[PATCH] Kprobes: Track kprobe on a per_cpu basis - x86_64 changes
[powerpc.git] / arch / x86_64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/x86_64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2004-Oct     Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27  *              <prasanna@in.ibm.com> adapted for x86_64
28  * 2005-Mar     Roland McGrath <roland@redhat.com>
29  *              Fixed to handle %rip-relative addressing mode correctly.
30  * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
31  *              Added function return probes functionality
32  */
33
34 #include <linux/config.h>
35 #include <linux/kprobes.h>
36 #include <linux/ptrace.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/preempt.h>
41
42 #include <asm/cacheflush.h>
43 #include <asm/pgtable.h>
44 #include <asm/kdebug.h>
45
46 static DECLARE_MUTEX(kprobe_mutex);
47 void jprobe_return_end(void);
48
49 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
50 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
51
52 /*
53  * returns non-zero if opcode modifies the interrupt flag.
54  */
55 static inline int is_IF_modifier(kprobe_opcode_t *insn)
56 {
57         switch (*insn) {
58         case 0xfa:              /* cli */
59         case 0xfb:              /* sti */
60         case 0xcf:              /* iret/iretd */
61         case 0x9d:              /* popf/popfd */
62                 return 1;
63         }
64
65         if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
66                 return 1;
67         return 0;
68 }
69
70 int __kprobes arch_prepare_kprobe(struct kprobe *p)
71 {
72         /* insn: must be on special executable page on x86_64. */
73         down(&kprobe_mutex);
74         p->ainsn.insn = get_insn_slot();
75         up(&kprobe_mutex);
76         if (!p->ainsn.insn) {
77                 return -ENOMEM;
78         }
79         return 0;
80 }
81
82 /*
83  * Determine if the instruction uses the %rip-relative addressing mode.
84  * If it does, return the address of the 32-bit displacement word.
85  * If not, return null.
86  */
87 static inline s32 *is_riprel(u8 *insn)
88 {
89 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
90         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
91           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
92           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
93           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
94          << (row % 64))
95         static const u64 onebyte_has_modrm[256 / 64] = {
96                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
97                 /*      -------------------------------         */
98                 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
99                 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
100                 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
101                 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
102                 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
103                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
104                 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
105                 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
106                 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
107                 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
108                 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
109                 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
110                 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
111                 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
112                 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
113                 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */
114                 /*      -------------------------------         */
115                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
116         };
117         static const u64 twobyte_has_modrm[256 / 64] = {
118                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
119                 /*      -------------------------------         */
120                 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
121                 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
122                 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
123                 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
124                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
125                 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
126                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
127                 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
128                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
129                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
130                 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
131                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
132                 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
133                 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
134                 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
135                 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */
136                 /*      -------------------------------         */
137                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
138         };
139 #undef  W
140         int need_modrm;
141
142         /* Skip legacy instruction prefixes.  */
143         while (1) {
144                 switch (*insn) {
145                 case 0x66:
146                 case 0x67:
147                 case 0x2e:
148                 case 0x3e:
149                 case 0x26:
150                 case 0x64:
151                 case 0x65:
152                 case 0x36:
153                 case 0xf0:
154                 case 0xf3:
155                 case 0xf2:
156                         ++insn;
157                         continue;
158                 }
159                 break;
160         }
161
162         /* Skip REX instruction prefix.  */
163         if ((*insn & 0xf0) == 0x40)
164                 ++insn;
165
166         if (*insn == 0x0f) {    /* Two-byte opcode.  */
167                 ++insn;
168                 need_modrm = test_bit(*insn, twobyte_has_modrm);
169         } else {                /* One-byte opcode.  */
170                 need_modrm = test_bit(*insn, onebyte_has_modrm);
171         }
172
173         if (need_modrm) {
174                 u8 modrm = *++insn;
175                 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
176                         /* Displacement follows ModRM byte.  */
177                         return (s32 *) ++insn;
178                 }
179         }
180
181         /* No %rip-relative addressing mode here.  */
182         return NULL;
183 }
184
185 void __kprobes arch_copy_kprobe(struct kprobe *p)
186 {
187         s32 *ripdisp;
188         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
189         ripdisp = is_riprel(p->ainsn.insn);
190         if (ripdisp) {
191                 /*
192                  * The copied instruction uses the %rip-relative
193                  * addressing mode.  Adjust the displacement for the
194                  * difference between the original location of this
195                  * instruction and the location of the copy that will
196                  * actually be run.  The tricky bit here is making sure
197                  * that the sign extension happens correctly in this
198                  * calculation, since we need a signed 32-bit result to
199                  * be sign-extended to 64 bits when it's added to the
200                  * %rip value and yield the same 64-bit result that the
201                  * sign-extension of the original signed 32-bit
202                  * displacement would have given.
