Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[powerpc.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/sched.h>
38 #include <linux/poll.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48
49 #define PFX "IPMI message handler: "
50
51 #define IPMI_DRIVER_VERSION "39.1"
52
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
55
56 static int initialized = 0;
57
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root = NULL;
60 #endif /* CONFIG_PROC_FS */
61
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64
65 #define MAX_EVENTS_IN_QUEUE     25
66
67 /* Don't let a message sit in a queue forever, always time it with at lest
68    the max message timer.  This is in milliseconds. */
69 #define MAX_MSG_TIMEOUT         60000
70
71
72 /*
73  * The main "user" data structure.
74  */
75 struct ipmi_user
76 {
77         struct list_head link;
78
79         /* Set to "0" when the user is destroyed. */
80         int valid;
81
82         struct kref refcount;
83
84         /* The upper layer that handles receive messages. */
85         struct ipmi_user_hndl *handler;
86         void             *handler_data;
87
88         /* The interface this user is bound to. */
89         ipmi_smi_t intf;
90
91         /* Does this interface receive IPMI events? */
92         int gets_events;
93 };
94
95 struct cmd_rcvr
96 {
97         struct list_head link;
98
99         ipmi_user_t   user;
100         unsigned char netfn;
101         unsigned char cmd;
102         unsigned int  chans;
103
104         /*
105          * This is used to form a linked lised during mass deletion.
106          * Since this is in an RCU list, we cannot use the link above
107          * or change any data until the RCU period completes.  So we
108          * use this next variable during mass deletion so we can have
109          * a list and don't have to wait and restart the search on
110          * every individual deletion of a command. */
111         struct cmd_rcvr *next;
112 };
113
114 struct seq_table
115 {
116         unsigned int         inuse : 1;
117         unsigned int         broadcast : 1;
118
119         unsigned long        timeout;
120         unsigned long        orig_timeout;
121         unsigned int         retries_left;
122
123         /* To verify on an incoming send message response that this is
124            the message that the response is for, we keep a sequence id
125            and increment it every time we send a message. */
126         long                 seqid;
127
128         /* This is held so we can properly respond to the message on a
129            timeout, and it is used to hold the temporary data for
130            retransmission, too. */
131         struct ipmi_recv_msg *recv_msg;
132 };
133
134 /* Store the information in a msgid (long) to allow us to find a
135    sequence table entry from the msgid. */
136 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
137
138 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
139         do {                                                            \
140                 seq = ((msgid >> 26) & 0x3f);                           \
141                 seqid = (msgid & 0x3fffff);                             \
142         } while (0)
143
144 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
145
146 struct ipmi_channel
147 {
148         unsigned char medium;
149         unsigned char protocol;
150
151         /* My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
152            but may be changed by the user. */
153         unsigned char address;
154
155         /* My LUN.  This should generally stay the SMS LUN, but just in
156            case... */
157         unsigned char lun;
158 };
159
160 #ifdef CONFIG_PROC_FS
161 struct ipmi_proc_entry
162 {
163         char                   *name;
164         struct ipmi_proc_entry *next;
165 };
166 #endif
167
168 struct bmc_device
169 {
170         struct platform_device *dev;
171         struct ipmi_device_id  id;
172         unsigned char          guid[16];
173         int                    guid_set;
174
175         struct kref            refcount;
176
177         /* bmc device attributes */
178         struct device_attribute device_id_attr;
179         struct device_attribute provides_dev_sdrs_attr;
180         struct device_attribute revision_attr;
181         struct device_attribute firmware_rev_attr;
182         struct device_attribute version_attr;
183         struct device_attribute add_dev_support_attr;
184         struct device_attribute manufacturer_id_attr;
185         struct device_attribute product_id_attr;
186         struct device_attribute guid_attr;
187         struct device_attribute aux_firmware_rev_attr;
188 };
189
190 #define IPMI_IPMB_NUM_SEQ       64
191 #define IPMI_MAX_CHANNELS       16
192 struct ipmi_smi
193 {
194         /* What interface number are we? */
195         int intf_num;
196
197         struct kref refcount;
198
199         /* Used for a list of interfaces. */
200         struct list_head link;
201
202         /* The list of upper layers that are using me.  seq_lock
203          * protects this. */
204         struct list_head users;
205
206         /* Information to supply to users. */
207         unsigned char ipmi_version_major;
208         unsigned char ipmi_version_minor;
209
210         /* Used for wake ups at startup. */
211         wait_queue_head_t waitq;
212
213         struct bmc_device *bmc;
214         char *my_dev_name;
215         char *sysfs_name;
216
217         /* This is the lower-layer's sender routine.  Note that you
218          * must either be holding the ipmi_interfaces_mutex or be in
219          * an umpreemptible region to use this.  You must fetch the
220          * value into a local variable and make sure it is not NULL. */
221         struct ipmi_smi_handlers *handlers;
222         void                     *send_info;
223
224 #ifdef CONFIG_PROC_FS
225         /* A list of proc entries for this interface.  This does not
226            need a lock, only one thread creates it and only one thread
227            destroys it. */
228         spinlock_t             proc_entry_lock;
229         struct ipmi_proc_entry *proc_entries;
230 #endif
231
232         /* Driver-model device for the system interface. */
233         struct device          *si_dev;
234
235         /* A table of sequence numbers for this interface.  We use the
236            sequence numbers for IPMB messages that go out of the
237            interface to match them up with their responses.  A routine
238            is called periodically to time the items in this list. */
239         spinlock_t       seq_lock;
240         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
241         int curr_seq;
242
243         /* Messages that were delayed for some reason (out of memory,
244            for instance), will go in here to be processed later in a
245            periodic timer interrupt. */
246         spinlock_t       waiting_msgs_lock;
247         struct list_head waiting_msgs;
248
249         /* The list of command receivers that are registered for commands
250            on this interface. */
251         struct mutex     cmd_rcvrs_mutex;
252         struct list_head cmd_rcvrs;
253
254         /* Events that were queues because no one was there to receive
255            them. */
256         spinlock_t       events_lock; /* For dealing with event stuff. */
257         struct list_head waiting_events;
258         unsigned int     waiting_events_count; /* How many events in queue? */
259         int              delivering_events;
260
261         /* The event receiver for my BMC, only really used at panic
262            shutdown as a place to store this. */
263         unsigned char event_receiver;
264         unsigned char event_receiver_lun;
265         unsigned char local_sel_device;
266         unsigned char local_event_generator;
267
268         /* For handling of maintenance mode. */
269         int maintenance_mode;
270         int maintenance_mode_enable;
271         int auto_maintenance_timeout;
272         spinlock_t maintenance_mode_lock; /* Used in a timer... */
273
274         /* A cheap hack, if this is non-null and a message to an
275            interface comes in with a NULL user, call this routine with
276            it.  Note that the message will still be freed by the
277            caller.  This only works on the system interface. */
278         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
279
280         /* When we are scanning the channels for an SMI, this will
281            tell which channel we are scanning. */
282         int curr_channel;
283
284         /* Channel information */
285         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
286
287         /* Proc FS stuff. */
288         struct proc_dir_entry *proc_dir;
289         char                  proc_dir_name[10];
290
291         spinlock_t   counter_lock; /* For making counters atomic. */
292
293         /* Commands we got that were invalid. */
294         unsigned int sent_invalid_commands;
295
296         /* Commands we sent to the MC. */
297         unsigned int sent_local_commands;
298         /* Responses from the MC that were delivered to a user. */
299         unsigned int handled_local_responses;
300         /* Responses from the MC that were not delivered to a user. */
301         unsigned int unhandled_local_responses;
302
303         /* Commands we sent out to the IPMB bus. */
304         unsigned int sent_ipmb_commands;
305         /* Commands sent on the IPMB that had errors on the SEND CMD */
306         unsigned int sent_ipmb_command_errs;
307         /* Each retransmit increments this count. */
308         unsigned int retransmitted_ipmb_commands;
309         /* When a message times out (runs out of retransmits) this is
310            incremented. */
311         unsigned int timed_out_ipmb_commands;
312
313         /* This is like above, but for broadcasts.  Broadcasts are
314            *not* included in the above count (they are expected to
315            time out). */
316         unsigned int timed_out_ipmb_broadcasts;
317
318         /* Responses I have sent to the IPMB bus. */
319         unsigned int sent_ipmb_responses;
320
321         /* The response was delivered to the user. */
322         unsigned int handled_ipmb_responses;
323         /* The response had invalid data in it. */
324         unsigned int invalid_ipmb_responses;
325         /* The response didn't have anyone waiting for it. */
326         unsigned int unhandled_ipmb_responses;
327
328         /* Commands we sent out to the IPMB bus. */
329         unsigned int sent_lan_commands;
330         /* Commands sent on the IPMB that had errors on the SEND CMD */
331         unsigned int sent_lan_command_errs;
332         /* Each retransmit increments this count. */
333         unsigned int retransmitted_lan_commands;
334         /* When a message times out (runs out of retransmits) this is
335            incremented. */
336         unsigned int timed_out_lan_commands;
337
338         /* Responses I have sent to the IPMB bus. */
339         unsigned int sent_lan_responses;
340
341         /* The response was delivered to the user. */
342         unsigned int handled_lan_responses;
343         /* The response had invalid data in it. */
344         unsigned int invalid_lan_responses;
345         /* The response didn't have anyone waiting for it. */
346         unsigned int unhandled_lan_responses;
347
348         /* The command was delivered to the user. */
349         unsigned int handled_commands;
350         /* The command had invalid data in it. */
351         unsigned int invalid_commands;
352         /* The command didn't have anyone waiting for it. */
353         unsigned int unhandled_commands;
354
355         /* Invalid data in an event. */
356         unsigned int invalid_events;
357         /* Events that were received with the proper format. */
358         unsigned int events;
359 };
360 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
361
362 /**
363  * The driver model view of the IPMI messaging driver.
364  */
365 static struct device_driver ipmidriver = {
366         .name = "ipmi",
367         .bus = &platform_bus_type
368 };
369 static DEFINE_MUTEX(ipmidriver_mutex);
370
371 static struct list_head ipmi_interfaces = LIST_HEAD_INIT(ipmi_interfaces);
372 static DEFINE_MUTEX(ipmi_interfaces_mutex);
373
374 /* List of watchers that want to know when smi's are added and
375    deleted. */
376 static struct list_head smi_watchers = LIST_HEAD_INIT(smi_watchers);
377 static DEFINE_MUTEX(smi_watchers_mutex);
378
379
380 static void free_recv_msg_list(struct list_head *q)
381 {
382         struct ipmi_recv_msg *msg, *msg2;
383
384         list_for_each_entry_safe(msg, msg2, q, link) {
385                 list_del(&msg->link);
386                 ipmi_free_recv_msg(msg);
387         }
388 }
389
390 static void free_smi_msg_list(struct list_head *q)
391 {
392         struct ipmi_smi_msg *msg, *msg2;
393
394         list_for_each_entry_safe(msg, msg2, q, link) {
395                 list_del(&msg->link);
396                 ipmi_free_smi_msg(msg);
397         }
398 }
399
400 static void clean_up_interface_data(ipmi_smi_t intf)
401 {
402         int              i;
403         struct cmd_rcvr  *rcvr, *rcvr2;
404         struct list_head list;
405
406         free_smi_msg_list(&intf->waiting_msgs);
407         free_recv_msg_list(&intf->waiting_events);
408
409         /* Wholesale remove all the entries from the list in the
410          * interface and wait for RCU to know that none are in use. */
411         mutex_lock(&intf->cmd_rcvrs_mutex);
412         list_add_rcu(&list, &intf->cmd_rcvrs);
413         list_del_rcu(&intf->cmd_rcvrs);
414         mutex_unlock(&intf->cmd_rcvrs_mutex);
415         synchronize_rcu();
416
417         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
418                 kfree(rcvr);
419
420         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
421                 if ((intf->seq_table[i].inuse)
422                     && (intf->seq_table[i].recv_msg))
423                 {
424                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
425                 }
426         }
427 }
428
429 static void intf_free(struct kref *ref)
430 {
431         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
432
433         clean_up_interface_data(intf);
434         kfree(intf);
435 }
436
437 struct watcher_entry {
438         int              intf_num;
439         ipmi_smi_t       intf;
440         struct list_head link;
441 };
442
443 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
444 {
445         ipmi_smi_t intf;
446         struct list_head to_deliver = LIST_HEAD_INIT(to_deliver);
447         struct watcher_entry *e, *e2;
448
449         mutex_lock(&smi_watchers_mutex);
450
451         mutex_lock(&ipmi_interfaces_mutex);
452
453         /* Build a list of things to deliver. */
454         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
455                 if (intf->intf_num == -1)
456                         continue;
457                 e = kmalloc(sizeof(*e), GFP_KERNEL);
458                 if (!e)
459                         goto out_err;
460                 kref_get(&intf->refcount);
461                 e->intf = intf;
462                 e->intf_num = intf->intf_num;
463                 list_add_tail(&e->link, &to_deliver);
464         }
465
466         /* We will succeed, so add it to the list. */
467         list_add(&watcher->link, &smi_watchers);
468
469         mutex_unlock(&ipmi_interfaces_mutex);
470
471         list_for_each_entry_safe(e, e2, &to_deliver, link) {
472                 list_del(&e->link);
473                 watcher->new_smi(e->intf_num, e->intf->si_dev);
474                 kref_put(&e->intf->refcount, intf_free);
475                 kfree(e);
476         }
477
478         mutex_unlock(&smi_watchers_mutex);
479
480         return 0;
481
482  out_err:
483         mutex_unlock(&ipmi_interfaces_mutex);
484         mutex_unlock(&smi_watchers_mutex);
485         list_for_each_entry_safe(e, e2, &to_deliver, link) {
486                 list_del(&e->link);
487                 kref_put(&e->intf->refcount, intf_free);
488                 kfree(e);
489         }
490         return -ENOMEM;
491 }
492
493 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
494 {
495         mutex_lock(&smi_watchers_mutex);
496         list_del(&(watcher->link));
497         mutex_unlock(&smi_watchers_mutex);
498         return 0;
499 }
500
501 /*
502  * Must be called with smi_watchers_mutex held.
