ide: initialize rq->cmd_type in ide_init_drive_cmd() callers
[powerpc.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = HWIF(drive);
358         unsigned long flags;
359         struct request *rq;
360
361         spin_lock_irqsave(&ide_lock, flags);
362         rq = HWGROUP(drive)->rq;
363         spin_unlock_irqrestore(&ide_lock, flags);
364
365         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366                 u8 *args = (u8 *) rq->buffer;
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370                 if (args) {
371                         args[0] = stat;
372                         args[1] = err;
373                         /* be sure we're looking at the low order bits */
374                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375                         args[2] = hwif->INB(IDE_NSECTOR_REG);
376                 }
377         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378                 ide_task_t *args = (ide_task_t *) rq->special;
379                 if (rq->errors == 0)
380                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381                         
382                 if (args) {
383                         struct ide_taskfile *tf = &args->tf;
384
385                         tf->error = err;
386                         tf->status = stat;
387
388                         ide_tf_read(drive, args);
389                 }
390         } else if (blk_pm_request(rq)) {
391                 struct request_pm_state *pm = rq->data;
392 #ifdef DEBUG_PM
393                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394                         drive->name, rq->pm->pm_step, stat, err);
395 #endif
396                 ide_complete_power_step(drive, rq, stat, err);
397                 if (pm->pm_step == ide_pm_state_completed)
398                         ide_complete_pm_request(drive, rq);
399                 return;
400         }
401
402         spin_lock_irqsave(&ide_lock, flags);
403         blkdev_dequeue_request(rq);
404         HWGROUP(drive)->rq = NULL;
405         rq->errors = err;
406         end_that_request_last(rq, !rq->errors);
407         spin_unlock_irqrestore(&ide_lock, flags);
408 }
409
410 EXPORT_SYMBOL(ide_end_drive_cmd);
411
412 /**
413  *      try_to_flush_leftover_data      -       flush junk
414  *      @drive: drive to flush
415  *
416  *      try_to_flush_leftover_data() is invoked in response to a drive
417  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
418  *      resetting the drive, this routine tries to clear the condition
419  *      by read a sector's worth of data from the drive.  Of course,
420  *      this may not help if the drive is *waiting* for data from *us*.
421  */
422 static void try_to_flush_leftover_data (ide_drive_t *drive)
423 {
424         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426         if (drive->media != ide_disk)
427                 return;
428         while (i > 0) {
429                 u32 buffer[16];
430                 u32 wcount = (i > 16) ? 16 : i;
431
432                 i -= wcount;
433                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
434         }
435 }
436
437 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438 {
439         if (rq->rq_disk) {
440                 ide_driver_t *drv;
441
442                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
443                 drv->end_request(drive, 0, 0);
444         } else
445                 ide_end_request(drive, 0, 0);
446 }
447
448 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449 {
450         ide_hwif_t *hwif = drive->hwif;
451
452         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453                 /* other bits are useless when BUSY */
454                 rq->errors |= ERROR_RESET;
455         } else if (stat & ERR_STAT) {
456                 /* err has different meaning on cdrom and tape */
457                 if (err == ABRT_ERR) {
458                         if (drive->select.b.lba &&
459                             /* some newer drives don't support WIN_SPECIFY */
460                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461                                 return ide_stopped;
462                 } else if ((err & BAD_CRC) == BAD_CRC) {
463                         /* UDMA crc error, just retry the operation */
464                         drive->crc_count++;
465                 } else if (err & (BBD_ERR | ECC_ERR)) {
466                         /* retries won't help these */
467                         rq->errors = ERROR_MAX;
468                 } else if (err & TRK0_ERR) {
469                         /* help it find track zero */
470                         rq->errors |= ERROR_RECAL;
471                 }
472         }
473
474         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
476                 try_to_flush_leftover_data(drive);
477
478         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479                 ide_kill_rq(drive, rq);
480                 return ide_stopped;
481         }
482
483         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484                 rq->errors |= ERROR_RESET;
485
486         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487                 ++rq->errors;
488                 return ide_do_reset(drive);
489         }
490
491         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492                 drive->special.b.recalibrate = 1;
493
494         ++rq->errors;
495
496         return ide_stopped;
497 }
498
499 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500 {
501         ide_hwif_t *hwif = drive->hwif;
502
503         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504                 /* other bits are useless when BUSY */
505                 rq->errors |= ERROR_RESET;
506         } else {
507                 /* add decoding error stuff */
508         }
509
510         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511                 /* force an abort */
512                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514         if (rq->errors >= ERROR_MAX) {
515                 ide_kill_rq(drive, rq);
516         } else {
517                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518                         ++rq->errors;
519                         return ide_do_reset(drive);
520                 }
521                 ++rq->errors;
522         }
523
524         return ide_stopped;
525 }
526
527 ide_startstop_t
528 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529 {
530         if (drive->media == ide_disk)
531                 return ide_ata_error(drive, rq, stat, err);
532         return ide_atapi_error(drive, rq, stat, err);
533 }
534
535 EXPORT_SYMBOL_GPL(__ide_error);
536
537 /**
538  *      ide_error       -       handle an error on the IDE
539  *      @drive: drive the error occurred on
540  *      @msg: message to report
541  *      @stat: status bits
542  *
543  *      ide_error() takes action based on the error returned by the drive.
