[PATCH] kprobes: changed from using spinlock to mutex
[powerpc.git] / arch / x86_64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/x86_64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2004-Oct     Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27  *              <prasanna@in.ibm.com> adapted for x86_64
28  * 2005-Mar     Roland McGrath <roland@redhat.com>
29  *              Fixed to handle %rip-relative addressing mode correctly.
30  * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
31  *              Added function return probes functionality
32  */
33
34 #include <linux/config.h>
35 #include <linux/kprobes.h>
36 #include <linux/ptrace.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/preempt.h>
40
41 #include <asm/cacheflush.h>
42 #include <asm/pgtable.h>
43 #include <asm/kdebug.h>
44
45 void jprobe_return_end(void);
46 void __kprobes arch_copy_kprobe(struct kprobe *p);
47
48 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
50
51 /*
52  * returns non-zero if opcode modifies the interrupt flag.
53  */
54 static inline int is_IF_modifier(kprobe_opcode_t *insn)
55 {
56         switch (*insn) {
57         case 0xfa:              /* cli */
58         case 0xfb:              /* sti */
59         case 0xcf:              /* iret/iretd */
60         case 0x9d:              /* popf/popfd */
61                 return 1;
62         }
63
64         if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
65                 return 1;
66         return 0;
67 }
68
69 int __kprobes arch_prepare_kprobe(struct kprobe *p)
70 {
71         /* insn: must be on special executable page on x86_64. */
72         p->ainsn.insn = get_insn_slot();
73         if (!p->ainsn.insn) {
74                 return -ENOMEM;
75         }
76         arch_copy_kprobe(p);
77         return 0;
78 }
79
80 /*
81  * Determine if the instruction uses the %rip-relative addressing mode.
82  * If it does, return the address of the 32-bit displacement word.
83  * If not, return null.
84  */
85 static inline s32 *is_riprel(u8 *insn)
86 {
87 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
88         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
89           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
90           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
91           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
92          << (row % 64))
93         static const u64 onebyte_has_modrm[256 / 64] = {
94                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
95                 /*      -------------------------------         */
96                 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
97                 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
98                 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
99                 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
100                 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
101                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
102                 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
103                 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
104                 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
105                 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
106                 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
107                 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
108                 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
109                 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
110                 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
111                 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */
112                 /*      -------------------------------         */
113                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
114         };
115         static const u64 twobyte_has_modrm[256 / 64] = {
116                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
117                 /*      -------------------------------         */
118                 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
119                 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
120                 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
121                 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
122                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
123                 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
124                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
125                 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
126                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
127                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
128                 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
129                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
130                 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
131                 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
132                 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
133                 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */
134                 /*      -------------------------------         */
135                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
136         };
137 #undef  W
138         int need_modrm;
139
140         /* Skip legacy instruction prefixes.  */
141         while (1) {
142                 switch (*insn) {
143                 case 0x66:
144                 case 0x67:
145                 case 0x2e:
146                 case 0x3e:
147                 case 0x26:
148                 case 0x64:
149                 case 0x65:
150                 case 0x36:
151                 case 0xf0:
152                 case 0xf3:
153                 case 0xf2:
154                         ++insn;
155                         continue;
156                 }
157                 break;
158         }
159
160         /* Skip REX instruction prefix.  */
161         if ((*insn & 0xf0) == 0x40)
162                 ++insn;
163
164         if (*insn == 0x0f) {    /* Two-byte opcode.  */
165                 ++insn;
166                 need_modrm = test_bit(*insn, twobyte_has_modrm);
167         } else {                /* One-byte opcode.  */
168                 need_modrm = test_bit(*insn, onebyte_has_modrm);
169         }
170
171         if (need_modrm) {
172                 u8 modrm = *++insn;
173                 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
174                         /* Displacement follows ModRM byte.  */
175                         return (s32 *) ++insn;
176                 }
177         }
178
179         /* No %rip-relative addressing mode here.  */
180         return NULL;
181 }
182
183 void __kprobes arch_copy_kprobe(struct kprobe *p)
184 {
185         s32 *ripdisp;
186         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
187         ripdisp = is_riprel(p->ainsn.insn);
188         if (ripdisp) {
189                 /*
190                  * The copied instruction uses the %rip-relative
191                  * addressing mode.  Adjust the displacement for the
192                  * difference between the original location of this
193                  * instruction and the location of the copy that will
194                  * actually be run.  The tricky bit here is making sure
195                  * that the sign extension happens correctly in this
196                  * calculation, since we need a signed 32-bit result to
197                  * be sign-extended to 64 bits when it's added to the
198                  * %rip value and yield the same 64-bit result that the
199                  * sign-extension of the original signed 32-bit
200                  * displacement would have given.
