (cpu), "r" (mask), "r" (&page->flags),
262                                "i" (PG_dcache_cpu_mask),
263                                "i" (PG_dcache_cpu_shift)
264                              : "g1", "g7");
265 }
266
267 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
268 {
269         unsigned long tsb_addr = (unsigned long) ent;
270
271         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
272                 tsb_addr = __pa(tsb_addr);
273
274         __tsb_insert(tsb_addr, tag, pte);
275 }
276
277 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
278 unsigned long _PAGE_SZBITS __read_mostly;
279
280 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
281 {
282         struct mm_struct *mm;
283         struct tsb *tsb;
284         unsigned long tag;
285
286         if (tlb_type != hypervisor) {
287                 unsigned long pfn = pte_pfn(pte);
288                 unsigned long pg_flags;
289                 struct page *page;
290
291                 if (pfn_valid(pfn) &&
292                     (page = pfn_to_page(pfn), page_mapping(page)) &&
293                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
294                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
295                                    PG_dcache_cpu_mask);
296                         int this_cpu = get_cpu();
297
298                         /* This is just to optimize away some function calls
299                          * in the SMP case.
300                          */
301                         if (cpu == this_cpu)
302                                 flush_dcache_page_impl(page);
303                         else
304                                 smp_flush_dcache_page_impl(page, cpu);
305
306                         clear_dcache_dirty_cpu(page, cpu);
307
308                         put_cpu();
309                 }
310         }
311
312         mm = vma->vm_mm;
313         tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
314                                (mm->context.tsb_nentries - 1UL)];
315         tag = (address >> 22UL);
316         tsb_insert(tsb, tag, pte_val(pte));
317 }
318
319 void flush_dcache_page(struct page *page)
320 {
321         struct address_space *mapping;
322         int this_cpu;
323
324         if (tlb_type == hypervisor)
325                 return;
326
327         /* Do not bother with the expensive D-cache flush if it
328          * is merely the zero page.  The 'bigcore' testcase in GDB
329          * causes this case to run millions of times.
330          */
331         if (page == ZERO_PAGE(0))
332                 return;
333
334         this_cpu = get_cpu();
335
336         mapping = page_mapping(page);
337         if (mapping && !mapping_mapped(mapping)) {
338                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
339                 if (dirty) {
340                         int dirty_cpu = dcache_dirty_cpu(page);
341
342                         if (dirty_cpu == this_cpu)
343                                 goto out;
344                         smp_flush_dcache_page_impl(page, dirty_cpu);
345                 }
346                 set_dcache_dirty(page, this_cpu);
347         } else {
348                 /* We could delay the flush for the !page_mapping
349                  * case too.  But that case is for exec env/arg
350                  * pages and those are %99 certainly going to get
351                  * faulted into the tlb (and thus flushed) anyways.
352                  */
353                 flush_dcache_page_impl(page);
354         }
355
356 out:
357         put_cpu();
358 }
359
360 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
361 {
362         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
363         if (tlb_type == spitfire) {
364                 unsigned long kaddr;
365
366                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
367                         __flush_icache_page(__get_phys(kaddr));
368         }
369 }
370
371 unsigned long page_to_pfn(struct page *page)
372 {
373         return (unsigned long) ((page - mem_map) + pfn_base);
374 }
375
376 struct page *pfn_to_page(unsigned long pfn)
377 {
378         return (mem_map + (pfn - pfn_base));
379 }
380
381 void show_mem(void)
382 {
383         printk("Mem-info:\n");
384         show_free_areas();
385         printk("Free swap:       %6ldkB\n",
386                nr_swap_pages << (PAGE_SHIFT-10));
387         printk("%ld pages of RAM\n", num_physpages);
388         printk("%d free pages\n", nr_free_pages());
389 }
390
391 void mmu_info(struct seq_file *m)
392 {
393         if (tlb_type == cheetah)
394                 seq_printf(m, "MMU Type\t: Cheetah\n");
395         else if (tlb_type == cheetah_plus)
396                 seq_printf(m, "MMU Type\t: Cheetah+\n");
397         else if (tlb_type == spitfire)
398                 seq_printf(m, "MMU Type\t: Spitfire\n");
399         else if (tlb_type == hypervisor)
400                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
401         else
402                 seq_printf(m, "MMU Type\t: ???\n");
403
404 #ifdef CONFIG_DEBUG_DCFLUSH
405         seq_printf(m, "DCPageFlushes\t: %d\n",
406                    atomic_read(&dcpage_flushes));
407 #ifdef CONFIG_SMP
408         seq_printf(m, "DCPageFlushesXC\t: %d\n",
409                    atomic_read(&dcpage_flushes_xcall));
410 #endif /* CONFIG_SMP */
411 #endif /* CONFIG_DEBUG_DCFLUSH */
412 }
413
414 struct linux_prom_translation {
415         unsigned long virt;
416         unsigned long size;
417         unsigned long data;
418 };
419
420 /* Exported for kernel TLB miss handling in ktlb.S */
421 struct linux_prom_translation prom_trans[512] __read_mostly;
422 unsigned int prom_trans_ents __read_mostly;
423
424 /* Exported for SMP bootup purposes. */
425 unsigned long kern_locked_tte_data;
426
427 /* The obp translations are saved based on 8k pagesize, since obp can
428  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
429  * HI_OBP_ADDRESS range are handled in ktlb.S.