203                  */
204                 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
205                 BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
206                 *ripdisp = disp;
207         }
208         p->opcode = *p->addr;
209 }
210
211 void __kprobes arch_arm_kprobe(struct kprobe *p)
212 {
213         *p->addr = BREAKPOINT_INSTRUCTION;
214         flush_icache_range((unsigned long) p->addr,
215                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
216 }
217
218 void __kprobes arch_disarm_kprobe(struct kprobe *p)
219 {
220         *p->addr = p->opcode;
221         flush_icache_range((unsigned long) p->addr,
222                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
223 }
224
225 void __kprobes arch_remove_kprobe(struct kprobe *p)
226 {
227         down(&kprobe_mutex);
228         free_insn_slot(p->ainsn.insn);
229         up(&kprobe_mutex);
230 }
231
232 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
233 {
234         kcb->prev_kprobe.kp = kprobe_running();
235         kcb->prev_kprobe.status = kcb->kprobe_status;
236         kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
237         kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
238 }
239
240 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
241 {
242         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
243         kcb->kprobe_status = kcb->prev_kprobe.status;
244         kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
245         kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
246 }
247
248 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
249                                 struct kprobe_ctlblk *kcb)
250 {
251         __get_cpu_var(current_kprobe) = p;
252         kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
253                 = (regs->eflags & (TF_MASK | IF_MASK));
254         if (is_IF_modifier(p->ainsn.insn))
255                 kcb->kprobe_saved_rflags &= ~IF_MASK;
256 }
257
258 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
259 {
260         regs->eflags |= TF_MASK;
261         regs->eflags &= ~IF_MASK;
262         /*single step inline if the instruction is an int3*/
263         if (p->opcode == BREAKPOINT_INSTRUCTION)
264                 regs->rip = (unsigned long)p->addr;
265         else
266                 regs->rip = (unsigned long)p->ainsn.insn;
267 }
268
269 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
270                                       struct pt_regs *regs)
271 {
272         unsigned long *sara = (unsigned long *)regs->rsp;
273         struct kretprobe_instance *ri;
274
275         if ((ri = get_free_rp_inst(rp)) != NULL) {
276                 ri->rp = rp;
277                 ri->task = current;
278                 ri->ret_addr = (kprobe_opcode_t *) *sara;
279
280                 /* Replace the return addr with trampoline addr */
281                 *sara = (unsigned long) &kretprobe_trampoline;
282
283                 add_rp_inst(ri);
284         } else {
285                 rp->nmissed++;
286         }
287 }
288
289 /*
290  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
291  * remain disabled thorough out this function.
292  */
293 int __kprobes kprobe_handler(struct pt_regs *regs)
294 {
295         struct kprobe *p;
296         int ret = 0;
297         kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
298         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
299
300         /* Check we're not actually recursing */
301         if (kprobe_running()) {
302                 /* We *are* holding lock here, so this is safe.
303                    Disarm the probe we just hit, and ignore it. */
304                 p = get_kprobe(addr);
305                 if (p) {
306                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
307                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
308                                 regs->eflags &= ~TF_MASK;
309                                 regs->eflags |= kcb->kprobe_saved_rflags;
310                                 unlock_kprobes();
311                                 goto no_kprobe;
312                         } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
313                                 /* TODO: Provide re-entrancy from
314                                  * post_kprobes_handler() and avoid exception
315                                  * stack corruption while single-stepping on
316                                  * the instruction of the new probe.
