memblock: memblock_phys_alloc(): don't panic
[linux] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         const int bit = ctx->index_hw[hctx->type];
78
79         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80                 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         const int bit = ctx->index_hw[hctx->type];
87
88         sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92         struct hd_struct *part;
93         unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97                                   struct request *rq, void *priv,
98                                   bool reserved)
99 {
100         struct mq_inflight *mi = priv;
101
102         /*
103          * index[0] counts the specific partition that was asked for.
104          */
105         if (rq->part == mi->part)
106                 mi->inflight[0]++;
107
108         return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113         unsigned inflight[2];
114         struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
116         inflight[0] = inflight[1] = 0;
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119         return inflight[0];
120 }
121
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123                                      struct request *rq, void *priv,
124                                      bool reserved)
125 {
126         struct mq_inflight *mi = priv;
127
128         if (rq->part == mi->part)
129                 mi->inflight[rq_data_dir(rq)]++;
130
131         return true;
132 }
133
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135                          unsigned int inflight[2])
136 {
137         struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139         inflight[0] = inflight[1] = 0;
140         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145         int freeze_depth;
146
147         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148         if (freeze_depth == 1) {
149                 percpu_ref_kill(&q->q_usage_counter);
150                 if (queue_is_mq(q))
151                         blk_mq_run_hw_queues(q, false);
152         }
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163                                      unsigned long timeout)
164 {
165         return wait_event_timeout(q->mq_freeze_wq,
166                                         percpu_ref_is_zero(&q->q_usage_counter),
167                                         timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170
171 /*
172  * Guarantee no request is in use, so we can change any data structure of
173  * the queue afterward.
174  */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177         /*
178          * In the !blk_mq case we are only calling this to kill the
179          * q_usage_counter, otherwise this increases the freeze depth
180          * and waits for it to return to zero.  For this reason there is
181          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182          * exported to drivers as the only user for unfreeze is blk_mq.
183          */
184         blk_freeze_queue_start(q);
185         blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190         /*
191          * ...just an alias to keep freeze and unfreeze actions balanced
192          * in the blk_mq_* namespace
193          */
194         blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200         int freeze_depth;
201
202         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203         WARN_ON_ONCE(freeze_depth < 0);
204         if (!freeze_depth) {
205                 percpu_ref_resurrect(&q->q_usage_counter);
206                 wake_up_all(&q->mq_freeze_wq);
207         }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277         return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280
281 /*
282  * Only need start/end time stamping if we have stats enabled, or using
283  * an IO scheduler.
284  */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287         return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291                 unsigned int tag, unsigned int op)
292 {
293         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294         struct request *rq = tags->static_rqs[tag];
295         req_flags_t rq_flags = 0;
296
297         if (data->flags & BLK_MQ_REQ_INTERNAL) {
298                 rq->tag = -1;
299                 rq->internal_tag = tag;
300         } else {
301                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302                         rq_flags = RQF_MQ_INFLIGHT;
303                         atomic_inc(&data->hctx->nr_active);
304                 }
305                 rq->tag = tag;
306                 rq->internal_tag = -1;
307                 data->hctx->tags->rqs[rq->tag] = rq;
308         }
309
310         /* csd/requeue_work/fifo_time is initialized before use */
311         rq->q = data->q;
312         rq->mq_ctx = data->ctx;
313         rq->mq_hctx = data->hctx;
314         rq->rq_flags = rq_flags;
315         rq->cmd_flags = op;
316         if (data->flags & BLK_MQ_REQ_PREEMPT)
317                 rq->rq_flags |= RQF_PREEMPT;
318         if (blk_queue_io_stat(data->q))
319                 rq->rq_flags |= RQF_IO_STAT;
320         INIT_LIST_HEAD(&rq->queuelist);
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->rq_disk = NULL;
324         rq->part = NULL;
325         if (blk_mq_need_time_stamp(rq))
326                 rq->start_time_ns = ktime_get_ns();
327         else
328                 rq->start_time_ns = 0;
329         rq->io_start_time_ns = 0;
330         rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332         rq->nr_integrity_segments = 0;
333 #endif
334         /* tag was already set */
335         rq->extra_len = 0;
336         WRITE_ONCE(rq->deadline, 0);
337
338         rq->timeout = 0;
339
340         rq->end_io = NULL;
341         rq->end_io_data = NULL;
342
343         data->ctx->rq_dispatched[op_is_sync(op)]++;
344         refcount_set(&rq->ref, 1);
345         return rq;
346 }
347
348 static struct request *blk_mq_get_request(struct request_queue *q,
349                                           struct bio *bio,
350                                           struct blk_mq_alloc_data *data)
351 {
352         struct elevator_queue *e = q->elevator;
353         struct request *rq;
354         unsigned int tag;
355         bool put_ctx_on_error = false;
356
357         blk_queue_enter_live(q);
358         data->q = q;
359         if (likely(!data->ctx)) {
360                 data->ctx = blk_mq_get_ctx(q);
361                 put_ctx_on_error = true;
362         }
363         if (likely(!data->hctx))
364                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
365                                                 data->ctx);
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 data->flags |= BLK_MQ_REQ_INTERNAL;
371
372                 /*
373                  * Flush requests are special and go directly to the
374                  * dispatch list. Don't include reserved tags in the
375                  * limiting, as it isn't useful.
376                  */
377                 if (!op_is_flush(data->cmd_flags) &&
378                     e->type->ops.limit_depth &&
379                     !(data->flags & BLK_MQ_REQ_RESERVED))
380                         e->type->ops.limit_depth(data->cmd_flags, data);
381         } else {
382                 blk_mq_tag_busy(data->hctx);
383         }
384
385         tag = blk_mq_get_tag(data);
386         if (tag == BLK_MQ_TAG_FAIL) {
387                 if (put_ctx_on_error) {
388                         blk_mq_put_ctx(data->ctx);
389                         data->ctx = NULL;
390                 }
391                 blk_queue_exit(q);
392                 return NULL;
393         }
394
395         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
396         if (!op_is_flush(data->cmd_flags)) {
397                 rq->elv.icq = NULL;
398                 if (e && e->type->ops.prepare_request) {
399                         if (e->type->icq_cache)
400                                 blk_mq_sched_assign_ioc(rq);
401
402                         e->type->ops.prepare_request(rq, bio);
403                         rq->rq_flags |= RQF_ELVPRIV;
404                 }
405         }
406         data->hctx->queued++;
407         return rq;
408 }
409
410 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
411                 blk_mq_req_flags_t flags)
412 {
413         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
414         struct request *rq;
415         int ret;
416
417         ret = blk_queue_enter(q, flags);
418         if (ret)
419                 return ERR_PTR(ret);
420
421         rq = blk_mq_get_request(q, NULL, &alloc_data);
422         blk_queue_exit(q);
423
424         if (!rq)
425                 return ERR_PTR(-EWOULDBLOCK);
426
427         blk_mq_put_ctx(alloc_data.ctx);
428
429         rq->__data_len = 0;
430         rq->__sector = (sector_t) -1;
431         rq->bio = rq->biotail = NULL;
432         return rq;
433 }
434 EXPORT_SYMBOL(blk_mq_alloc_request);
435
436 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
437         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
438 {
439         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
440         struct request *rq;
441         unsigned int cpu;
442         int ret;
443
444         /*
445          * If the tag allocator sleeps we could get an allocation for a
446          * different hardware context.  No need to complicate the low level
447          * allocator for this for the rare use case of a command tied to
448          * a specific queue.
449          */
450         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
451                 return ERR_PTR(-EINVAL);
452
453         if (hctx_idx >= q->nr_hw_queues)
454                 return ERR_PTR(-EIO);
455
456         ret = blk_queue_enter(q, flags);
457         if (ret)
458                 return ERR_PTR(ret);
459
460         /*
461          * Check if the hardware context is actually mapped to anything.
462          * If not tell the caller that it should skip this queue.
463          */
464         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
465         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
466                 blk_queue_exit(q);
467                 return ERR_PTR(-EXDEV);
468         }
469         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
470         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
471
472         rq = blk_mq_get_request(q, NULL, &alloc_data);
473         blk_queue_exit(q);
474
475         if (!rq)
476                 return ERR_PTR(-EWOULDBLOCK);
477
478         return rq;
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
481
482 static void __blk_mq_free_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485         struct blk_mq_ctx *ctx = rq->mq_ctx;
486         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
487         const int sched_tag = rq->internal_tag;
488
489         blk_pm_mark_last_busy(rq);
490         rq->mq_hctx = NULL;
491         if (rq->tag != -1)
492                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
493         if (sched_tag != -1)
494                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
495         blk_mq_sched_restart(hctx);
496         blk_queue_exit(q);
497 }
498
499 void blk_mq_free_request(struct request *rq)
500 {
501         struct request_queue *q = rq->q;
502         struct elevator_queue *e = q->elevator;
503         struct blk_mq_ctx *ctx = rq->mq_ctx;
504         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
505
506         if (rq->rq_flags & RQF_ELVPRIV) {
507                 if (e && e->type->ops.finish_request)
508                         e->type->ops.finish_request(rq);
509                 if (rq->elv.icq) {
510                         put_io_context(rq->elv.icq->ioc);
511                         rq->elv.icq = NULL;
512                 }
513         }
514
515         ctx->rq_completed[rq_is_sync(rq)]++;
516         if (rq->rq_flags & RQF_MQ_INFLIGHT)
517                 atomic_dec(&hctx->nr_active);
518
519         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
520                 laptop_io_completion(q->backing_dev_info);
521
522         rq_qos_done(q, rq);
523
524         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
525         if (refcount_dec_and_test(&rq->ref))
526                 __blk_mq_free_request(rq);
527 }
528 EXPORT_SYMBOL_GPL(blk_mq_free_request);
529
530 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
531 {
532         u64 now = 0;
533
534         if (blk_mq_need_time_stamp(rq))
535                 now = ktime_get_ns();
536
537         if (rq->rq_flags & RQF_STATS) {
538                 blk_mq_poll_stats_start(rq->q);
539                 blk_stat_add(rq, now);
540         }
541
542         if (rq->internal_tag != -1)
543                 blk_mq_sched_completed_request(rq, now);
544
545         blk_account_io_done(rq, now);
546
547         if (rq->end_io) {
548                 rq_qos_done(rq->q, rq);
549                 rq->end_io(rq, error);
550         } else {
551                 blk_mq_free_request(rq);
552         }
553 }
554 EXPORT_SYMBOL(__blk_mq_end_request);
555
556 void blk_mq_end_request(struct request *rq, blk_status_t error)
557 {
558         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
559                 BUG();
560         __blk_mq_end_request(rq, error);
561 }
562 EXPORT_SYMBOL(blk_mq_end_request);
563
564 static void __blk_mq_complete_request_remote(void *data)
565 {
566         struct request *rq = data;
567         struct request_queue *q = rq->q;
568
569         q->mq_ops->complete(rq);
570 }
571
572 static void __blk_mq_complete_request(struct request *rq)
573 {
574         struct blk_mq_ctx *ctx = rq->mq_ctx;
575         struct request_queue *q = rq->q;
576         bool shared = false;
577         int cpu;
578
579         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
580         /*
581          * Most of single queue controllers, there is only one irq vector
582          * for handling IO completion, and the only irq's affinity is set
583          * as all possible CPUs. On most of ARCHs, this affinity means the
584          * irq is handled on one specific CPU.
585          *
586          * So complete IO reqeust in softirq context in case of single queue
587          * for not degrading IO performance by irqsoff latency.
588          */
589         if (q->nr_hw_queues == 1) {
590                 __blk_complete_request(rq);
591                 return;
592         }
593
594         /*
595          * For a polled request, always complete locallly, it's pointless
596          * to redirect the completion.