430  */
431 static inline int in_obp_range(unsigned long vaddr)
432 {
433         return (vaddr >= LOW_OBP_ADDRESS &&
434                 vaddr < HI_OBP_ADDRESS);
435 }
436
437 static int cmp_ptrans(const void *a, const void *b)
438 {
439         const struct linux_prom_translation *x = a, *y = b;
440
441         if (x->virt > y->virt)
442                 return 1;
443         if (x->virt < y->virt)
444                 return -1;
445         return 0;
446 }
447
448 /* Read OBP translations property into 'prom_trans[]'.  */
449 static void __init read_obp_translations(void)
450 {
451         int n, node, ents, first, last, i;
452
453         node = prom_finddevice("/virtual-memory");
454         n = prom_getproplen(node, "translations");
455         if (unlikely(n == 0 || n == -1)) {
456                 prom_printf("prom_mappings: Couldn't get size.\n");
457                 prom_halt();
458         }
459         if (unlikely(n > sizeof(prom_trans))) {
460                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
461                 prom_halt();
462         }
463
464         if ((n = prom_getproperty(node, "translations",
465                                   (char *)&prom_trans[0],
466                                   sizeof(prom_trans))) == -1) {
467                 prom_printf("prom_mappings: Couldn't get property.\n");
468                 prom_halt();
469         }
470
471         n = n / sizeof(struct linux_prom_translation);
472
473         ents = n;
474
475         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
476              cmp_ptrans, NULL);
477
478         /* Now kick out all the non-OBP entries.  */
479         for (i = 0; i < ents; i++) {
480                 if (in_obp_range(prom_trans[i].virt))
481                         break;
482         }
483         first = i;
484         for (; i < ents; i++) {
485                 if (!in_obp_range(prom_trans[i].virt))
486                         break;
487         }
488         last = i;
489
490         for (i = 0; i < (last - first); i++) {
491                 struct linux_prom_translation *src = &prom_trans[i + first];
492                 struct linux_prom_translation *dest = &prom_trans[i];
493
494                 *dest = *src;
495         }
496         for (; i < ents; i++) {
497                 struct linux_prom_translation *dest = &prom_trans[i];
498                 dest->virt = dest->size = dest->data = 0x0UL;
499         }
500
501         prom_trans_ents = last - first;
502
503         if (tlb_type == spitfire) {
504                 /* Clear diag TTE bits. */
505                 for (i = 0; i < prom_trans_ents; i++)
506                         prom_trans[i].data &= ~0x0003fe0000000000UL;
507         }
508 }
509
510 static void __init hypervisor_tlb_lock(unsigned long vaddr,
511                                        unsigned long pte,
512                                        unsigned long mmu)
513 {
514         register unsigned long func asm("%o5");
515         register unsigned long arg0 asm("%o0");
516         register unsigned long arg1 asm("%o1");
517         register unsigned long arg2 asm("%o2");
518         register unsigned long arg3 asm("%o3");
519
520         func = HV_FAST_MMU_MAP_PERM_ADDR;
521         arg0 = vaddr;
522         arg1 = 0;
523         arg2 = pte;
524         arg3 = mmu;
525         __asm__ __volatile__("ta        0x80"
526                              : "=&r" (func), "=&r" (arg0),
527                                "=&r" (arg1), "=&r" (arg2),
528                                "=&r" (arg3)
529                              : "0" (func), "1" (arg0), "2" (arg1),
530                                "3" (arg2), "4" (arg3));
531         if (arg0 != 0) {
532                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
533                             "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
534                 prom_halt();
535         }
536 }
537
538 static unsigned long kern_large_tte(unsigned long paddr);
539
540 static void __init remap_kernel(void)
541 {
542         unsigned long phys_page, tte_vaddr, tte_data;
543         int tlb_ent = sparc64_highest_locked_tlbent();
544
545         tte_vaddr = (unsigned long) KERNBASE;
546         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
547         tte_data = kern_large_tte(phys_page);
548
549         kern_locked_tte_data = tte_data;
550
551         /* Now lock us into the TLBs via Hypervisor or OBP. */
552         if (tlb_type == hypervisor) {
553                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
554                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
555                 if (bigkernel) {
556                         tte_vaddr += 0x400000;
557                         tte_data += 0x400000;
558                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
559                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
560                 }
561         } else {
562                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
563                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
564                 if (bigkernel) {
565                         tlb_ent -= 1;
566                         prom_dtlb_load(tlb_ent,
567                                        tte_data + 0x400000, 
568                                        tte_vaddr + 0x400000);
569                         prom_itlb_load(tlb_ent,
570                                        tte_data + 0x400000, 
571                                        tte_vaddr + 0x400000);
572                 }
573                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
574         }
575         if (tlb_type == cheetah_plus) {
576                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
577                                             CTX_CHEETAH_PLUS_NUC);
578                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
579                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
580         }
581 }
582
583
584 static void __init inherit_prom_mappings(void)
585 {
586         read_obp_translations();
587
588         /* Now fixup OBP's idea about where we really are mapped. */
589         prom_printf("Remapping the kernel... ");
590         remap_kernel();
591         prom_printf("done.\n");
592 }
593
594 void prom_world(int enter)
595 {
596         if (!enter)
597                 set_fs((mm_segment_t) { get_thread_current_ds() });
598
599         __asm__ __volatile__("flushw");
600 }
601
602 #ifdef DCACHE_ALIASING_POSSIBLE
603 void __flush_dcache_range(unsigned long start, unsigned long end)
604 {
605         unsigned long va;
606
607         if (tlb_type == spitfire) {
608                 int n = 0;
609
610                 for (va = start; va < end; va += 32) {
611                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
612                         if (++n >= 512)
613                                 break;
614                 }
615         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
616                 start = __pa(start);
617                 end = __pa(end);
618                 for (va = start; va < end; va += 32)
619                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
620                                              "membar #Sync"
621                                              : /* no outputs */
622                                              : "r" (va),
623                                                "i" (ASI_DCACHE_INVALIDATE));
624         }
625 }
626 #endif /* DCACHE_ALIASING_POSSIBLE */
627
628 /* Caller does TLB context flushing on local CPU if necessary.