317                                  */
318                                 arch_disarm_kprobe(p);
319                                 regs->rip = (unsigned long)p->addr;
320                                 reset_current_kprobe();
321                                 ret = 1;
322                         } else {
323                                 /* We have reentered the kprobe_handler(), since
324                                  * another probe was hit while within the
325                                  * handler. We here save the original kprobe
326                                  * variables and just single step on instruction
327                                  * of the new probe without calling any user
328                                  * handlers.
329                                  */
330                                 save_previous_kprobe(kcb);
331                                 set_current_kprobe(p, regs, kcb);
332                                 p->nmissed++;
333                                 prepare_singlestep(p, regs);
334                                 kcb->kprobe_status = KPROBE_REENTER;
335                                 return 1;
336                         }
337                 } else {
338                         p = __get_cpu_var(current_kprobe);
339                         if (p->break_handler && p->break_handler(p, regs)) {
340                                 goto ss_probe;
341                         }
342                 }
343                 /* If it's not ours, can't be delete race, (we hold lock). */
344                 goto no_kprobe;
345         }
346
347         lock_kprobes();
348         p = get_kprobe(addr);
349         if (!p) {
350                 unlock_kprobes();
351                 if (*addr != BREAKPOINT_INSTRUCTION) {
352                         /*
353                          * The breakpoint instruction was removed right
354                          * after we hit it.  Another cpu has removed
355                          * either a probepoint or a debugger breakpoint
356                          * at this address.  In either case, no further
357                          * handling of this interrupt is appropriate.
358                          * Back up over the (now missing) int3 and run
359                          * the original instruction.
360                          */
361                         regs->rip = (unsigned long)addr;
362                         ret = 1;
363                 }
364                 /* Not one of ours: let kernel handle it */
365                 goto no_kprobe;
366         }
367
368         /*
369          * This preempt_disable() matches the preempt_enable_no_resched()
370          * in post_kprobe_handler()
371          */
372         preempt_disable();
373         set_current_kprobe(p, regs, kcb);
374         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
375
376         if (p->pre_handler && p->pre_handler(p, regs))
377                 /* handler has already set things up, so skip ss setup */
378                 return 1;
379
380 ss_probe:
381         prepare_singlestep(p, regs);
382         kcb->kprobe_status = KPROBE_HIT_SS;
383         return 1;
384
385 no_kprobe:
386         return ret;
387 }
388
389 /*
390  * For function-return probes, init_kprobes() establishes a probepoint
391  * here. When a retprobed function returns, this probe is hit and
392  * trampoline_probe_handler() runs, calling the kretprobe's handler.
393  */
394  void kretprobe_trampoline_holder(void)
395  {
396         asm volatile (  ".global kretprobe_trampoline\n"
397                         "kretprobe_trampoline: \n"
398                         "nop\n");
399  }
400
401 /*
402  * Called when we hit the probe point at kretprobe_trampoline
403  */
404 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
405 {
406         struct kretprobe_instance *ri = NULL;
407         struct hlist_head *head;
408         struct hlist_node *node, *tmp;
409         unsigned long orig_ret_address = 0;
410         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
411
412         head = kretprobe_inst_table_head(current);
413
414         /*
415          * It is possible to have multiple instances associated with a given
416          * task either because an multiple functions in the call path
417          * have a return probe installed on them, and/or more then one return
418          * return probe was registered for a target function.
419          *
420          * We can handle this because:
421          *     - instances are always inserted at the head of the list
422          *     - when multiple return probes are registered for the same
423          *       function, the first instance's ret_addr will point to the
424          *       real return address, and all the rest will point to
425          *       kretprobe_trampoline
426          */
427         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
428                 if (ri->task != current)
429                         /* another task is sharing our hash bucket */
430                         continue;
431
432                 if (ri->rp && ri->rp->handler)
433                         ri->rp->handler(ri, regs);
434
435                 orig_ret_address = (unsigned long)ri->ret_addr;
436                 recycle_rp_inst(ri);
437
438                 if (orig_ret_address != trampoline_address)
439                         /*
440                          * This is the real return address. Any other
441                          * instances associated with this task are for
442                          * other calls deeper on the call stack
443                          */
444                         break;
445         }
446
447         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
448         regs->rip = orig_ret_address;
449
450         reset_current_kprobe();
451         unlock_kprobes();
452         preempt_enable_no_resched();
453
454         /*
455          * By returning a non-zero value, we are telling
456          * kprobe_handler() that we have handled unlocking
457          * and re-enabling preemption
458          */
459         return 1;
460 }
461
462 /*
463  * Called after single-stepping.  p->addr is the address of the
464  * instruction whose first byte has been replaced by the "int 3"
465  * instruction.  To avoid the SMP problems that can occur when we
466  * temporarily put back the original opcode to single-step, we
467  * single-stepped a copy of the instruction.  The address of this
468  * copy is p->ainsn.insn.