544  *      For normal I/O that may well include retries. We deal with
545  *      both new-style (taskfile) and old style command handling here.
546  *      In the case of taskfile command handling there is work left to
547  *      do
548  */
549  
550 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551 {
552         struct request *rq;
553         u8 err;
554
555         err = ide_dump_status(drive, msg, stat);
556
557         if ((rq = HWGROUP(drive)->rq) == NULL)
558                 return ide_stopped;
559
560         /* retry only "normal" I/O: */
561         if (!blk_fs_request(rq)) {
562                 rq->errors = 1;
563                 ide_end_drive_cmd(drive, stat, err);
564                 return ide_stopped;
565         }
566
567         if (rq->rq_disk) {
568                 ide_driver_t *drv;
569
570                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
571                 return drv->error(drive, rq, stat, err);
572         } else
573                 return __ide_error(drive, rq, stat, err);
574 }
575
576 EXPORT_SYMBOL_GPL(ide_error);
577
578 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579 {
580         if (drive->media != ide_disk)
581                 rq->errors |= ERROR_RESET;
582
583         ide_kill_rq(drive, rq);
584
585         return ide_stopped;
586 }
587
588 EXPORT_SYMBOL_GPL(__ide_abort);
589
590 /**
591  *      ide_abort       -       abort pending IDE operations
592  *      @drive: drive the error occurred on
593  *      @msg: message to report
594  *
595  *      ide_abort kills and cleans up when we are about to do a 
596  *      host initiated reset on active commands. Longer term we
597  *      want handlers to have sensible abort handling themselves
598  *
599  *      This differs fundamentally from ide_error because in 
600  *      this case the command is doing just fine when we
601  *      blow it away.
602  */
603  
604 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605 {
606         struct request *rq;
607
608         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609                 return ide_stopped;
610
611         /* retry only "normal" I/O: */
612         if (!blk_fs_request(rq)) {
613                 rq->errors = 1;
614                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
615                 return ide_stopped;
616         }
617
618         if (rq->rq_disk) {
619                 ide_driver_t *drv;
620
621                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
622                 return drv->abort(drive, rq);
623         } else
624                 return __ide_abort(drive, rq);
625 }
626
627 /**
628  *      drive_cmd_intr          -       drive command completion interrupt
629  *      @drive: drive the completion interrupt occurred on
630  *
631  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
632  *      We do any necessary data reading and then wait for the drive to
633  *      go non busy. At that point we may read the error data and complete
634  *      the request
635  */
636  
637 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638 {
639         struct request *rq = HWGROUP(drive)->rq;
640         ide_hwif_t *hwif = HWIF(drive);
641         u8 *args = (u8 *) rq->buffer;
642         u8 stat = hwif->INB(IDE_STATUS_REG);
643
644         local_irq_enable_in_hardirq();
645         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
646             (stat & DRQ_STAT) && args && args[3]) {
647                 u8 io_32bit = drive->io_32bit;
648                 drive->io_32bit = 0;
649                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
650                 drive->io_32bit = io_32bit;
651                 stat = wait_drive_not_busy(drive);
652         }
653
654         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
655                 return ide_error(drive, "drive_cmd", stat);
656                 /* calls ide_end_drive_cmd */
657         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
658         return ide_stopped;
659 }
660
661 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
662 {
663         tf->nsect   = drive->sect;
664         tf->lbal    = drive->sect;
665         tf->lbam    = drive->cyl;
666         tf->lbah    = drive->cyl >> 8;
667         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
668         tf->command = WIN_SPECIFY;
669 }
670
671 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
672 {
673         tf->nsect   = drive->sect;
674         tf->command = WIN_RESTORE;
675 }
676