503  */
504 static void
505 call_smi_watchers(int i, struct device *dev)
506 {
507         struct ipmi_smi_watcher *w;
508
509         list_for_each_entry(w, &smi_watchers, link) {
510                 if (try_module_get(w->owner)) {
511                         w->new_smi(i, dev);
512                         module_put(w->owner);
513                 }
514         }
515 }
516
517 static int
518 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
519 {
520         if (addr1->addr_type != addr2->addr_type)
521                 return 0;
522
523         if (addr1->channel != addr2->channel)
524                 return 0;
525
526         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
527                 struct ipmi_system_interface_addr *smi_addr1
528                     = (struct ipmi_system_interface_addr *) addr1;
529                 struct ipmi_system_interface_addr *smi_addr2
530                     = (struct ipmi_system_interface_addr *) addr2;
531                 return (smi_addr1->lun == smi_addr2->lun);
532         }
533
534         if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
535             || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
536         {
537                 struct ipmi_ipmb_addr *ipmb_addr1
538                     = (struct ipmi_ipmb_addr *) addr1;
539                 struct ipmi_ipmb_addr *ipmb_addr2
540                     = (struct ipmi_ipmb_addr *) addr2;
541
542                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
543                         && (ipmb_addr1->lun == ipmb_addr2->lun));
544         }
545
546         if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
547                 struct ipmi_lan_addr *lan_addr1
548                         = (struct ipmi_lan_addr *) addr1;
549                 struct ipmi_lan_addr *lan_addr2
550                     = (struct ipmi_lan_addr *) addr2;
551
552                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
553                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
554                         && (lan_addr1->session_handle
555                             == lan_addr2->session_handle)
556                         && (lan_addr1->lun == lan_addr2->lun));
557         }
558
559         return 1;
560 }
561
562 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
563 {
564         if (len < sizeof(struct ipmi_system_interface_addr)) {
565                 return -EINVAL;
566         }
567
568         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
569                 if (addr->channel != IPMI_BMC_CHANNEL)
570                         return -EINVAL;
571                 return 0;
572         }
573
574         if ((addr->channel == IPMI_BMC_CHANNEL)
575             || (addr->channel >= IPMI_MAX_CHANNELS)
576             || (addr->channel < 0))
577                 return -EINVAL;
578
579         if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
580             || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
581         {
582                 if (len < sizeof(struct ipmi_ipmb_addr)) {
583                         return -EINVAL;
584                 }
585                 return 0;
586         }
587
588         if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
589                 if (len < sizeof(struct ipmi_lan_addr)) {
590                         return -EINVAL;
591                 }
592                 return 0;
593         }
594
595         return -EINVAL;
596 }
597
598 unsigned int ipmi_addr_length(int addr_type)
599 {
600         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
601                 return sizeof(struct ipmi_system_interface_addr);
602
603         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
604             || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
605         {
606                 return sizeof(struct ipmi_ipmb_addr);
607         }
608
609         if (addr_type == IPMI_LAN_ADDR_TYPE)
610                 return sizeof(struct ipmi_lan_addr);
611
612         return 0;
613 }
614
615 static void deliver_response(struct ipmi_recv_msg *msg)
616 {
617         if (!msg->user) {
618                 ipmi_smi_t    intf = msg->user_msg_data;
619                 unsigned long flags;
620
621                 /* Special handling for NULL users. */
622                 if (intf->null_user_handler) {
623                         intf->null_user_handler(intf, msg);
624                         spin_lock_irqsave(&intf->counter_lock, flags);
625                         intf->handled_local_responses++;
626                         spin_unlock_irqrestore(&intf->counter_lock, flags);
627                 } else {
628                         /* No handler, so give up. */
629                         spin_lock_irqsave(&intf->counter_lock, flags);
630                         intf->unhandled_local_responses++;
631                         spin_unlock_irqrestore(&intf->counter_lock, flags);
632                 }
633                 ipmi_free_recv_msg(msg);
634         } else {
635                 ipmi_user_t user = msg->user;
636                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
637         }
638 }
639
640 static void
641 deliver_err_response(struct ipmi_recv_msg *msg, int err)
642 {
643         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
644         msg->msg_data[0] = err;
645         msg->msg.netfn |= 1; /* Convert to a response. */
646         msg->msg.data_len = 1;
647         msg->msg.data = msg->msg_data;
648         deliver_response(msg);
649 }
650
651 /* Find the next sequence number not being used and add the given
652    message with the given timeout to the sequence table.  This must be
653    called with the interface's seq_lock held. */
654 static int intf_next_seq(ipmi_smi_t           intf,
655                          struct ipmi_recv_msg *recv_msg,
656                          unsigned long        timeout,
657                          int                  retries,
658                          int                  broadcast,
659                          unsigned char        *seq,
660                          long                 *seqid)
661 {
662         int          rv = 0;
663         unsigned int i;
664
665         for (i = intf->curr_seq;
666              (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
667              i = (i+1)%IPMI_IPMB_NUM_SEQ)
668         {
669                 if (!intf->seq_table[i].inuse)
670                         break;
671         }
672
673         if (!intf->seq_table[i].inuse) {
674                 intf->seq_table[i].recv_msg = recv_msg;
675
676                 /* Start with the maximum timeout, when the send response
677                    comes in we will start the real timer. */
678                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
679                 intf->seq_table[i].orig_timeout = timeout;
680                 intf->seq_table[i].retries_left = retries;
681                 intf->seq_table[i].broadcast = broadcast;
682                 intf->seq_table[i].inuse = 1;
683                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
684                 *seq = i;
685                 *seqid = intf->seq_table[i].seqid;
686                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
687         } else {
688                 rv = -EAGAIN;
689         }
690         
691         return rv;
692 }
693
694 /* Return the receive message for the given sequence number and
695    release the sequence number so it can be reused.  Some other data
696    is passed in to be sure the message matches up correctly (to help
697    guard against message coming in after their timeout and the
698    sequence number being reused). */
699 static int intf_find_seq(ipmi_smi_t           intf,
700                          unsigned char        seq,
701                          short                channel,
702                          unsigned char        cmd,
703                          unsigned char        netfn,
704                          struct ipmi_addr     *addr,
705                          struct ipmi_recv_msg **recv_msg)
706 {
707         int           rv = -ENODEV;
708         unsigned long flags;
709
710         if (seq >= IPMI_IPMB_NUM_SEQ)
711                 return -EINVAL;
712
713         spin_lock_irqsave(&(intf->seq_lock), flags);
714         if (intf->seq_table[seq].inuse) {
715                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
716
717                 if ((msg->addr.channel == channel)
718                     && (msg->msg.cmd == cmd)
719                     && (msg->msg.netfn == netfn)
720                     && (ipmi_addr_equal(addr, &(msg->addr))))
721                 {
722                         *recv_msg = msg;
723                         intf->seq_table[seq].inuse = 0;
724                         rv = 0;
725                 }
726         }
727         spin_unlock_irqrestore(&(intf->seq_lock), flags);
728
729         return rv;
730 }
731
732
733 /* Start the timer for a specific sequence table entry. */
734 static int intf_start_seq_timer(ipmi_smi_t intf,
735                                 long       msgid)
736 {
737         int           rv = -ENODEV;
738         unsigned long flags;
739         unsigned char seq;
740         unsigned long seqid;
741
742
743         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
744
745         spin_lock_irqsave(&(intf->seq_lock), flags);
746         /* We do this verification because the user can be deleted
747            while a message is outstanding. */
748         if ((intf->seq_table[seq].inuse)
749             && (intf->seq_table[seq].seqid == seqid))
750         {
751                 struct seq_table *ent = &(intf->seq_table[seq]);
752                 ent->timeout = ent->orig_timeout;
753                 rv = 0;
754         }
755         spin_unlock_irqrestore(&(intf->seq_lock), flags);
756
757         return rv;
758 }
759
760 /* Got an error for the send message for a specific sequence number. */
761 static int intf_err_seq(ipmi_smi_t   intf,
762                         long         msgid,
763                         unsigned int err)
764 {
765         int                  rv = -ENODEV;
766         unsigned long        flags;
767         unsigned char        seq;
768         unsigned long        seqid;
769         struct ipmi_recv_msg *msg = NULL;
770
771
772         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
773
774         spin_lock_irqsave(&(intf->seq_lock), flags);
775         /* We do this verification because the user can be deleted
776            while a message is outstanding. */
777         if ((intf->seq_table[seq].inuse)
778             && (intf->seq_table[seq].seqid == seqid))
779         {
780                 struct seq_table *ent = &(intf->seq_table[seq]);
781
782                 ent->inuse = 0;
783                 msg = ent->recv_msg;
784                 rv = 0;
785         }
786         spin_unlock_irqrestore(&(intf->seq_lock), flags);
787
788         if (msg)
789                 deliver_err_response(msg, err);
790
791         return rv;
792 }
793
794
795 int ipmi_create_user(unsigned int          if_num,
796                      struct ipmi_user_hndl *handler,
797                      void                  *handler_data,
798                      ipmi_user_t           *user)
799 {
800         unsigned long flags;
801         ipmi_user_t   new_user;
802         int           rv = 0;
803         ipmi_smi_t    intf;
804
805         /* There is no module usecount here, because it's not
806            required.  Since this can only be used by and called from
807            other modules, they will implicitly use this module, and
808            thus this can't be removed unless the other modules are
809            removed. */
810
811         if (handler == NULL)
812                 return -EINVAL;
813
814         /* Make sure the driver is actually initialized, this handles
815            problems with initialization order. */
816         if (!initialized) {
817                 rv = ipmi_init_msghandler();
818                 if (rv)
819                         return rv;
820
821                 /* The init code doesn't return an error if it was turned
822                    off, but it won't initialize.  Check that. */
823                 if (!initialized)
824                         return -ENODEV;
825         }
826
827         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
828         if (!new_user)
829                 return -ENOMEM;
830
831         mutex_lock(&ipmi_interfaces_mutex);
832         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
833                 if (intf->intf_num == if_num)
834                         goto found;
835         }
836         /* Not found, return an error */
837         rv = -EINVAL;
838         goto out_kfree;
839
840  found:
841         /* Note that each existing user holds a refcount to the interface. */
842         kref_get(&intf->refcount);
843
844         kref_init(&new_user->refcount);
845         new_user->handler = handler;
846         new_user->handler_data = handler_data;
847         new_user->intf = intf;
848         new_user->gets_events = 0;
849
850         if (!try_module_get(intf->handlers->owner)) {
851                 rv = -ENODEV;
852                 goto out_kref;
853         }
854
855         if (intf->handlers->inc_usecount) {
856                 rv = intf->handlers->inc_usecount(intf->send_info);
857                 if (rv) {
858                         module_put(intf->handlers->owner);
859                         goto out_kref;
860                 }
861         }
862
863         /* Hold the lock so intf->handlers is guaranteed to be good
864          * until now */
865         mutex_unlock(&ipmi_interfaces_mutex);
866
867         new_user->valid = 1;
868         spin_lock_irqsave(&intf->seq_lock, flags);
869         list_add_rcu(&new_user->link, &intf->users);
870         spin_unlock_irqrestore(&intf->seq_lock, flags);
871         *user = new_user;
872         return 0;
873
874 out_kref:
875         kref_put(&intf->refcount, intf_free);
876 out_kfree:
877         mutex_unlock(&ipmi_interfaces_mutex);
878         kfree(new_user);
879         return rv;
880 }
881
882 static void free_user(struct kref *ref)
883 {
884         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
885         kfree(user);
886 }
887
888 int ipmi_destroy_user(ipmi_user_t user)
889 {
890         ipmi_smi_t       intf = user->intf;
891         int              i;
892         unsigned long    flags;
893         struct cmd_rcvr  *rcvr;
894         struct cmd_rcvr  *rcvrs = NULL;
895
896         user->valid = 0;
897
898         /* Remove the user from the interface's sequence table. */
899         spin_lock_irqsave(&intf->seq_lock, flags);
900         list_del_rcu(&user->link);
901
902         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
903                 if (intf->seq_table[i].inuse
904                     && (intf->seq_table[i].recv_msg->user == user))
905                 {
906                         intf->seq_table[i].inuse = 0;
907                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
908                 }
909         }
910         spin_unlock_irqrestore(&intf->seq_lock, flags);
911
912         /*
913          * Remove the user from the command receiver's table.  First
914          * we build a list of everything (not using the standard link,
915          * since other things may be using it till we do
916          * synchronize_rcu()) then free everything in that list.
917          */
918         mutex_lock(&intf->cmd_rcvrs_mutex);
919         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
920                 if (rcvr->user == user) {
921                         list_del_rcu(&rcvr->link);
922                         rcvr->next = rcvrs;
923                         rcvrs = rcvr;
924                 }
925         }
926         mutex_unlock(&intf->cmd_rcvrs_mutex);
927         synchronize_rcu();
928         while (rcvrs) {
929                 rcvr = rcvrs;
930                 rcvrs = rcvr->next;
931                 kfree(rcvr);
932         }
933
934         mutex_lock(&ipmi_interfaces_mutex);
935         if (intf->handlers) {
936                 module_put(intf->handlers->owner);
937                 if (intf->handlers->dec_usecount)
938                         intf->handlers->dec_usecount(intf->send_info);
939         }
940         mutex_unlock(&ipmi_interfaces_mutex);
941
942         kref_put(&intf->refcount, intf_free);
943
944         kref_put(&user->refcount, free_user);
945
946         return 0;
947 }
948
949 void ipmi_get_version(ipmi_user_t   user,
950                       unsigned char *major,
951                       unsigned char *minor)
952 {
953         *major = user->intf->ipmi_version_major;
954         *minor = user->intf->ipmi_version_minor;
955 }
956
957 int ipmi_set_my_address(ipmi_user_t   user,
958                         unsigned int  channel,
959                         unsigned char address)
960 {
961         if (channel >= IPMI_MAX_CHANNELS)
962                 return -EINVAL;
963         user->intf->channels[channel].address = address;
964         return 0;
965 }
966
967 int ipmi_get_my_address(ipmi_user_t   user,
968                         unsigned int  channel,
969                         unsigned char *address)
970 {
971         if (channel >= IPMI_MAX_CHANNELS)
972                 return -EINVAL;
973         *address = user->intf->channels[channel].address;
974         return 0;
975 }
976
977 int ipmi_set_my_LUN(ipmi_user_t   user,
978                     unsigned int  channel,
979                     unsigned char LUN)
980 {
981         if (channel >= IPMI_MAX_CHANNELS)
982                 return -EINVAL;
983         user->intf->channels[channel].lun = LUN & 0x3;
984         return 0;
985 }
986
987 int ipmi_get_my_LUN(ipmi_user_t   user,
988                     unsigned int  channel,
989                     unsigned char *address)
990 {
991         if (channel >= IPMI_MAX_CHANNELS)
992                 return -EINVAL;
993         *address = user->intf->channels[channel].lun;
994         return 0;
995 }
996
997 int ipmi_get_maintenance_mode(ipmi_user_t user)
998 {
999         int           mode;
1000         unsigned long flags;
1001
1002         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1003         mode = user->intf->maintenance_mode;
1004         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1005
1006         return mode;
1007 }
1008 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1009
1010 static void maintenance_mode_update(ipmi_smi_t intf)
1011 {
1012         if (intf->handlers->set_maintenance_mode)
1013                 intf->handlers->set_maintenance_mode(
1014                         intf->send_info, intf->maintenance_mode_enable);
1015 }
1016
1017 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1018 {
1019         int           rv = 0;
1020         unsigned long flags;
1021         ipmi_smi_t    intf = user->intf;
1022
1023         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1024         if (intf->maintenance_mode != mode) {
1025                 switch (mode) {
1026                 case IPMI_MAINTENANCE_MODE_AUTO:
1027                         intf->maintenance_mode = mode;
1028                         intf->maintenance_mode_enable
1029                                 = (intf->auto_maintenance_timeout > 0);
1030                         break;
1031
1032                 case IPMI_MAINTENANCE_MODE_OFF:
1033                         intf->maintenance_mode = mode;
1034                         intf->maintenance_mode_enable = 0;
1035                         break;
1036
1037                 case IPMI_MAINTENANCE_MODE_ON:
1038                         intf->maintenance_mode = mode;
1039                         intf->maintenance_mode_enable = 1;
1040                         break;
1041
1042                 default:
1043                         rv = -EINVAL;
1044                         goto out_unlock;
1045                 }
1046
1047                 maintenance_mode_update(intf);
1048         }
1049  out_unlock:
1050         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1051
1052         return rv;
1053 }
1054 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1055
1056 int ipmi_set_gets_events(ipmi_user_t user, int val)
1057 {
1058         unsigned long        flags;
1059         ipmi_smi_t           intf = user->intf;
1060         struct ipmi_recv_msg *msg, *msg2;
1061         struct list_head     msgs;
1062
1063         INIT_LIST_HEAD(&msgs);
1064
1065         spin_lock_irqsave(&intf->events_lock, flags);
1066         user->gets_events = val;
1067
1068         if (intf->delivering_events)
1069                 /*
1070                  * Another thread is delivering events for this, so
1071                  * let it handle any new events.