201                  */
202                 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
203                 BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
204                 *ripdisp = disp;
205         }
206         p->opcode = *p->addr;
207 }
208
209 void __kprobes arch_arm_kprobe(struct kprobe *p)
210 {
211         *p->addr = BREAKPOINT_INSTRUCTION;
212         flush_icache_range((unsigned long) p->addr,
213                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
214 }
215
216 void __kprobes arch_disarm_kprobe(struct kprobe *p)
217 {
218         *p->addr = p->opcode;
219         flush_icache_range((unsigned long) p->addr,
220                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
221 }
222
223 void __kprobes arch_remove_kprobe(struct kprobe *p)
224 {
225         free_insn_slot(p->ainsn.insn);
226 }
227
228 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
229 {
230         kcb->prev_kprobe.kp = kprobe_running();
231         kcb->prev_kprobe.status = kcb->kprobe_status;
232         kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
233         kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
234 }
235
236 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
237 {
238         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
239         kcb->kprobe_status = kcb->prev_kprobe.status;
240         kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
241         kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
242 }
243
244 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
245                                 struct kprobe_ctlblk *kcb)
246 {
247         __get_cpu_var(current_kprobe) = p;
248         kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
249                 = (regs->eflags & (TF_MASK | IF_MASK));
250         if (is_IF_modifier(p->ainsn.insn))
251                 kcb->kprobe_saved_rflags &= ~IF_MASK;
252 }
253
254 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
255 {
256         regs->eflags |= TF_MASK;
257         regs->eflags &= ~IF_MASK;
258         /*single step inline if the instruction is an int3*/
259         if (p->opcode == BREAKPOINT_INSTRUCTION)
260                 regs->rip = (unsigned long)p->addr;
261         else
262                 regs->rip = (unsigned long)p->ainsn.insn;
263 }
264
265 /* Called with kretprobe_lock held */
266 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
267                                       struct pt_regs *regs)
268 {
269         unsigned long *sara = (unsigned long *)regs->rsp;
270         struct kretprobe_instance *ri;
271
272         if ((ri = get_free_rp_inst(rp)) != NULL) {
273                 ri->rp = rp;
274                 ri->task = current;
275                 ri->ret_addr = (kprobe_opcode_t *) *sara;
276
277                 /* Replace the return addr with trampoline addr */
278                 *sara = (unsigned long) &kretprobe_trampoline;
279
280                 add_rp_inst(ri);
281         } else {
282                 rp->nmissed++;
283         }
284 }
285
286 int __kprobes kprobe_handler(struct pt_regs *regs)
287 {
288         struct kprobe *p;
289         int ret = 0;
290         kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
291         struct kprobe_ctlblk *kcb;
292
293         /*
294          * We don't want to be preempted for the entire
295          * duration of kprobe processing
296          */
297         preempt_disable();
298         kcb = get_kprobe_ctlblk();
299
300         /* Check we're not actually recursing */
301         if (kprobe_running()) {
302                 p = get_kprobe(addr);
303                 if (p) {
304                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
305                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
306                                 regs->eflags &= ~TF_MASK;
307                                 regs->eflags |= kcb->kprobe_saved_rflags;
308                                 goto no_kprobe;
309                         } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
310                                 /* TODO: Provide re-entrancy from
311                                  * post_kprobes_handler() and avoid exception
312                                  * stack corruption while single-stepping on
313                                  * the instruction of the new probe.