677 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
678 {
679         tf->nsect   = drive->mult_req;
680         tf->command = WIN_SETMULT;
681 }
682
683 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
684 {
685         special_t *s = &drive->special;
686         ide_task_t args;
687
688         memset(&args, 0, sizeof(ide_task_t));
689         args.data_phase = TASKFILE_NO_DATA;
690
691         if (s->b.set_geometry) {
692                 s->b.set_geometry = 0;
693                 ide_tf_set_specify_cmd(drive, &args.tf);
694         } else if (s->b.recalibrate) {
695                 s->b.recalibrate = 0;
696                 ide_tf_set_restore_cmd(drive, &args.tf);
697         } else if (s->b.set_multmode) {
698                 s->b.set_multmode = 0;
699                 if (drive->mult_req > drive->id->max_multsect)
700                         drive->mult_req = drive->id->max_multsect;
701                 ide_tf_set_setmult_cmd(drive, &args.tf);
702         } else if (s->all) {
703                 int special = s->all;
704                 s->all = 0;
705                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
706                 return ide_stopped;
707         }
708
709         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
710                         IDE_TFLAG_CUSTOM_HANDLER;
711
712         do_rw_taskfile(drive, &args);
713
714         return ide_started;
715 }
716
717 /*
718  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
719  */
720 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
721 {
722         switch (req_pio) {
723         case 202:
724         case 201:
725         case 200:
726         case 102:
727         case 101:
728         case 100:
729                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
730         case 9:
731         case 8:
732                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
733         case 7:
734         case 6:
735                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
736         default:
737                 return 0;
738         }
739 }
740
741 /**
742  *      do_special              -       issue some special commands
743  *      @drive: drive the command is for
744  *
745  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
746  *      commands to a drive.  It used to do much more, but has been scaled
747  *      back.
748  */
749
750 static ide_startstop_t do_special (ide_drive_t *drive)
751 {
752         special_t *s = &drive->special;
753
754 #ifdef DEBUG
755         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
756 #endif
757         if (s->b.set_tune) {
758                 ide_hwif_t *hwif = drive->hwif;
759                 u8 req_pio = drive->tune_req;
760
761                 s->b.set_tune = 0;
762
763                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
764
765                         if (hwif->set_pio_mode == NULL)
766                                 return ide_stopped;
767
768                         /*
769                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
770                          */
771                         if (req_pio == 8 || req_pio == 9) {
772                                 unsigned long flags;
773
774                                 spin_lock_irqsave(&ide_lock, flags);
775                                 hwif->set_pio_mode(drive, req_pio);
776                                 spin_unlock_irqrestore(&ide_lock, flags);
777                         } else
778                                 hwif->set_pio_mode(drive, req_pio);
779                 } else {
780                         int keep_dma = drive->using_dma;
781
782                         ide_set_pio(drive, req_pio);
783
784                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
785                                 if (keep_dma)
786                                         ide_dma_on(drive);
787                         }
788                 }
789
790                 return ide_stopped;
791         } else {
792                 if (drive->media == ide_disk)
793                         return ide_disk_special(drive);
794
795                 s->all = 0;
796                 drive->mult_req = 0;
797                 return ide_stopped;
798         }
799 }
800
801 void ide_map_sg(ide_drive_t *drive, struct request *rq)
802 {
803         ide_hwif_t *hwif = drive->hwif;
804         struct scatterlist *sg = hwif->sg_table;
805
806         if (hwif->sg_mapped)    /* needed by ide-scsi */
807                 return;
808
809         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