597          */
598         if ((rq->cmd_flags & REQ_HIPRI) ||
599             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
600                 q->mq_ops->complete(rq);
601                 return;
602         }
603
604         cpu = get_cpu();
605         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
606                 shared = cpus_share_cache(cpu, ctx->cpu);
607
608         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
609                 rq->csd.func = __blk_mq_complete_request_remote;
610                 rq->csd.info = rq;
611                 rq->csd.flags = 0;
612                 smp_call_function_single_async(ctx->cpu, &rq->csd);
613         } else {
614                 q->mq_ops->complete(rq);
615         }
616         put_cpu();
617 }
618
619 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
620         __releases(hctx->srcu)
621 {
622         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
623                 rcu_read_unlock();
624         else
625                 srcu_read_unlock(hctx->srcu, srcu_idx);
626 }
627
628 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
629         __acquires(hctx->srcu)
630 {
631         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
632                 /* shut up gcc false positive */
633                 *srcu_idx = 0;
634                 rcu_read_lock();
635         } else
636                 *srcu_idx = srcu_read_lock(hctx->srcu);
637 }
638
639 /**
640  * blk_mq_complete_request - end I/O on a request
641  * @rq:         the request being processed
642  *
643  * Description:
644  *      Ends all I/O on a request. It does not handle partial completions.
645  *      The actual completion happens out-of-order, through a IPI handler.
646  **/
647 bool blk_mq_complete_request(struct request *rq)
648 {
649         if (unlikely(blk_should_fake_timeout(rq->q)))
650                 return false;
651         __blk_mq_complete_request(rq);
652         return true;
653 }
654 EXPORT_SYMBOL(blk_mq_complete_request);
655
656 int blk_mq_request_started(struct request *rq)
657 {
658         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_request_started);
661
662 void blk_mq_start_request(struct request *rq)
663 {
664         struct request_queue *q = rq->q;
665
666         blk_mq_sched_started_request(rq);
667
668         trace_block_rq_issue(q, rq);
669
670         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
671                 rq->io_start_time_ns = ktime_get_ns();
672 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
673                 rq->throtl_size = blk_rq_sectors(rq);
674 #endif
675                 rq->rq_flags |= RQF_STATS;
676                 rq_qos_issue(q, rq);
677         }
678
679         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
680
681         blk_add_timer(rq);
682         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
683
684         if (q->dma_drain_size && blk_rq_bytes(rq)) {
685                 /*
686                  * Make sure space for the drain appears.  We know we can do
687                  * this because max_hw_segments has been adjusted to be one
688                  * fewer than the device can handle.
689                  */
690                 rq->nr_phys_segments++;
691         }
692 }
693 EXPORT_SYMBOL(blk_mq_start_request);
694
695 static void __blk_mq_requeue_request(struct request *rq)
696 {
697         struct request_queue *q = rq->q;
698
699         blk_mq_put_driver_tag(rq);
700
701         trace_block_rq_requeue(q, rq);
702         rq_qos_requeue(q, rq);
703
704         if (blk_mq_request_started(rq)) {
705                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
706                 rq->rq_flags &= ~RQF_TIMED_OUT;
707                 if (q->dma_drain_size && blk_rq_bytes(rq))
708                         rq->nr_phys_segments--;
709         }
710 }
711
712 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
713 {
714         __blk_mq_requeue_request(rq);
715
716         /* this request will be re-inserted to io scheduler queue */
717         blk_mq_sched_requeue_request(rq);
718
719         BUG_ON(!list_empty(&rq->queuelist));
720         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
721 }
722 EXPORT_SYMBOL(blk_mq_requeue_request);
723
724 static void blk_mq_requeue_work(struct work_struct *work)
725 {
726         struct request_queue *q =
727                 container_of(work, struct request_queue, requeue_work.work);
728         LIST_HEAD(rq_list);
729         struct request *rq, *next;
730
731         spin_lock_irq(&q->requeue_lock);
732         list_splice_init(&q->requeue_list, &rq_list);
733         spin_unlock_irq(&q->requeue_lock);
734
735         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
736                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
737                         continue;
738
739                 rq->rq_flags &= ~RQF_SOFTBARRIER;
740                 list_del_init(&rq->queuelist);
741                 blk_mq_sched_insert_request(rq, true, false, false);
742         }
743
744         while (!list_empty(&rq_list)) {
745                 rq = list_entry(rq_list.next, struct request, queuelist);
746                 list_del_init(&rq->queuelist);
747                 blk_mq_sched_insert_request(rq, false, false, false);
748         }
749
750         blk_mq_run_hw_queues(q, false);
751 }
752
753 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
754                                 bool kick_requeue_list)
755 {
756         struct request_queue *q = rq->q;
757         unsigned long flags;
758
759         /*
760          * We abuse this flag that is otherwise used by the I/O scheduler to
761          * request head insertion from the workqueue.
762          */
763         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
764
765         spin_lock_irqsave(&q->requeue_lock, flags);
766         if (at_head) {
767                 rq->rq_flags |= RQF_SOFTBARRIER;
768                 list_add(&rq->queuelist, &q->requeue_list);
769         } else {
770                 list_add_tail(&rq->queuelist, &q->requeue_list);
771         }
772         spin_unlock_irqrestore(&q->requeue_lock, flags);
773
774         if (kick_requeue_list)
775                 blk_mq_kick_requeue_list(q);
776 }
777 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
778
779 void blk_mq_kick_requeue_list(struct request_queue *q)
780 {
781         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
782 }
783 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
784
785 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
786                                     unsigned long msecs)
787 {
788         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
789                                     msecs_to_jiffies(msecs));
790 }
791 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
792
793 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
794 {
795         if (tag < tags->nr_tags) {
796                 prefetch(tags->rqs[tag]);
797                 return tags->rqs[tag];
798         }
799
800         return NULL;
801 }
802 EXPORT_SYMBOL(blk_mq_tag_to_rq);
803
804 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
805                                void *priv, bool reserved)
806 {
807         /*
808          * If we find a request that is inflight and the queue matches,
809          * we know the queue is busy. Return false to stop the iteration.
810          */
811         if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
812                 bool *busy = priv;
813
814                 *busy = true;
815                 return false;
816         }
817
818         return true;
819 }
820
821 bool blk_mq_queue_inflight(struct request_queue *q)
822 {
823         bool busy = false;
824
825         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
826         return busy;
827 }
828 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
829
830 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
831 {
832         req->rq_flags |= RQF_TIMED_OUT;
833         if (req->q->mq_ops->timeout) {
834                 enum blk_eh_timer_return ret;
835
836                 ret = req->q->mq_ops->timeout(req, reserved);
837                 if (ret == BLK_EH_DONE)
838                         return;
839                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
840         }
841
842         blk_add_timer(req);
843 }
844
845 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
846 {
847         unsigned long deadline;
848
849         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
850                 return false;
851         if (rq->rq_flags & RQF_TIMED_OUT)
852                 return false;
853
854         deadline = READ_ONCE(rq->deadline);
855         if (time_after_eq(jiffies, deadline))
856                 return true;
857
858         if (*next == 0)
859                 *next = deadline;
860         else if (time_after(*next, deadline))
861                 *next = deadline;
862         return false;
863 }
864
865 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
866                 struct request *rq, void *priv, bool reserved)
867 {
868         unsigned long *next = priv;
869
870         /*
871          * Just do a quick check if it is expired before locking the request in
872          * so we're not unnecessarilly synchronizing across CPUs.
873          */
874         if (!blk_mq_req_expired(rq, next))
875                 return true;
876
877         /*
878          * We have reason to believe the request may be expired. Take a
879          * reference on the request to lock this request lifetime into its
880          * currently allocated context to prevent it from being reallocated in
881          * the event the completion by-passes this timeout handler.
882          *
883          * If the reference was already released, then the driver beat the
884          * timeout handler to posting a natural completion.
885          */
886         if (!refcount_inc_not_zero(&rq->ref))
887                 return true;
888
889         /*
890          * The request is now locked and cannot be reallocated underneath the
891          * timeout handler's processing. Re-verify this exact request is truly
892          * expired; if it is not expired, then the request was completed and
893          * reallocated as a new request.
894          */
895         if (blk_mq_req_expired(rq, next))
896                 blk_mq_rq_timed_out(rq, reserved);
897         if (refcount_dec_and_test(&rq->ref))
898                 __blk_mq_free_request(rq);
899
900         return true;
901 }
902
903 static void blk_mq_timeout_work(struct work_struct *work)
904 {
905         struct request_queue *q =
906                 container_of(work, struct request_queue, timeout_work);
907         unsigned long next = 0;
908         struct blk_mq_hw_ctx *hctx;
909         int i;
910
911         /* A deadlock might occur if a request is stuck requiring a
912          * timeout at the same time a queue freeze is waiting
913          * completion, since the timeout code would not be able to
914          * acquire the queue reference here.
915          *
916          * That's why we don't use blk_queue_enter here; instead, we use
917          * percpu_ref_tryget directly, because we need to be able to
918          * obtain a reference even in the short window between the queue
919          * starting to freeze, by dropping the first reference in
920          * blk_freeze_queue_start, and the moment the last request is
921          * consumed, marked by the instant q_usage_counter reaches
922          * zero.
923          */
924         if (!percpu_ref_tryget(&q->q_usage_counter))
925                 return;
926
927         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
928
929         if (next != 0) {
930                 mod_timer(&q->timeout, next);
931         } else {
932                 /*
933                  * Request timeouts are handled as a forward rolling timer. If
934                  * we end up here it means that no requests are pending and
935                  * also that no request has been pending for a while. Mark
936                  * each hctx as idle.
937                  */
938                 queue_for_each_hw_ctx(q, hctx, i) {
939                         /* the hctx may be unmapped, so check it here */
940                         if (blk_mq_hw_queue_mapped(hctx))
941                                 blk_mq_tag_idle(hctx);
942                 }
943         }
944         blk_queue_exit(q);
945 }
946
947 struct flush_busy_ctx_data {
948         struct blk_mq_hw_ctx *hctx;
949         struct list_head *list;
950 };
951
952 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
953 {
954         struct flush_busy_ctx_data *flush_data = data;
955         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
956         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
957         enum hctx_type type = hctx->type;
958
959         spin_lock(&ctx->lock);
960         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
961         sbitmap_clear_bit(sb, bitnr);
962         spin_unlock(&ctx->lock);
963         return true;
964 }
965
966 /*
967  * Process software queues that have been marked busy, splicing them
968  * to the for-dispatch
969  */
970 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
971 {
972         struct flush_busy_ctx_data data = {
973                 .hctx = hctx,
974                 .list = list,
975         };
976
977         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
978 }
979 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
980
981 struct dispatch_rq_data {
982         struct blk_mq_hw_ctx *hctx;
983         struct request *rq;
984 };
985
986 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
987                 void *data)
988 {
989         struct dispatch_rq_data *dispatch_data = data;
990         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
991         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
992         enum hctx_type type = hctx->type;
993
994         spin_lock(&ctx->lock);
995         if (!list_empty(&ctx->rq_lists[type])) {
996                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
997                 list_del_init(&dispatch_data->rq->queuelist);
998                 if (list_empty(&ctx->rq_lists[type]))
999                         sbitmap_clear_bit(sb, bitnr);
1000         }
1001         spin_unlock(&ctx->lock);
1002
1003         return !dispatch_data->rq;
1004 }
1005
1006 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1007                                         struct blk_mq_ctx *start)
1008 {
1009         unsigned off = start ? start->index_hw[hctx->type] : 0;
1010         struct dispatch_rq_data data = {
1011                 .hctx = hctx,
1012                 .rq   = NULL,
1013         };
1014
1015         __sbitmap_for_each_set(&hctx->ctx_map, off,
1016                                dispatch_rq_from_ctx, &data);
1017
1018         return data.rq;
1019 }
1020
1021 static inline unsigned int queued_to_index(unsigned int queued)
1022 {
1023         if (!queued)
1024                 return 0;
1025
1026         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1027 }
1028
1029 bool blk_mq_get_driver_tag(struct request *rq)
1030 {
1031         struct blk_mq_alloc_data data = {
1032                 .q = rq->q,
1033                 .hctx = rq->mq_hctx,
1034                 .flags = BLK_MQ_REQ_NOWAIT,
1035                 .cmd_flags = rq->cmd_flags,
1036         };
1037         bool shared;
1038
1039         if (rq->tag != -1)
1040                 goto done;
1041
1042         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1043                 data.flags |= BLK_MQ_REQ_RESERVED;
1044
1045         shared = blk_mq_tag_busy(data.hctx);
1046         rq->tag = blk_mq_get_tag(&data);
1047         if (rq->tag >= 0) {
1048                 if (shared) {
1049                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1050                         atomic_inc(&data.hctx->nr_active);
1051                 }
1052                 data.hctx->tags->rqs[rq->tag] = rq;
1053         }
1054
1055 done:
1056         return rq->tag != -1;
1057 }
1058
1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1060                                 int flags, void *key)
1061 {
1062         struct blk_mq_hw_ctx *hctx;
1063
1064         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1065
1066         spin_lock(&hctx->dispatch_wait_lock);
1067         list_del_init(&wait->entry);
1068         spin_unlock(&hctx->dispatch_wait_lock);
1069
1070         blk_mq_run_hw_queue(hctx, true);
1071         return 1;
1072 }
1073
1074 /*
1075  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1076  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1077  * restart. For both cases, take care to check the condition again after
1078  * marking us as waiting.