314                                  */
315                                 arch_disarm_kprobe(p);
316                                 regs->rip = (unsigned long)p->addr;
317                                 reset_current_kprobe();
318                                 ret = 1;
319                         } else {
320                                 /* We have reentered the kprobe_handler(), since
321                                  * another probe was hit while within the
322                                  * handler. We here save the original kprobe
323                                  * variables and just single step on instruction
324                                  * of the new probe without calling any user
325                                  * handlers.
326                                  */
327                                 save_previous_kprobe(kcb);
328                                 set_current_kprobe(p, regs, kcb);
329                                 kprobes_inc_nmissed_count(p);
330                                 prepare_singlestep(p, regs);
331                                 kcb->kprobe_status = KPROBE_REENTER;
332                                 return 1;
333                         }
334                 } else {
335                         p = __get_cpu_var(current_kprobe);
336                         if (p->break_handler && p->break_handler(p, regs)) {
337                                 goto ss_probe;
338                         }
339                 }
340                 goto no_kprobe;
341         }
342
343         p = get_kprobe(addr);
344         if (!p) {
345                 if (*addr != BREAKPOINT_INSTRUCTION) {
346                         /*
347                          * The breakpoint instruction was removed right
348                          * after we hit it.  Another cpu has removed
349                          * either a probepoint or a debugger breakpoint
350                          * at this address.  In either case, no further
351                          * handling of this interrupt is appropriate.
352                          * Back up over the (now missing) int3 and run
353                          * the original instruction.
354                          */
355                         regs->rip = (unsigned long)addr;
356                         ret = 1;
357                 }
358                 /* Not one of ours: let kernel handle it */
359                 goto no_kprobe;
360         }
361
362         set_current_kprobe(p, regs, kcb);
363         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364
365         if (p->pre_handler && p->pre_handler(p, regs))
366                 /* handler has already set things up, so skip ss setup */
367                 return 1;
368
369 ss_probe:
370         prepare_singlestep(p, regs);
371         kcb->kprobe_status = KPROBE_HIT_SS;
372         return 1;
373
374 no_kprobe:
375         preempt_enable_no_resched();
376         return ret;
377 }
378
379 /*
380  * For function-return probes, init_kprobes() establishes a probepoint
381  * here. When a retprobed function returns, this probe is hit and
382  * trampoline_probe_handler() runs, calling the kretprobe's handler.
383  */
384  void kretprobe_trampoline_holder(void)
385  {
386         asm volatile (  ".global kretprobe_trampoline\n"
387                         "kretprobe_trampoline: \n"
388                         "nop\n");
389  }
390
391 /*
392  * Called when we hit the probe point at kretprobe_trampoline
393  */
394 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
395 {
396         struct kretprobe_instance *ri = NULL;
397         struct hlist_head *head;
398         struct hlist_node *node, *tmp;
399         unsigned long flags, orig_ret_address = 0;
400         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
401
402         spin_lock_irqsave(&kretprobe_lock, flags);
403         head = kretprobe_inst_table_head(current);
404
405         /*
406          * It is possible to have multiple instances associated with a given
407          * task either because an multiple functions in the call path
408          * have a return probe installed on them, and/or more then one return
409          * return probe was registered for a target function.
410          *
411          * We can handle this because:
412          *     - instances are always inserted at the head of the list
413          *     - when multiple return probes are registered for the same
414          *       function, the first instance's ret_addr will point to the
415          *       real return address, and all the rest will point to
416          *       kretprobe_trampoline
417          */
418         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
419                 if (ri->task != current)
420                         /* another task is sharing our hash bucket */
421                         continue;
422
423                 if (ri->rp && ri->rp->handler)
424                         ri->rp->handler(ri, regs);
425
426                 orig_ret_address = (unsigned long)ri->ret_addr;
427                 recycle_rp_inst(ri);
428
429                 if (orig_ret_address != trampoline_address)
430                         /*
431                          * This is the real return address. Any other
432                          * instances associated with this task are for
433                          * other calls deeper on the call stack
434                          */
435                         break;
436         }
437
438         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
439         regs->rip = orig_ret_address;
440
441         reset_current_kprobe();
442         spin_unlock_irqrestore(&kretprobe_lock, flags);
443         preempt_enable_no_resched();
444
445         /*
446          * By returning a non-zero value, we are telling
447          * kprobe_handler() that we don't want the post_handler
448          * to run (and have re-enabled preemption)
449          */
450         return 1;
451 }
452
453 /*
454  * Called after single-stepping.  p->addr is the address of the
455  * instruction whose first byte has been replaced by the "int 3"
456  * instruction.  To avoid the SMP problems that can occur when we
457  * temporarily put back the original opcode to single-step, we
458  * single-stepped a copy of the instruction.  The address of this
459  * copy is p->ainsn.insn.