810                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
811         } else {
812                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
813                 hwif->sg_nents = 1;
814         }
815 }
816
817 EXPORT_SYMBOL_GPL(ide_map_sg);
818
819 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
820 {
821         ide_hwif_t *hwif = drive->hwif;
822
823         hwif->nsect = hwif->nleft = rq->nr_sectors;
824         hwif->cursg_ofs = 0;
825         hwif->cursg = NULL;
826 }
827
828 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
829
830 /**
831  *      execute_drive_command   -       issue special drive command
832  *      @drive: the drive to issue the command on
833  *      @rq: the request structure holding the command
834  *
835  *      execute_drive_cmd() issues a special drive command,  usually 
836  *      initiated by ioctl() from the external hdparm program. The
837  *      command can be a drive command, drive task or taskfile 
838  *      operation. Weirdly you can call it with NULL to wait for
839  *      all commands to finish. Don't do this as that is due to change
840  */
841
842 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
843                 struct request *rq)
844 {
845         ide_hwif_t *hwif = HWIF(drive);
846         u8 *args = rq->buffer;
847         ide_task_t ltask;
848         struct ide_taskfile *tf = &ltask.tf;
849
850         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
851                 ide_task_t *task = rq->special;
852  
853                 if (task == NULL)
854                         goto done;
855
856                 hwif->data_phase = task->data_phase;
857
858                 switch (hwif->data_phase) {
859                 case TASKFILE_MULTI_OUT:
860                 case TASKFILE_OUT:
861                 case TASKFILE_MULTI_IN:
862                 case TASKFILE_IN:
863                         ide_init_sg_cmd(drive, rq);
864                         ide_map_sg(drive, rq);
865                 default:
866                         break;
867                 }
868
869                 return do_rw_taskfile(drive, task);
870         }
871
872         if (args == NULL)
873                 goto done;
874
875         memset(&ltask, 0, sizeof(ltask));
876         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
877 #ifdef DEBUG
878                 printk("%s: DRIVE_CMD\n", drive->name);
879 #endif
880                 tf->feature = args[2];
881                 if (args[0] == WIN_SMART) {
882                         tf->nsect = args[3];
883                         tf->lbal  = args[1];
884                         tf->lbam  = 0x4f;
885                         tf->lbah  = 0xc2;
886                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
887                 } else {
888                         tf->nsect = args[1];
889                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
890                                          IDE_TFLAG_OUT_NSECT;
891                 }
892         }
893         tf->command = args[0];
894         ide_tf_load(drive, &ltask);
895         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
896         return ide_started;
897
898 done:
899         /*
900          * NULL is actually a valid way of waiting for
901          * all current requests to be flushed from the queue.
902          */
903 #ifdef DEBUG
904         printk("%s: DRIVE_CMD (null)\n", drive->name);
905 #endif
906         ide_end_drive_cmd(drive,
907                         hwif->INB(IDE_STATUS_REG),
908                         hwif->INB(IDE_ERROR_REG));
909         return ide_stopped;
910 }
911
912 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
913 {
914         struct request_pm_state *pm = rq->data;
915
916         if (blk_pm_suspend_request(rq) &&
917             pm->pm_step == ide_pm_state_start_suspend)
918                 /* Mark drive blocked when starting the suspend sequence. */
919                 drive->blocked = 1;
920         else if (blk_pm_resume_request(rq) &&
921                  pm->pm_step == ide_pm_state_start_resume) {
922                 /* 
923                  * The first thing we do on wakeup is to wait for BSY bit to
924                  * go away (with a looong timeout) as a drive on this hwif may
925                  * just be POSTing itself.
926                  * We do that before even selecting as the "other" device on
927                  * the bus may be broken enough to walk on our toes at this
928                  * point.