1079  */
1080 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1081                                  struct request *rq)
1082 {
1083         struct wait_queue_head *wq;
1084         wait_queue_entry_t *wait;
1085         bool ret;
1086
1087         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1088                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1089                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1090
1091                 /*
1092                  * It's possible that a tag was freed in the window between the
1093                  * allocation failure and adding the hardware queue to the wait
1094                  * queue.
1095                  *
1096                  * Don't clear RESTART here, someone else could have set it.
1097                  * At most this will cost an extra queue run.
1098                  */
1099                 return blk_mq_get_driver_tag(rq);
1100         }
1101
1102         wait = &hctx->dispatch_wait;
1103         if (!list_empty_careful(&wait->entry))
1104                 return false;
1105
1106         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1107
1108         spin_lock_irq(&wq->lock);
1109         spin_lock(&hctx->dispatch_wait_lock);
1110         if (!list_empty(&wait->entry)) {
1111                 spin_unlock(&hctx->dispatch_wait_lock);
1112                 spin_unlock_irq(&wq->lock);
1113                 return false;
1114         }
1115
1116         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1117         __add_wait_queue(wq, wait);
1118
1119         /*
1120          * It's possible that a tag was freed in the window between the
1121          * allocation failure and adding the hardware queue to the wait
1122          * queue.
1123          */
1124         ret = blk_mq_get_driver_tag(rq);
1125         if (!ret) {
1126                 spin_unlock(&hctx->dispatch_wait_lock);
1127                 spin_unlock_irq(&wq->lock);
1128                 return false;
1129         }
1130
1131         /*
1132          * We got a tag, remove ourselves from the wait queue to ensure
1133          * someone else gets the wakeup.
1134          */
1135         list_del_init(&wait->entry);
1136         spin_unlock(&hctx->dispatch_wait_lock);
1137         spin_unlock_irq(&wq->lock);
1138
1139         return true;
1140 }
1141
1142 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1143 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1144 /*
1145  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1146  * - EWMA is one simple way to compute running average value
1147  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1148  * - take 4 as factor for avoiding to get too small(0) result, and this
1149  *   factor doesn't matter because EWMA decreases exponentially
1150  */
1151 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1152 {
1153         unsigned int ewma;
1154
1155         if (hctx->queue->elevator)
1156                 return;
1157
1158         ewma = hctx->dispatch_busy;
1159
1160         if (!ewma && !busy)
1161                 return;
1162
1163         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1164         if (busy)
1165                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1166         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1167
1168         hctx->dispatch_busy = ewma;
1169 }
1170
1171 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1172
1173 /*
1174  * Returns true if we did some work AND can potentially do more.
1175  */
1176 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1177                              bool got_budget)
1178 {
1179         struct blk_mq_hw_ctx *hctx;
1180         struct request *rq, *nxt;
1181         bool no_tag = false;
1182         int errors, queued;
1183         blk_status_t ret = BLK_STS_OK;
1184
1185         if (list_empty(list))
1186                 return false;
1187
1188         WARN_ON(!list_is_singular(list) && got_budget);
1189
1190         /*
1191          * Now process all the entries, sending them to the driver.
1192          */
1193         errors = queued = 0;
1194         do {
1195                 struct blk_mq_queue_data bd;
1196
1197                 rq = list_first_entry(list, struct request, queuelist);
1198
1199                 hctx = rq->mq_hctx;
1200                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1201                         break;
1202
1203                 if (!blk_mq_get_driver_tag(rq)) {
1204                         /*
1205                          * The initial allocation attempt failed, so we need to
1206                          * rerun the hardware queue when a tag is freed. The
1207                          * waitqueue takes care of that. If the queue is run
1208                          * before we add this entry back on the dispatch list,
1209                          * we'll re-run it below.
1210                          */
1211                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1212                                 blk_mq_put_dispatch_budget(hctx);
1213                                 /*
1214                                  * For non-shared tags, the RESTART check
1215                                  * will suffice.
1216                                  */
1217                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1218                                         no_tag = true;
1219                                 break;
1220                         }
1221                 }
1222
1223                 list_del_init(&rq->queuelist);
1224
1225                 bd.rq = rq;
1226
1227                 /*
1228                  * Flag last if we have no more requests, or if we have more
1229                  * but can't assign a driver tag to it.
1230                  */
1231                 if (list_empty(list))
1232                         bd.last = true;
1233                 else {
1234                         nxt = list_first_entry(list, struct request, queuelist);
1235                         bd.last = !blk_mq_get_driver_tag(nxt);
1236                 }
1237
1238                 ret = q->mq_ops->queue_rq(hctx, &bd);
1239                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1240                         /*
1241                          * If an I/O scheduler has been configured and we got a
1242                          * driver tag for the next request already, free it
1243                          * again.
1244                          */
1245                         if (!list_empty(list)) {
1246                                 nxt = list_first_entry(list, struct request, queuelist);
1247                                 blk_mq_put_driver_tag(nxt);
1248                         }
1249                         list_add(&rq->queuelist, list);
1250                         __blk_mq_requeue_request(rq);
1251                         break;
1252                 }
1253
1254                 if (unlikely(ret != BLK_STS_OK)) {
1255                         errors++;
1256                         blk_mq_end_request(rq, BLK_STS_IOERR);
1257                         continue;
1258                 }
1259
1260                 queued++;
1261         } while (!list_empty(list));
1262
1263         hctx->dispatched[queued_to_index(queued)]++;
1264
1265         /*
1266          * Any items that need requeuing? Stuff them into hctx->dispatch,
1267          * that is where we will continue on next queue run.
1268          */
1269         if (!list_empty(list)) {
1270                 bool needs_restart;
1271
1272                 /*
1273                  * If we didn't flush the entire list, we could have told
1274                  * the driver there was more coming, but that turned out to
1275                  * be a lie.
1276                  */
1277                 if (q->mq_ops->commit_rqs)
1278                         q->mq_ops->commit_rqs(hctx);
1279
1280                 spin_lock(&hctx->lock);
1281                 list_splice_init(list, &hctx->dispatch);
1282                 spin_unlock(&hctx->lock);
1283
1284                 /*
1285                  * If SCHED_RESTART was set by the caller of this function and
1286                  * it is no longer set that means that it was cleared by another
1287                  * thread and hence that a queue rerun is needed.
1288                  *
1289                  * If 'no_tag' is set, that means that we failed getting
1290                  * a driver tag with an I/O scheduler attached. If our dispatch
1291                  * waitqueue is no longer active, ensure that we run the queue
1292                  * AFTER adding our entries back to the list.
1293                  *
1294                  * If no I/O scheduler has been configured it is possible that
1295                  * the hardware queue got stopped and restarted before requests
1296                  * were pushed back onto the dispatch list. Rerun the queue to
1297                  * avoid starvation. Notes:
1298                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1299                  *   been stopped before rerunning a queue.
1300                  * - Some but not all block drivers stop a queue before
1301                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1302                  *   and dm-rq.
1303                  *
1304                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1305                  * bit is set, run queue after a delay to avoid IO stalls
1306                  * that could otherwise occur if the queue is idle.
1307                  */
1308                 needs_restart = blk_mq_sched_needs_restart(hctx);
1309                 if (!needs_restart ||
1310                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1311                         blk_mq_run_hw_queue(hctx, true);
1312                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1313                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1314
1315                 blk_mq_update_dispatch_busy(hctx, true);
1316                 return false;
1317         } else
1318                 blk_mq_update_dispatch_busy(hctx, false);
1319
1320         /*
1321          * If the host/device is unable to accept more work, inform the
1322          * caller of that.
1323          */
1324         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1325                 return false;
1326
1327         return (queued + errors) != 0;
1328 }
1329
1330 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1331 {
1332         int srcu_idx;
1333
1334         /*
1335          * We should be running this queue from one of the CPUs that
1336          * are mapped to it.
1337          *
1338          * There are at least two related races now between setting
1339          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1340          * __blk_mq_run_hw_queue():
1341          *
1342          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1343          *   but later it becomes online, then this warning is harmless
1344          *   at all
1345          *
1346          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1347          *   but later it becomes offline, then the warning can't be
1348          *   triggered, and we depend on blk-mq timeout handler to
1349          *   handle dispatched requests to this hctx
1350          */
1351         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1352                 cpu_online(hctx->next_cpu)) {
1353                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1354                         raw_smp_processor_id(),
1355                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1356                 dump_stack();
1357         }
1358
1359         /*
1360          * We can't run the queue inline with ints disabled. Ensure that
1361          * we catch bad users of this early.
1362          */
1363         WARN_ON_ONCE(in_interrupt());
1364
1365         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1366
1367         hctx_lock(hctx, &srcu_idx);
1368         blk_mq_sched_dispatch_requests(hctx);
1369         hctx_unlock(hctx, srcu_idx);
1370 }
1371
1372 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1373 {
1374         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1375
1376         if (cpu >= nr_cpu_ids)
1377                 cpu = cpumask_first(hctx->cpumask);
1378         return cpu;
1379 }
1380
1381 /*
1382  * It'd be great if the workqueue API had a way to pass
1383  * in a mask and had some smarts for more clever placement.
1384  * For now we just round-robin here, switching for every
1385  * BLK_MQ_CPU_WORK_BATCH queued items.
1386  */
1387 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1388 {
1389         bool tried = false;
1390         int next_cpu = hctx->next_cpu;
1391
1392         if (hctx->queue->nr_hw_queues == 1)
1393                 return WORK_CPU_UNBOUND;
1394
1395         if (--hctx->next_cpu_batch <= 0) {
1396 select_cpu:
1397                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1398                                 cpu_online_mask);
1399                 if (next_cpu >= nr_cpu_ids)
1400                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1401                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1402         }
1403
1404         /*
1405          * Do unbound schedule if we can't find a online CPU for this hctx,
1406          * and it should only happen in the path of handling CPU DEAD.
1407          */
1408         if (!cpu_online(next_cpu)) {
1409                 if (!tried) {
1410                         tried = true;
1411                         goto select_cpu;
1412                 }
1413
1414                 /*
1415                  * Make sure to re-select CPU next time once after CPUs
1416                  * in hctx->cpumask become online again.
1417                  */
1418                 hctx->next_cpu = next_cpu;
1419                 hctx->next_cpu_batch = 1;
1420                 return WORK_CPU_UNBOUND;
1421         }
1422
1423         hctx->next_cpu = next_cpu;
1424         return next_cpu;
1425 }
1426
1427 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1428                                         unsigned long msecs)
1429 {
1430         if (unlikely(blk_mq_hctx_stopped(hctx)))
1431                 return;
1432
1433         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1434                 int cpu = get_cpu();
1435                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1436                         __blk_mq_run_hw_queue(hctx);
1437                         put_cpu();
1438                         return;
1439                 }
1440
1441                 put_cpu();
1442         }
1443
1444         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1445                                     msecs_to_jiffies(msecs));
1446 }
1447
1448 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1449 {
1450         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1451 }
1452 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1453
1454 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1455 {
1456         int srcu_idx;
1457         bool need_run;
1458
1459         /*
1460          * When queue is quiesced, we may be switching io scheduler, or
1461          * updating nr_hw_queues, or other things, and we can't run queue
1462          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1463          *
1464          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1465          * quiesced.