629  * The caller also ensures that CTX_VALID(mm->context) is false.
630  *
631  * We must be careful about boundary cases so that we never
632  * let the user have CTX 0 (nucleus) or we ever use a CTX
633  * version of zero (and thus NO_CONTEXT would not be caught
634  * by version mis-match tests in mmu_context.h).
635  *
636  * Always invoked with interrupts disabled.
637  */
638 void get_new_mmu_context(struct mm_struct *mm)
639 {
640         unsigned long ctx, new_ctx;
641         unsigned long orig_pgsz_bits;
642         int new_version;
643
644         spin_lock(&ctx_alloc_lock);
645         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
646         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
647         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
648         new_version = 0;
649         if (new_ctx >= (1 << CTX_NR_BITS)) {
650                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
651                 if (new_ctx >= ctx) {
652                         int i;
653                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
654                                 CTX_FIRST_VERSION;
655                         if (new_ctx == 1)
656                                 new_ctx = CTX_FIRST_VERSION;
657
658                         /* Don't call memset, for 16 entries that's just
659                          * plain silly...
660                          */
661                         mmu_context_bmap[0] = 3;
662                         mmu_context_bmap[1] = 0;
663                         mmu_context_bmap[2] = 0;
664                         mmu_context_bmap[3] = 0;
665                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
666                                 mmu_context_bmap[i + 0] = 0;
667                                 mmu_context_bmap[i + 1] = 0;
668                                 mmu_context_bmap[i + 2] = 0;
669                                 mmu_context_bmap[i + 3] = 0;
670                         }
671                         new_version = 1;
672                         goto out;
673                 }
674         }
675         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
676         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
677 out:
678         tlb_context_cache = new_ctx;
679         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
680         spin_unlock(&ctx_alloc_lock);
681
682         if (unlikely(new_version))
683                 smp_new_mmu_context_version();
684 }
685
686 void sparc_ultra_dump_itlb(void)
687 {
688         int slot;
689
690         if (tlb_type == spitfire) {
691                 printk ("Contents of itlb: ");
692                 for (slot = 0; slot < 14; slot++) printk ("    ");
693                 printk ("%2x:%016lx,%016lx\n",
694                         0,
695                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
696                 for (slot = 1; slot < 64; slot+=3) {
697                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
698                                 slot,
699                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
700                                 slot+1,
701                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
702                                 slot+2,
703                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
704                 }
705         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
706                 printk ("Contents of itlb0:\n");
707                 for (slot = 0; slot < 16; slot+=2) {
708                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
709                                 slot,
710                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
711                                 slot+1,
712                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
713                 }
714                 printk ("Contents of itlb2:\n");
715                 for (slot = 0; slot < 128; slot+=2) {
716                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
717                                 slot,
718                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
719                                 slot+1,
720                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
721                 }
722         }
723 }
724
725 void sparc_ultra_dump_dtlb(void)
726 {
727         int slot;
728
729         if (tlb_type == spitfire) {
730                 printk ("Contents of dtlb: ");
731                 for (slot = 0; slot < 14; slot++) printk ("    ");
732                 printk ("%2x:%016lx,%016lx\n", 0,
733                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
734                 for (slot = 1; slot < 64; slot+=3) {
735                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
736                                 slot,
737                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
738                                 slot+1,
739                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
740                                 slot+2,
741                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
742                 }
743         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
744                 printk ("Contents of dtlb0:\n");
745                 for (slot = 0; slot < 16; slot+=2) {
746                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
747                                 slot,
748                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
749                                 slot+1,
750                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
751                 }
752                 printk ("Contents of dtlb2:\n");
753                 for (slot = 0; slot < 512; slot+=2) {
754                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
755                                 slot,
756                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
757                                 slot+1,
758                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
759                 }
760                 if (tlb_type == cheetah_plus) {
761                         printk ("Contents of dtlb3:\n");
762                         for (slot = 0; slot < 512; slot+=2) {
763                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
764                                         slot,
765                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
766                                         slot+1,
767                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
768                         }
769                 }
770         }
771 }
772
773 extern unsigned long cmdline_memory_size;
774
775 unsigned long __init bootmem_init(unsigned long *pages_avail)
776 {
777         unsigned long bootmap_size, start_pfn, end_pfn;
778         unsigned long end_of_phys_memory = 0UL;
779         unsigned long bootmap_pfn, bytes_avail, size;
780         int i;
781
782 #ifdef CONFIG_DEBUG_BOOTMEM
783         prom_printf("bootmem_init: Scan pavail, ");
784 #endif
785
786         bytes_avail = 0UL;
787         for (i = 0; i < pavail_ents; i++) {
788                 end_of_phys_memory = pavail[i].phys_addr +
789                         pavail[i].reg_size;
790                 bytes_avail += pavail[i].reg_size;
791                 if (cmdline_memory_size) {
792                         if (bytes_avail > cmdline_memory_size) {
793                                 unsigned long slack = bytes_avail - cmdline_memory_size;
794
795                                 bytes_avail -= slack;
796                                 end_of_phys_memory -= slack;
797
798                                 pavail[i].reg_size -= slack;
799                                 if ((long)pavail[i].reg_size <= 0L) {
800                                         pavail[i].phys_addr = 0xdeadbeefUL;
801                                         pavail[i].reg_size = 0UL;
802                                         pavail_ents = i;
803                                 } else {
804                                         pavail[i+1].reg_size = 0Ul;
805                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
806                                         pavail_ents = i + 1;
807                                 }
808                                 break;
809                         }
810                 }
811         }
812
813         *pages_avail = bytes_avail >> PAGE_SHIFT;
814
815         /* Start with page aligned address of last symbol in kernel
816          * image.  The kernel is hard mapped below PAGE_OFFSET in a
817          * 4MB locked TLB translation.