1072                  */
1073                 goto out;
1074
1075         /* Deliver any queued events. */
1076         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1077                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1078                         list_move_tail(&msg->link, &msgs);
1079                 intf->waiting_events_count = 0;
1080
1081                 intf->delivering_events = 1;
1082                 spin_unlock_irqrestore(&intf->events_lock, flags);
1083
1084                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1085                         msg->user = user;
1086                         kref_get(&user->refcount);
1087                         deliver_response(msg);
1088                 }
1089
1090                 spin_lock_irqsave(&intf->events_lock, flags);
1091                 intf->delivering_events = 0;
1092         }
1093
1094  out:
1095         spin_unlock_irqrestore(&intf->events_lock, flags);
1096
1097         return 0;
1098 }
1099
1100 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1101                                       unsigned char netfn,
1102                                       unsigned char cmd,
1103                                       unsigned char chan)
1104 {
1105         struct cmd_rcvr *rcvr;
1106
1107         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1108                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1109                                         && (rcvr->chans & (1 << chan)))
1110                         return rcvr;
1111         }
1112         return NULL;
1113 }
1114
1115 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1116                                  unsigned char netfn,
1117                                  unsigned char cmd,
1118                                  unsigned int  chans)
1119 {
1120         struct cmd_rcvr *rcvr;
1121
1122         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1123                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1124                                         && (rcvr->chans & chans))
1125                         return 0;
1126         }
1127         return 1;
1128 }
1129
1130 int ipmi_register_for_cmd(ipmi_user_t   user,
1131                           unsigned char netfn,
1132                           unsigned char cmd,
1133                           unsigned int  chans)
1134 {
1135         ipmi_smi_t      intf = user->intf;
1136         struct cmd_rcvr *rcvr;
1137         int             rv = 0;
1138
1139
1140         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1141         if (!rcvr)
1142                 return -ENOMEM;
1143         rcvr->cmd = cmd;
1144         rcvr->netfn = netfn;
1145         rcvr->chans = chans;
1146         rcvr->user = user;
1147
1148         mutex_lock(&intf->cmd_rcvrs_mutex);
1149         /* Make sure the command/netfn is not already registered. */
1150         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1151                 rv = -EBUSY;
1152                 goto out_unlock;
1153         }
1154
1155         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1156
1157  out_unlock:
1158         mutex_unlock(&intf->cmd_rcvrs_mutex);
1159         if (rv)
1160                 kfree(rcvr);
1161
1162         return rv;
1163 }
1164
1165 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1166                             unsigned char netfn,
1167                             unsigned char cmd,
1168                             unsigned int  chans)
1169 {
1170         ipmi_smi_t      intf = user->intf;
1171         struct cmd_rcvr *rcvr;
1172         struct cmd_rcvr *rcvrs = NULL;
1173         int i, rv = -ENOENT;
1174
1175         mutex_lock(&intf->cmd_rcvrs_mutex);
1176         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1177                 if (((1 << i) & chans) == 0)
1178                         continue;
1179                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1180                 if (rcvr == NULL)
1181                         continue;
1182                 if (rcvr->user == user) {
1183                         rv = 0;
1184                         rcvr->chans &= ~chans;
1185                         if (rcvr->chans == 0) {
1186                                 list_del_rcu(&rcvr->link);
1187                                 rcvr->next = rcvrs;
1188                                 rcvrs = rcvr;
1189                         }
1190                 }
1191         }
1192         mutex_unlock(&intf->cmd_rcvrs_mutex);
1193         synchronize_rcu();
1194         while (rcvrs) {
1195                 rcvr = rcvrs;
1196                 rcvrs = rcvr->next;
1197                 kfree(rcvr);
1198         }
1199         return rv;
1200 }
1201
1202 void ipmi_user_set_run_to_completion(ipmi_user_t user, int val)
1203 {
1204         ipmi_smi_t intf = user->intf;
1205         if (intf->handlers)
1206                 intf->handlers->set_run_to_completion(intf->send_info, val);
1207 }
1208
1209 static unsigned char
1210 ipmb_checksum(unsigned char *data, int size)
1211 {
1212         unsigned char csum = 0;
1213         
1214         for (; size > 0; size--, data++)
1215                 csum += *data;
1216
1217         return -csum;
1218 }
1219
1220 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1221                                    struct kernel_ipmi_msg *msg,
1222                                    struct ipmi_ipmb_addr *ipmb_addr,
1223                                    long                  msgid,
1224                                    unsigned char         ipmb_seq,
1225                                    int                   broadcast,
1226                                    unsigned char         source_address,
1227                                    unsigned char         source_lun)
1228 {
1229         int i = broadcast;
1230
1231         /* Format the IPMB header data. */
1232         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1233         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1234         smi_msg->data[2] = ipmb_addr->channel;
1235         if (broadcast)
1236                 smi_msg->data[3] = 0;
1237         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1238         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1239         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1240         smi_msg->data[i+6] = source_address;
1241         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1242         smi_msg->data[i+8] = msg->cmd;
1243
1244         /* Now tack on the data to the message. */
1245         if (msg->data_len > 0)
1246                 memcpy(&(smi_msg->data[i+9]), msg->data,
1247                        msg->data_len);
1248         smi_msg->data_size = msg->data_len + 9;
1249
1250         /* Now calculate the checksum and tack it on. */
1251         smi_msg->data[i+smi_msg->data_size]
1252                 = ipmb_checksum(&(smi_msg->data[i+6]),
1253                                 smi_msg->data_size-6);
1254
1255         /* Add on the checksum size and the offset from the
1256            broadcast. */
1257         smi_msg->data_size += 1 + i;
1258
1259         smi_msg->msgid = msgid;
1260 }
1261
1262 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1263                                   struct kernel_ipmi_msg *msg,
1264                                   struct ipmi_lan_addr  *lan_addr,
1265                                   long                  msgid,
1266                                   unsigned char         ipmb_seq,
1267                                   unsigned char         source_lun)
1268 {
1269         /* Format the IPMB header data. */
1270         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1271         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1272         smi_msg->data[2] = lan_addr->channel;
1273         smi_msg->data[3] = lan_addr->session_handle;
1274         smi_msg->data[4] = lan_addr->remote_SWID;
1275         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1276         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1277         smi_msg->data[7] = lan_addr->local_SWID;
1278         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1279         smi_msg->data[9] = msg->cmd;
1280
1281         /* Now tack on the data to the message. */
1282         if (msg->data_len > 0)
1283                 memcpy(&(smi_msg->data[10]), msg->data,
1284                        msg->data_len);
1285         smi_msg->data_size = msg->data_len + 10;
1286
1287         /* Now calculate the checksum and tack it on. */
1288         smi_msg->data[smi_msg->data_size]
1289                 = ipmb_checksum(&(smi_msg->data[7]),
1290                                 smi_msg->data_size-7);
1291
1292         /* Add on the checksum size and the offset from the
1293            broadcast. */
1294         smi_msg->data_size += 1;
1295
1296         smi_msg->msgid = msgid;
1297 }
1298
1299 /* Separate from ipmi_request so that the user does not have to be
1300    supplied in certain circumstances (mainly at panic time).  If
1301    messages are supplied, they will be freed, even if an error
1302    occurs. */
1303 static int i_ipmi_request(ipmi_user_t          user,
1304                           ipmi_smi_t           intf,
1305                           struct ipmi_addr     *addr,
1306                           long                 msgid,
1307                           struct kernel_ipmi_msg *msg,
1308                           void                 *user_msg_data,
1309                           void                 *supplied_smi,
1310                           struct ipmi_recv_msg *supplied_recv,
1311                           int                  priority,
1312                           unsigned char        source_address,
1313                           unsigned char        source_lun,
1314                           int                  retries,
1315                           unsigned int         retry_time_ms)
1316 {
1317         int                      rv = 0;
1318         struct ipmi_smi_msg      *smi_msg;
1319         struct ipmi_recv_msg     *recv_msg;
1320         unsigned long            flags;
1321         struct ipmi_smi_handlers *handlers;
1322
1323
1324         if (supplied_recv) {
1325                 recv_msg = supplied_recv;
1326         } else {
1327                 recv_msg = ipmi_alloc_recv_msg();
1328                 if (recv_msg == NULL) {
1329                         return -ENOMEM;
1330                 }
1331         }
1332         recv_msg->user_msg_data = user_msg_data;
1333
1334         if (supplied_smi) {
1335                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1336         } else {
1337                 smi_msg = ipmi_alloc_smi_msg();
1338                 if (smi_msg == NULL) {
1339                         ipmi_free_recv_msg(recv_msg);
1340                         return -ENOMEM;
1341                 }
1342         }
1343
1344         rcu_read_lock();
1345         handlers = intf->handlers;
1346         if (!handlers) {
1347                 rv = -ENODEV;
1348                 goto out_err;
1349         }
1350
1351         recv_msg->user = user;
1352         if (user)
1353                 kref_get(&user->refcount);
1354         recv_msg->msgid = msgid;
1355         /* Store the message to send in the receive message so timeout
1356            responses can get the proper response data. */
1357         recv_msg->msg = *msg;
1358
1359         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1360                 struct ipmi_system_interface_addr *smi_addr;
1361
1362                 if (msg->netfn & 1) {
1363                         /* Responses are not allowed to the SMI. */
1364                         rv = -EINVAL;
1365                         goto out_err;
1366                 }
1367
1368                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1369                 if (smi_addr->lun > 3) {
1370                         spin_lock_irqsave(&intf->counter_lock, flags);
1371                         intf->sent_invalid_commands++;
1372                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1373                         rv = -EINVAL;
1374                         goto out_err;
1375                 }
1376
1377                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1378
1379                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1380                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1381                         || (msg->cmd == IPMI_GET_MSG_CMD)
1382                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD)))
1383                 {
1384                         /* We don't let the user do these, since we manage
1385                            the sequence numbers. */
1386                         spin_lock_irqsave(&intf->counter_lock, flags);
1387                         intf->sent_invalid_commands++;
1388                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1389                         rv = -EINVAL;
1390                         goto out_err;
1391                 }
1392
1393                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1394                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1395                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1396                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST))
1397                 {
1398                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1399                         intf->auto_maintenance_timeout
1400                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1401                         if (!intf->maintenance_mode
1402                             && !intf->maintenance_mode_enable)
1403                         {
1404                                 intf->maintenance_mode_enable = 1;
1405                                 maintenance_mode_update(intf);
1406                         }
1407                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1408                                                flags);
1409                 }
1410
1411                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1412                         spin_lock_irqsave(&intf->counter_lock, flags);
1413                         intf->sent_invalid_commands++;
1414                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1415                         rv = -EMSGSIZE;
1416                         goto out_err;
1417                 }
1418
1419                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1420                 smi_msg->data[1] = msg->cmd;
1421                 smi_msg->msgid = msgid;
1422                 smi_msg->user_data = recv_msg;
1423                 if (msg->data_len > 0)
1424                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1425                 smi_msg->data_size = msg->data_len + 2;
1426                 spin_lock_irqsave(&intf->counter_lock, flags);
1427                 intf->sent_local_commands++;
1428                 spin_unlock_irqrestore(&intf->counter_lock, flags);
1429         } else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1430                    || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
1431         {
1432                 struct ipmi_ipmb_addr *ipmb_addr;
1433                 unsigned char         ipmb_seq;
1434                 long                  seqid;
1435                 int                   broadcast = 0;
1436
1437                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1438                         spin_lock_irqsave(&intf->counter_lock, flags);
1439                         intf->sent_invalid_commands++;
1440                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1441                         rv = -EINVAL;
1442                         goto out_err;
1443                 }
1444
1445                 if (intf->channels[addr->channel].medium
1446                     != IPMI_CHANNEL_MEDIUM_IPMB)
1447                 {
1448                         spin_lock_irqsave(&intf->counter_lock, flags);
1449                         intf->sent_invalid_commands++;
1450                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1451                         rv = -EINVAL;
1452                         goto out_err;
1453                 }
1454
1455                 if (retries < 0) {
1456                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1457                         retries = 0; /* Don't retry broadcasts. */
1458                     else
1459                         retries = 4;
1460                 }
1461                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1462                     /* Broadcasts add a zero at the beginning of the
1463                        message, but otherwise is the same as an IPMB
1464                        address. */
1465                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1466                     broadcast = 1;
1467                 }
1468
1469
1470                 /* Default to 1 second retries. */
1471                 if (retry_time_ms == 0)
1472                     retry_time_ms = 1000;
1473
1474                 /* 9 for the header and 1 for the checksum, plus
1475                    possibly one for the broadcast. */
1476                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1477                         spin_lock_irqsave(&intf->counter_lock, flags);
1478                         intf->sent_invalid_commands++;
1479                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1480                         rv = -EMSGSIZE;
1481                         goto out_err;
1482                 }
1483
1484                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1485                 if (ipmb_addr->lun > 3) {
1486                         spin_lock_irqsave(&intf->counter_lock, flags);
1487                         intf->sent_invalid_commands++;
1488                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1489                         rv = -EINVAL;
1490                         goto out_err;
1491                 }
1492
1493                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1494
1495                 if (recv_msg->msg.netfn & 0x1) {
1496                         /* It's a response, so use the user's sequence
1497                            from msgid. */
1498                         spin_lock_irqsave(&intf->counter_lock, flags);
1499                         intf->sent_ipmb_responses++;
1500                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1501                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1502                                         msgid, broadcast,
1503                                         source_address, source_lun);
1504
1505                         /* Save the receive message so we can use it
1506                            to deliver the response. */
1507                         smi_msg->user_data = recv_msg;
1508                 } else {
1509                         /* It's a command, so get a sequence for it. */
1510
1511                         spin_lock_irqsave(&(intf->seq_lock), flags);
1512
1513                         spin_lock(&intf->counter_lock);
1514                         intf->sent_ipmb_commands++;
1515                         spin_unlock(&intf->counter_lock);
1516
1517                         /* Create a sequence number with a 1 second
1518                            timeout and 4 retries. */
1519                         rv = intf_next_seq(intf,
1520                                            recv_msg,
1521                                            retry_time_ms,
1522                                            retries,
1523                                            broadcast,
1524                                            &ipmb_seq,
1525                                            &seqid);
1526                         if (rv) {
1527                                 /* We have used up all the sequence numbers,
1528                                    probably, so abort. */
1529                                 spin_unlock_irqrestore(&(intf->seq_lock),
1530                                                        flags);
1531                                 goto out_err;
1532                         }
1533
1534                         /* Store the sequence number in the message,
1535                            so that when the send message response
1536                            comes back we can start the timer. */
1537                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1538                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1539                                         ipmb_seq, broadcast,
1540                                         source_address, source_lun);
1541
1542                         /* Copy the message into the recv message data, so we
1543                            can retransmit it later if necessary. */
1544                         memcpy(recv_msg->msg_data, smi_msg->data,
1545                                smi_msg->data_size);
1546                         recv_msg->msg.data = recv_msg->msg_data;
1547                         recv_msg->msg.data_len = smi_msg->data_size;
1548
1549                         /* We don't unlock until here, because we need
1550                            to copy the completed message into the
1551                            recv_msg before we release the lock.
1552                            Otherwise, race conditions may bite us.  I
1553                            know that's pretty paranoid, but I prefer
1554                            to be correct. */
1555                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1556                 }
1557         } else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1558                 struct ipmi_lan_addr  *lan_addr;
1559                 unsigned char         ipmb_seq;
1560                 long                  seqid;
1561
1562                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1563                         spin_lock_irqsave(&intf->counter_lock, flags);
1564                         intf->sent_invalid_commands++;
1565                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1566                         rv = -EINVAL;
1567                         goto out_err;
1568                 }
1569
1570                 if ((intf->channels[addr->channel].medium
1571                     != IPMI_CHANNEL_MEDIUM_8023LAN)
1572                     && (intf->channels[addr->channel].medium
1573                         != IPMI_CHANNEL_MEDIUM_ASYNC))
1574                 {
1575                         spin_lock_irqsave(&intf->counter_lock, flags);
1576                         intf->sent_invalid_commands++;
1577                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1578                         rv = -EINVAL;
1579                         goto out_err;
1580                 }
1581
1582                 retries = 4;
1583
1584                 /* Default to 1 second retries. */
1585                 if (retry_time_ms == 0)
1586                     retry_time_ms = 1000;
1587
1588                 /* 11 for the header and 1 for the checksum. */
1589                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1590                         spin_lock_irqsave(&intf->counter_lock, flags);
1591                         intf->sent_invalid_commands++;
1592                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1593                         rv = -EMSGSIZE;
1594                         goto out_err;
1595                 }
1596
1597                 lan_addr = (struct ipmi_lan_addr *) addr;
1598                 if (lan_addr->lun > 3) {
1599                         spin_lock_irqsave(&intf->counter_lock, flags);
1600                         intf->sent_invalid_commands++;
1601                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1602                         rv = -EINVAL;
1603                         goto out_err;
1604                 }
1605
1606                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1607
1608                 if (recv_msg->msg.netfn & 0x1) {
1609                         /* It's a response, so use the user's sequence
1610                            from msgid. */
1611                         spin_lock_irqsave(&intf->counter_lock, flags);
1612                         intf->sent_lan_responses++;
1613                         spin_unlock_irqrestore(&intf->counter_lock, flags);
1614                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1615                                        msgid, source_lun);
1616
1617                         /* Save the receive message so we can use it
1618                            to deliver the response. */
1619                         smi_msg->user_data = recv_msg;
1620                 } else {
1621                         /* It's a command, so get a sequence for it. */
1622
1623                         spin_lock_irqsave(&(intf->seq_lock), flags);
1624
1625                         spin_lock(&intf->counter_lock);
1626                         intf->sent_lan_commands++;
1627                         spin_unlock(&intf->counter_lock);
1628
1629                         /* Create a sequence number with a 1 second
1630                            timeout and 4 retries. */
1631                         rv = intf_next_seq(intf,
1632                                            recv_msg,
1633                                            retry_time_ms,
1634                                            retries,
1635                                            0,
1636                                            &ipmb_seq,
1637                                            &seqid);
1638                         if (rv) {
1639                                 /* We have used up all the sequence numbers,
1640                                    probably, so abort. */
1641                                 spin_unlock_irqrestore(&(intf->seq_lock),
1642                                                        flags);
1643                                 goto out_err;
1644                         }
1645
1646                         /* Store the sequence number in the message,
1647                            so that when the send message response
1648                            comes back we can start the timer. */
1649                         format_lan_msg(smi_msg, msg, lan_addr,
1650                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1651                                        ipmb_seq, source_lun);
1652
1653                         /* Copy the message into the recv message data, so we
1654                            can retransmit it later if necessary. */
1655                         memcpy(recv_msg->msg_data, smi_msg->data,
1656                                smi_msg->data_size);
1657                         recv_msg->msg.data = recv_msg->msg_data;
1658                         recv_msg->msg.data_len = smi_msg->data_size;
1659
1660                         /* We don't unlock until here, because we need
1661                            to copy the completed message into the
1662                            recv_msg before we release the lock.