1466          */
1467         hctx_lock(hctx, &srcu_idx);
1468         need_run = !blk_queue_quiesced(hctx->queue) &&
1469                 blk_mq_hctx_has_pending(hctx);
1470         hctx_unlock(hctx, srcu_idx);
1471
1472         if (need_run) {
1473                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1474                 return true;
1475         }
1476
1477         return false;
1478 }
1479 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1480
1481 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1482 {
1483         struct blk_mq_hw_ctx *hctx;
1484         int i;
1485
1486         queue_for_each_hw_ctx(q, hctx, i) {
1487                 if (blk_mq_hctx_stopped(hctx))
1488                         continue;
1489
1490                 blk_mq_run_hw_queue(hctx, async);
1491         }
1492 }
1493 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1494
1495 /**
1496  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1497  * @q: request queue.
1498  *
1499  * The caller is responsible for serializing this function against
1500  * blk_mq_{start,stop}_hw_queue().
1501  */
1502 bool blk_mq_queue_stopped(struct request_queue *q)
1503 {
1504         struct blk_mq_hw_ctx *hctx;
1505         int i;
1506
1507         queue_for_each_hw_ctx(q, hctx, i)
1508                 if (blk_mq_hctx_stopped(hctx))
1509                         return true;
1510
1511         return false;
1512 }
1513 EXPORT_SYMBOL(blk_mq_queue_stopped);
1514
1515 /*
1516  * This function is often used for pausing .queue_rq() by driver when
1517  * there isn't enough resource or some conditions aren't satisfied, and
1518  * BLK_STS_RESOURCE is usually returned.
1519  *
1520  * We do not guarantee that dispatch can be drained or blocked
1521  * after blk_mq_stop_hw_queue() returns. Please use
1522  * blk_mq_quiesce_queue() for that requirement.
1523  */
1524 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1525 {
1526         cancel_delayed_work(&hctx->run_work);
1527
1528         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1529 }
1530 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1531
1532 /*
1533  * This function is often used for pausing .queue_rq() by driver when
1534  * there isn't enough resource or some conditions aren't satisfied, and
1535  * BLK_STS_RESOURCE is usually returned.
1536  *
1537  * We do not guarantee that dispatch can be drained or blocked
1538  * after blk_mq_stop_hw_queues() returns. Please use
1539  * blk_mq_quiesce_queue() for that requirement.
1540  */
1541 void blk_mq_stop_hw_queues(struct request_queue *q)
1542 {
1543         struct blk_mq_hw_ctx *hctx;
1544         int i;
1545
1546         queue_for_each_hw_ctx(q, hctx, i)
1547                 blk_mq_stop_hw_queue(hctx);
1548 }
1549 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1550
1551 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1552 {
1553         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1554
1555         blk_mq_run_hw_queue(hctx, false);
1556 }
1557 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1558
1559 void blk_mq_start_hw_queues(struct request_queue *q)
1560 {
1561         struct blk_mq_hw_ctx *hctx;
1562         int i;
1563
1564         queue_for_each_hw_ctx(q, hctx, i)
1565                 blk_mq_start_hw_queue(hctx);
1566 }
1567 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1568
1569 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1570 {
1571         if (!blk_mq_hctx_stopped(hctx))
1572                 return;
1573
1574         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1575         blk_mq_run_hw_queue(hctx, async);
1576 }
1577 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1578
1579 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1580 {
1581         struct blk_mq_hw_ctx *hctx;
1582         int i;
1583
1584         queue_for_each_hw_ctx(q, hctx, i)
1585                 blk_mq_start_stopped_hw_queue(hctx, async);
1586 }
1587 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1588
1589 static void blk_mq_run_work_fn(struct work_struct *work)
1590 {
1591         struct blk_mq_hw_ctx *hctx;
1592
1593         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1594
1595         /*
1596          * If we are stopped, don't run the queue.
1597          */
1598         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1599                 return;
1600
1601         __blk_mq_run_hw_queue(hctx);
1602 }
1603
1604 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1605                                             struct request *rq,
1606                                             bool at_head)
1607 {
1608         struct blk_mq_ctx *ctx = rq->mq_ctx;
1609         enum hctx_type type = hctx->type;
1610
1611         lockdep_assert_held(&ctx->lock);
1612
1613         trace_block_rq_insert(hctx->queue, rq);
1614
1615         if (at_head)
1616                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1617         else
1618                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1619 }
1620
1621 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1622                              bool at_head)
1623 {
1624         struct blk_mq_ctx *ctx = rq->mq_ctx;
1625
1626         lockdep_assert_held(&ctx->lock);
1627
1628         __blk_mq_insert_req_list(hctx, rq, at_head);
1629         blk_mq_hctx_mark_pending(hctx, ctx);
1630 }
1631
1632 /*
1633  * Should only be used carefully, when the caller knows we want to
1634  * bypass a potential IO scheduler on the target device.
1635  */
1636 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1637 {
1638         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1639
1640         spin_lock(&hctx->lock);
1641         list_add_tail(&rq->queuelist, &hctx->dispatch);
1642         spin_unlock(&hctx->lock);
1643
1644         if (run_queue)
1645                 blk_mq_run_hw_queue(hctx, false);
1646 }
1647
1648 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1649                             struct list_head *list)
1650
1651 {
1652         struct request *rq;
1653         enum hctx_type type = hctx->type;
1654
1655         /*
1656          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1657          * offline now
1658          */
1659         list_for_each_entry(rq, list, queuelist) {
1660                 BUG_ON(rq->mq_ctx != ctx);
1661                 trace_block_rq_insert(hctx->queue, rq);
1662         }
1663
1664         spin_lock(&ctx->lock);
1665         list_splice_tail_init(list, &ctx->rq_lists[type]);
1666         blk_mq_hctx_mark_pending(hctx, ctx);
1667         spin_unlock(&ctx->lock);
1668 }
1669
1670 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1671 {
1672         struct request *rqa = container_of(a, struct request, queuelist);
1673         struct request *rqb = container_of(b, struct request, queuelist);
1674
1675         if (rqa->mq_ctx < rqb->mq_ctx)
1676                 return -1;
1677         else if (rqa->mq_ctx > rqb->mq_ctx)
1678                 return 1;
1679         else if (rqa->mq_hctx < rqb->mq_hctx)
1680                 return -1;
1681         else if (rqa->mq_hctx > rqb->mq_hctx)
1682                 return 1;
1683
1684         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1685 }
1686
1687 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1688 {
1689         struct blk_mq_hw_ctx *this_hctx;
1690         struct blk_mq_ctx *this_ctx;
1691         struct request_queue *this_q;
1692         struct request *rq;
1693         LIST_HEAD(list);
1694         LIST_HEAD(rq_list);
1695         unsigned int depth;
1696
1697         list_splice_init(&plug->mq_list, &list);
1698         plug->rq_count = 0;
1699
1700         if (plug->rq_count > 2 && plug->multiple_queues)
1701                 list_sort(NULL, &list, plug_rq_cmp);
1702
1703         this_q = NULL;
1704         this_hctx = NULL;
1705         this_ctx = NULL;
1706         depth = 0;
1707
1708         while (!list_empty(&list)) {
1709                 rq = list_entry_rq(list.next);
1710                 list_del_init(&rq->queuelist);
1711                 BUG_ON(!rq->q);
1712                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1713                         if (this_hctx) {
1714                                 trace_block_unplug(this_q, depth, !from_schedule);
1715                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1716                                                                 &rq_list,
1717                                                                 from_schedule);
1718                         }
1719
1720                         this_q = rq->q;
1721                         this_ctx = rq->mq_ctx;
1722                         this_hctx = rq->mq_hctx;
1723                         depth = 0;
1724                 }
1725
1726                 depth++;
1727                 list_add_tail(&rq->queuelist, &rq_list);
1728         }
1729
1730         /*
1731          * If 'this_hctx' is set, we know we have entries to complete
1732          * on 'rq_list'. Do those.
1733          */
1734         if (this_hctx) {
1735                 trace_block_unplug(this_q, depth, !from_schedule);
1736                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1737                                                 from_schedule);
1738         }
1739 }
1740
1741 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1742 {
1743         blk_init_request_from_bio(rq, bio);
1744
1745         blk_account_io_start(rq, true);
1746 }
1747
1748 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1749                                             struct request *rq,
1750                                             blk_qc_t *cookie, bool last)
1751 {
1752         struct request_queue *q = rq->q;
1753         struct blk_mq_queue_data bd = {
1754                 .rq = rq,
1755                 .last = last,
1756         };
1757         blk_qc_t new_cookie;
1758         blk_status_t ret;
1759
1760         new_cookie = request_to_qc_t(hctx, rq);
1761
1762         /*
1763          * For OK queue, we are done. For error, caller may kill it.
1764          * Any other error (busy), just add it to our list as we
1765          * previously would have done.
1766          */
1767         ret = q->mq_ops->queue_rq(hctx, &bd);
1768         switch (ret) {
1769         case BLK_STS_OK:
1770                 blk_mq_update_dispatch_busy(hctx, false);
1771                 *cookie = new_cookie;
1772                 break;
1773         case BLK_STS_RESOURCE:
1774         case BLK_STS_DEV_RESOURCE:
1775                 blk_mq_update_dispatch_busy(hctx, true);
1776                 __blk_mq_requeue_request(rq);
1777                 break;
1778         default:
1779                 blk_mq_update_dispatch_busy(hctx, false);
1780                 *cookie = BLK_QC_T_NONE;
1781                 break;
1782         }
1783
1784         return ret;
1785 }
1786
1787 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1788                                                 struct request *rq,
1789                                                 blk_qc_t *cookie,
1790                                                 bool bypass, bool last)
1791 {
1792         struct request_queue *q = rq->q;
1793         bool run_queue = true;
1794         blk_status_t ret = BLK_STS_RESOURCE;
1795         int srcu_idx;
1796         bool force = false;
1797
1798         hctx_lock(hctx, &srcu_idx);
1799         /*
1800          * hctx_lock is needed before checking quiesced flag.
1801          *
1802          * When queue is stopped or quiesced, ignore 'bypass', insert
1803          * and return BLK_STS_OK to caller, and avoid driver to try to
1804          * dispatch again.
1805          */
1806         if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1807                 run_queue = false;
1808                 bypass = false;
1809                 goto out_unlock;
1810         }
1811
1812         if (unlikely(q->elevator && !bypass))
1813                 goto out_unlock;
1814
1815         if (!blk_mq_get_dispatch_budget(hctx))
1816                 goto out_unlock;
1817
1818         if (!blk_mq_get_driver_tag(rq)) {
1819                 blk_mq_put_dispatch_budget(hctx);
1820                 goto out_unlock;
1821         }
1822
1823         /*
1824          * Always add a request that has been through
1825          *.queue_rq() to the hardware dispatch list.
1826          */
1827         force = true;
1828         ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1829 out_unlock:
1830         hctx_unlock(hctx, srcu_idx);
1831         switch (ret) {
1832         case BLK_STS_OK:
1833                 break;
1834         case BLK_STS_DEV_RESOURCE:
1835         case BLK_STS_RESOURCE:
1836                 if (force) {
1837                         blk_mq_request_bypass_insert(rq, run_queue);
1838                         /*
1839                          * We have to return BLK_STS_OK for the DM
1840                          * to avoid livelock. Otherwise, we return
1841                          * the real result to indicate whether the
1842                          * request is direct-issued successfully.
1843                          */
1844                         ret = bypass ? BLK_STS_OK : ret;
1845                 } else if (!bypass) {
1846                         blk_mq_sched_insert_request(rq, false,
1847                                                     run_queue, false);
1848                 }
1849                 break;
1850         default:
1851                 if (!bypass)
1852                         blk_mq_end_request(rq, ret);
1853                 break;
1854         }
1855
1856         return ret;
1857 }
1858
1859 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1860                 struct list_head *list)
1861 {
1862         blk_qc_t unused;
1863         blk_status_t ret = BLK_STS_OK;
1864
1865         while (!list_empty(list)) {
1866                 struct request *rq = list_first_entry(list, struct request,
1867                                 queuelist);
1868
1869                 list_del_init(&rq->queuelist);
1870                 if (ret == BLK_STS_OK)
1871                         ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1872                                                         false,
1873                                                         list_empty(list));
1874                 else
1875                         blk_mq_sched_insert_request(rq, false, true, false);
1876         }
1877
1878         /*
1879          * If we didn't flush the entire list, we could have told
1880          * the driver there was more coming, but that turned out to
1881          * be a lie.