818          */
819         start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
820
821         bootmap_pfn = start_pfn;
822
823         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
824
825 #ifdef CONFIG_BLK_DEV_INITRD
826         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
827         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
828                 unsigned long ramdisk_image = sparc_ramdisk_image ?
829                         sparc_ramdisk_image : sparc_ramdisk_image64;
830                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
831                         ramdisk_image -= KERNBASE;
832                 initrd_start = ramdisk_image + phys_base;
833                 initrd_end = initrd_start + sparc_ramdisk_size;
834                 if (initrd_end > end_of_phys_memory) {
835                         printk(KERN_CRIT "initrd extends beyond end of memory "
836                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
837                                initrd_end, end_of_phys_memory);
838                         initrd_start = 0;
839                 }
840                 if (initrd_start) {
841                         if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
842                             initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
843                                 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
844                 }
845         }
846 #endif  
847         /* Initialize the boot-time allocator. */
848         max_pfn = max_low_pfn = end_pfn;
849         min_low_pfn = pfn_base;
850
851 #ifdef CONFIG_DEBUG_BOOTMEM
852         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
853                     min_low_pfn, bootmap_pfn, max_low_pfn);
854 #endif
855         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
856
857         /* Now register the available physical memory with the
858          * allocator.
859          */
860         for (i = 0; i < pavail_ents; i++) {
861 #ifdef CONFIG_DEBUG_BOOTMEM
862                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
863                             i, pavail[i].phys_addr, pavail[i].reg_size);
864 #endif
865                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
866         }
867
868 #ifdef CONFIG_BLK_DEV_INITRD
869         if (initrd_start) {
870                 size = initrd_end - initrd_start;
871
872                 /* Resert the initrd image area. */
873 #ifdef CONFIG_DEBUG_BOOTMEM
874                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
875                         initrd_start, initrd_end);
876 #endif
877                 reserve_bootmem(initrd_start, size);
878                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
879
880                 initrd_start += PAGE_OFFSET;
881                 initrd_end += PAGE_OFFSET;
882         }
883 #endif
884         /* Reserve the kernel text/data/bss. */
885 #ifdef CONFIG_DEBUG_BOOTMEM
886         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
887 #endif
888         reserve_bootmem(kern_base, kern_size);
889         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
890
891         /* Reserve the bootmem map.   We do not account for it
892          * in pages_avail because we will release that memory
893          * in free_all_bootmem.
894          */
895         size = bootmap_size;
896 #ifdef CONFIG_DEBUG_BOOTMEM
897         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
898                     (bootmap_pfn << PAGE_SHIFT), size);
899 #endif
900         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
901         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
902
903         return end_pfn;
904 }
905
906 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
907 static int pall_ents __initdata;
908
909 #ifdef CONFIG_DEBUG_PAGEALLOC
910 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
911 {
912         unsigned long vstart = PAGE_OFFSET + pstart;
913         unsigned long vend = PAGE_OFFSET + pend;
914         unsigned long alloc_bytes = 0UL;
915
916         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
917                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
918                             vstart, vend);
919                 prom_halt();
920         }
921
922         while (vstart < vend) {
923                 unsigned long this_end, paddr = __pa(vstart);
924                 pgd_t *pgd = pgd_offset_k(vstart);
925                 pud_t *pud;
926                 pmd_t *pmd;
927                 pte_t *pte;
928
929                 pud = pud_offset(pgd, vstart);
930                 if (pud_none(*pud)) {
931                         pmd_t *new;
932
933                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
934                         alloc_bytes += PAGE_SIZE;
935                         pud_populate(&init_mm, pud, new);
936                 }
937
938                 pmd = pmd_offset(pud, vstart);
939                 if (!pmd_present(*pmd)) {
940                         pte_t *new;
941
942                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
943                         alloc_bytes += PAGE_SIZE;
944                         pmd_populate_kernel(&init_mm, pmd, new);
945                 }
946
947                 pte = pte_offset_kernel(pmd, vstart);
948                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
949                 if (this_end > vend)
950                         this_end = vend;
951
952                 while (vstart < this_end) {
953                         pte_val(*pte) = (paddr | pgprot_val(prot));
954
955                         vstart += PAGE_SIZE;
956                         paddr += PAGE_SIZE;
957                         pte++;
958                 }
959         }
960
961         return alloc_bytes;
962 }
963
964 extern unsigned int kvmap_linear_patch[1];
965 #endif /* CONFIG_DEBUG_PAGEALLOC */
966
967 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
968 {
969         const unsigned long shift_256MB = 28;
970         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
971         const unsigned long size_256MB = (1UL << shift_256MB);
972
973         while (start < end) {
974                 long remains;
975
976                 remains = end - start;
977                 if (remains < size_256MB)
978                         break;
979
980                 if (start & mask_256MB) {
981                         start = (start + size_256MB) & ~mask_256MB;
982                         continue;
983                 }
984
985                 while (remains >= size_256MB) {