460  *
461  * This function prepares to return from the post-single-step
462  * interrupt.  We have to fix up the stack as follows:
463  *
464  * 0) Except in the case of absolute or indirect jump or call instructions,
465  * the new rip is relative to the copied instruction.  We need to make
466  * it relative to the original instruction.
467  *
468  * 1) If the single-stepped instruction was pushfl, then the TF and IF
469  * flags are set in the just-pushed eflags, and may need to be cleared.
470  *
471  * 2) If the single-stepped instruction was a call, the return address
472  * that is atop the stack is the address following the copied instruction.
473  * We need to make it the address following the original instruction.
474  */
475 static void __kprobes resume_execution(struct kprobe *p,
476                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
477 {
478         unsigned long *tos = (unsigned long *)regs->rsp;
479         unsigned long next_rip = 0;
480         unsigned long copy_rip = (unsigned long)p->ainsn.insn;
481         unsigned long orig_rip = (unsigned long)p->addr;
482         kprobe_opcode_t *insn = p->ainsn.insn;
483
484         /*skip the REX prefix*/
485         if (*insn >= 0x40 && *insn <= 0x4f)
486                 insn++;
487
488         switch (*insn) {
489         case 0x9c:              /* pushfl */
490                 *tos &= ~(TF_MASK | IF_MASK);
491                 *tos |= kcb->kprobe_old_rflags;
492                 break;
493         case 0xc3:              /* ret/lret */
494         case 0xcb:
495         case 0xc2:
496         case 0xca:
497                 regs->eflags &= ~TF_MASK;
498                 /* rip is already adjusted, no more changes required*/
499                 return;
500         case 0xe8:              /* call relative - Fix return addr */
501                 *tos = orig_rip + (*tos - copy_rip);
502                 break;
503         case 0xff:
504                 if ((*insn & 0x30) == 0x10) {
505                         /* call absolute, indirect */
506                         /* Fix return addr; rip is correct. */
507                         next_rip = regs->rip;
508                         *tos = orig_rip + (*tos - copy_rip);
509                 } else if (((*insn & 0x31) == 0x20) ||  /* jmp near, absolute indirect */
510                            ((*insn & 0x31) == 0x21)) {  /* jmp far, absolute indirect */
511                         /* rip is correct. */
512                         next_rip = regs->rip;
513                 }
514                 break;
515         case 0xea:              /* jmp absolute -- rip is correct */
516                 next_rip = regs->rip;
517                 break;
518         default:
519                 break;
520         }
521
522         regs->eflags &= ~TF_MASK;
523         if (next_rip) {
524                 regs->rip = next_rip;
525         } else {
526                 regs->rip = orig_rip + (regs->rip - copy_rip);
527         }
528 }
529
530 int __kprobes post_kprobe_handler(struct pt_regs *regs)
531 {
532         struct kprobe *cur = kprobe_running();
533         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
534
535         if (!cur)
536                 return 0;
537
538         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
539                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
540                 cur->post_handler(cur, regs, 0);
541         }
542
543         resume_execution(cur, regs, kcb);
544         regs->eflags |= kcb->kprobe_saved_rflags;
545
546         /* Restore the original saved kprobes variables and continue. */
547         if (kcb->kprobe_status == KPROBE_REENTER) {
548                 restore_previous_kprobe(kcb);
549                 goto out;
550         }
551         reset_current_kprobe();
552 out:
553         preempt_enable_no_resched();
554
555         /*
556          * if somebody else is singlestepping across a probe point, eflags
557          * will have TF set, in which case, continue the remaining processing
558          * of do_debug, as if this is not a probe hit.