1882          */
1883         if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1884                 hctx->queue->mq_ops->commit_rqs(hctx);
1885 }
1886
1887 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1888 {
1889         list_add_tail(&rq->queuelist, &plug->mq_list);
1890         plug->rq_count++;
1891         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1892                 struct request *tmp;
1893
1894                 tmp = list_first_entry(&plug->mq_list, struct request,
1895                                                 queuelist);
1896                 if (tmp->q != rq->q)
1897                         plug->multiple_queues = true;
1898         }
1899 }
1900
1901 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1902 {
1903         const int is_sync = op_is_sync(bio->bi_opf);
1904         const int is_flush_fua = op_is_flush(bio->bi_opf);
1905         struct blk_mq_alloc_data data = { .flags = 0};
1906         struct request *rq;
1907         struct blk_plug *plug;
1908         struct request *same_queue_rq = NULL;
1909         blk_qc_t cookie;
1910
1911         blk_queue_bounce(q, &bio);
1912
1913         blk_queue_split(q, &bio);
1914
1915         if (!bio_integrity_prep(bio))
1916                 return BLK_QC_T_NONE;
1917
1918         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1919             blk_attempt_plug_merge(q, bio, &same_queue_rq))
1920                 return BLK_QC_T_NONE;
1921
1922         if (blk_mq_sched_bio_merge(q, bio))
1923                 return BLK_QC_T_NONE;
1924
1925         rq_qos_throttle(q, bio);
1926
1927         data.cmd_flags = bio->bi_opf;
1928         rq = blk_mq_get_request(q, bio, &data);
1929         if (unlikely(!rq)) {
1930                 rq_qos_cleanup(q, bio);
1931                 if (bio->bi_opf & REQ_NOWAIT)
1932                         bio_wouldblock_error(bio);
1933                 return BLK_QC_T_NONE;
1934         }
1935
1936         trace_block_getrq(q, bio, bio->bi_opf);
1937
1938         rq_qos_track(q, rq, bio);
1939
1940         cookie = request_to_qc_t(data.hctx, rq);
1941
1942         plug = current->plug;
1943         if (unlikely(is_flush_fua)) {
1944                 blk_mq_put_ctx(data.ctx);
1945                 blk_mq_bio_to_request(rq, bio);
1946
1947                 /* bypass scheduler for flush rq */
1948                 blk_insert_flush(rq);
1949                 blk_mq_run_hw_queue(data.hctx, true);
1950         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1951                 /*
1952                  * Use plugging if we have a ->commit_rqs() hook as well, as
1953                  * we know the driver uses bd->last in a smart fashion.
1954                  */
1955                 unsigned int request_count = plug->rq_count;
1956                 struct request *last = NULL;
1957
1958                 blk_mq_put_ctx(data.ctx);
1959                 blk_mq_bio_to_request(rq, bio);
1960
1961                 if (!request_count)
1962                         trace_block_plug(q);
1963                 else
1964                         last = list_entry_rq(plug->mq_list.prev);
1965
1966                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1967                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1968                         blk_flush_plug_list(plug, false);
1969                         trace_block_plug(q);
1970                 }
1971
1972                 blk_add_rq_to_plug(plug, rq);
1973         } else if (plug && !blk_queue_nomerges(q)) {
1974                 blk_mq_bio_to_request(rq, bio);
1975
1976                 /*
1977                  * We do limited plugging. If the bio can be merged, do that.
1978                  * Otherwise the existing request in the plug list will be
1979                  * issued. So the plug list will have one request at most
1980                  * The plug list might get flushed before this. If that happens,
1981                  * the plug list is empty, and same_queue_rq is invalid.
1982                  */
1983                 if (list_empty(&plug->mq_list))
1984                         same_queue_rq = NULL;
1985                 if (same_queue_rq) {
1986                         list_del_init(&same_queue_rq->queuelist);
1987                         plug->rq_count--;
1988                 }
1989                 blk_add_rq_to_plug(plug, rq);
1990
1991                 blk_mq_put_ctx(data.ctx);
1992
1993                 if (same_queue_rq) {
1994                         data.hctx = same_queue_rq->mq_hctx;
1995                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1996                                         &cookie, false, true);
1997                 }
1998         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1999                         !data.hctx->dispatch_busy)) {
2000                 blk_mq_put_ctx(data.ctx);
2001                 blk_mq_bio_to_request(rq, bio);
2002                 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2003         } else {
2004                 blk_mq_put_ctx(data.ctx);
2005                 blk_mq_bio_to_request(rq, bio);
2006                 blk_mq_sched_insert_request(rq, false, true, true);
2007         }
2008
2009         return cookie;
2010 }
2011
2012 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2013                      unsigned int hctx_idx)
2014 {
2015         struct page *page;
2016
2017         if (tags->rqs && set->ops->exit_request) {
2018                 int i;
2019
2020                 for (i = 0; i < tags->nr_tags; i++) {
2021                         struct request *rq = tags->static_rqs[i];
2022
2023                         if (!rq)
2024                                 continue;
2025                         set->ops->exit_request(set, rq, hctx_idx);
2026                         tags->static_rqs[i] = NULL;
2027                 }
2028         }
2029
2030         while (!list_empty(&tags->page_list)) {
2031                 page = list_first_entry(&tags->page_list, struct page, lru);
2032                 list_del_init(&page->lru);
2033                 /*
2034                  * Remove kmemleak object previously allocated in
2035                  * blk_mq_init_rq_map().
2036                  */
2037                 kmemleak_free(page_address(page));
2038                 __free_pages(page, page->private);
2039         }
2040 }
2041
2042 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2043 {
2044         kfree(tags->rqs);
2045         tags->rqs = NULL;
2046         kfree(tags->static_rqs);
2047         tags->static_rqs = NULL;
2048
2049         blk_mq_free_tags(tags);
2050 }
2051
2052 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2053                                         unsigned int hctx_idx,
2054                                         unsigned int nr_tags,
2055                                         unsigned int reserved_tags)
2056 {
2057         struct blk_mq_tags *tags;
2058         int node;
2059
2060         node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2061         if (node == NUMA_NO_NODE)
2062                 node = set->numa_node;
2063
2064         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2065                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2066         if (!tags)
2067                 return NULL;
2068
2069         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2070                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2071                                  node);
2072         if (!tags->rqs) {
2073                 blk_mq_free_tags(tags);
2074                 return NULL;
2075         }
2076
2077         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2078                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2079                                         node);
2080         if (!tags->static_rqs) {
2081                 kfree(tags->rqs);
2082                 blk_mq_free_tags(tags);
2083                 return NULL;
2084         }
2085
2086         return tags;
2087 }
2088
2089 static size_t order_to_size(unsigned int order)
2090 {
2091         return (size_t)PAGE_SIZE << order;
2092 }
2093
2094 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2095                                unsigned int hctx_idx, int node)
2096 {
2097         int ret;
2098
2099         if (set->ops->init_request) {
2100                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2101                 if (ret)
2102                         return ret;
2103         }
2104
2105         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2106         return 0;
2107 }
2108
2109 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2110                      unsigned int hctx_idx, unsigned int depth)
2111 {
2112         unsigned int i, j, entries_per_page, max_order = 4;
2113         size_t rq_size, left;
2114         int node;
2115
2116         node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2117         if (node == NUMA_NO_NODE)
2118                 node = set->numa_node;
2119
2120         INIT_LIST_HEAD(&tags->page_list);
2121
2122         /*
2123          * rq_size is the size of the request plus driver payload, rounded
2124          * to the cacheline size
2125          */
2126         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2127                                 cache_line_size());
2128         left = rq_size * depth;
2129
2130         for (i = 0; i < depth; ) {
2131                 int this_order = max_order;
2132                 struct page *page;
2133                 int to_do;
2134                 void *p;
2135
2136                 while (this_order && left < order_to_size(this_order - 1))
2137                         this_order--;
2138
2139                 do {
2140                         page = alloc_pages_node(node,
2141                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2142                                 this_order);
2143                         if (page)
2144                                 break;
2145                         if (!this_order--)
2146                                 break;
2147                         if (order_to_size(this_order) < rq_size)
2148                                 break;
2149                 } while (1);
2150
2151                 if (!page)
2152                         goto fail;
2153
2154                 page->private = this_order;
2155                 list_add_tail(&page->lru, &tags->page_list);
2156
2157                 p = page_address(page);
2158                 /*
2159                  * Allow kmemleak to scan these pages as they contain pointers
2160                  * to additional allocations like via ops->init_request().
2161                  */
2162                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2163                 entries_per_page = order_to_size(this_order) / rq_size;
2164                 to_do = min(entries_per_page, depth - i);
2165                 left -= to_do * rq_size;
2166                 for (j = 0; j < to_do; j++) {
2167                         struct request *rq = p;
2168
2169                         tags->static_rqs[i] = rq;
2170                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2171                                 tags->static_rqs[i] = NULL;
2172                                 goto fail;
2173                         }
2174
2175                         p += rq_size;
2176                         i++;
2177                 }
2178         }
2179         return 0;
2180
2181 fail:
2182         blk_mq_free_rqs(set, tags, hctx_idx);
2183         return -ENOMEM;
2184 }
2185
2186 /*
2187  * 'cpu' is going away. splice any existing rq_list entries from this
2188  * software queue to the hw queue dispatch list, and ensure that it
2189  * gets run.