1663                            Otherwise, race conditions may bite us.  I
1664                            know that's pretty paranoid, but I prefer
1665                            to be correct. */
1666                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1667                 }
1668         } else {
1669             /* Unknown address type. */
1670                 spin_lock_irqsave(&intf->counter_lock, flags);
1671                 intf->sent_invalid_commands++;
1672                 spin_unlock_irqrestore(&intf->counter_lock, flags);
1673                 rv = -EINVAL;
1674                 goto out_err;
1675         }
1676
1677 #ifdef DEBUG_MSGING
1678         {
1679                 int m;
1680                 for (m = 0; m < smi_msg->data_size; m++)
1681                         printk(" %2.2x", smi_msg->data[m]);
1682                 printk("\n");
1683         }
1684 #endif
1685
1686         handlers->sender(intf->send_info, smi_msg, priority);
1687         rcu_read_unlock();
1688
1689         return 0;
1690
1691  out_err:
1692         rcu_read_unlock();
1693         ipmi_free_smi_msg(smi_msg);
1694         ipmi_free_recv_msg(recv_msg);
1695         return rv;
1696 }
1697
1698 static int check_addr(ipmi_smi_t       intf,
1699                       struct ipmi_addr *addr,
1700                       unsigned char    *saddr,
1701                       unsigned char    *lun)
1702 {
1703         if (addr->channel >= IPMI_MAX_CHANNELS)
1704                 return -EINVAL;
1705         *lun = intf->channels[addr->channel].lun;
1706         *saddr = intf->channels[addr->channel].address;
1707         return 0;
1708 }
1709
1710 int ipmi_request_settime(ipmi_user_t      user,
1711                          struct ipmi_addr *addr,
1712                          long             msgid,
1713                          struct kernel_ipmi_msg  *msg,
1714                          void             *user_msg_data,
1715                          int              priority,
1716                          int              retries,
1717                          unsigned int     retry_time_ms)
1718 {
1719         unsigned char saddr, lun;
1720         int           rv;
1721
1722         if (!user)
1723                 return -EINVAL;
1724         rv = check_addr(user->intf, addr, &saddr, &lun);
1725         if (rv)
1726                 return rv;
1727         return i_ipmi_request(user,
1728                               user->intf,
1729                               addr,
1730                               msgid,
1731                               msg,
1732                               user_msg_data,
1733                               NULL, NULL,
1734                               priority,
1735                               saddr,
1736                               lun,
1737                               retries,
1738                               retry_time_ms);
1739 }
1740
1741 int ipmi_request_supply_msgs(ipmi_user_t          user,
1742                              struct ipmi_addr     *addr,
1743                              long                 msgid,
1744                              struct kernel_ipmi_msg *msg,
1745                              void                 *user_msg_data,
1746                              void                 *supplied_smi,
1747                              struct ipmi_recv_msg *supplied_recv,
1748                              int                  priority)
1749 {
1750         unsigned char saddr, lun;
1751         int           rv;
1752
1753         if (!user)
1754                 return -EINVAL;
1755         rv = check_addr(user->intf, addr, &saddr, &lun);
1756         if (rv)
1757                 return rv;
1758         return i_ipmi_request(user,
1759                               user->intf,
1760                               addr,
1761                               msgid,
1762                               msg,
1763                               user_msg_data,
1764                               supplied_smi,
1765                               supplied_recv,
1766                               priority,
1767                               saddr,
1768                               lun,
1769                               -1, 0);
1770 }
1771
1772 #ifdef CONFIG_PROC_FS
1773 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1774                                int count, int *eof, void *data)
1775 {
1776         char       *out = (char *) page;
1777         ipmi_smi_t intf = data;
1778         int        i;
1779         int        rv = 0;
1780
1781         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1782                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1783         out[rv-1] = '\n'; /* Replace the final space with a newline */
1784         out[rv] = '\0';
1785         rv++;
1786         return rv;
1787 }
1788
1789 static int version_file_read_proc(char *page, char **start, off_t off,
1790                                   int count, int *eof, void *data)
1791 {
1792         char       *out = (char *) page;
1793         ipmi_smi_t intf = data;
1794
1795         return sprintf(out, "%d.%d\n",
1796                        ipmi_version_major(&intf->bmc->id),
1797                        ipmi_version_minor(&intf->bmc->id));
1798 }
1799
1800 static int stat_file_read_proc(char *page, char **start, off_t off,
1801                                int count, int *eof, void *data)
1802 {
1803         char       *out = (char *) page;
1804         ipmi_smi_t intf = data;
1805
1806         out += sprintf(out, "sent_invalid_commands:       %d\n",
1807                        intf->sent_invalid_commands);
1808         out += sprintf(out, "sent_local_commands:         %d\n",
1809                        intf->sent_local_commands);
1810         out += sprintf(out, "handled_local_responses:     %d\n",
1811                        intf->handled_local_responses);
1812         out += sprintf(out, "unhandled_local_responses:   %d\n",
1813                        intf->unhandled_local_responses);
1814         out += sprintf(out, "sent_ipmb_commands:          %d\n",
1815                        intf->sent_ipmb_commands);
1816         out += sprintf(out, "sent_ipmb_command_errs:      %d\n",
1817                        intf->sent_ipmb_command_errs);
1818         out += sprintf(out, "retransmitted_ipmb_commands: %d\n",
1819                        intf->retransmitted_ipmb_commands);
1820         out += sprintf(out, "timed_out_ipmb_commands:     %d\n",
1821                        intf->timed_out_ipmb_commands);
1822         out += sprintf(out, "timed_out_ipmb_broadcasts:   %d\n",
1823                        intf->timed_out_ipmb_broadcasts);
1824         out += sprintf(out, "sent_ipmb_responses:         %d\n",
1825                        intf->sent_ipmb_responses);
1826         out += sprintf(out, "handled_ipmb_responses:      %d\n",
1827                        intf->handled_ipmb_responses);
1828         out += sprintf(out, "invalid_ipmb_responses:      %d\n",
1829                        intf->invalid_ipmb_responses);
1830         out += sprintf(out, "unhandled_ipmb_responses:    %d\n",
1831                        intf->unhandled_ipmb_responses);
1832         out += sprintf(out, "sent_lan_commands:           %d\n",
1833                        intf->sent_lan_commands);
1834         out += sprintf(out, "sent_lan_command_errs:       %d\n",
1835                        intf->sent_lan_command_errs);
1836         out += sprintf(out, "retransmitted_lan_commands:  %d\n",
1837                        intf->retransmitted_lan_commands);
1838         out += sprintf(out, "timed_out_lan_commands:      %d\n",
1839                        intf->timed_out_lan_commands);
1840         out += sprintf(out, "sent_lan_responses:          %d\n",
1841                        intf->sent_lan_responses);
1842         out += sprintf(out, "handled_lan_responses:       %d\n",
1843                        intf->handled_lan_responses);
1844         out += sprintf(out, "invalid_lan_responses:       %d\n",
1845                        intf->invalid_lan_responses);
1846         out += sprintf(out, "unhandled_lan_responses:     %d\n",
1847                        intf->unhandled_lan_responses);
1848         out += sprintf(out, "handled_commands:            %d\n",
1849                        intf->handled_commands);
1850         out += sprintf(out, "invalid_commands:            %d\n",
1851                        intf->invalid_commands);
1852         out += sprintf(out, "unhandled_commands:          %d\n",
1853                        intf->unhandled_commands);
1854         out += sprintf(out, "invalid_events:              %d\n",
1855                        intf->invalid_events);
1856         out += sprintf(out, "events:                      %d\n",
1857                        intf->events);
1858
1859         return (out - ((char *) page));
1860 }
1861 #endif /* CONFIG_PROC_FS */
1862
1863 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1864                             read_proc_t *read_proc, write_proc_t *write_proc,
1865                             void *data, struct module *owner)
1866 {
1867         int                    rv = 0;
1868 #ifdef CONFIG_PROC_FS
1869         struct proc_dir_entry  *file;
1870         struct ipmi_proc_entry *entry;
1871
1872         /* Create a list element. */
1873         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1874         if (!entry)
1875                 return -ENOMEM;
1876         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1877         if (!entry->name) {
1878                 kfree(entry);
1879                 return -ENOMEM;
1880         }
1881         strcpy(entry->name, name);
1882
1883         file = create_proc_entry(name, 0, smi->proc_dir);
1884         if (!file) {
1885                 kfree(entry->name);
1886                 kfree(entry);
1887                 rv = -ENOMEM;
1888         } else {
1889                 file->nlink = 1;
1890                 file->data = data;
1891                 file->read_proc = read_proc;
1892                 file->write_proc = write_proc;
1893                 file->owner = owner;
1894
1895                 spin_lock(&smi->proc_entry_lock);
1896                 /* Stick it on the list. */
1897                 entry->next = smi->proc_entries;
1898                 smi->proc_entries = entry;
1899                 spin_unlock(&smi->proc_entry_lock);
1900         }
1901 #endif /* CONFIG_PROC_FS */
1902
1903         return rv;
1904 }
1905
1906 static int add_proc_entries(ipmi_smi_t smi, int num)
1907 {
1908         int rv = 0;
1909
1910 #ifdef CONFIG_PROC_FS
1911         sprintf(smi->proc_dir_name, "%d", num);
1912         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1913         if (!smi->proc_dir)
1914                 rv = -ENOMEM;
1915         else {
1916                 smi->proc_dir->owner = THIS_MODULE;
1917         }
1918
1919         if (rv == 0)
1920                 rv = ipmi_smi_add_proc_entry(smi, "stats",
1921                                              stat_file_read_proc, NULL,
1922                                              smi, THIS_MODULE);
1923
1924         if (rv == 0)
1925                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
1926                                              ipmb_file_read_proc, NULL,
1927                                              smi, THIS_MODULE);
1928
1929         if (rv == 0)
1930                 rv = ipmi_smi_add_proc_entry(smi, "version",
1931                                              version_file_read_proc, NULL,
1932                                              smi, THIS_MODULE);
1933 #endif /* CONFIG_PROC_FS */
1934
1935         return rv;
1936 }
1937
1938 static void remove_proc_entries(ipmi_smi_t smi)
1939 {
1940 #ifdef CONFIG_PROC_FS
1941         struct ipmi_proc_entry *entry;
1942
1943         spin_lock(&smi->proc_entry_lock);
1944         while (smi->proc_entries) {
1945                 entry = smi->proc_entries;
1946                 smi->proc_entries = entry->next;
1947
1948                 remove_proc_entry(entry->name, smi->proc_dir);
1949                 kfree(entry->name);
1950                 kfree(entry);
1951         }
1952         spin_unlock(&smi->proc_entry_lock);
1953         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
1954 #endif /* CONFIG_PROC_FS */
1955 }
1956
1957 static int __find_bmc_guid(struct device *dev, void *data)
1958 {
1959         unsigned char *id = data;
1960         struct bmc_device *bmc = dev_get_drvdata(dev);
1961         return memcmp(bmc->guid, id, 16) == 0;
1962 }
1963
1964 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
1965                                              unsigned char *guid)
1966 {
1967         struct device *dev;
1968
1969         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
1970         if (dev)
1971                 return dev_get_drvdata(dev);
1972         else
1973                 return NULL;
1974 }
1975
1976 struct prod_dev_id {
1977         unsigned int  product_id;
1978         unsigned char device_id;
1979 };
1980
1981 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
1982 {
1983         struct prod_dev_id *id = data;
1984         struct bmc_device *bmc = dev_get_drvdata(dev);
1985
1986         return (bmc->id.product_id == id->product_id
1987                 && bmc->id.device_id == id->device_id);
1988 }
1989
1990 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
1991         struct device_driver *drv,
1992         unsigned int product_id, unsigned char device_id)
1993 {
1994         struct prod_dev_id id = {
1995                 .product_id = product_id,
1996                 .device_id = device_id,
1997         };
1998         struct device *dev;
1999
2000         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2001         if (dev)
2002                 return dev_get_drvdata(dev);
2003         else
2004                 return NULL;
2005 }
2006
2007 static ssize_t device_id_show(struct device *dev,
2008                               struct device_attribute *attr,
2009                               char *buf)
2010 {
2011         struct bmc_device *bmc = dev_get_drvdata(dev);
2012
2013         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2014 }
2015
2016 static ssize_t provides_dev_sdrs_show(struct device *dev,
2017                                       struct device_attribute *attr,
2018                                       char *buf)
2019 {
2020         struct bmc_device *bmc = dev_get_drvdata(dev);
2021
2022         return snprintf(buf, 10, "%u\n",
2023                         (bmc->id.device_revision & 0x80) >> 7);
2024 }
2025
2026 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2027                              char *buf)
2028 {
2029         struct bmc_device *bmc = dev_get_drvdata(dev);
2030
2031         return snprintf(buf, 20, "%u\n",
2032                         bmc->id.device_revision & 0x0F);
2033 }
2034
2035 static ssize_t firmware_rev_show(struct device *dev,
2036                                  struct device_attribute *attr,
2037                                  char *buf)
2038 {
2039         struct bmc_device *bmc = dev_get_drvdata(dev);
2040
2041         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2042                         bmc->id.firmware_revision_2);
2043 }
2044
2045 static ssize_t ipmi_version_show(struct device *dev,
2046                                  struct device_attribute *attr,
2047                                  char *buf)
2048 {
2049         struct bmc_device *bmc = dev_get_drvdata(dev);
2050
2051         return snprintf(buf, 20, "%u.%u\n",
2052                         ipmi_version_major(&bmc->id),
2053                         ipmi_version_minor(&bmc->id));
2054 }
2055
2056 static ssize_t add_dev_support_show(struct device *dev,
2057                                     struct device_attribute *attr,
2058                                     char *buf)
2059 {
2060         struct bmc_device *bmc = dev_get_drvdata(dev);
2061
2062         return snprintf(buf, 10, "0x%02x\n",
2063                         bmc->id.additional_device_support);
2064 }
2065
2066 static ssize_t manufacturer_id_show(struct device *dev,
2067                                     struct device_attribute *attr,
2068                                     char *buf)
2069 {
2070         struct bmc_device *bmc = dev_get_drvdata(dev);
2071
2072         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2073 }
2074
2075 static ssize_t product_id_show(struct device *dev,
2076                                struct device_attribute *attr,
2077                                char *buf)
2078 {
2079         struct bmc_device *bmc = dev_get_drvdata(dev);
2080
2081         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2082 }
2083
2084 static ssize_t aux_firmware_rev_show(struct device *dev,
2085                                      struct device_attribute *attr,
2086                                      char *buf)
2087 {
2088         struct bmc_device *bmc = dev_get_drvdata(dev);
2089
2090         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2091                         bmc->id.aux_firmware_revision[3],
2092                         bmc->id.aux_firmware_revision[2],
2093                         bmc->id.aux_firmware_revision[1],
2094                         bmc->id.aux_firmware_revision[0]);
2095 }
2096
2097 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2098                          char *buf)
2099 {
2100         struct bmc_device *bmc = dev_get_drvdata(dev);
2101
2102         return snprintf(buf, 100, "%Lx%Lx\n",
2103                         (long long) bmc->guid[0],
2104                         (long long) bmc->guid[8]);
2105 }
2106
2107 static void remove_files(struct bmc_device *bmc)
2108 {
2109         if (!bmc->dev)
2110                 return;
2111
2112         device_remove_file(&bmc->dev->dev,
2113                            &bmc->device_id_attr);
2114         device_remove_file(&bmc->dev->dev,
2115                            &bmc->provides_dev_sdrs_attr);
2116         device_remove_file(&bmc->dev->dev,
2117                            &bmc->revision_attr);
2118         device_remove_file(&bmc->dev->dev,
2119                            &bmc->firmware_rev_attr);
2120         device_remove_file(&bmc->dev->dev,
2121                            &bmc->version_attr);
2122         device_remove_file(&bmc->dev->dev,
2123                            &bmc->add_dev_support_attr);
2124         device_remove_file(&bmc->dev->dev,
2125                            &bmc->manufacturer_id_attr);
2126         device_remove_file(&bmc->dev->dev,
2127                            &bmc->product_id_attr);
2128
2129         if (bmc->id.aux_firmware_revision_set)
2130                 device_remove_file(&bmc->dev->dev,
2131                                    &bmc->aux_firmware_rev_attr);
2132         if (bmc->guid_set)
2133                 device_remove_file(&bmc->dev->dev,
2134                                    &bmc->guid_attr);
2135 }
2136
2137 static void
2138 cleanup_bmc_device(struct kref *ref)
2139 {
2140         struct bmc_device *bmc;
2141
2142         bmc = container_of(ref, struct bmc_device, refcount);
2143
2144         remove_files(bmc);
2145         if (bmc->dev)
2146                 platform_device_unregister(bmc->dev);
2147         kfree(bmc);
2148 }
2149
2150 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2151 {
2152         struct bmc_device *bmc = intf->bmc;
2153
2154         if (intf->sysfs_name) {
2155                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2156                 kfree(intf->sysfs_name);
2157                 intf->sysfs_name = NULL;
2158         }
2159         if (intf->my_dev_name) {
2160                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2161                 kfree(intf->my_dev_name);
2162                 intf->my_dev_name = NULL;
2163         }
2164
2165         mutex_lock(&ipmidriver_mutex);
2166         kref_put(&bmc->refcount, cleanup_bmc_device);
2167         intf->bmc = NULL;
2168         mutex_unlock(&ipmidriver_mutex);
2169 }
2170
2171 static int create_files(struct bmc_device *bmc)
2172 {
2173         int err;
2174
2175         bmc->device_id_attr.attr.name = "device_id";
2176         bmc->device_id_attr.attr.owner = THIS_MODULE;
2177         bmc->device_id_attr.attr.mode = S_IRUGO;
2178         bmc->device_id_attr.show = device_id_show;
2179
2180         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2181         bmc->provides_dev_sdrs_attr.attr.owner = THIS_MODULE;
2182         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2183         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2184
2185         bmc->revision_attr.attr.name = "revision";
2186         bmc->revision_attr.attr.owner = THIS_MODULE;
2187         bmc->revision_attr.attr.mode = S_IRUGO;
2188         bmc->revision_attr.show = revision_show;
2189
2190         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2191         bmc->firmware_rev_attr.attr.owner = THIS_MODULE;
2192         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2193         bmc->firmware_rev_attr.show = firmware_rev_show;
2194
2195         bmc->version_attr.attr.name = "ipmi_version";
2196         bmc->version_attr.attr.owner = THIS_MODULE;
2197         bmc->version_attr.attr.mode = S_IRUGO;
2198         bmc->version_attr.show = ipmi_version_show;
2199
2200         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2201         bmc->add_dev_support_attr.attr.owner = THIS_MODULE;