559          */
560         if (regs->eflags & TF_MASK)
561                 return 0;
562
563         return 1;
564 }
565
566 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
567 {
568         struct kprobe *cur = kprobe_running();
569         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
570
571         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
572                 return 1;
573
574         if (kcb->kprobe_status & KPROBE_HIT_SS) {
575                 resume_execution(cur, regs, kcb);
576                 regs->eflags |= kcb->kprobe_old_rflags;
577
578                 reset_current_kprobe();
579                 preempt_enable_no_resched();
580         }
581         return 0;
582 }
583
584 /*
585  * Wrapper routine for handling exceptions.
586  */
587 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
588                                        unsigned long val, void *data)
589 {
590         struct die_args *args = (struct die_args *)data;
591         int ret = NOTIFY_DONE;
592
593         switch (val) {
594         case DIE_INT3:
595                 if (kprobe_handler(args->regs))
596                         ret = NOTIFY_STOP;
597                 break;
598         case DIE_DEBUG:
599                 if (post_kprobe_handler(args->regs))
600                         ret = NOTIFY_STOP;
601                 break;
602         case DIE_GPF:
603         case DIE_PAGE_FAULT:
604                 /* kprobe_running() needs smp_processor_id() */
605                 preempt_disable();
606                 if (kprobe_running() &&
607                     kprobe_fault_handler(args->regs, args->trapnr))
608                         ret = NOTIFY_STOP;
609                 preempt_enable();
610                 break;
611         default:
612                 break;
613         }
614         return ret;
615 }
616
617 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
618 {
619         struct jprobe *jp = container_of(p, struct jprobe, kp);
620         unsigned long addr;
621         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
622
623         kcb->jprobe_saved_regs = *regs;
624         kcb->jprobe_saved_rsp = (long *) regs->rsp;
625         addr = (unsigned long)(kcb->jprobe_saved_rsp);
626         /*
627          * As Linus pointed out, gcc assumes that the callee
628          * owns the argument space and could overwrite it, e.g.
629          * tailcall optimization. So, to be absolutely safe
630          * we also save and restore enough stack bytes to cover
631          * the argument area.
632          */
633         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
634                         MIN_STACK_SIZE(addr));
635         regs->eflags &= ~IF_MASK;
636         regs->rip = (unsigned long)(jp->entry);
637         return 1;
638 }
639
640 void __kprobes jprobe_return(void)
641 {
642         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
643
644         asm volatile ("       xchg   %%rbx,%%rsp     \n"
645                       "       int3                      \n"
646                       "       .globl jprobe_return_end  \n"
647                       "       jprobe_return_end:        \n"
648                       "       nop                       \n"::"b"
649                       (kcb->jprobe_saved_rsp):"memory");
650 }
651
652 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
653 {
654         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
655         u8 *addr = (u8 *) (regs->rip - 1);
656         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
657         struct jprobe *jp = container_of(p, struct jprobe, kp);
658
659         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
660                 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
661                         struct pt_regs *saved_regs =
662                             container_of(kcb->jprobe_saved_rsp,
663                                             struct pt_regs, rsp);
664                         printk("current rsp %p does not match saved rsp %p\n",
665                                (long *)regs->rsp, kcb->jprobe_saved_rsp);
666                         printk("Saved registers for jprobe %p\n", jp);
667                         show_registers(saved_regs);
668                         printk("Current registers\n");
669                         show_registers(regs);
670                         BUG();
671                 }
672                 *regs = kcb->jprobe_saved_regs;
673                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
674                        MIN_STACK_SIZE(stack_addr));
675                 preempt_enable_no_resched();
676                 return 1;
677         }
678         return 0;
679 }
680
681 static struct kprobe trampoline_p = {
682         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
683         .pre_handler = trampoline_probe_handler
684 };
685
686 int __init arch_init_kprobes(void)
687 {
688         return register_kprobe(&trampoline_p);
689 }