929                  */
930                 int rc;
931 #ifdef DEBUG_PM
932                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
933 #endif
934                 rc = ide_wait_not_busy(HWIF(drive), 35000);
935                 if (rc)
936                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
937                 SELECT_DRIVE(drive);
938                 ide_set_irq(drive, 1);
939                 rc = ide_wait_not_busy(HWIF(drive), 100000);
940                 if (rc)
941                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
942         }
943 }
944
945 /**
946  *      start_request   -       start of I/O and command issuing for IDE
947  *
948  *      start_request() initiates handling of a new I/O request. It
949  *      accepts commands and I/O (read/write) requests. It also does
950  *      the final remapping for weird stuff like EZDrive. Once 
951  *      device mapper can work sector level the EZDrive stuff can go away
952  *
953  *      FIXME: this function needs a rename
954  */
955  
956 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
957 {
958         ide_startstop_t startstop;
959         sector_t block;
960
961         BUG_ON(!blk_rq_started(rq));
962
963 #ifdef DEBUG
964         printk("%s: start_request: current=0x%08lx\n",
965                 HWIF(drive)->name, (unsigned long) rq);
966 #endif
967
968         /* bail early if we've exceeded max_failures */
969         if (drive->max_failures && (drive->failures > drive->max_failures)) {
970                 rq->cmd_flags |= REQ_FAILED;
971                 goto kill_rq;
972         }
973
974         block    = rq->sector;
975         if (blk_fs_request(rq) &&
976             (drive->media == ide_disk || drive->media == ide_floppy)) {
977                 block += drive->sect0;
978         }
979         /* Yecch - this will shift the entire interval,
980            possibly killing some innocent following sector */
981         if (block == 0 && drive->remap_0_to_1 == 1)
982                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
983
984         if (blk_pm_request(rq))
985                 ide_check_pm_state(drive, rq);
986
987         SELECT_DRIVE(drive);
988         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
989                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
990                 return startstop;
991         }
992         if (!drive->special.all) {
993                 ide_driver_t *drv;
994
995                 /*
996                  * We reset the drive so we need to issue a SETFEATURES.
997                  * Do it _after_ do_special() restored device parameters.
998                  */
999                 if (drive->current_speed == 0xff)
1000                         ide_config_drive_speed(drive, drive->desired_speed);
1001
1002                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1003                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1004                         return execute_drive_cmd(drive, rq);
1005                 else if (blk_pm_request(rq)) {
1006                         struct request_pm_state *pm = rq->data;
1007 #ifdef DEBUG_PM
1008                         printk("%s: start_power_step(step: %d)\n",
1009                                 drive->name, rq->pm->pm_step);
1010 #endif
1011                         startstop = ide_start_power_step(drive, rq);
1012                         if (startstop == ide_stopped &&
1013                             pm->pm_step == ide_pm_state_completed)
1014                                 ide_complete_pm_request(drive, rq);
1015                         return startstop;
1016                 }
1017
1018                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1019                 return drv->do_request(drive, rq, block);
1020         }
1021         return do_special(drive);
1022 kill_rq:
1023         ide_kill_rq(drive, rq);
1024         return ide_stopped;
1025 }
1026
1027 /**
1028  *      ide_stall_queue         -       pause an IDE device
1029  *      @drive: drive to stall
1030  *      @timeout: time to stall for (jiffies)
1031  *
1032  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1033  *      to the hwgroup by sleeping for timeout jiffies.
1034  */
1035  
1036 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1037 {
1038         if (timeout > WAIT_WORSTCASE)
1039                 timeout = WAIT_WORSTCASE;
1040         drive->sleep = timeout + jiffies;
1041         drive->sleeping = 1;
1042 }
1043
1044 EXPORT_SYMBOL(ide_stall_queue);
1045
1046 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1047
1048 /**
1049  *      choose_drive            -       select a drive to service
1050  *      @hwgroup: hardware group to select on
1051  *
1052  *      choose_drive() selects the next drive which will be serviced.
1053  *      This is necessary because the IDE layer can't issue commands
1054  *      to both drives on the same cable, unlike SCSI.
1055  */
1056  
1057 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1058 {
1059         ide_drive_t *drive, *best;
1060
1061 repeat: 
1062         best = NULL;
1063         drive = hwgroup->drive;
1064
1065         /*
1066          * drive is doing pre-flush, ordered write, post-flush sequence. even
1067          * though that is 3 requests, it must be seen as a single transaction.
1068          * we must not preempt this drive until that is complete
1069          */
1070         if (blk_queue_flushing(drive->queue)) {
1071                 /*
1072                  * small race where queue could get replugged during
1073                  * the 3-request flush cycle, just yank the plug since
1074                  * we want it to finish asap
1075                  */
1076                 blk_remove_plug(drive->queue);
1077                 return drive;
1078         }
1079
1080         do {
1081                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1082                     && !elv_queue_empty(drive->queue)) {
1083                         if (!best
1084                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1085                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1086                         {
1087                                 if (!blk_queue_plugged(drive->queue))
1088                                         best = drive;
1089                         }
1090                 }
1091         } while ((drive = drive->next) != hwgroup->drive);
1092         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1093                 long t = (signed long)(WAKEUP(best) - jiffies);
1094                 if (t >= WAIT_MIN_SLEEP) {
1095                 /*
1096                  * We *may* have some time to spare, but first let's see if
1097                  * someone can potentially benefit from our nice mood today..