2202         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2203         bmc->add_dev_support_attr.show = add_dev_support_show;
2204
2205         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2206         bmc->manufacturer_id_attr.attr.owner = THIS_MODULE;
2207         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2208         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2209
2210         bmc->product_id_attr.attr.name = "product_id";
2211         bmc->product_id_attr.attr.owner = THIS_MODULE;
2212         bmc->product_id_attr.attr.mode = S_IRUGO;
2213         bmc->product_id_attr.show = product_id_show;
2214
2215         bmc->guid_attr.attr.name = "guid";
2216         bmc->guid_attr.attr.owner = THIS_MODULE;
2217         bmc->guid_attr.attr.mode = S_IRUGO;
2218         bmc->guid_attr.show = guid_show;
2219
2220         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2221         bmc->aux_firmware_rev_attr.attr.owner = THIS_MODULE;
2222         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2223         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2224
2225         err = device_create_file(&bmc->dev->dev,
2226                            &bmc->device_id_attr);
2227         if (err) goto out;
2228         err = device_create_file(&bmc->dev->dev,
2229                            &bmc->provides_dev_sdrs_attr);
2230         if (err) goto out_devid;
2231         err = device_create_file(&bmc->dev->dev,
2232                            &bmc->revision_attr);
2233         if (err) goto out_sdrs;
2234         err = device_create_file(&bmc->dev->dev,
2235                            &bmc->firmware_rev_attr);
2236         if (err) goto out_rev;
2237         err = device_create_file(&bmc->dev->dev,
2238                            &bmc->version_attr);
2239         if (err) goto out_firm;
2240         err = device_create_file(&bmc->dev->dev,
2241                            &bmc->add_dev_support_attr);
2242         if (err) goto out_version;
2243         err = device_create_file(&bmc->dev->dev,
2244                            &bmc->manufacturer_id_attr);
2245         if (err) goto out_add_dev;
2246         err = device_create_file(&bmc->dev->dev,
2247                            &bmc->product_id_attr);
2248         if (err) goto out_manu;
2249         if (bmc->id.aux_firmware_revision_set) {
2250                 err = device_create_file(&bmc->dev->dev,
2251                                    &bmc->aux_firmware_rev_attr);
2252                 if (err) goto out_prod_id;
2253         }
2254         if (bmc->guid_set) {
2255                 err = device_create_file(&bmc->dev->dev,
2256                                    &bmc->guid_attr);
2257                 if (err) goto out_aux_firm;
2258         }
2259
2260         return 0;
2261
2262 out_aux_firm:
2263         if (bmc->id.aux_firmware_revision_set)
2264                 device_remove_file(&bmc->dev->dev,
2265                                    &bmc->aux_firmware_rev_attr);
2266 out_prod_id:
2267         device_remove_file(&bmc->dev->dev,
2268                            &bmc->product_id_attr);
2269 out_manu:
2270         device_remove_file(&bmc->dev->dev,
2271                            &bmc->manufacturer_id_attr);
2272 out_add_dev:
2273         device_remove_file(&bmc->dev->dev,
2274                            &bmc->add_dev_support_attr);
2275 out_version:
2276         device_remove_file(&bmc->dev->dev,
2277                            &bmc->version_attr);
2278 out_firm:
2279         device_remove_file(&bmc->dev->dev,
2280                            &bmc->firmware_rev_attr);
2281 out_rev:
2282         device_remove_file(&bmc->dev->dev,
2283                            &bmc->revision_attr);
2284 out_sdrs:
2285         device_remove_file(&bmc->dev->dev,
2286                            &bmc->provides_dev_sdrs_attr);
2287 out_devid:
2288         device_remove_file(&bmc->dev->dev,
2289                            &bmc->device_id_attr);
2290 out:
2291         return err;
2292 }
2293
2294 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2295                              const char *sysfs_name)
2296 {
2297         int               rv;
2298         struct bmc_device *bmc = intf->bmc;
2299         struct bmc_device *old_bmc;
2300         int               size;
2301         char              dummy[1];
2302
2303         mutex_lock(&ipmidriver_mutex);
2304
2305         /*
2306          * Try to find if there is an bmc_device struct
2307          * representing the interfaced BMC already
2308          */
2309         if (bmc->guid_set)
2310                 old_bmc = ipmi_find_bmc_guid(&ipmidriver, bmc->guid);
2311         else
2312                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver,
2313                                                     bmc->id.product_id,
2314                                                     bmc->id.device_id);
2315
2316         /*
2317          * If there is already an bmc_device, free the new one,
2318          * otherwise register the new BMC device
2319          */
2320         if (old_bmc) {
2321                 kfree(bmc);
2322                 intf->bmc = old_bmc;
2323                 bmc = old_bmc;
2324
2325                 kref_get(&bmc->refcount);
2326                 mutex_unlock(&ipmidriver_mutex);
2327
2328                 printk(KERN_INFO
2329                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2330                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2331                        bmc->id.manufacturer_id,
2332                        bmc->id.product_id,
2333                        bmc->id.device_id);
2334         } else {
2335                 char name[14];
2336                 unsigned char orig_dev_id = bmc->id.device_id;
2337                 int warn_printed = 0;
2338
2339                 snprintf(name, sizeof(name),
2340                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2341
2342                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver,
2343                                                  bmc->id.product_id,
2344                                                  bmc->id.device_id))
2345                 {
2346                         if (!warn_printed) {
2347                                 printk(KERN_WARNING PFX
2348                                        "This machine has two different BMCs"
2349                                        " with the same product id and device"
2350                                        " id.  This is an error in the"
2351                                        " firmware, but incrementing the"
2352                                        " device id to work around the problem."
2353                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2354                                        bmc->id.product_id, bmc->id.device_id);
2355                                 warn_printed = 1;
2356                         }
2357                         bmc->id.device_id++; /* Wraps at 255 */
2358                         if (bmc->id.device_id == orig_dev_id) {
2359                                 printk(KERN_ERR PFX
2360                                        "Out of device ids!\n");
2361                                 break;
2362                         }
2363                 }
2364
2365                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2366                 if (!bmc->dev) {
2367                         mutex_unlock(&ipmidriver_mutex);
2368                         printk(KERN_ERR
2369                                "ipmi_msghandler:"
2370                                " Unable to allocate platform device\n");
2371                         return -ENOMEM;
2372                 }
2373                 bmc->dev->dev.driver = &ipmidriver;
2374                 dev_set_drvdata(&bmc->dev->dev, bmc);
2375                 kref_init(&bmc->refcount);
2376
2377                 rv = platform_device_add(bmc->dev);
2378                 mutex_unlock(&ipmidriver_mutex);
2379                 if (rv) {
2380                         platform_device_put(bmc->dev);
2381                         bmc->dev = NULL;
2382                         printk(KERN_ERR
2383                                "ipmi_msghandler:"
2384                                " Unable to register bmc device: %d\n",
2385                                rv);
2386                         /* Don't go to out_err, you can only do that if
2387                            the device is registered already. */
2388                         return rv;
2389                 }
2390
2391                 rv = create_files(bmc);
2392                 if (rv) {
2393                         mutex_lock(&ipmidriver_mutex);
2394                         platform_device_unregister(bmc->dev);
2395                         mutex_unlock(&ipmidriver_mutex);
2396
2397                         return rv;
2398                 }
2399
2400                 printk(KERN_INFO
2401                        "ipmi: Found new BMC (man_id: 0x%6.6x, "
2402                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2403                        bmc->id.manufacturer_id,
2404                        bmc->id.product_id,
2405                        bmc->id.device_id);
2406         }
2407
2408         /*
2409          * create symlink from system interface device to bmc device
2410          * and back.
2411          */
2412         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2413         if (!intf->sysfs_name) {
2414                 rv = -ENOMEM;
2415                 printk(KERN_ERR
2416                        "ipmi_msghandler: allocate link to BMC: %d\n",
2417                        rv);
2418                 goto out_err;
2419         }
2420
2421         rv = sysfs_create_link(&intf->si_dev->kobj,
2422                                &bmc->dev->dev.kobj, intf->sysfs_name);
2423         if (rv) {
2424                 kfree(intf->sysfs_name);
2425                 intf->sysfs_name = NULL;
2426                 printk(KERN_ERR
2427                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2428                        rv);
2429                 goto out_err;
2430         }
2431
2432         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2433         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2434         if (!intf->my_dev_name) {
2435                 kfree(intf->sysfs_name);
2436                 intf->sysfs_name = NULL;
2437                 rv = -ENOMEM;
2438                 printk(KERN_ERR
2439                        "ipmi_msghandler: allocate link from BMC: %d\n",
2440                        rv);
2441                 goto out_err;
2442         }
2443         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2444
2445         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2446                                intf->my_dev_name);
2447         if (rv) {
2448                 kfree(intf->sysfs_name);
2449                 intf->sysfs_name = NULL;
2450                 kfree(intf->my_dev_name);
2451                 intf->my_dev_name = NULL;
2452                 printk(KERN_ERR
2453                        "ipmi_msghandler:"
2454                        " Unable to create symlink to bmc: %d\n",
2455                        rv);
2456                 goto out_err;
2457         }
2458
2459         return 0;
2460
2461 out_err:
2462         ipmi_bmc_unregister(intf);
2463         return rv;
2464 }
2465
2466 static int
2467 send_guid_cmd(ipmi_smi_t intf, int chan)
2468 {
2469         struct kernel_ipmi_msg            msg;
2470         struct ipmi_system_interface_addr si;
2471
2472         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2473         si.channel = IPMI_BMC_CHANNEL;
2474         si.lun = 0;
2475
2476         msg.netfn = IPMI_NETFN_APP_REQUEST;
2477         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2478         msg.data = NULL;
2479         msg.data_len = 0;
2480         return i_ipmi_request(NULL,
2481                               intf,
2482                               (struct ipmi_addr *) &si,
2483                               0,
2484                               &msg,
2485                               intf,
2486                               NULL,
2487                               NULL,
2488                               0,
2489                               intf->channels[0].address,
2490                               intf->channels[0].lun,
2491                               -1, 0);
2492 }
2493
2494 static void
2495 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2496 {
2497         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2498             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2499             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2500                 /* Not for me */
2501                 return;
2502
2503         if (msg->msg.data[0] != 0) {
2504                 /* Error from getting the GUID, the BMC doesn't have one. */
2505                 intf->bmc->guid_set = 0;
2506                 goto out;
2507         }
2508
2509         if (msg->msg.data_len < 17) {
2510                 intf->bmc->guid_set = 0;
2511                 printk(KERN_WARNING PFX
2512                        "guid_handler: The GUID response from the BMC was too"
2513                        " short, it was %d but should have been 17.  Assuming"
2514                        " GUID is not available.\n",
2515                        msg->msg.data_len);
2516                 goto out;
2517         }
2518
2519         memcpy(intf->bmc->guid, msg->msg.data, 16);
2520         intf->bmc->guid_set = 1;
2521  out:
2522         wake_up(&intf->waitq);
2523 }
2524
2525 static void
2526 get_guid(ipmi_smi_t intf)
2527 {
2528         int rv;
2529
2530         intf->bmc->guid_set = 0x2;
2531         intf->null_user_handler = guid_handler;
2532         rv = send_guid_cmd(intf, 0);
2533         if (rv)
2534                 /* Send failed, no GUID available. */
2535                 intf->bmc->guid_set = 0;
2536         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2537         intf->null_user_handler = NULL;
2538 }
2539
2540 static int
2541 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2542 {
2543         struct kernel_ipmi_msg            msg;
2544         unsigned char                     data[1];
2545         struct ipmi_system_interface_addr si;
2546
2547         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2548         si.channel = IPMI_BMC_CHANNEL;
2549         si.lun = 0;
2550
2551         msg.netfn = IPMI_NETFN_APP_REQUEST;
2552         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2553         msg.data = data;
2554         msg.data_len = 1;
2555         data[0] = chan;
2556         return i_ipmi_request(NULL,
2557                               intf,
2558                               (struct ipmi_addr *) &si,
2559                               0,
2560                               &msg,
2561                               intf,
2562                               NULL,
2563                               NULL,
2564                               0,
2565                               intf->channels[0].address,
2566                               intf->channels[0].lun,
2567                               -1, 0);
2568 }
2569
2570 static void
2571 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2572 {
2573         int rv = 0;
2574         int chan;
2575
2576         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2577             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2578             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD))
2579         {
2580                 /* It's the one we want */
2581                 if (msg->msg.data[0] != 0) {
2582                         /* Got an error from the channel, just go on. */
2583
2584                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2585                                 /* If the MC does not support this
2586                                    command, that is legal.  We just
2587                                    assume it has one IPMB at channel
2588                                    zero. */
2589                                 intf->channels[0].medium
2590                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2591                                 intf->channels[0].protocol
2592                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2593                                 rv = -ENOSYS;
2594
2595                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2596                                 wake_up(&intf->waitq);
2597                                 goto out;
2598                         }
2599                         goto next_channel;
2600                 }
2601                 if (msg->msg.data_len < 4) {
2602                         /* Message not big enough, just go on. */
2603                         goto next_channel;
2604                 }
2605                 chan = intf->curr_channel;
2606                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2607                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2608
2609         next_channel:
2610                 intf->curr_channel++;
2611                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2612                         wake_up(&intf->waitq);
2613                 else
2614                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2615
2616                 if (rv) {
2617                         /* Got an error somehow, just give up. */
2618                         intf->curr_channel = IPMI_MAX_CHANNELS;
2619                         wake_up(&intf->waitq);
2620
2621                         printk(KERN_WARNING PFX
2622                                "Error sending channel information: %d\n",
2623                                rv);
2624                 }
2625         }
2626  out:
2627         return;
2628 }
2629
2630 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2631                       void                     *send_info,
2632                       struct ipmi_device_id    *device_id,
2633                       struct device            *si_dev,
2634                       const char               *sysfs_name,
2635                       unsigned char            slave_addr)
2636 {
2637         int              i, j;
2638         int              rv;
2639         ipmi_smi_t       intf;
2640         ipmi_smi_t       tintf;
2641         struct list_head *link;
2642
2643         /* Make sure the driver is actually initialized, this handles
2644            problems with initialization order. */
2645         if (!initialized) {
2646                 rv = ipmi_init_msghandler();
2647                 if (rv)
2648                         return rv;
2649                 /* The init code doesn't return an error if it was turned
2650                    off, but it won't initialize.  Check that. */
2651                 if (!initialized)
2652                         return -ENODEV;
2653         }
2654
2655         intf = kmalloc(sizeof(*intf), GFP_KERNEL);
2656         if (!intf)
2657                 return -ENOMEM;
2658         memset(intf, 0, sizeof(*intf));
2659
2660         intf->ipmi_version_major = ipmi_version_major(device_id);
2661         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2662
2663         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2664         if (!intf->bmc) {
2665                 kfree(intf);
2666                 return -ENOMEM;
2667         }
2668         intf->intf_num = -1; /* Mark it invalid for now. */
2669         kref_init(&intf->refcount);
2670         intf->bmc->id = *device_id;
2671         intf->si_dev = si_dev;
2672         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2673                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2674                 intf->channels[j].lun = 2;
2675         }
2676         if (slave_addr != 0)
2677                 intf->channels[0].address = slave_addr;
2678         INIT_LIST_HEAD(&intf->users);
2679         intf->handlers = handlers;
2680         intf->send_info = send_info;
2681         spin_lock_init(&intf->seq_lock);
2682         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2683                 intf->seq_table[j].inuse = 0;
2684                 intf->seq_table[j].seqid = 0;
2685         }
2686         intf->curr_seq = 0;
2687 #ifdef CONFIG_PROC_FS
2688         spin_lock_init(&intf->proc_entry_lock);
2689 #endif
2690         spin_lock_init(&intf->waiting_msgs_lock);
2691         INIT_LIST_HEAD(&intf->waiting_msgs);
2692         spin_lock_init(&intf->events_lock);
2693         INIT_LIST_HEAD(&intf->waiting_events);
2694         intf->waiting_events_count = 0;
2695         mutex_init(&intf->cmd_rcvrs_mutex);
2696         spin_lock_init(&intf->maintenance_mode_lock);
2697         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2698         init_waitqueue_head(&intf->waitq);
2699
2700         spin_lock_init(&intf->counter_lock);
2701         intf->proc_dir = NULL;
2702
2703         mutex_lock(&smi_watchers_mutex);
2704         mutex_lock(&ipmi_interfaces_mutex);
2705         /* Look for a hole in the numbers. */
2706         i = 0;
2707         link = &ipmi_interfaces;
2708         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2709                 if (tintf->intf_num != i) {
2710                         link = &tintf->link;
2711                         break;
2712                 }
2713                 i++;
2714         }
2715         /* Add the new interface in numeric order. */