986                         unsigned long index = start >> shift_256MB;
987
988                         __set_bit(index, kpte_linear_bitmap);
989
990                         start += size_256MB;
991                         remains -= size_256MB;
992                 }
993         }
994 }
995
996 static void __init kernel_physical_mapping_init(void)
997 {
998         unsigned long i;
999 #ifdef CONFIG_DEBUG_PAGEALLOC
1000         unsigned long mem_alloced = 0UL;
1001 #endif
1002
1003         read_obp_memory("reg", &pall[0], &pall_ents);
1004
1005         for (i = 0; i < pall_ents; i++) {
1006                 unsigned long phys_start, phys_end;
1007
1008                 phys_start = pall[i].phys_addr;
1009                 phys_end = phys_start + pall[i].reg_size;
1010
1011                 mark_kpte_bitmap(phys_start, phys_end);
1012
1013 #ifdef CONFIG_DEBUG_PAGEALLOC
1014                 mem_alloced += kernel_map_range(phys_start, phys_end,
1015                                                 PAGE_KERNEL);
1016 #endif
1017         }
1018
1019 #ifdef CONFIG_DEBUG_PAGEALLOC
1020         printk("Allocated %ld bytes for kernel page tables.\n",
1021                mem_alloced);
1022
1023         kvmap_linear_patch[0] = 0x01000000; /* nop */
1024         flushi(&kvmap_linear_patch[0]);
1025
1026         __flush_tlb_all();
1027 #endif
1028 }
1029
1030 #ifdef CONFIG_DEBUG_PAGEALLOC
1031 void kernel_map_pages(struct page *page, int numpages, int enable)
1032 {
1033         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1034         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1035
1036         kernel_map_range(phys_start, phys_end,
1037                          (enable ? PAGE_KERNEL : __pgprot(0)));
1038
1039         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1040                                PAGE_OFFSET + phys_end);
1041
1042         /* we should perform an IPI and flush all tlbs,
1043          * but that can deadlock->flush only current cpu.
1044          */
1045         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1046                                  PAGE_OFFSET + phys_end);
1047 }
1048 #endif
1049
1050 unsigned long __init find_ecache_flush_span(unsigned long size)
1051 {
1052         int i;
1053
1054         for (i = 0; i < pavail_ents; i++) {
1055                 if (pavail[i].reg_size >= size)
1056                         return pavail[i].phys_addr;
1057         }
1058
1059         return ~0UL;
1060 }
1061
1062 static void __init tsb_phys_patch(void)
1063 {
1064         struct tsb_ldquad_phys_patch_entry *pquad;
1065         struct tsb_phys_patch_entry *p;
1066
1067         pquad = &__tsb_ldquad_phys_patch;
1068         while (pquad < &__tsb_ldquad_phys_patch_end) {
1069                 unsigned long addr = pquad->addr;
1070
1071                 if (tlb_type == hypervisor)
1072                         *(unsigned int *) addr = pquad->sun4v_insn;
1073                 else
1074                         *(unsigned int *) addr = pquad->sun4u_insn;
1075                 wmb();
1076                 __asm__ __volatile__("flush     %0"
1077                                      : /* no outputs */
1078                                      : "r" (addr));
1079
1080                 pquad++;
1081         }
1082
1083         p = &__tsb_phys_patch;
1084         while (p < &__tsb_phys_patch_end) {
1085                 unsigned long addr = p->addr;
1086
1087                 *(unsigned int *) addr = p->insn;
1088                 wmb();
1089                 __asm__ __volatile__("flush     %0"
1090                                      : /* no outputs */
1091                                      : "r" (addr));
1092
1093                 p++;
1094         }
1095 }
1096
1097 /* Don't mark as init, we give this to the Hypervisor.  */
1098 static struct hv_tsb_descr ktsb_descr[2];
1099 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1100
1101 static void __init sun4v_ktsb_init(void)
1102 {
1103         unsigned long ktsb_pa;
1104
1105         /* First KTSB for PAGE_SIZE mappings.  */
1106         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1107
1108         switch (PAGE_SIZE) {
1109         case 8 * 1024:
1110         default:
1111                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1112                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1113                 break;
1114
1115         case 64 * 1024:
1116                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1117                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1118                 break;
1119
1120         case 512 * 1024:
1121                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1122                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1123                 break;
1124
1125         case 4 * 1024 * 1024:
1126                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1127                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1128                 break;
1129         };
1130
1131         ktsb_descr[0].assoc = 1;
1132         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1133         ktsb_descr[0].ctx_idx = 0;
1134         ktsb_descr[0].tsb_base = ktsb_pa;
1135         ktsb_descr[0].resv = 0;
1136
1137         /* Second KTSB for 4MB/256MB mappings.  */
1138         ktsb_pa = (kern_base +
1139                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1140
1141         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1142         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1143                                    HV_PGSZ_MASK_256MB);
1144         ktsb_descr[1].assoc = 1;
1145         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1146         ktsb_descr[1].ctx_idx = 0;
1147         ktsb_descr[1].tsb_base = ktsb_pa;
1148         ktsb_descr[1].resv = 0;
1149 }
1150
1151 void __cpuinit sun4v_ktsb_register(void)
1152 {
1153         register unsigned long func asm("%o5");
1154         register unsigned long arg0 asm("%o0");
1155         register unsigned long arg1 asm("%o1");
1156         unsigned long pa;
1157
1158         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1159
1160         func = HV_FAST_MMU_TSB_CTX0;
1161         arg0 = 2;
1162         arg1 = pa;
1163         __asm__ __volatile__("ta        %6"
1164                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1165                              : "0" (func), "1" (arg0), "2" (arg1),
1166                                "i" (HV_FAST_TRAP));
1167 }
1168
1169 /* paging_init() sets up the page tables */
1170
1171 extern void cheetah_ecache_flush_init(void);