2190  */
2191 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2192 {
2193         struct blk_mq_hw_ctx *hctx;
2194         struct blk_mq_ctx *ctx;
2195         LIST_HEAD(tmp);
2196         enum hctx_type type;
2197
2198         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2199         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2200         type = hctx->type;
2201
2202         spin_lock(&ctx->lock);
2203         if (!list_empty(&ctx->rq_lists[type])) {
2204                 list_splice_init(&ctx->rq_lists[type], &tmp);
2205                 blk_mq_hctx_clear_pending(hctx, ctx);
2206         }
2207         spin_unlock(&ctx->lock);
2208
2209         if (list_empty(&tmp))
2210                 return 0;
2211
2212         spin_lock(&hctx->lock);
2213         list_splice_tail_init(&tmp, &hctx->dispatch);
2214         spin_unlock(&hctx->lock);
2215
2216         blk_mq_run_hw_queue(hctx, true);
2217         return 0;
2218 }
2219
2220 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2221 {
2222         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2223                                             &hctx->cpuhp_dead);
2224 }
2225
2226 /* hctx->ctxs will be freed in queue's release handler */
2227 static void blk_mq_exit_hctx(struct request_queue *q,
2228                 struct blk_mq_tag_set *set,
2229                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2230 {
2231         if (blk_mq_hw_queue_mapped(hctx))
2232                 blk_mq_tag_idle(hctx);
2233
2234         if (set->ops->exit_request)
2235                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2236
2237         if (set->ops->exit_hctx)
2238                 set->ops->exit_hctx(hctx, hctx_idx);
2239
2240         if (hctx->flags & BLK_MQ_F_BLOCKING)
2241                 cleanup_srcu_struct(hctx->srcu);
2242
2243         blk_mq_remove_cpuhp(hctx);
2244         blk_free_flush_queue(hctx->fq);
2245         sbitmap_free(&hctx->ctx_map);
2246 }
2247
2248 static void blk_mq_exit_hw_queues(struct request_queue *q,
2249                 struct blk_mq_tag_set *set, int nr_queue)
2250 {
2251         struct blk_mq_hw_ctx *hctx;
2252         unsigned int i;
2253
2254         queue_for_each_hw_ctx(q, hctx, i) {
2255                 if (i == nr_queue)
2256                         break;
2257                 blk_mq_debugfs_unregister_hctx(hctx);
2258                 blk_mq_exit_hctx(q, set, hctx, i);
2259         }
2260 }
2261
2262 static int blk_mq_init_hctx(struct request_queue *q,
2263                 struct blk_mq_tag_set *set,
2264                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2265 {
2266         int node;
2267
2268         node = hctx->numa_node;
2269         if (node == NUMA_NO_NODE)
2270                 node = hctx->numa_node = set->numa_node;
2271
2272         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2273         spin_lock_init(&hctx->lock);
2274         INIT_LIST_HEAD(&hctx->dispatch);
2275         hctx->queue = q;
2276         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2277
2278         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2279
2280         hctx->tags = set->tags[hctx_idx];
2281
2282         /*
2283          * Allocate space for all possible cpus to avoid allocation at
2284          * runtime
2285          */
2286         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2287                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2288         if (!hctx->ctxs)
2289                 goto unregister_cpu_notifier;
2290
2291         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2292                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2293                 goto free_ctxs;
2294
2295         hctx->nr_ctx = 0;
2296
2297         spin_lock_init(&hctx->dispatch_wait_lock);
2298         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2299         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2300
2301         if (set->ops->init_hctx &&
2302             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2303                 goto free_bitmap;
2304
2305         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2306                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2307         if (!hctx->fq)
2308                 goto exit_hctx;
2309
2310         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2311                 goto free_fq;
2312
2313         if (hctx->flags & BLK_MQ_F_BLOCKING)
2314                 init_srcu_struct(hctx->srcu);
2315
2316         return 0;
2317
2318  free_fq:
2319         kfree(hctx->fq);
2320  exit_hctx:
2321         if (set->ops->exit_hctx)
2322                 set->ops->exit_hctx(hctx, hctx_idx);
2323  free_bitmap:
2324         sbitmap_free(&hctx->ctx_map);
2325  free_ctxs:
2326         kfree(hctx->ctxs);
2327  unregister_cpu_notifier:
2328         blk_mq_remove_cpuhp(hctx);
2329         return -1;
2330 }
2331
2332 static void blk_mq_init_cpu_queues(struct request_queue *q,
2333                                    unsigned int nr_hw_queues)
2334 {
2335         struct blk_mq_tag_set *set = q->tag_set;
2336         unsigned int i, j;
2337
2338         for_each_possible_cpu(i) {
2339                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2340                 struct blk_mq_hw_ctx *hctx;
2341                 int k;
2342
2343                 __ctx->cpu = i;
2344                 spin_lock_init(&__ctx->lock);
2345                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2346                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2347
2348                 __ctx->queue = q;
2349
2350                 /*
2351                  * Set local node, IFF we have more than one hw queue. If
2352                  * not, we remain on the home node of the device
2353                  */
2354                 for (j = 0; j < set->nr_maps; j++) {
2355                         hctx = blk_mq_map_queue_type(q, j, i);
2356                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2357                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2358                 }
2359         }
2360 }
2361
2362 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2363 {
2364         int ret = 0;
2365
2366         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2367                                         set->queue_depth, set->reserved_tags);
2368         if (!set->tags[hctx_idx])
2369                 return false;
2370
2371         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2372                                 set->queue_depth);
2373         if (!ret)
2374                 return true;
2375
2376         blk_mq_free_rq_map(set->tags[hctx_idx]);
2377         set->tags[hctx_idx] = NULL;
2378         return false;
2379 }
2380
2381 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2382                                          unsigned int hctx_idx)
2383 {
2384         if (set->tags && set->tags[hctx_idx]) {
2385                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2386                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2387                 set->tags[hctx_idx] = NULL;
2388         }
2389 }
2390
2391 static void blk_mq_map_swqueue(struct request_queue *q)
2392 {
2393         unsigned int i, j, hctx_idx;
2394         struct blk_mq_hw_ctx *hctx;
2395         struct blk_mq_ctx *ctx;
2396         struct blk_mq_tag_set *set = q->tag_set;
2397
2398         /*
2399          * Avoid others reading imcomplete hctx->cpumask through sysfs
2400          */
2401         mutex_lock(&q->sysfs_lock);
2402
2403         queue_for_each_hw_ctx(q, hctx, i) {
2404                 cpumask_clear(hctx->cpumask);
2405                 hctx->nr_ctx = 0;
2406                 hctx->dispatch_from = NULL;
2407         }
2408
2409         /*
2410          * Map software to hardware queues.
2411          *
2412          * If the cpu isn't present, the cpu is mapped to first hctx.
2413          */
2414         for_each_possible_cpu(i) {
2415                 hctx_idx = set->map[0].mq_map[i];
2416                 /* unmapped hw queue can be remapped after CPU topo changed */
2417                 if (!set->tags[hctx_idx] &&
2418                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2419                         /*
2420                          * If tags initialization fail for some hctx,
2421                          * that hctx won't be brought online.  In this
2422                          * case, remap the current ctx to hctx[0] which
2423                          * is guaranteed to always have tags allocated
2424                          */
2425                         set->map[0].mq_map[i] = 0;
2426                 }
2427
2428                 ctx = per_cpu_ptr(q->queue_ctx, i);
2429                 for (j = 0; j < set->nr_maps; j++) {
2430                         if (!set->map[j].nr_queues) {
2431                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2432                                                 HCTX_TYPE_DEFAULT, i);
2433                                 continue;
2434                         }
2435
2436                         hctx = blk_mq_map_queue_type(q, j, i);
2437                         ctx->hctxs[j] = hctx;
2438                         /*
2439                          * If the CPU is already set in the mask, then we've
2440                          * mapped this one already. This can happen if
2441                          * devices share queues across queue maps.
2442                          */
2443                         if (cpumask_test_cpu(i, hctx->cpumask))
2444                                 continue;
2445
2446                         cpumask_set_cpu(i, hctx->cpumask);
2447                         hctx->type = j;
2448                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2449                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2450
2451                         /*
2452                          * If the nr_ctx type overflows, we have exceeded the
2453                          * amount of sw queues we can support.
2454                          */
2455                         BUG_ON(!hctx->nr_ctx);
2456                 }
2457
2458                 for (; j < HCTX_MAX_TYPES; j++)
2459                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2460                                         HCTX_TYPE_DEFAULT, i);
2461         }
2462
2463         mutex_unlock(&q->sysfs_lock);
2464
2465         queue_for_each_hw_ctx(q, hctx, i) {
2466                 /*
2467                  * If no software queues are mapped to this hardware queue,
2468                  * disable it and free the request entries.
2469                  */
2470                 if (!hctx->nr_ctx) {
2471                         /* Never unmap queue 0.  We need it as a
2472                          * fallback in case of a new remap fails
2473                          * allocation
2474                          */
2475                         if (i && set->tags[i])
2476                                 blk_mq_free_map_and_requests(set, i);
2477
2478                         hctx->tags = NULL;
2479                         continue;
2480                 }
2481
2482                 hctx->tags = set->tags[i];
2483                 WARN_ON(!hctx->tags);
2484
2485                 /*
2486                  * Set the map size to the number of mapped software queues.
2487                  * This is more accurate and more efficient than looping
2488                  * over all possibly mapped software queues.
2489                  */
2490                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2491
2492                 /*
2493                  * Initialize batch roundrobin counts
2494                  */
2495                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2496                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2497         }
2498 }
2499
2500 /*
2501  * Caller needs to ensure that we're either frozen/quiesced, or that
2502  * the queue isn't live yet.
2503  */
2504 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2505 {
2506         struct blk_mq_hw_ctx *hctx;
2507         int i;
2508
2509         queue_for_each_hw_ctx(q, hctx, i) {
2510                 if (shared)
2511                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2512                 else
2513                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2514         }
2515 }
2516
2517 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2518                                         bool shared)
2519 {
2520         struct request_queue *q;
2521
2522         lockdep_assert_held(&set->tag_list_lock);
2523
2524         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2525                 blk_mq_freeze_queue(q);
2526                 queue_set_hctx_shared(q, shared);
2527                 blk_mq_unfreeze_queue(q);
2528         }
2529 }
2530
2531 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2532 {
2533         struct blk_mq_tag_set *set = q->tag_set;
2534
2535         mutex_lock(&set->tag_list_lock);
2536         list_del_rcu(&q->tag_set_list);
2537         if (list_is_singular(&set->tag_list)) {
2538                 /* just transitioned to unshared */
2539                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2540                 /* update existing queue */
2541                 blk_mq_update_tag_set_depth(set, false);
2542         }
2543         mutex_unlock(&set->tag_list_lock);
2544         INIT_LIST_HEAD(&q->tag_set_list);
2545 }
2546
2547 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2548                                      struct request_queue *q)
2549 {
2550         mutex_lock(&set->tag_list_lock);
2551
2552         /*
2553          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2554          */
2555         if (!list_empty(&set->tag_list) &&
2556             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2557                 set->flags |= BLK_MQ_F_TAG_SHARED;
2558                 /* update existing queue */
2559                 blk_mq_update_tag_set_depth(set, true);
2560         }
2561         if (set->flags & BLK_MQ_F_TAG_SHARED)
2562                 queue_set_hctx_shared(q, true);
2563         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2564
2565         mutex_unlock(&set->tag_list_lock);
2566 }
2567
2568 /* All allocations will be freed in release handler of q->mq_kobj */
2569 static int blk_mq_alloc_ctxs(struct request_queue *q)
2570 {
2571         struct blk_mq_ctxs *ctxs;
2572         int cpu;
2573
2574         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2575         if (!ctxs)
2576                 return -ENOMEM;
2577
2578         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2579         if (!ctxs->queue_ctx)
2580                 goto fail;
2581
2582         for_each_possible_cpu(cpu) {
2583                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2584                 ctx->ctxs = ctxs;
2585         }
2586
2587         q->mq_kobj = &ctxs->kobj;
2588         q->queue_ctx = ctxs->queue_ctx;
2589
2590         return 0;
2591  fail:
2592         kfree(ctxs);
2593         return -ENOMEM;
2594 }
2595
2596 /*
2597  * It is the actual release handler for mq, but we do it from
2598  * request queue's release handler for avoiding use-after-free
2599  * and headache because q->mq_kobj shouldn't have been introduced,
2600  * but we can't group ctx/kctx kobj without it.
2601  */
2602 void blk_mq_release(struct request_queue *q)
2603 {
2604         struct blk_mq_hw_ctx *hctx;
2605         unsigned int i;
2606
2607         /* hctx kobj stays in hctx */
2608         queue_for_each_hw_ctx(q, hctx, i) {
2609                 if (!hctx)
2610                         continue;
2611                 kobject_put(&hctx->kobj);
2612         }
2613
2614         kfree(q->queue_hw_ctx);
2615
2616         /*
2617          * release .mq_kobj and sw queue's kobject now because
2618          * both share lifetime with request queue.
2619          */
2620         blk_mq_sysfs_deinit(q);
2621 }
2622
2623 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2624 {
2625         struct request_queue *uninit_q, *q;
2626
2627         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2628         if (!uninit_q)
2629                 return ERR_PTR(-ENOMEM);
2630
2631         q = blk_mq_init_allocated_queue(set, uninit_q);
2632         if (IS_ERR(q))
2633                 blk_cleanup_queue(uninit_q);
2634
2635         return q;
2636 }
2637 EXPORT_SYMBOL(blk_mq_init_queue);
2638
2639 /*
2640  * Helper for setting up a queue with mq ops, given queue depth, and
2641  * the passed in mq ops flags.