2716         if (i == 0)
2717                 list_add_rcu(&intf->link, &ipmi_interfaces);
2718         else
2719                 list_add_tail_rcu(&intf->link, link);
2720
2721         rv = handlers->start_processing(send_info, intf);
2722         if (rv)
2723                 goto out;
2724
2725         get_guid(intf);
2726
2727         if ((intf->ipmi_version_major > 1)
2728             || ((intf->ipmi_version_major == 1)
2729                 && (intf->ipmi_version_minor >= 5)))
2730         {
2731                 /* Start scanning the channels to see what is
2732                    available. */
2733                 intf->null_user_handler = channel_handler;
2734                 intf->curr_channel = 0;
2735                 rv = send_channel_info_cmd(intf, 0);
2736                 if (rv)
2737                         goto out;
2738
2739                 /* Wait for the channel info to be read. */
2740                 wait_event(intf->waitq,
2741                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2742                 intf->null_user_handler = NULL;
2743         } else {
2744                 /* Assume a single IPMB channel at zero. */
2745                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2746                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2747         }
2748
2749         if (rv == 0)
2750                 rv = add_proc_entries(intf, i);
2751
2752         rv = ipmi_bmc_register(intf, i, sysfs_name);
2753
2754  out:
2755         if (rv) {
2756                 if (intf->proc_dir)
2757                         remove_proc_entries(intf);
2758                 intf->handlers = NULL;
2759                 list_del_rcu(&intf->link);
2760                 mutex_unlock(&ipmi_interfaces_mutex);
2761                 mutex_unlock(&smi_watchers_mutex);
2762                 synchronize_rcu();
2763                 kref_put(&intf->refcount, intf_free);
2764         } else {
2765                 /* After this point the interface is legal to use. */
2766                 intf->intf_num = i;
2767                 mutex_unlock(&ipmi_interfaces_mutex);
2768                 call_smi_watchers(i, intf->si_dev);
2769                 mutex_unlock(&smi_watchers_mutex);
2770         }
2771
2772         return rv;
2773 }
2774
2775 static void cleanup_smi_msgs(ipmi_smi_t intf)
2776 {
2777         int              i;
2778         struct seq_table *ent;
2779
2780         /* No need for locks, the interface is down. */
2781         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2782                 ent = &(intf->seq_table[i]);
2783                 if (!ent->inuse)
2784                         continue;
2785                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2786         }
2787 }
2788
2789 int ipmi_unregister_smi(ipmi_smi_t intf)
2790 {
2791         struct ipmi_smi_watcher *w;
2792         int    intf_num = intf->intf_num;
2793
2794         ipmi_bmc_unregister(intf);
2795
2796         mutex_lock(&smi_watchers_mutex);
2797         mutex_lock(&ipmi_interfaces_mutex);
2798         intf->intf_num = -1;
2799         intf->handlers = NULL;
2800         list_del_rcu(&intf->link);
2801         mutex_unlock(&ipmi_interfaces_mutex);
2802         synchronize_rcu();
2803
2804         cleanup_smi_msgs(intf);
2805
2806         remove_proc_entries(intf);
2807
2808         /* Call all the watcher interfaces to tell them that
2809            an interface is gone. */
2810         list_for_each_entry(w, &smi_watchers, link)
2811                 w->smi_gone(intf_num);
2812         mutex_unlock(&smi_watchers_mutex);
2813
2814         kref_put(&intf->refcount, intf_free);
2815         return 0;
2816 }
2817
2818 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2819                                    struct ipmi_smi_msg *msg)
2820 {
2821         struct ipmi_ipmb_addr ipmb_addr;
2822         struct ipmi_recv_msg  *recv_msg;
2823         unsigned long         flags;
2824
2825         
2826         /* This is 11, not 10, because the response must contain a
2827          * completion code. */
2828         if (msg->rsp_size < 11) {
2829                 /* Message not big enough, just ignore it. */
2830                 spin_lock_irqsave(&intf->counter_lock, flags);
2831                 intf->invalid_ipmb_responses++;
2832                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2833                 return 0;
2834         }
2835
2836         if (msg->rsp[2] != 0) {
2837                 /* An error getting the response, just ignore it. */
2838                 return 0;
2839         }
2840
2841         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2842         ipmb_addr.slave_addr = msg->rsp[6];
2843         ipmb_addr.channel = msg->rsp[3] & 0x0f;
2844         ipmb_addr.lun = msg->rsp[7] & 3;
2845
2846         /* It's a response from a remote entity.  Look up the sequence
2847            number and handle the response. */
2848         if (intf_find_seq(intf,
2849                           msg->rsp[7] >> 2,
2850                           msg->rsp[3] & 0x0f,
2851                           msg->rsp[8],
2852                           (msg->rsp[4] >> 2) & (~1),
2853                           (struct ipmi_addr *) &(ipmb_addr),
2854                           &recv_msg))
2855         {
2856                 /* We were unable to find the sequence number,
2857                    so just nuke the message. */
2858                 spin_lock_irqsave(&intf->counter_lock, flags);
2859                 intf->unhandled_ipmb_responses++;
2860                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2861                 return 0;
2862         }
2863
2864         memcpy(recv_msg->msg_data,
2865                &(msg->rsp[9]),
2866                msg->rsp_size - 9);
2867         /* THe other fields matched, so no need to set them, except
2868            for netfn, which needs to be the response that was
2869            returned, not the request value. */
2870         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2871         recv_msg->msg.data = recv_msg->msg_data;
2872         recv_msg->msg.data_len = msg->rsp_size - 10;
2873         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2874         spin_lock_irqsave(&intf->counter_lock, flags);
2875         intf->handled_ipmb_responses++;
2876         spin_unlock_irqrestore(&intf->counter_lock, flags);
2877         deliver_response(recv_msg);
2878
2879         return 0;
2880 }
2881
2882 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
2883                                    struct ipmi_smi_msg *msg)
2884 {
2885         struct cmd_rcvr          *rcvr;
2886         int                      rv = 0;
2887         unsigned char            netfn;
2888         unsigned char            cmd;
2889         unsigned char            chan;
2890         ipmi_user_t              user = NULL;
2891         struct ipmi_ipmb_addr    *ipmb_addr;
2892         struct ipmi_recv_msg     *recv_msg;
2893         unsigned long            flags;
2894         struct ipmi_smi_handlers *handlers;
2895
2896         if (msg->rsp_size < 10) {
2897                 /* Message not big enough, just ignore it. */
2898                 spin_lock_irqsave(&intf->counter_lock, flags);
2899                 intf->invalid_commands++;
2900                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2901                 return 0;
2902         }
2903
2904         if (msg->rsp[2] != 0) {
2905                 /* An error getting the response, just ignore it. */
2906                 return 0;
2907         }
2908
2909         netfn = msg->rsp[4] >> 2;
2910         cmd = msg->rsp[8];
2911         chan = msg->rsp[3] & 0xf;
2912
2913         rcu_read_lock();
2914         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
2915         if (rcvr) {
2916                 user = rcvr->user;
2917                 kref_get(&user->refcount);
2918         } else
2919                 user = NULL;
2920         rcu_read_unlock();
2921
2922         if (user == NULL) {
2923                 /* We didn't find a user, deliver an error response. */
2924                 spin_lock_irqsave(&intf->counter_lock, flags);
2925                 intf->unhandled_commands++;
2926                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2927
2928                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
2929                 msg->data[1] = IPMI_SEND_MSG_CMD;
2930                 msg->data[2] = msg->rsp[3];
2931                 msg->data[3] = msg->rsp[6];
2932                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
2933                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
2934                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
2935                 /* rqseq/lun */
2936                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
2937                 msg->data[8] = msg->rsp[8]; /* cmd */
2938                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
2939                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
2940                 msg->data_size = 11;
2941
2942 #ifdef DEBUG_MSGING
2943         {
2944                 int m;
2945                 printk("Invalid command:");
2946                 for (m = 0; m < msg->data_size; m++)
2947                         printk(" %2.2x", msg->data[m]);
2948                 printk("\n");
2949         }
2950 #endif
2951                 rcu_read_lock();
2952                 handlers = intf->handlers;
2953                 if (handlers) {
2954                         handlers->sender(intf->send_info, msg, 0);
2955                         /* We used the message, so return the value
2956                            that causes it to not be freed or
2957                            queued. */
2958                         rv = -1;
2959                 }
2960                 rcu_read_unlock();
2961         } else {
2962                 /* Deliver the message to the user. */
2963                 spin_lock_irqsave(&intf->counter_lock, flags);
2964                 intf->handled_commands++;
2965                 spin_unlock_irqrestore(&intf->counter_lock, flags);
2966
2967                 recv_msg = ipmi_alloc_recv_msg();
2968                 if (!recv_msg) {
2969                         /* We couldn't allocate memory for the
2970                            message, so requeue it for handling
2971                            later. */
2972                         rv = 1;
2973                         kref_put(&user->refcount, free_user);
2974                 } else {
2975                         /* Extract the source address from the data. */
2976                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
2977                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2978                         ipmb_addr->slave_addr = msg->rsp[6];
2979                         ipmb_addr->lun = msg->rsp[7] & 3;
2980                         ipmb_addr->channel = msg->rsp[3] & 0xf;
2981
2982                         /* Extract the rest of the message information
2983                            from the IPMB header.*/
2984                         recv_msg->user = user;
2985                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
2986                         recv_msg->msgid = msg->rsp[7] >> 2;
2987                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2988                         recv_msg->msg.cmd = msg->rsp[8];
2989                         recv_msg->msg.data = recv_msg->msg_data;
2990
2991                         /* We chop off 10, not 9 bytes because the checksum
2992                            at the end also needs to be removed. */
2993                         recv_msg->msg.data_len = msg->rsp_size - 10;
2994                         memcpy(recv_msg->msg_data,
2995                                &(msg->rsp[9]),
2996                                msg->rsp_size - 10);
2997                         deliver_response(recv_msg);
2998                 }
2999         }
3000
3001         return rv;
3002 }
3003
3004 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3005                                   struct ipmi_smi_msg *msg)
3006 {
3007         struct ipmi_lan_addr  lan_addr;
3008         struct ipmi_recv_msg  *recv_msg;
3009         unsigned long         flags;
3010
3011
3012         /* This is 13, not 12, because the response must contain a
3013          * completion code. */
3014         if (msg->rsp_size < 13) {
3015                 /* Message not big enough, just ignore it. */
3016                 spin_lock_irqsave(&intf->counter_lock, flags);
3017                 intf->invalid_lan_responses++;
3018                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3019                 return 0;
3020         }
3021
3022         if (msg->rsp[2] != 0) {
3023                 /* An error getting the response, just ignore it. */
3024                 return 0;
3025         }
3026
3027         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3028         lan_addr.session_handle = msg->rsp[4];
3029         lan_addr.remote_SWID = msg->rsp[8];
3030         lan_addr.local_SWID = msg->rsp[5];
3031         lan_addr.channel = msg->rsp[3] & 0x0f;
3032         lan_addr.privilege = msg->rsp[3] >> 4;
3033         lan_addr.lun = msg->rsp[9] & 3;
3034
3035         /* It's a response from a remote entity.  Look up the sequence
3036            number and handle the response. */
3037         if (intf_find_seq(intf,
3038                           msg->rsp[9] >> 2,
3039                           msg->rsp[3] & 0x0f,
3040                           msg->rsp[10],
3041                           (msg->rsp[6] >> 2) & (~1),
3042                           (struct ipmi_addr *) &(lan_addr),
3043                           &recv_msg))
3044         {
3045                 /* We were unable to find the sequence number,
3046                    so just nuke the message. */
3047                 spin_lock_irqsave(&intf->counter_lock, flags);
3048                 intf->unhandled_lan_responses++;
3049                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3050                 return 0;
3051         }
3052
3053         memcpy(recv_msg->msg_data,
3054                &(msg->rsp[11]),
3055                msg->rsp_size - 11);
3056         /* The other fields matched, so no need to set them, except
3057            for netfn, which needs to be the response that was
3058            returned, not the request value. */
3059         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3060         recv_msg->msg.data = recv_msg->msg_data;
3061         recv_msg->msg.data_len = msg->rsp_size - 12;
3062         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3063         spin_lock_irqsave(&intf->counter_lock, flags);
3064         intf->handled_lan_responses++;
3065         spin_unlock_irqrestore(&intf->counter_lock, flags);
3066         deliver_response(recv_msg);
3067
3068         return 0;
3069 }
3070
3071 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3072                                   struct ipmi_smi_msg *msg)
3073 {
3074         struct cmd_rcvr          *rcvr;
3075         int                      rv = 0;
3076         unsigned char            netfn;
3077         unsigned char            cmd;
3078         unsigned char            chan;
3079         ipmi_user_t              user = NULL;
3080         struct ipmi_lan_addr     *lan_addr;
3081         struct ipmi_recv_msg     *recv_msg;
3082         unsigned long            flags;
3083
3084         if (msg->rsp_size < 12) {
3085                 /* Message not big enough, just ignore it. */
3086                 spin_lock_irqsave(&intf->counter_lock, flags);
3087                 intf->invalid_commands++;
3088                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3089                 return 0;
3090         }
3091
3092         if (msg->rsp[2] != 0) {
3093                 /* An error getting the response, just ignore it. */
3094                 return 0;
3095         }
3096
3097         netfn = msg->rsp[6] >> 2;
3098         cmd = msg->rsp[10];
3099         chan = msg->rsp[3] & 0xf;
3100
3101         rcu_read_lock();
3102         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3103         if (rcvr) {
3104                 user = rcvr->user;
3105                 kref_get(&user->refcount);
3106         } else
3107                 user = NULL;
3108         rcu_read_unlock();
3109
3110         if (user == NULL) {
3111                 /* We didn't find a user, just give up. */
3112                 spin_lock_irqsave(&intf->counter_lock, flags);
3113                 intf->unhandled_commands++;
3114                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3115
3116                 rv = 0; /* Don't do anything with these messages, just
3117                            allow them to be freed. */
3118         } else {
3119                 /* Deliver the message to the user. */
3120                 spin_lock_irqsave(&intf->counter_lock, flags);
3121                 intf->handled_commands++;
3122                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3123
3124                 recv_msg = ipmi_alloc_recv_msg();
3125                 if (!recv_msg) {
3126                         /* We couldn't allocate memory for the
3127                            message, so requeue it for handling
3128                            later. */
3129                         rv = 1;
3130                         kref_put(&user->refcount, free_user);
3131                 } else {
3132                         /* Extract the source address from the data. */
3133                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3134                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3135                         lan_addr->session_handle = msg->rsp[4];
3136                         lan_addr->remote_SWID = msg->rsp[8];
3137                         lan_addr->local_SWID = msg->rsp[5];
3138                         lan_addr->lun = msg->rsp[9] & 3;
3139                         lan_addr->channel = msg->rsp[3] & 0xf;
3140                         lan_addr->privilege = msg->rsp[3] >> 4;
3141
3142                         /* Extract the rest of the message information
3143                            from the IPMB header.*/
3144                         recv_msg->user = user;
3145                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3146                         recv_msg->msgid = msg->rsp[9] >> 2;
3147                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3148                         recv_msg->msg.cmd = msg->rsp[10];
3149                         recv_msg->msg.data = recv_msg->msg_data;
3150
3151                         /* We chop off 12, not 11 bytes because the checksum
3152                            at the end also needs to be removed. */
3153                         recv_msg->msg.data_len = msg->rsp_size - 12;
3154                         memcpy(recv_msg->msg_data,
3155                                &(msg->rsp[11]),
3156                                msg->rsp_size - 12);
3157                         deliver_response(recv_msg);
3158                 }
3159         }
3160
3161         return rv;
3162 }
3163
3164 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3165                                      struct ipmi_smi_msg  *msg)
3166 {
3167         struct ipmi_system_interface_addr *smi_addr;
3168         
3169         recv_msg->msgid = 0;
3170         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3171         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3172         smi_addr->channel = IPMI_BMC_CHANNEL;
3173         smi_addr->lun = msg->rsp[0] & 3;
3174         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3175         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3176         recv_msg->msg.cmd = msg->rsp[1];
3177         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3178         recv_msg->msg.data = recv_msg->msg_data;
3179         recv_msg->msg.data_len = msg->rsp_size - 3;
3180 }
3181
3182 static int handle_read_event_rsp(ipmi_smi_t          intf,
3183                                  struct ipmi_smi_msg *msg)
3184 {
3185         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3186         struct list_head     msgs;
3187         ipmi_user_t          user;
3188         int                  rv = 0;
3189         int                  deliver_count = 0;
3190         unsigned long        flags;
3191
3192         if (msg->rsp_size < 19) {
3193                 /* Message is too small to be an IPMB event. */
3194                 spin_lock_irqsave(&intf->counter_lock, flags);
3195                 intf->invalid_events++;
3196                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3197                 return 0;
3198         }
3199
3200         if (msg->rsp[2] != 0) {
3201                 /* An error getting the event, just ignore it. */
3202                 return 0;
3203         }
3204
3205         INIT_LIST_HEAD(&msgs);
3206
3207         spin_lock_irqsave(&intf->events_lock, flags);
3208
3209         spin_lock(&intf->counter_lock);
3210         intf->events++;
3211         spin_unlock(&intf->counter_lock);
3212
3213         /* Allocate and fill in one message for every user that is getting
3214            events. */
3215         rcu_read_lock();
3216         list_for_each_entry_rcu(user, &intf->users, link) {
3217                 if (!user->gets_events)
3218                         continue;
3219
3220                 recv_msg = ipmi_alloc_recv_msg();