1172 extern void sun4v_patch_tlb_handlers(void);
1173
1174 static unsigned long last_valid_pfn;
1175 pgd_t swapper_pg_dir[2048];
1176
1177 static void sun4u_pgprot_init(void);
1178 static void sun4v_pgprot_init(void);
1179
1180 void __init paging_init(void)
1181 {
1182         unsigned long end_pfn, pages_avail, shift;
1183         unsigned long real_end, i;
1184
1185         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1186         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1187
1188         /* Invalidate both kernel TSBs.  */
1189         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1190         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1191
1192         if (tlb_type == hypervisor)
1193                 sun4v_pgprot_init();
1194         else
1195                 sun4u_pgprot_init();
1196
1197         if (tlb_type == cheetah_plus ||
1198             tlb_type == hypervisor)
1199                 tsb_phys_patch();
1200
1201         if (tlb_type == hypervisor) {
1202                 sun4v_patch_tlb_handlers();
1203                 sun4v_ktsb_init();
1204         }
1205
1206         /* Find available physical memory... */
1207         read_obp_memory("available", &pavail[0], &pavail_ents);
1208
1209         phys_base = 0xffffffffffffffffUL;
1210         for (i = 0; i < pavail_ents; i++)
1211                 phys_base = min(phys_base, pavail[i].phys_addr);
1212
1213         pfn_base = phys_base >> PAGE_SHIFT;
1214
1215         set_bit(0, mmu_context_bmap);
1216
1217         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1218
1219         real_end = (unsigned long)_end;
1220         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1221                 bigkernel = 1;
1222         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1223                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1224                 prom_halt();
1225         }
1226
1227         /* Set kernel pgd to upper alias so physical page computations
1228          * work.
1229          */
1230         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1231         
1232         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1233
1234         /* Now can init the kernel/bad page tables. */
1235         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1236                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1237         
1238         inherit_prom_mappings();
1239         
1240         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1241         setup_tba();
1242
1243         __flush_tlb_all();
1244
1245         if (tlb_type == hypervisor)
1246                 sun4v_ktsb_register();
1247
1248         /* Setup bootmem... */
1249         pages_avail = 0;
1250         last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1251
1252         kernel_physical_mapping_init();
1253
1254         {
1255                 unsigned long zones_size[MAX_NR_ZONES];
1256                 unsigned long zholes_size[MAX_NR_ZONES];
1257                 unsigned long npages;
1258                 int znum;
1259
1260                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1261                         zones_size[znum] = zholes_size[znum] = 0;
1262
1263                 npages = end_pfn - pfn_base;
1264                 zones_size[ZONE_DMA] = npages;
1265                 zholes_size[ZONE_DMA] = npages - pages_avail;
1266
1267                 free_area_init_node(0, &contig_page_data, zones_size,
1268                                     phys_base >> PAGE_SHIFT, zholes_size);
1269         }
1270
1271         device_scan();
1272 }
1273
1274 static void __init taint_real_pages(void)
1275 {
1276         int i;
1277
1278         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1279
1280         /* Find changes discovered in the physmem available rescan and
1281          * reserve the lost portions in the bootmem maps.
1282          */
1283         for (i = 0; i < pavail_ents; i++) {
1284                 unsigned long old_start, old_end;
1285
1286                 old_start = pavail[i].phys_addr;
1287                 old_end = old_start +
1288                         pavail[i].reg_size;
1289                 while (old_start < old_end) {
1290                         int n;
1291
1292                         for (n = 0; pavail_rescan_ents; n++) {
1293                                 unsigned long new_start, new_end;
1294
1295                                 new_start = pavail_rescan[n].phys_addr;
1296                                 new_end = new_start +
1297                                         pavail_rescan[n].reg_size;
1298
1299                                 if (new_start <= old_start &&
1300                                     new_end >= (old_start + PAGE_SIZE)) {
1301                                         set_bit(old_start >> 22,
1302                                                 sparc64_valid_addr_bitmap);
1303                                         goto do_next_page;
1304                                 }
1305                         }
1306                         reserve_bootmem(old_start, PAGE_SIZE);
1307
1308                 do_next_page:
1309                         old_start += PAGE_SIZE;
1310                 }
1311         }
1312 }
1313
1314 void __init mem_init(void)
1315 {
1316         unsigned long codepages, datapages, initpages;
1317         unsigned long addr, last;
1318         int i;
1319
1320         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1321         i += 1;
1322         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1323         if (sparc64_valid_addr_bitmap == NULL) {
1324                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1325                 prom_halt();
1326         }
1327         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1328
1329         addr = PAGE_OFFSET + kern_base;
1330         last = PAGE_ALIGN(kern_size) + addr;
1331         while (addr < last) {
1332                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1333                 addr += PAGE_SIZE;
1334         }
1335
1336         taint_real_pages();
1337
1338         max_mapnr = last_valid_pfn - pfn_base;
1339         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1340
1341 #ifdef CONFIG_DEBUG_BOOTMEM
1342         prom_printf("mem_init: Calling free_all_bootmem().\n");
1343 #endif
1344         totalram_pages = num_physpages = free_all_bootmem() - 1;
1345
1346         /*
1347          * Set up the zero page, mark it reserved, so that page count
1348          * is not manipulated when freeing the page from user ptes.