2642  */
2643 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2644                                            const struct blk_mq_ops *ops,
2645                                            unsigned int queue_depth,
2646                                            unsigned int set_flags)
2647 {
2648         struct request_queue *q;
2649         int ret;
2650
2651         memset(set, 0, sizeof(*set));
2652         set->ops = ops;
2653         set->nr_hw_queues = 1;
2654         set->nr_maps = 1;
2655         set->queue_depth = queue_depth;
2656         set->numa_node = NUMA_NO_NODE;
2657         set->flags = set_flags;
2658
2659         ret = blk_mq_alloc_tag_set(set);
2660         if (ret)
2661                 return ERR_PTR(ret);
2662
2663         q = blk_mq_init_queue(set);
2664         if (IS_ERR(q)) {
2665                 blk_mq_free_tag_set(set);
2666                 return q;
2667         }
2668
2669         return q;
2670 }
2671 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2672
2673 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2674 {
2675         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2676
2677         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2678                            __alignof__(struct blk_mq_hw_ctx)) !=
2679                      sizeof(struct blk_mq_hw_ctx));
2680
2681         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2682                 hw_ctx_size += sizeof(struct srcu_struct);
2683
2684         return hw_ctx_size;
2685 }
2686
2687 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2688                 struct blk_mq_tag_set *set, struct request_queue *q,
2689                 int hctx_idx, int node)
2690 {
2691         struct blk_mq_hw_ctx *hctx;
2692
2693         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2694                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2695                         node);
2696         if (!hctx)
2697                 return NULL;
2698
2699         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2700                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2701                                 node)) {
2702                 kfree(hctx);
2703                 return NULL;
2704         }
2705
2706         atomic_set(&hctx->nr_active, 0);
2707         hctx->numa_node = node;
2708         hctx->queue_num = hctx_idx;
2709
2710         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2711                 free_cpumask_var(hctx->cpumask);
2712                 kfree(hctx);
2713                 return NULL;
2714         }
2715         blk_mq_hctx_kobj_init(hctx);
2716
2717         return hctx;
2718 }
2719
2720 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2721                                                 struct request_queue *q)
2722 {
2723         int i, j, end;
2724         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2725
2726         /* protect against switching io scheduler  */
2727         mutex_lock(&q->sysfs_lock);
2728         for (i = 0; i < set->nr_hw_queues; i++) {
2729                 int node;
2730                 struct blk_mq_hw_ctx *hctx;
2731
2732                 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2733                 /*
2734                  * If the hw queue has been mapped to another numa node,
2735                  * we need to realloc the hctx. If allocation fails, fallback
2736                  * to use the previous one.
2737                  */
2738                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2739                         continue;
2740
2741                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2742                 if (hctx) {
2743                         if (hctxs[i]) {
2744                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2745                                 kobject_put(&hctxs[i]->kobj);
2746                         }
2747                         hctxs[i] = hctx;
2748                 } else {
2749                         if (hctxs[i])
2750                                 pr_warn("Allocate new hctx on node %d fails,\
2751                                                 fallback to previous one on node %d\n",
2752                                                 node, hctxs[i]->numa_node);
2753                         else
2754                                 break;
2755                 }
2756         }
2757         /*
2758          * Increasing nr_hw_queues fails. Free the newly allocated
2759          * hctxs and keep the previous q->nr_hw_queues.
2760          */
2761         if (i != set->nr_hw_queues) {
2762                 j = q->nr_hw_queues;
2763                 end = i;
2764         } else {
2765                 j = i;
2766                 end = q->nr_hw_queues;
2767                 q->nr_hw_queues = set->nr_hw_queues;
2768         }
2769
2770         for (; j < end; j++) {
2771                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2772
2773                 if (hctx) {
2774                         if (hctx->tags)
2775                                 blk_mq_free_map_and_requests(set, j);
2776                         blk_mq_exit_hctx(q, set, hctx, j);
2777                         kobject_put(&hctx->kobj);
2778                         hctxs[j] = NULL;
2779
2780                 }
2781         }
2782         mutex_unlock(&q->sysfs_lock);
2783 }
2784
2785 /*
2786  * Maximum number of hardware queues we support. For single sets, we'll never
2787  * have more than the CPUs (software queues). For multiple sets, the tag_set
2788  * user may have set ->nr_hw_queues larger.
2789  */
2790 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2791 {
2792         if (set->nr_maps == 1)
2793                 return nr_cpu_ids;
2794
2795         return max(set->nr_hw_queues, nr_cpu_ids);
2796 }
2797
2798 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2799                                                   struct request_queue *q)
2800 {
2801         /* mark the queue as mq asap */
2802         q->mq_ops = set->ops;
2803
2804         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2805                                              blk_mq_poll_stats_bkt,
2806                                              BLK_MQ_POLL_STATS_BKTS, q);
2807         if (!q->poll_cb)
2808                 goto err_exit;
2809
2810         if (blk_mq_alloc_ctxs(q))
2811                 goto err_exit;
2812
2813         /* init q->mq_kobj and sw queues' kobjects */
2814         blk_mq_sysfs_init(q);
2815
2816         q->nr_queues = nr_hw_queues(set);
2817         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2818                                                 GFP_KERNEL, set->numa_node);
2819         if (!q->queue_hw_ctx)
2820                 goto err_sys_init;
2821
2822         blk_mq_realloc_hw_ctxs(set, q);
2823         if (!q->nr_hw_queues)
2824                 goto err_hctxs;
2825
2826         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2827         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2828
2829         q->tag_set = set;
2830
2831         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2832         if (set->nr_maps > HCTX_TYPE_POLL &&
2833             set->map[HCTX_TYPE_POLL].nr_queues)
2834                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2835
2836         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2837                 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2838
2839         q->sg_reserved_size = INT_MAX;
2840
2841         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2842         INIT_LIST_HEAD(&q->requeue_list);
2843         spin_lock_init(&q->requeue_lock);
2844
2845         blk_queue_make_request(q, blk_mq_make_request);
2846
2847         /*
2848          * Do this after blk_queue_make_request() overrides it...
2849          */
2850         q->nr_requests = set->queue_depth;
2851
2852         /*
2853          * Default to classic polling
2854          */
2855         q->poll_nsec = -1;
2856
2857         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2858         blk_mq_add_queue_tag_set(set, q);
2859         blk_mq_map_swqueue(q);
2860
2861         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2862                 int ret;
2863
2864                 ret = elevator_init_mq(q);
2865                 if (ret)
2866                         return ERR_PTR(ret);
2867         }
2868
2869         return q;
2870
2871 err_hctxs:
2872         kfree(q->queue_hw_ctx);
2873 err_sys_init:
2874         blk_mq_sysfs_deinit(q);
2875 err_exit:
2876         q->mq_ops = NULL;
2877         return ERR_PTR(-ENOMEM);
2878 }
2879 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2880
2881 void blk_mq_free_queue(struct request_queue *q)
2882 {
2883         struct blk_mq_tag_set   *set = q->tag_set;
2884
2885         blk_mq_del_queue_tag_set(q);
2886         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2887 }
2888
2889 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2890 {
2891         int i;
2892
2893         for (i = 0; i < set->nr_hw_queues; i++)
2894                 if (!__blk_mq_alloc_rq_map(set, i))
2895                         goto out_unwind;
2896
2897         return 0;
2898
2899 out_unwind:
2900         while (--i >= 0)
2901                 blk_mq_free_rq_map(set->tags[i]);
2902
2903         return -ENOMEM;
2904 }
2905
2906 /*
2907  * Allocate the request maps associated with this tag_set. Note that this
2908  * may reduce the depth asked for, if memory is tight. set->queue_depth
2909  * will be updated to reflect the allocated depth.
2910  */
2911 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2912 {
2913         unsigned int depth;
2914         int err;
2915
2916         depth = set->queue_depth;
2917         do {
2918                 err = __blk_mq_alloc_rq_maps(set);
2919                 if (!err)
2920                         break;
2921
2922                 set->queue_depth >>= 1;
2923                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2924                         err = -ENOMEM;
2925                         break;
2926                 }
2927         } while (set->queue_depth);
2928
2929         if (!set->queue_depth || err) {
2930                 pr_err("blk-mq: failed to allocate request map\n");
2931                 return -ENOMEM;
2932         }
2933
2934         if (depth != set->queue_depth)
2935                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2936                                                 depth, set->queue_depth);
2937
2938         return 0;
2939 }
2940
2941 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2942 {
2943         if (set->ops->map_queues && !is_kdump_kernel()) {
2944                 int i;
2945
2946                 /*
2947                  * transport .map_queues is usually done in the following
2948                  * way:
2949                  *
2950                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2951                  *      mask = get_cpu_mask(queue)
2952                  *      for_each_cpu(cpu, mask)
2953                  *              set->map[x].mq_map[cpu] = queue;
2954                  * }
2955                  *
2956                  * When we need to remap, the table has to be cleared for
2957                  * killing stale mapping since one CPU may not be mapped
2958                  * to any hw queue.
2959                  */
2960                 for (i = 0; i < set->nr_maps; i++)
2961                         blk_mq_clear_mq_map(&set->map[i]);
2962
2963                 return set->ops->map_queues(set);
2964         } else {
2965                 BUG_ON(set->nr_maps > 1);
2966                 return blk_mq_map_queues(&set->map[0]);
2967         }
2968 }
2969
2970 /*
2971  * Alloc a tag set to be associated with one or more request queues.
2972  * May fail with EINVAL for various error conditions. May adjust the
2973  * requested depth down, if it's too large. In that case, the set
2974  * value will be stored in set->queue_depth.
2975  */
2976 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2977 {
2978         int i, ret;
2979
2980         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2981
2982         if (!set->nr_hw_queues)
2983                 return -EINVAL;
2984         if (!set->queue_depth)
2985                 return -EINVAL;
2986         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2987                 return -EINVAL;
2988
2989         if (!set->ops->queue_rq)
2990                 return -EINVAL;
2991
2992         if (!set->ops->get_budget ^ !set->ops->put_budget)
2993                 return -EINVAL;
2994
2995         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2996                 pr_info("blk-mq: reduced tag depth to %u\n",
2997                         BLK_MQ_MAX_DEPTH);
2998                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2999         }
3000
3001         if (!set->nr_maps)
3002                 set->nr_maps = 1;
3003         else if (set->nr_maps > HCTX_MAX_TYPES)
3004                 return -EINVAL;
3005
3006         /*
3007          * If a crashdump is active, then we are potentially in a very
3008          * memory constrained environment. Limit us to 1 queue and
3009          * 64 tags to prevent using too much memory.
3010          */
3011         if (is_kdump_kernel()) {
3012                 set->nr_hw_queues = 1;
3013                 set->nr_maps = 1;
3014                 set->queue_depth = min(64U, set->queue_depth);
3015         }
3016         /*
3017          * There is no use for more h/w queues than cpus if we just have
3018          * a single map
3019          */
3020         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3021                 set->nr_hw_queues = nr_cpu_ids;
3022
3023         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3024                                  GFP_KERNEL, set->numa_node);
3025         if (!set->tags)
3026                 return -ENOMEM;
3027
3028         ret = -ENOMEM;
3029         for (i = 0; i < set->nr_maps; i++) {
3030                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3031                                                   sizeof(set->map[i].mq_map[0]),
3032                                                   GFP_KERNEL, set->numa_node);
3033                 if (!set->map[i].mq_map)
3034                         goto out_free_mq_map;
3035                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3036         }
3037
3038         ret = blk_mq_update_queue_map(set);
3039         if (ret)
3040                 goto out_free_mq_map;
3041
3042         ret = blk_mq_alloc_rq_maps(set);
3043         if (ret)
3044                 goto out_free_mq_map;
3045
3046         mutex_init(&set->tag_list_lock);
3047         INIT_LIST_HEAD(&set->tag_list);
3048
3049         return 0;
3050
3051 out_free_mq_map:
3052         for (i = 0; i < set->nr_maps; i++) {
3053                 kfree(set->map[i].mq_map);
3054                 set->map[i].mq_map = NULL;
3055         }
3056         kfree(set->tags);
3057         set->tags = NULL;
3058         return ret;
3059 }
3060 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3061
3062 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3063 {
3064         int i, j;
3065
3066         for (i = 0; i < nr_hw_queues(set); i++)
3067                 blk_mq_free_map_and_requests(set, i);
3068
3069         for (j = 0; j < set->nr_maps; j++) {
3070                 kfree(set->map[j].mq_map);
3071                 set->map[j].mq_map = NULL;
3072         }
3073
3074         kfree(set->tags);
3075         set->tags = NULL;
3076 }
3077 EXPORT_SYMBOL(blk_mq_free_tag_set);
3078
3079 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3080 {
3081         struct blk_mq_tag_set *set = q->tag_set;
3082         struct blk_mq_hw_ctx *hctx;
3083         int i, ret;
3084
3085         if (!set)
3086                 return -EINVAL;
3087
3088         blk_mq_freeze_queue(q);
3089         blk_mq_quiesce_queue(q);
3090
3091         ret = 0;
3092         queue_for_each_hw_ctx(q, hctx, i) {
3093                 if (!hctx->tags)
3094                         continue;
3095                 /*
3096                  * If we're using an MQ scheduler, just update the scheduler
3097                  * queue depth. This is similar to what the old code would do.