469  *
470  * This function prepares to return from the post-single-step
471  * interrupt.  We have to fix up the stack as follows:
472  *
473  * 0) Except in the case of absolute or indirect jump or call instructions,
474  * the new rip is relative to the copied instruction.  We need to make
475  * it relative to the original instruction.
476  *
477  * 1) If the single-stepped instruction was pushfl, then the TF and IF
478  * flags are set in the just-pushed eflags, and may need to be cleared.
479  *
480  * 2) If the single-stepped instruction was a call, the return address
481  * that is atop the stack is the address following the copied instruction.
482  * We need to make it the address following the original instruction.
483  */
484 static void __kprobes resume_execution(struct kprobe *p,
485                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
486 {
487         unsigned long *tos = (unsigned long *)regs->rsp;
488         unsigned long next_rip = 0;
489         unsigned long copy_rip = (unsigned long)p->ainsn.insn;
490         unsigned long orig_rip = (unsigned long)p->addr;
491         kprobe_opcode_t *insn = p->ainsn.insn;
492
493         /*skip the REX prefix*/
494         if (*insn >= 0x40 && *insn <= 0x4f)
495                 insn++;
496
497         switch (*insn) {
498         case 0x9c:              /* pushfl */
499                 *tos &= ~(TF_MASK | IF_MASK);
500                 *tos |= kcb->kprobe_old_rflags;
501                 break;
502         case 0xc3:              /* ret/lret */
503         case 0xcb:
504         case 0xc2:
505         case 0xca:
506                 regs->eflags &= ~TF_MASK;
507                 /* rip is already adjusted, no more changes required*/
508                 return;
509         case 0xe8:              /* call relative - Fix return addr */
510                 *tos = orig_rip + (*tos - copy_rip);
511                 break;
512         case 0xff:
513                 if ((*insn & 0x30) == 0x10) {
514                         /* call absolute, indirect */
515                         /* Fix return addr; rip is correct. */
516                         next_rip = regs->rip;
517                         *tos = orig_rip + (*tos - copy_rip);
518                 } else if (((*insn & 0x31) == 0x20) ||  /* jmp near, absolute indirect */
519                            ((*insn & 0x31) == 0x21)) {  /* jmp far, absolute indirect */
520                         /* rip is correct. */
521                         next_rip = regs->rip;
522                 }
523                 break;
524         case 0xea:              /* jmp absolute -- rip is correct */
525                 next_rip = regs->rip;
526                 break;
527         default:
528                 break;
529         }
530
531         regs->eflags &= ~TF_MASK;
532         if (next_rip) {
533                 regs->rip = next_rip;
534         } else {
535                 regs->rip = orig_rip + (regs->rip - copy_rip);
536         }
537 }
538
539 /*
540  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
541  * remain disabled thoroughout this function.  And we hold kprobe lock.
542  */
543 int __kprobes post_kprobe_handler(struct pt_regs *regs)
544 {
545         struct kprobe *cur = kprobe_running();
546         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
547
548         if (!cur)
549                 return 0;
550
551         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
552                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
553                 cur->post_handler(cur, regs, 0);
554         }
555
556         resume_execution(cur, regs, kcb);
557         regs->eflags |= kcb->kprobe_saved_rflags;
558
559         /* Restore the original saved kprobes variables and continue. */
560         if (kcb->kprobe_status == KPROBE_REENTER) {
561                 restore_previous_kprobe(kcb);
562                 goto out;
563         } else {
564                 unlock_kprobes();
565         }
566         reset_current_kprobe();
567 out:
568         preempt_enable_no_resched();
569
570         /*
571          * if somebody else is singlestepping across a probe point, eflags
572          * will have TF set, in which case, continue the remaining processing
573          * of do_debug, as if this is not a probe hit.