3221                 if (!recv_msg) {
3222                         rcu_read_unlock();
3223                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3224                                                  link) {
3225                                 list_del(&recv_msg->link);
3226                                 ipmi_free_recv_msg(recv_msg);
3227                         }
3228                         /* We couldn't allocate memory for the
3229                            message, so requeue it for handling
3230                            later. */
3231                         rv = 1;
3232                         goto out;
3233                 }
3234
3235                 deliver_count++;
3236
3237                 copy_event_into_recv_msg(recv_msg, msg);
3238                 recv_msg->user = user;
3239                 kref_get(&user->refcount);
3240                 list_add_tail(&(recv_msg->link), &msgs);
3241         }
3242         rcu_read_unlock();
3243
3244         if (deliver_count) {
3245                 /* Now deliver all the messages. */
3246                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3247                         list_del(&recv_msg->link);
3248                         deliver_response(recv_msg);
3249                 }
3250         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3251                 /* No one to receive the message, put it in queue if there's
3252                    not already too many things in the queue. */
3253                 recv_msg = ipmi_alloc_recv_msg();
3254                 if (!recv_msg) {
3255                         /* We couldn't allocate memory for the
3256                            message, so requeue it for handling
3257                            later. */
3258                         rv = 1;
3259                         goto out;
3260                 }
3261
3262                 copy_event_into_recv_msg(recv_msg, msg);
3263                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3264                 intf->waiting_events_count++;
3265         } else {
3266                 /* There's too many things in the queue, discard this
3267                    message. */
3268                 printk(KERN_WARNING PFX "Event queue full, discarding an"
3269                        " incoming event\n");
3270         }
3271
3272  out:
3273         spin_unlock_irqrestore(&(intf->events_lock), flags);
3274
3275         return rv;
3276 }
3277
3278 static int handle_bmc_rsp(ipmi_smi_t          intf,
3279                           struct ipmi_smi_msg *msg)
3280 {
3281         struct ipmi_recv_msg *recv_msg;
3282         unsigned long        flags;
3283         struct ipmi_user     *user;
3284
3285         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3286         if (recv_msg == NULL)
3287         {
3288                 printk(KERN_WARNING"IPMI message received with no owner. This\n"
3289                         "could be because of a malformed message, or\n"
3290                         "because of a hardware error.  Contact your\n"
3291                         "hardware vender for assistance\n");
3292                 return 0;
3293         }
3294
3295         user = recv_msg->user;
3296         /* Make sure the user still exists. */
3297         if (user && !user->valid) {
3298                 /* The user for the message went away, so give up. */
3299                 spin_lock_irqsave(&intf->counter_lock, flags);
3300                 intf->unhandled_local_responses++;
3301                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3302                 ipmi_free_recv_msg(recv_msg);
3303         } else {
3304                 struct ipmi_system_interface_addr *smi_addr;
3305
3306                 spin_lock_irqsave(&intf->counter_lock, flags);
3307                 intf->handled_local_responses++;
3308                 spin_unlock_irqrestore(&intf->counter_lock, flags);
3309                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3310                 recv_msg->msgid = msg->msgid;
3311                 smi_addr = ((struct ipmi_system_interface_addr *)
3312                             &(recv_msg->addr));
3313                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3314                 smi_addr->channel = IPMI_BMC_CHANNEL;
3315                 smi_addr->lun = msg->rsp[0] & 3;
3316                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3317                 recv_msg->msg.cmd = msg->rsp[1];
3318                 memcpy(recv_msg->msg_data,
3319                        &(msg->rsp[2]),
3320                        msg->rsp_size - 2);
3321                 recv_msg->msg.data = recv_msg->msg_data;
3322                 recv_msg->msg.data_len = msg->rsp_size - 2;
3323                 deliver_response(recv_msg);
3324         }
3325
3326         return 0;
3327 }
3328
3329 /* Handle a new message.  Return 1 if the message should be requeued,
3330    0 if the message should be freed, or -1 if the message should not
3331    be freed or requeued. */
3332 static int handle_new_recv_msg(ipmi_smi_t          intf,
3333                                struct ipmi_smi_msg *msg)
3334 {
3335         int requeue;
3336         int chan;
3337
3338 #ifdef DEBUG_MSGING
3339         int m;
3340         printk("Recv:");
3341         for (m = 0; m < msg->rsp_size; m++)
3342                 printk(" %2.2x", msg->rsp[m]);
3343         printk("\n");
3344 #endif
3345         if (msg->rsp_size < 2) {
3346                 /* Message is too small to be correct. */
3347                 printk(KERN_WARNING PFX "BMC returned to small a message"
3348                        " for netfn %x cmd %x, got %d bytes\n",
3349                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3350
3351                 /* Generate an error response for the message. */
3352                 msg->rsp[0] = msg->data[0] | (1 << 2);
3353                 msg->rsp[1] = msg->data[1];
3354                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3355                 msg->rsp_size = 3;
3356         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))/* Netfn */
3357                    || (msg->rsp[1] != msg->data[1]))              /* Command */
3358         {
3359                 /* The response is not even marginally correct. */
3360                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3361                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3362                        (msg->data[0] >> 2) | 1, msg->data[1],
3363                        msg->rsp[0] >> 2, msg->rsp[1]);
3364
3365                 /* Generate an error response for the message. */
3366                 msg->rsp[0] = msg->data[0] | (1 << 2);
3367                 msg->rsp[1] = msg->data[1];
3368                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3369                 msg->rsp_size = 3;
3370         }
3371
3372         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3373             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3374             && (msg->user_data != NULL))
3375         {
3376                 /* It's a response to a response we sent.  For this we
3377                    deliver a send message response to the user. */
3378                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3379
3380                 requeue = 0;
3381                 if (msg->rsp_size < 2)
3382                         /* Message is too small to be correct. */
3383                         goto out;
3384
3385                 chan = msg->data[2] & 0x0f;
3386                 if (chan >= IPMI_MAX_CHANNELS)
3387                         /* Invalid channel number */
3388                         goto out;
3389
3390                 if (!recv_msg)
3391                         goto out;
3392
3393                 /* Make sure the user still exists. */
3394                 if (!recv_msg->user || !recv_msg->user->valid)
3395                         goto out;
3396
3397                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3398                 recv_msg->msg.data = recv_msg->msg_data;
3399                 recv_msg->msg.data_len = 1;
3400                 recv_msg->msg_data[0] = msg->rsp[2];
3401                 deliver_response(recv_msg);
3402         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3403                    && (msg->rsp[1] == IPMI_GET_MSG_CMD))
3404         {
3405                 /* It's from the receive queue. */
3406                 chan = msg->rsp[3] & 0xf;
3407                 if (chan >= IPMI_MAX_CHANNELS) {
3408                         /* Invalid channel number */
3409                         requeue = 0;
3410                         goto out;
3411                 }
3412
3413                 switch (intf->channels[chan].medium) {
3414                 case IPMI_CHANNEL_MEDIUM_IPMB:
3415                         if (msg->rsp[4] & 0x04) {
3416                                 /* It's a response, so find the
3417                                    requesting message and send it up. */
3418                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3419                         } else {
3420                                 /* It's a command to the SMS from some other
3421                                    entity.  Handle that. */
3422                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3423                         }
3424                         break;
3425
3426                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3427                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3428                         if (msg->rsp[6] & 0x04) {
3429                                 /* It's a response, so find the
3430                                    requesting message and send it up. */
3431                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3432                         } else {
3433                                 /* It's a command to the SMS from some other
3434                                    entity.  Handle that. */
3435                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3436                         }
3437                         break;
3438
3439                 default:
3440                         /* We don't handle the channel type, so just
3441                          * free the message. */
3442                         requeue = 0;
3443                 }
3444
3445         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3446                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD))
3447         {
3448                 /* It's an asyncronous event. */
3449                 requeue = handle_read_event_rsp(intf, msg);
3450         } else {
3451                 /* It's a response from the local BMC. */
3452                 requeue = handle_bmc_rsp(intf, msg);
3453         }
3454
3455  out:
3456         return requeue;
3457 }
3458
3459 /* Handle a new message from the lower layer. */
3460 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3461                            struct ipmi_smi_msg *msg)
3462 {
3463         unsigned long flags;
3464         int           rv;
3465
3466
3467         if ((msg->data_size >= 2)
3468             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3469             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3470             && (msg->user_data == NULL))
3471         {
3472                 /* This is the local response to a command send, start
3473                    the timer for these.  The user_data will not be
3474                    NULL if this is a response send, and we will let
3475                    response sends just go through. */
3476
3477                 /* Check for errors, if we get certain errors (ones
3478                    that mean basically we can try again later), we
3479                    ignore them and start the timer.  Otherwise we
3480                    report the error immediately. */
3481                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3482                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3483                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3484                     && (msg->rsp[2] != IPMI_BUS_ERR)
3485                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR))
3486                 {
3487                         int chan = msg->rsp[3] & 0xf;
3488
3489                         /* Got an error sending the message, handle it. */
3490                         spin_lock_irqsave(&intf->counter_lock, flags);
3491                         if (chan >= IPMI_MAX_CHANNELS)
3492                                 ; /* This shouldn't happen */
3493                         else if ((intf->channels[chan].medium
3494                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3495                                  || (intf->channels[chan].medium
3496                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3497                                 intf->sent_lan_command_errs++;
3498                         else
3499                                 intf->sent_ipmb_command_errs++;
3500                         spin_unlock_irqrestore(&intf->counter_lock, flags);
3501                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3502                 } else {
3503                         /* The message was sent, start the timer. */
3504                         intf_start_seq_timer(intf, msg->msgid);
3505                 }
3506
3507                 ipmi_free_smi_msg(msg);
3508                 goto out;
3509         }
3510
3511         /* To preserve message order, if the list is not empty, we
3512            tack this message onto the end of the list. */
3513         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3514         if (!list_empty(&intf->waiting_msgs)) {
3515                 list_add_tail(&msg->link, &intf->waiting_msgs);
3516                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3517                 goto out;
3518         }
3519         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3520                 
3521         rv = handle_new_recv_msg(intf, msg);
3522         if (rv > 0) {
3523                 /* Could not handle the message now, just add it to a
3524                    list to handle later. */
3525                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3526                 list_add_tail(&msg->link, &intf->waiting_msgs);
3527                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3528         } else if (rv == 0) {
3529                 ipmi_free_smi_msg(msg);
3530         }
3531
3532  out:
3533         return;
3534 }
3535
3536 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3537 {
3538         ipmi_user_t user;
3539
3540         rcu_read_lock();
3541         list_for_each_entry_rcu(user, &intf->users, link) {
3542                 if (!user->handler->ipmi_watchdog_pretimeout)
3543                         continue;
3544
3545                 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3546         }
3547         rcu_read_unlock();
3548 }
3549
3550
3551 static struct ipmi_smi_msg *
3552 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3553                   unsigned char seq, long seqid)
3554 {
3555         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3556         if (!smi_msg)
3557                 /* If we can't allocate the message, then just return, we
3558                    get 4 retries, so this should be ok. */
3559                 return NULL;
3560
3561         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3562         smi_msg->data_size = recv_msg->msg.data_len;
3563         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3564                 
3565 #ifdef DEBUG_MSGING
3566         {
3567                 int m;
3568                 printk("Resend: ");
3569                 for (m = 0; m < smi_msg->data_size; m++)
3570                         printk(" %2.2x", smi_msg->data[m]);
3571                 printk("\n");
3572         }
3573 #endif
3574         return smi_msg;
3575 }
3576
3577 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3578                               struct list_head *timeouts, long timeout_period,
3579                               int slot, unsigned long *flags)
3580 {
3581         struct ipmi_recv_msg     *msg;
3582         struct ipmi_smi_handlers *handlers;
3583
3584         if (intf->intf_num == -1)
3585                 return;
3586
3587         if (!ent->inuse)
3588                 return;
3589
3590         ent->timeout -= timeout_period;
3591         if (ent->timeout > 0)
3592                 return;
3593
3594         if (ent->retries_left == 0) {
3595                 /* The message has used all its retries. */
3596                 ent->inuse = 0;
3597                 msg = ent->recv_msg;
3598                 list_add_tail(&msg->link, timeouts);
3599                 spin_lock(&intf->counter_lock);
3600                 if (ent->broadcast)
3601                         intf->timed_out_ipmb_broadcasts++;
3602                 else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3603                         intf->timed_out_lan_commands++;
3604                 else
3605                         intf->timed_out_ipmb_commands++;
3606                 spin_unlock(&intf->counter_lock);
3607         } else {
3608                 struct ipmi_smi_msg *smi_msg;
3609                 /* More retries, send again. */
3610
3611                 /* Start with the max timer, set to normal
3612                    timer after the message is sent. */
3613                 ent->timeout = MAX_MSG_TIMEOUT;
3614                 ent->retries_left--;
3615                 spin_lock(&intf->counter_lock);
3616                 if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3617                         intf->retransmitted_lan_commands++;
3618                 else
3619                         intf->retransmitted_ipmb_commands++;
3620                 spin_unlock(&intf->counter_lock);
3621
3622                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3623                                             ent->seqid);
3624                 if (!smi_msg)
3625                         return;
3626
3627                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3628
3629                 /* Send the new message.  We send with a zero
3630                  * priority.  It timed out, I doubt time is
3631                  * that critical now, and high priority
3632                  * messages are really only for messages to the
3633                  * local MC, which don't get resent. */
3634                 handlers = intf->handlers;
3635                 if (handlers)
3636                         intf->handlers->sender(intf->send_info,
3637                                                smi_msg, 0);
3638                 else
3639                         ipmi_free_smi_msg(smi_msg);
3640
3641                 spin_lock_irqsave(&intf->seq_lock, *flags);
3642         }
3643 }
3644
3645 static void ipmi_timeout_handler(long timeout_period)
3646 {
3647         ipmi_smi_t           intf;
3648         struct list_head     timeouts;
3649         struct ipmi_recv_msg *msg, *msg2;
3650         struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3651         unsigned long        flags;
3652         int                  i;
3653
3654         INIT_LIST_HEAD(&timeouts);
3655
3656         rcu_read_lock();
3657         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3658                 /* See if any waiting messages need to be processed. */
3659                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3660                 list_for_each_entry_safe(smi_msg, smi_msg2,
3661                                          &intf->waiting_msgs, link) {
3662                         if (!handle_new_recv_msg(intf, smi_msg)) {
3663                                 list_del(&smi_msg->link);
3664                                 ipmi_free_smi_msg(smi_msg);
3665                         } else {
3666                                 /* To preserve message order, quit if we
3667                                    can't handle a message. */
3668                                 break;
3669                         }
3670                 }
3671                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3672
3673                 /* Go through the seq table and find any messages that
3674                    have timed out, putting them in the timeouts
3675                    list. */
3676                 spin_lock_irqsave(&intf->seq_lock, flags);
3677                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3678                         check_msg_timeout(intf, &(intf->seq_table[i]),
3679                                           &timeouts, timeout_period, i,
3680                                           &flags);
3681                 spin_unlock_irqrestore(&intf->seq_lock, flags);
3682
3683                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3684                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3685
3686                 /*
3687                  * Maintenance mode handling.  Check the timeout
3688                  * optimistically before we claim the lock.  It may
3689                  * mean a timeout gets missed occasionally, but that
3690                  * only means the timeout gets extended by one period
3691                  * in that case.  No big deal, and it avoids the lock
3692                  * most of the time.