3098                  */
3099                 if (!hctx->sched_tags) {
3100                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3101                                                         false);
3102                 } else {
3103                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3104                                                         nr, true);
3105                 }
3106                 if (ret)
3107                         break;
3108         }
3109
3110         if (!ret)
3111                 q->nr_requests = nr;
3112
3113         blk_mq_unquiesce_queue(q);
3114         blk_mq_unfreeze_queue(q);
3115
3116         return ret;
3117 }
3118
3119 /*
3120  * request_queue and elevator_type pair.
3121  * It is just used by __blk_mq_update_nr_hw_queues to cache
3122  * the elevator_type associated with a request_queue.
3123  */
3124 struct blk_mq_qe_pair {
3125         struct list_head node;
3126         struct request_queue *q;
3127         struct elevator_type *type;
3128 };
3129
3130 /*
3131  * Cache the elevator_type in qe pair list and switch the
3132  * io scheduler to 'none'
3133  */
3134 static bool blk_mq_elv_switch_none(struct list_head *head,
3135                 struct request_queue *q)
3136 {
3137         struct blk_mq_qe_pair *qe;
3138
3139         if (!q->elevator)
3140                 return true;
3141
3142         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3143         if (!qe)
3144                 return false;
3145
3146         INIT_LIST_HEAD(&qe->node);
3147         qe->q = q;
3148         qe->type = q->elevator->type;
3149         list_add(&qe->node, head);
3150
3151         mutex_lock(&q->sysfs_lock);
3152         /*
3153          * After elevator_switch_mq, the previous elevator_queue will be
3154          * released by elevator_release. The reference of the io scheduler
3155          * module get by elevator_get will also be put. So we need to get
3156          * a reference of the io scheduler module here to prevent it to be
3157          * removed.
3158          */
3159         __module_get(qe->type->elevator_owner);
3160         elevator_switch_mq(q, NULL);
3161         mutex_unlock(&q->sysfs_lock);
3162
3163         return true;
3164 }
3165
3166 static void blk_mq_elv_switch_back(struct list_head *head,
3167                 struct request_queue *q)
3168 {
3169         struct blk_mq_qe_pair *qe;
3170         struct elevator_type *t = NULL;
3171
3172         list_for_each_entry(qe, head, node)
3173                 if (qe->q == q) {
3174                         t = qe->type;
3175                         break;
3176                 }
3177
3178         if (!t)
3179                 return;
3180
3181         list_del(&qe->node);
3182         kfree(qe);
3183
3184         mutex_lock(&q->sysfs_lock);
3185         elevator_switch_mq(q, t);
3186         mutex_unlock(&q->sysfs_lock);
3187 }
3188
3189 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3190                                                         int nr_hw_queues)
3191 {
3192         struct request_queue *q;
3193         LIST_HEAD(head);
3194         int prev_nr_hw_queues;
3195
3196         lockdep_assert_held(&set->tag_list_lock);
3197
3198         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3199                 nr_hw_queues = nr_cpu_ids;
3200         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3201                 return;
3202
3203         list_for_each_entry(q, &set->tag_list, tag_set_list)
3204                 blk_mq_freeze_queue(q);
3205         /*
3206          * Sync with blk_mq_queue_tag_busy_iter.
3207          */
3208         synchronize_rcu();
3209         /*
3210          * Switch IO scheduler to 'none', cleaning up the data associated
3211          * with the previous scheduler. We will switch back once we are done
3212          * updating the new sw to hw queue mappings.
3213          */
3214         list_for_each_entry(q, &set->tag_list, tag_set_list)
3215                 if (!blk_mq_elv_switch_none(&head, q))
3216                         goto switch_back;
3217
3218         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3219                 blk_mq_debugfs_unregister_hctxs(q);
3220                 blk_mq_sysfs_unregister(q);
3221         }
3222
3223         prev_nr_hw_queues = set->nr_hw_queues;
3224         set->nr_hw_queues = nr_hw_queues;
3225         blk_mq_update_queue_map(set);
3226 fallback:
3227         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3228                 blk_mq_realloc_hw_ctxs(set, q);
3229                 if (q->nr_hw_queues != set->nr_hw_queues) {
3230                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3231                                         nr_hw_queues, prev_nr_hw_queues);
3232                         set->nr_hw_queues = prev_nr_hw_queues;
3233                         blk_mq_map_queues(&set->map[0]);
3234                         goto fallback;
3235                 }
3236                 blk_mq_map_swqueue(q);
3237         }
3238
3239         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3240                 blk_mq_sysfs_register(q);
3241                 blk_mq_debugfs_register_hctxs(q);
3242         }
3243
3244 switch_back:
3245         list_for_each_entry(q, &set->tag_list, tag_set_list)
3246                 blk_mq_elv_switch_back(&head, q);
3247
3248         list_for_each_entry(q, &set->tag_list, tag_set_list)
3249                 blk_mq_unfreeze_queue(q);
3250 }
3251
3252 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3253 {
3254         mutex_lock(&set->tag_list_lock);
3255         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3256         mutex_unlock(&set->tag_list_lock);
3257 }
3258 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3259
3260 /* Enable polling stats and return whether they were already enabled. */
3261 static bool blk_poll_stats_enable(struct request_queue *q)
3262 {
3263         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3264             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3265                 return true;
3266         blk_stat_add_callback(q, q->poll_cb);
3267         return false;
3268 }
3269
3270 static void blk_mq_poll_stats_start(struct request_queue *q)
3271 {
3272         /*
3273          * We don't arm the callback if polling stats are not enabled or the
3274          * callback is already active.
3275          */
3276         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3277             blk_stat_is_active(q->poll_cb))
3278                 return;
3279
3280         blk_stat_activate_msecs(q->poll_cb, 100);
3281 }
3282
3283 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3284 {
3285         struct request_queue *q = cb->data;
3286         int bucket;
3287
3288         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3289                 if (cb->stat[bucket].nr_samples)
3290                         q->poll_stat[bucket] = cb->stat[bucket];
3291         }
3292 }
3293
3294 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3295                                        struct blk_mq_hw_ctx *hctx,
3296                                        struct request *rq)
3297 {
3298         unsigned long ret = 0;
3299         int bucket;
3300
3301         /*
3302          * If stats collection isn't on, don't sleep but turn it on for
3303          * future users
3304          */
3305         if (!blk_poll_stats_enable(q))
3306                 return 0;
3307
3308         /*
3309          * As an optimistic guess, use half of the mean service time
3310          * for this type of request. We can (and should) make this smarter.
3311          * For instance, if the completion latencies are tight, we can
3312          * get closer than just half the mean. This is especially
3313          * important on devices where the completion latencies are longer
3314          * than ~10 usec. We do use the stats for the relevant IO size
3315          * if available which does lead to better estimates.
3316          */
3317         bucket = blk_mq_poll_stats_bkt(rq);
3318         if (bucket < 0)
3319                 return ret;
3320
3321         if (q->poll_stat[bucket].nr_samples)
3322                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3323
3324         return ret;
3325 }
3326
3327 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3328                                      struct blk_mq_hw_ctx *hctx,
3329                                      struct request *rq)
3330 {
3331         struct hrtimer_sleeper hs;
3332         enum hrtimer_mode mode;
3333         unsigned int nsecs;
3334         ktime_t kt;
3335
3336         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3337                 return false;
3338
3339         /*
3340          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3341          *
3342          *  0:  use half of prev avg
3343          * >0:  use this specific value
3344          */
3345         if (q->poll_nsec > 0)
3346                 nsecs = q->poll_nsec;
3347         else
3348                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3349
3350         if (!nsecs)
3351                 return false;
3352
3353         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3354
3355         /*
3356          * This will be replaced with the stats tracking code, using
3357          * 'avg_completion_time / 2' as the pre-sleep target.
3358          */
3359         kt = nsecs;
3360
3361         mode = HRTIMER_MODE_REL;
3362         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3363         hrtimer_set_expires(&hs.timer, kt);
3364
3365         hrtimer_init_sleeper(&hs, current);
3366         do {
3367                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3368                         break;
3369                 set_current_state(TASK_UNINTERRUPTIBLE);
3370                 hrtimer_start_expires(&hs.timer, mode);
3371                 if (hs.task)
3372                         io_schedule();
3373                 hrtimer_cancel(&hs.timer);
3374                 mode = HRTIMER_MODE_ABS;
3375         } while (hs.task && !signal_pending(current));
3376
3377         __set_current_state(TASK_RUNNING);
3378         destroy_hrtimer_on_stack(&hs.timer);
3379         return true;
3380 }
3381
3382 static bool blk_mq_poll_hybrid(struct request_queue *q,
3383                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3384 {
3385         struct request *rq;
3386
3387         if (q->poll_nsec == -1)
3388                 return false;
3389
3390         if (!blk_qc_t_is_internal(cookie))
3391                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3392         else {
3393                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3394                 /*
3395                  * With scheduling, if the request has completed, we'll
3396                  * get a NULL return here, as we clear the sched tag when
3397                  * that happens. The request still remains valid, like always,
3398                  * so we should be safe with just the NULL check.
3399                  */
3400                 if (!rq)
3401                         return false;
3402         }
3403
3404         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3405 }
3406
3407 /**
3408  * blk_poll - poll for IO completions
3409  * @q:  the queue
3410  * @cookie: cookie passed back at IO submission time
3411  * @spin: whether to spin for completions
3412  *
3413  * Description:
3414  *    Poll for completions on the passed in queue. Returns number of
3415  *    completed entries found. If @spin is true, then blk_poll will continue
3416  *    looping until at least one completion is found, unless the task is
3417  *    otherwise marked running (or we need to reschedule).
3418  */
3419 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3420 {
3421         struct blk_mq_hw_ctx *hctx;
3422         long state;
3423
3424         if (!blk_qc_t_valid(cookie) ||
3425             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3426                 return 0;
3427
3428         if (current->plug)
3429                 blk_flush_plug_list(current->plug, false);
3430
3431         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3432
3433         /*
3434          * If we sleep, have the caller restart the poll loop to reset
3435          * the state. Like for the other success return cases, the
3436          * caller is responsible for checking if the IO completed. If
3437          * the IO isn't complete, we'll get called again and will go
3438          * straight to the busy poll loop.
3439          */
3440         if (blk_mq_poll_hybrid(q, hctx, cookie))
3441                 return 1;
3442
3443         hctx->poll_considered++;
3444
3445         state = current->state;
3446         do {
3447                 int ret;
3448
3449                 hctx->poll_invoked++;
3450
3451                 ret = q->mq_ops->poll(hctx);
3452                 if (ret > 0) {
3453                         hctx->poll_success++;
3454                         __set_current_state(TASK_RUNNING);
3455                         return ret;
3456                 }
3457
3458                 if (signal_pending_state(state, current))
3459                         __set_current_state(TASK_RUNNING);
3460
3461                 if (current->state == TASK_RUNNING)
3462                         return 1;
3463                 if (ret < 0 || !spin)
3464                         break;
3465                 cpu_relax();
3466         } while (!need_resched());
3467
3468         __set_current_state(TASK_RUNNING);
3469         return 0;
3470 }
3471 EXPORT_SYMBOL_GPL(blk_poll);
3472
3473 unsigned int blk_mq_rq_cpu(struct request *rq)
3474 {
3475         return rq->mq_ctx->cpu;
3476 }
3477 EXPORT_SYMBOL(blk_mq_rq_cpu);
3478
3479 static int __init blk_mq_init(void)
3480 {
3481         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3482                                 blk_mq_hctx_notify_dead);
3483         return 0;
3484 }
3485 subsys_initcall(blk_mq_init);