1098                  */
1099                         drive = best->next;
1100                         do {
1101                                 if (!drive->sleeping
1102                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1103                                  && time_before(WAKEUP(drive), jiffies + t))
1104                                 {
1105                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1106                                         goto repeat;
1107                                 }
1108                         } while ((drive = drive->next) != best);
1109                 }
1110         }
1111         return best;
1112 }
1113
1114 /*
1115  * Issue a new request to a drive from hwgroup
1116  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1117  *
1118  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1119  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1120  * may have both interfaces in a single hwgroup to "serialize" access.
1121  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1122  * together into one hwgroup for serialized access.
1123  *
1124  * Note also that several hwgroups can end up sharing a single IRQ,
1125  * possibly along with many other devices.  This is especially common in
1126  * PCI-based systems with off-board IDE controller cards.
1127  *
1128  * The IDE driver uses the single global ide_lock spinlock to protect
1129  * access to the request queues, and to protect the hwgroup->busy flag.
1130  *
1131  * The first thread into the driver for a particular hwgroup sets the
1132  * hwgroup->busy flag to indicate that this hwgroup is now active,
1133  * and then initiates processing of the top request from the request queue.
1134  *
1135  * Other threads attempting entry notice the busy setting, and will simply
1136  * queue their new requests and exit immediately.  Note that hwgroup->busy
1137  * remains set even when the driver is merely awaiting the next interrupt.
1138  * Thus, the meaning is "this hwgroup is busy processing a request".
1139  *
1140  * When processing of a request completes, the completing thread or IRQ-handler
1141  * will start the next request from the queue.  If no more work remains,
1142  * the driver will clear the hwgroup->busy flag and exit.
1143  *
1144  * The ide_lock (spinlock) is used to protect all access to the
1145  * hwgroup->busy flag, but is otherwise not needed for most processing in
1146  * the driver.  This makes the driver much more friendlier to shared IRQs
1147  * than previous designs, while remaining 100% (?) SMP safe and capable.
1148  */
1149 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1150 {
1151         ide_drive_t     *drive;
1152         ide_hwif_t      *hwif;
1153         struct request  *rq;
1154         ide_startstop_t startstop;
1155         int             loops = 0;
1156
1157         /* for atari only: POSSIBLY BROKEN HERE(?) */
1158         ide_get_lock(ide_intr, hwgroup);
1159
1160         /* caller must own ide_lock */
1161         BUG_ON(!irqs_disabled());
1162
1163         while (!hwgroup->busy) {
1164                 hwgroup->busy = 1;
1165                 drive = choose_drive(hwgroup);
1166                 if (drive == NULL) {
1167                         int sleeping = 0;
1168                         unsigned long sleep = 0; /* shut up, gcc */
1169                         hwgroup->rq = NULL;
1170                         drive = hwgroup->drive;
1171                         do {
1172                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1173                                         sleeping = 1;
1174                                         sleep = drive->sleep;
1175                                 }
1176                         } while ((drive = drive->next) != hwgroup->drive);
1177                         if (sleeping) {
1178                 /*
1179                  * Take a short snooze, and then wake up this hwgroup again.
1180                  * This gives other hwgroups on the same a chance to
1181                  * play fairly with us, just in case there are big differences
1182                  * in relative throughputs.. don't want to hog the cpu too much.
1183                  */
1184                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1185                                         sleep = jiffies + WAIT_MIN_SLEEP;
1186 #if 1
1187                                 if (timer_pending(&hwgroup->timer))
1188                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1189 #endif
1190                                 /* so that ide_timer_expiry knows what to do */
1191                                 hwgroup->sleeping = 1;
1192                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1193                                 mod_timer(&hwgroup->timer, sleep);
1194                                 /* we purposely leave hwgroup->busy==1
1195                                  * while sleeping */
1196                         } else {
1197                                 /* Ugly, but how can we sleep for the lock
1198                                  * otherwise? perhaps from tq_disk?