3693                  */
3694                 if (intf->auto_maintenance_timeout > 0) {
3695                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3696                         if (intf->auto_maintenance_timeout > 0) {
3697                                 intf->auto_maintenance_timeout
3698                                         -= timeout_period;
3699                                 if (!intf->maintenance_mode
3700                                     && (intf->auto_maintenance_timeout <= 0))
3701                                 {
3702                                         intf->maintenance_mode_enable = 0;
3703                                         maintenance_mode_update(intf);
3704                                 }
3705                         }
3706                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3707                                                flags);
3708                 }
3709         }
3710         rcu_read_unlock();
3711 }
3712
3713 static void ipmi_request_event(void)
3714 {
3715         ipmi_smi_t               intf;
3716         struct ipmi_smi_handlers *handlers;
3717
3718         rcu_read_lock();
3719         /* Called from the timer, no need to check if handlers is
3720          * valid. */
3721         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3722                 /* No event requests when in maintenance mode. */
3723                 if (intf->maintenance_mode_enable)
3724                         continue;
3725
3726                 handlers = intf->handlers;
3727                 if (handlers)
3728                         handlers->request_events(intf->send_info);
3729         }
3730         rcu_read_unlock();
3731 }
3732
3733 static struct timer_list ipmi_timer;
3734
3735 /* Call every ~100 ms. */
3736 #define IPMI_TIMEOUT_TIME       100
3737
3738 /* How many jiffies does it take to get to the timeout time. */
3739 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
3740
3741 /* Request events from the queue every second (this is the number of
3742    IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
3743    future, IPMI will add a way to know immediately if an event is in
3744    the queue and this silliness can go away. */
3745 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
3746
3747 static atomic_t stop_operation;
3748 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3749
3750 static void ipmi_timeout(unsigned long data)
3751 {
3752         if (atomic_read(&stop_operation))
3753                 return;
3754
3755         ticks_to_req_ev--;
3756         if (ticks_to_req_ev == 0) {
3757                 ipmi_request_event();
3758                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3759         }
3760
3761         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3762
3763         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3764 }
3765
3766
3767 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3768 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3769
3770 /* FIXME - convert these to slabs. */
3771 static void free_smi_msg(struct ipmi_smi_msg *msg)
3772 {
3773         atomic_dec(&smi_msg_inuse_count);
3774         kfree(msg);
3775 }
3776
3777 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3778 {
3779         struct ipmi_smi_msg *rv;
3780         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3781         if (rv) {
3782                 rv->done = free_smi_msg;
3783                 rv->user_data = NULL;
3784                 atomic_inc(&smi_msg_inuse_count);
3785         }
3786         return rv;
3787 }
3788
3789 static void free_recv_msg(struct ipmi_recv_msg *msg)
3790 {
3791         atomic_dec(&recv_msg_inuse_count);
3792         kfree(msg);
3793 }
3794
3795 struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3796 {
3797         struct ipmi_recv_msg *rv;
3798
3799         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3800         if (rv) {
3801                 rv->user = NULL;
3802                 rv->done = free_recv_msg;
3803                 atomic_inc(&recv_msg_inuse_count);
3804         }
3805         return rv;
3806 }
3807
3808 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3809 {
3810         if (msg->user)
3811                 kref_put(&msg->user->refcount, free_user);
3812         msg->done(msg);
3813 }
3814
3815 #ifdef CONFIG_IPMI_PANIC_EVENT
3816
3817 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3818 {
3819 }
3820
3821 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3822 {
3823 }
3824
3825 #ifdef CONFIG_IPMI_PANIC_STRING
3826 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3827 {
3828         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3829             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3830             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3831             && (msg->msg.data[0] == IPMI_CC_NO_ERROR))
3832         {
3833                 /* A get event receiver command, save it. */
3834                 intf->event_receiver = msg->msg.data[1];
3835                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3836         }
3837 }
3838
3839 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3840 {
3841         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3842             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3843             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3844             && (msg->msg.data[0] == IPMI_CC_NO_ERROR))
3845         {
3846                 /* A get device id command, save if we are an event
3847                    receiver or generator. */
3848                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3849                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3850         }
3851 }
3852 #endif
3853
3854 static void send_panic_events(char *str)
3855 {
3856         struct kernel_ipmi_msg            msg;
3857         ipmi_smi_t                        intf;
3858         unsigned char                     data[16];
3859         struct ipmi_system_interface_addr *si;
3860         struct ipmi_addr                  addr;
3861         struct ipmi_smi_msg               smi_msg;
3862         struct ipmi_recv_msg              recv_msg;
3863
3864         si = (struct ipmi_system_interface_addr *) &addr;
3865         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3866         si->channel = IPMI_BMC_CHANNEL;
3867         si->lun = 0;
3868
3869         /* Fill in an event telling that we have failed. */
3870         msg.netfn = 0x04; /* Sensor or Event. */
3871         msg.cmd = 2; /* Platform event command. */
3872         msg.data = data;
3873         msg.data_len = 8;
3874         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
3875         data[1] = 0x03; /* This is for IPMI 1.0. */
3876         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
3877         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
3878         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
3879
3880         /* Put a few breadcrumbs in.  Hopefully later we can add more things
3881            to make the panic events more useful. */
3882         if (str) {
3883                 data[3] = str[0];
3884                 data[6] = str[1];
3885                 data[7] = str[2];
3886         }
3887
3888         smi_msg.done = dummy_smi_done_handler;
3889         recv_msg.done = dummy_recv_done_handler;
3890
3891         /* For every registered interface, send the event. */
3892         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3893                 if (!intf->handlers)
3894                         /* Interface is not ready. */
3895                         continue;
3896
3897                 /* Send the event announcing the panic. */
3898                 intf->handlers->set_run_to_completion(intf->send_info, 1);
3899                 i_ipmi_request(NULL,
3900                                intf,
3901                                &addr,
3902                                0,
3903                                &msg,
3904                                intf,
3905                                &smi_msg,
3906                                &recv_msg,
3907                                0,
3908                                intf->channels[0].address,
3909                                intf->channels[0].lun,
3910                                0, 1); /* Don't retry, and don't wait. */
3911         }
3912
3913 #ifdef CONFIG_IPMI_PANIC_STRING
3914         /* On every interface, dump a bunch of OEM event holding the
3915            string. */
3916         if (!str) 
3917                 return;
3918
3919         /* For every registered interface, send the event. */
3920         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3921                 char                  *p = str;
3922                 struct ipmi_ipmb_addr *ipmb;
3923                 int                   j;
3924
3925                 if (intf->intf_num == -1)
3926                         /* Interface was not ready yet. */
3927                         continue;
3928
3929                 /* First job here is to figure out where to send the
3930                    OEM events.  There's no way in IPMI to send OEM
3931                    events using an event send command, so we have to
3932                    find the SEL to put them in and stick them in
3933                    there. */
3934
3935                 /* Get capabilities from the get device id. */
3936                 intf->local_sel_device = 0;
3937                 intf->local_event_generator = 0;
3938                 intf->event_receiver = 0;
3939
3940                 /* Request the device info from the local MC. */
3941                 msg.netfn = IPMI_NETFN_APP_REQUEST;
3942                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
3943                 msg.data = NULL;
3944                 msg.data_len = 0;
3945                 intf->null_user_handler = device_id_fetcher;
3946                 i_ipmi_request(NULL,
3947                                intf,
3948                                &addr,
3949                                0,
3950                                &msg,
3951                                intf,
3952                                &smi_msg,
3953                                &recv_msg,
3954                                0,
3955                                intf->channels[0].address,
3956                                intf->channels[0].lun,
3957                                0, 1); /* Don't retry, and don't wait. */
3958
3959                 if (intf->local_event_generator) {
3960                         /* Request the event receiver from the local MC. */
3961                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
3962                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
3963                         msg.data = NULL;
3964                         msg.data_len = 0;
3965                         intf->null_user_handler = event_receiver_fetcher;
3966                         i_ipmi_request(NULL,
3967                                        intf,
3968                                        &addr,
3969                                        0,
3970                                        &msg,
3971                                        intf,
3972                                        &smi_msg,
3973                                        &recv_msg,
3974                                        0,
3975                                        intf->channels[0].address,
3976                                        intf->channels[0].lun,
3977                                        0, 1); /* no retry, and no wait. */
3978                 }
3979                 intf->null_user_handler = NULL;
3980
3981                 /* Validate the event receiver.  The low bit must not
3982                    be 1 (it must be a valid IPMB address), it cannot
3983                    be zero, and it must not be my address. */
3984                 if (((intf->event_receiver & 1) == 0)
3985                     && (intf->event_receiver != 0)
3986                     && (intf->event_receiver != intf->channels[0].address))
3987                 {
3988                         /* The event receiver is valid, send an IPMB
3989                            message. */
3990                         ipmb = (struct ipmi_ipmb_addr *) &addr;
3991                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
3992                         ipmb->channel = 0; /* FIXME - is this right? */
3993                         ipmb->lun = intf->event_receiver_lun;
3994                         ipmb->slave_addr = intf->event_receiver;
3995                 } else if (intf->local_sel_device) {
3996                         /* The event receiver was not valid (or was
3997                            me), but I am an SEL device, just dump it
3998                            in my SEL. */
3999                         si = (struct ipmi_system_interface_addr *) &addr;
4000                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4001                         si->channel = IPMI_BMC_CHANNEL;
4002                         si->lun = 0;
4003                 } else
4004                         continue; /* No where to send the event. */
4005
4006                 
4007                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4008                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4009                 msg.data = data;
4010                 msg.data_len = 16;
4011
4012                 j = 0;
4013                 while (*p) {
4014                         int size = strlen(p);
4015
4016                         if (size > 11)
4017                                 size = 11;
4018                         data[0] = 0;
4019                         data[1] = 0;
4020                         data[2] = 0xf0; /* OEM event without timestamp. */
4021                         data[3] = intf->channels[0].address;
4022                         data[4] = j++; /* sequence # */
4023                         /* Always give 11 bytes, so strncpy will fill
4024                            it with zeroes for me. */
4025                         strncpy(data+5, p, 11);
4026                         p += size;
4027
4028                         i_ipmi_request(NULL,
4029                                        intf,
4030                                        &addr,
4031                                        0,
4032                                        &msg,
4033                                        intf,
4034                                        &smi_msg,
4035                                        &recv_msg,
4036                                        0,
4037                                        intf->channels[0].address,
4038                                        intf->channels[0].lun,
4039                                        0, 1); /* no retry, and no wait. */
4040                 }
4041         }       
4042 #endif /* CONFIG_IPMI_PANIC_STRING */
4043 }
4044 #endif /* CONFIG_IPMI_PANIC_EVENT */
4045
4046 static int has_panicked = 0;
4047
4048 static int panic_event(struct notifier_block *this,
4049                        unsigned long         event,
4050                        void                  *ptr)
4051 {
4052         ipmi_smi_t intf;
4053
4054         if (has_panicked)
4055                 return NOTIFY_DONE;
4056         has_panicked = 1;
4057
4058         /* For every registered interface, set it to run to completion. */
4059         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4060                 if (!intf->handlers)
4061                         /* Interface is not ready. */
4062                         continue;
4063
4064                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4065         }
4066
4067 #ifdef CONFIG_IPMI_PANIC_EVENT
4068         send_panic_events(ptr);
4069 #endif
4070
4071         return NOTIFY_DONE;
4072 }
4073
4074 static struct notifier_block panic_block = {
4075         .notifier_call  = panic_event,
4076         .next           = NULL,
4077         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4078 };
4079
4080 static int ipmi_init_msghandler(void)
4081 {
4082         int rv;
4083
4084         if (initialized)
4085                 return 0;
4086
4087         rv = driver_register(&ipmidriver);
4088         if (rv) {
4089                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4090                 return rv;
4091         }
4092
4093         printk(KERN_INFO "ipmi message handler version "
4094                IPMI_DRIVER_VERSION "\n");
4095
4096 #ifdef CONFIG_PROC_FS
4097         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4098         if (!proc_ipmi_root) {
4099             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4100             return -ENOMEM;
4101         }
4102
4103         proc_ipmi_root->owner = THIS_MODULE;
4104 #endif /* CONFIG_PROC_FS */
4105
4106         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4107         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4108
4109         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4110
4111         initialized = 1;
4112
4113         return 0;
4114 }
4115
4116 static __init int ipmi_init_msghandler_mod(void)
4117 {
4118         ipmi_init_msghandler();
4119         return 0;
4120 }
4121
4122 static __exit void cleanup_ipmi(void)
4123 {
4124         int count;
4125
4126         if (!initialized)
4127                 return;
4128
4129         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4130
4131         /* This can't be called if any interfaces exist, so no worry about
4132            shutting down the interfaces. */
4133
4134         /* Tell the timer to stop, then wait for it to stop.  This avoids
4135            problems with race conditions removing the timer here. */
4136         atomic_inc(&stop_operation);
4137         del_timer_sync(&ipmi_timer);
4138
4139 #ifdef CONFIG_PROC_FS
4140         remove_proc_entry(proc_ipmi_root->name, &proc_root);
4141 #endif /* CONFIG_PROC_FS */
4142
4143         driver_unregister(&ipmidriver);
4144
4145         initialized = 0;
4146
4147         /* Check for buffer leaks. */
4148         count = atomic_read(&smi_msg_inuse_count);
4149         if (count != 0)
4150                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4151                        count);
4152         count = atomic_read(&recv_msg_inuse_count);
4153         if (count != 0)
4154                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4155                        count);
4156 }
4157 module_exit(cleanup_ipmi);
4158
4159 module_init(ipmi_init_msghandler_mod);
4160 MODULE_LICENSE("GPL");
4161 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4162 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
4163 MODULE_VERSION(IPMI_DRIVER_VERSION);
4164
4165 EXPORT_SYMBOL(ipmi_create_user);
4166 EXPORT_SYMBOL(ipmi_destroy_user);
4167 EXPORT_SYMBOL(ipmi_get_version);
4168 EXPORT_SYMBOL(ipmi_request_settime);
4169 EXPORT_SYMBOL(ipmi_request_supply_msgs);
4170 EXPORT_SYMBOL(ipmi_register_smi);
4171 EXPORT_SYMBOL(ipmi_unregister_smi);
4172 EXPORT_SYMBOL(ipmi_register_for_cmd);
4173 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
4174 EXPORT_SYMBOL(ipmi_smi_msg_received);
4175 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4176 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4177 EXPORT_SYMBOL(ipmi_addr_length);
4178 EXPORT_SYMBOL(ipmi_validate_addr);
4179 EXPORT_SYMBOL(ipmi_set_gets_events);
4180 EXPORT_SYMBOL(ipmi_smi_watcher_register);
4181 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
4182 EXPORT_SYMBOL(ipmi_set_my_address);
4183 EXPORT_SYMBOL(ipmi_get_my_address);
4184 EXPORT_SYMBOL(ipmi_set_my_LUN);
4185 EXPORT_SYMBOL(ipmi_get_my_LUN);
4186 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
4187 EXPORT_SYMBOL(ipmi_user_set_run_to_completion);
4188 EXPORT_SYMBOL(ipmi_free_recv_msg);