574          */
575         if (regs->eflags & TF_MASK)
576                 return 0;
577
578         return 1;
579 }
580
581 /* Interrupts disabled, kprobe_lock held. */
582 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
583 {
584         struct kprobe *cur = kprobe_running();
585         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586
587         if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
588                 return 1;
589
590         if (kcb->kprobe_status & KPROBE_HIT_SS) {
591                 resume_execution(cur, regs, kcb);
592                 regs->eflags |= kcb->kprobe_old_rflags;
593
594                 reset_current_kprobe();
595                 unlock_kprobes();
596                 preempt_enable_no_resched();
597         }
598         return 0;
599 }
600
601 /*
602  * Wrapper routine for handling exceptions.
603  */
604 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
605                                        unsigned long val, void *data)
606 {
607         struct die_args *args = (struct die_args *)data;
608         int ret = NOTIFY_DONE;
609
610         preempt_disable();
611         switch (val) {
612         case DIE_INT3:
613                 if (kprobe_handler(args->regs))
614                         ret = NOTIFY_STOP;
615                 break;
616         case DIE_DEBUG:
617                 if (post_kprobe_handler(args->regs))
618                         ret = NOTIFY_STOP;
619                 break;
620         case DIE_GPF:
621         case DIE_PAGE_FAULT:
622                 if (kprobe_running() &&
623                     kprobe_fault_handler(args->regs, args->trapnr))
624                         ret = NOTIFY_STOP;
625                 break;
626         default:
627                 break;
628         }
629         preempt_enable();
630         return ret;
631 }
632
633 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
634 {
635         struct jprobe *jp = container_of(p, struct jprobe, kp);
636         unsigned long addr;
637         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
638
639         kcb->jprobe_saved_regs = *regs;
640         kcb->jprobe_saved_rsp = (long *) regs->rsp;
641         addr = (unsigned long)(kcb->jprobe_saved_rsp);
642         /*
643          * As Linus pointed out, gcc assumes that the callee
644          * owns the argument space and could overwrite it, e.g.
645          * tailcall optimization. So, to be absolutely safe
646          * we also save and restore enough stack bytes to cover
647          * the argument area.
648          */
649         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
650                         MIN_STACK_SIZE(addr));
651         regs->eflags &= ~IF_MASK;
652         regs->rip = (unsigned long)(jp->entry);
653         return 1;
654 }
655
656 void __kprobes jprobe_return(void)
657 {
658         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659
660         asm volatile ("       xchg   %%rbx,%%rsp     \n"
661                       "       int3                      \n"
662                       "       .globl jprobe_return_end  \n"
663                       "       jprobe_return_end:        \n"
664                       "       nop                       \n"::"b"
665                       (kcb->jprobe_saved_rsp):"memory");
666 }
667
668 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
669 {
670         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
671         u8 *addr = (u8 *) (regs->rip - 1);
672         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
673         struct jprobe *jp = container_of(p, struct jprobe, kp);
674
675         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
676                 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
677                         struct pt_regs *saved_regs =
678                             container_of(kcb->jprobe_saved_rsp,
679                                             struct pt_regs, rsp);
680                         printk("current rsp %p does not match saved rsp %p\n",
681                                (long *)regs->rsp, kcb->jprobe_saved_rsp);
682                         printk("Saved registers for jprobe %p\n", jp);
683                         show_registers(saved_regs);
684                         printk("Current registers\n");
685                         show_registers(regs);
686                         BUG();
687                 }
688                 *regs = kcb->jprobe_saved_regs;
689                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
690                        MIN_STACK_SIZE(stack_addr));
691                 return 1;
692         }
693         return 0;
694 }
695
696 static struct kprobe trampoline_p = {
697         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
698         .pre_handler = trampoline_probe_handler
699 };
700
701 int __init arch_init_kprobes(void)
702 {
703         return register_kprobe(&trampoline_p);
704 }