1349          */
1350         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1351         if (mem_map_zero == NULL) {
1352                 prom_printf("paging_init: Cannot alloc zero page.\n");
1353                 prom_halt();
1354         }
1355         SetPageReserved(mem_map_zero);
1356
1357         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1358         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1359         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1360         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1361         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1362         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1363
1364         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1365                nr_free_pages() << (PAGE_SHIFT-10),
1366                codepages << (PAGE_SHIFT-10),
1367                datapages << (PAGE_SHIFT-10), 
1368                initpages << (PAGE_SHIFT-10), 
1369                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1370
1371         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1372                 cheetah_ecache_flush_init();
1373 }
1374
1375 void free_initmem(void)
1376 {
1377         unsigned long addr, initend;
1378
1379         /*
1380          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1381          */
1382         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1383         initend = (unsigned long)(__init_end) & PAGE_MASK;
1384         for (; addr < initend; addr += PAGE_SIZE) {
1385                 unsigned long page;
1386                 struct page *p;
1387
1388                 page = (addr +
1389                         ((unsigned long) __va(kern_base)) -
1390                         ((unsigned long) KERNBASE));
1391                 memset((void *)addr, 0xcc, PAGE_SIZE);
1392                 p = virt_to_page(page);
1393
1394                 ClearPageReserved(p);
1395                 set_page_count(p, 1);
1396                 __free_page(p);
1397                 num_physpages++;
1398                 totalram_pages++;
1399         }
1400 }
1401
1402 #ifdef CONFIG_BLK_DEV_INITRD
1403 void free_initrd_mem(unsigned long start, unsigned long end)
1404 {
1405         if (start < end)
1406                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1407         for (; start < end; start += PAGE_SIZE) {
1408                 struct page *p = virt_to_page(start);
1409
1410                 ClearPageReserved(p);
1411                 set_page_count(p, 1);
1412                 __free_page(p);
1413                 num_physpages++;
1414                 totalram_pages++;
1415         }
1416 }
1417 #endif
1418
1419 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1420 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1421 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1422 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1423 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1424 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1425
1426 pgprot_t PAGE_KERNEL __read_mostly;
1427 EXPORT_SYMBOL(PAGE_KERNEL);
1428
1429 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1430 pgprot_t PAGE_COPY __read_mostly;
1431
1432 pgprot_t PAGE_SHARED __read_mostly;
1433 EXPORT_SYMBOL(PAGE_SHARED);
1434
1435 pgprot_t PAGE_EXEC __read_mostly;
1436 unsigned long pg_iobits __read_mostly;
1437
1438 unsigned long _PAGE_IE __read_mostly;
1439
1440 unsigned long _PAGE_E __read_mostly;
1441 EXPORT_SYMBOL(_PAGE_E);
1442
1443 unsigned long _PAGE_CACHE __read_mostly;
1444 EXPORT_SYMBOL(_PAGE_CACHE);
1445
1446 static void prot_init_common(unsigned long page_none,
1447                              unsigned long page_shared,
1448                              unsigned long page_copy,
1449                              unsigned long page_readonly,
1450                              unsigned long page_exec_bit)
1451 {
1452         PAGE_COPY = __pgprot(page_copy);
1453         PAGE_SHARED = __pgprot(page_shared);
1454
1455         protection_map[0x0] = __pgprot(page_none);
1456         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1457         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1458         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1459         protection_map[0x4] = __pgprot(page_readonly);
1460         protection_map[0x5] = __pgprot(page_readonly);
1461         protection_map[0x6] = __pgprot(page_copy);
1462         protection_map[0x7] = __pgprot(page_copy);
1463         protection_map[0x8] = __pgprot(page_none);
1464         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1465         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1466         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1467         protection_map[0xc] = __pgprot(page_readonly);
1468         protection_map[0xd] = __pgprot(page_readonly);
1469         protection_map[0xe] = __pgprot(page_shared);
1470         protection_map[0xf] = __pgprot(page_shared);
1471 }
1472
1473 static void __init sun4u_pgprot_init(void)
1474 {
1475         unsigned long page_none, page_shared, page_copy, page_readonly;
1476         unsigned long page_exec_bit;
1477
1478         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1479                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1480                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1481                                 _PAGE_EXEC_4U);
1482         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1483                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1484                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1485                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1486         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1487
1488         _PAGE_IE = _PAGE_IE_4U;
1489         _PAGE_E = _PAGE_E_4U;
1490         _PAGE_CACHE = _PAGE_CACHE_4U;
1491
1492         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1493                      __ACCESS_BITS_4U | _PAGE_E_4U);
1494
1495         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1496                 0xfffff80000000000;
1497         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1498                                    _PAGE_P_4U | _PAGE_W_4U);
1499
1500         /* XXX Should use 256MB on Panther. XXX */
1501         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1502
1503         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1504         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1505                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1506                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1507
1508
1509         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1510         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1511                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1512         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1513                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1514         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1515                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1516
1517         page_exec_bit = _PAGE_EXEC_4U;
1518
1519         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1520                          page_exec_bit);
1521 }
1522
1523 static void __init sun4v_pgprot_init(void)
1524 {
1525         unsigned long page_none, page_shared, page_copy, page_readonly;
1526         unsigned long page_exec_bit;
1527
1528         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1529                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1530                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1531                                 _PAGE_EXEC_4V);
1532         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1533         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1534
1535         _PAGE_IE = _PAGE_IE_4V;
1536         _PAGE_E = _PAGE_E_4V;
1537         _PAGE_CACHE = _PAGE_CACHE_4V;
1538
1539         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1540                 0xfffff80000000000;
1541         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1542                                    _PAGE_P_4V | _PAGE_W_4V);
1543
1544         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1545                 0xfffff80000000000;
1546         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1547                                    _PAGE_P_4V | _PAGE_W_4V);
1548
1549         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1550                      __ACCESS_BITS_4V | _PAGE_E_4V);
1551
1552         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1553         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1554                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1555                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1556                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1557
1558         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1559         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1560                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1561         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1562                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1563         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1564                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1565
1566         page_exec_bit = _PAGE_EXEC_4V;
1567
1568         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1569                          page_exec_bit);
1570 }
1571
1572 unsigned long pte_sz_bits(unsigned long sz)
1573 {
1574         if (tlb_type == hypervisor) {
1575                 switch (sz) {
1576                 case 8 * 1024:
1577                 default:
1578                         return _PAGE_SZ8K_4V;
1579                 case 64 * 1024:
1580                         return _PAGE_SZ64K_4V;
1581                 case 512 * 1024:
1582                         return _PAGE_SZ512K_4V;
1583                 case 4 * 1024 * 1024:
1584                         return _PAGE_SZ4MB_4V;
1585                 };
1586         } else {
1587                 switch (sz) {
1588                 case 8 * 1024:
1589                 default:
1590                         return _PAGE_SZ8K_4U;
1591                 case 64 * 1024:
1592                         return _PAGE_SZ64K_4U;
1593                 case 512 * 1024:
1594                         return _PAGE_SZ512K_4U;
1595                 case 4 * 1024 * 1024:
1596                         return _PAGE_SZ4MB_4U;
1597                 };
1598         }
1599 }
1600
1601 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1602 {
1603         pte_t pte;
1604
1605         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1606         pte_val(pte) |= (((unsigned long)space) << 32);
1607         pte_val(pte) |= pte_sz_bits(page_size);
1608
1609         return pte;
1610 }
1611
1612 static unsigned long kern_large_tte(unsigned long paddr)
1613 {
1614         unsigned long val;
1615
1616         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1617                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1618                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1619         if (tlb_type == hypervisor)
1620                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1621                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1622                        _PAGE_EXEC_4V | _PAGE_W_4V);
1623
1624         return val | paddr;
1625 }
1626
1627 /*
1628  * Translate PROM's mapping we capture at boot time into physical address.
1629  * The second parameter is only set from prom_callback() invocations.
1630  */
1631 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1632 {
1633         unsigned long mask;
1634         int i;
1635
1636         mask = _PAGE_PADDR_4U;
1637         if (tlb_type == hypervisor)
1638                 mask = _PAGE_PADDR_4V;
1639
1640         for (i = 0; i < prom_trans_ents; i++) {
1641                 struct linux_prom_translation *p = &prom_trans[i];
1642
1643                 if (promva >= p->virt &&
1644                     promva < (p->virt + p->size)) {
1645                         unsigned long base = p->data & mask;
1646
1647                         if (error)
1648                                 *error = 0;
1649                         return base + (promva & (8192 - 1));
1650                 }
1651         }
1652         if (error)
1653                 *error = 1;
1654         return 0UL;
1655 }
1656
1657 /* XXX We should kill off this ugly thing at so me point. XXX */
1658 unsigned long sun4u_get_pte(unsigned long addr)
1659 {
1660         pgd_t *pgdp;
1661         pud_t *pudp;
1662         pmd_t *pmdp;
1663         pte_t *ptep;
1664         unsigned long mask = _PAGE_PADDR_4U;
1665
1666         if (tlb_type == hypervisor)
1667                 mask = _PAGE_PADDR_4V;
1668
1669         if (addr >= PAGE_OFFSET)
1670                 return addr & mask;
1671
1672         if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1673                 return prom_virt_to_phys(addr, NULL);
1674
1675         pgdp = pgd_offset_k(addr);
1676         pudp = pud_offset(pgdp, addr);
1677         pmdp = pmd_offset(pudp, addr);
1678         ptep = pte_offset_kernel(pmdp, addr);
1679
1680         return pte_val(*ptep) & mask;
1681 }
1682
1683 /* If not locked, zap it. */
1684 void __flush_tlb_all(void)
1685 {
1686         unsigned long pstate;
1687         int i;
1688
1689         __asm__ __volatile__("flushw\n\t"
1690                              "rdpr      %%pstate, %0\n\t"
1691                              "wrpr      %0, %1, %%pstate"
1692                              : "=r" (pstate)
1693                              : "i" (PSTATE_IE));
1694         if (tlb_type == spitfire) {
1695                 for (i = 0; i < 64; i++) {
1696                         /* Spitfire Errata #32 workaround */
1697                         /* NOTE: Always runs on spitfire, so no
1698                          *       cheetah+ page size encodings.
1699                          */
1700                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1701                                              "flush     %%g6"
1702                                              : /* No outputs */
1703                                              : "r" (0),
1704                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1705
1706                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1707                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1708                                                      "membar #Sync"
1709                                                      : /* no outputs */
1710                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1711                                 spitfire_put_dtlb_data(i, 0x0UL);
1712                         }
1713
1714                         /* Spitfire Errata #32 workaround */
1715                         /* NOTE: Always runs on spitfire, so no
1716                          *       cheetah+ page size encodings.
1717                          */
1718                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1719                                              "flush     %%g6"
1720                                              : /* No outputs */
1721                                              : "r" (0),
1722                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1723
1724                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1725                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1726                                                      "membar #Sync"
1727                                                      : /* no outputs */
1728                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1729                                 spitfire_put_itlb_data(i, 0x0UL);
1730                         }
1731                 }
1732         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1733                 cheetah_flush_dtlb_all();
1734                 cheetah_flush_itlb_all();
1735         }
1736         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1737                              : : "r" (pstate));
1738 }