1199                                  */
1200
1201                                 /* for atari only */
1202                                 ide_release_lock();
1203                                 hwgroup->busy = 0;
1204                         }
1205
1206                         /* no more work for this hwgroup (for now) */
1207                         return;
1208                 }
1209         again:
1210                 hwif = HWIF(drive);
1211                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1212                         /*
1213                          * set nIEN for previous hwif, drives in the
1214                          * quirk_list may not like intr setups/cleanups
1215                          */
1216                         if (drive->quirk_list != 1)
1217                                 ide_set_irq(drive, 0);
1218                 }
1219                 hwgroup->hwif = hwif;
1220                 hwgroup->drive = drive;
1221                 drive->sleeping = 0;
1222                 drive->service_start = jiffies;
1223
1224                 if (blk_queue_plugged(drive->queue)) {
1225                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1226                         break;
1227                 }
1228
1229                 /*
1230                  * we know that the queue isn't empty, but this can happen
1231                  * if the q->prep_rq_fn() decides to kill a request
1232                  */
1233                 rq = elv_next_request(drive->queue);
1234                 if (!rq) {
1235                         hwgroup->busy = 0;
1236                         break;
1237                 }
1238
1239                 /*
1240                  * Sanity: don't accept a request that isn't a PM request
1241                  * if we are currently power managed. This is very important as
1242                  * blk_stop_queue() doesn't prevent the elv_next_request()
1243                  * above to return us whatever is in the queue. Since we call
1244                  * ide_do_request() ourselves, we end up taking requests while
1245                  * the queue is blocked...
1246                  * 
1247                  * We let requests forced at head of queue with ide-preempt
1248                  * though. I hope that doesn't happen too much, hopefully not
1249                  * unless the subdriver triggers such a thing in its own PM
1250                  * state machine.
1251                  *
1252                  * We count how many times we loop here to make sure we service
1253                  * all drives in the hwgroup without looping for ever
1254                  */
1255                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1256                         drive = drive->next ? drive->next : hwgroup->drive;
1257                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1258                                 goto again;
1259                         /* We clear busy, there should be no pending ATA command at this point. */
1260                         hwgroup->busy = 0;
1261                         break;
1262                 }
1263
1264                 hwgroup->rq = rq;
1265
1266                 /*
1267                  * Some systems have trouble with IDE IRQs arriving while
1268                  * the driver is still setting things up.  So, here we disable
1269                  * the IRQ used by this interface while the request is being started.
1270                  * This may look bad at first, but pretty much the same thing
1271                  * happens anyway when any interrupt comes in, IDE or otherwise
1272                  *  -- the kernel masks the IRQ while it is being handled.
1273                  */
1274                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1275                         disable_irq_nosync(hwif->irq);
1276                 spin_unlock(&ide_lock);
1277                 local_irq_enable_in_hardirq();
1278                         /* allow other IRQs while we start this request */
1279                 startstop = start_request(drive, rq);
1280                 spin_lock_irq(&ide_lock);
1281                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1282                         enable_irq(hwif->irq);
1283                 if (startstop == ide_stopped)
1284                         hwgroup->busy = 0;
1285         }
1286 }
1287
1288 /*
1289  * Passes the stuff to ide_do_request
1290  */
1291 void do_ide_request(struct request_queue *q)
1292 {
1293         ide_drive_t *drive = q->queuedata;
1294
1295         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1296 }
1297
1298 /*
1299  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1300  * retry the current request in pio mode instead of risking tossing it
1301  * all away
1302  */
1303 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1304 {
1305         ide_hwif_t *hwif = HWIF(drive);
1306         struct request *rq;
1307         ide_startstop_t ret = ide_stopped;
1308
1309         /*
1310          * end current dma transaction
1311          */
1312
1313         if (error < 0) {
1314                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1315                 (void)HWIF(drive)->ide_dma_end(drive);
1316                 ret = ide_error(drive, "dma timeout error",
1317                                                 hwif->INB(IDE_STATUS_REG));
1318         } else {
1319                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1320                 hwif->dma_timeout(drive);
1321         }
1322
1323         /*
1324          * disable dma for now, but remember that we did so because of
1325          * a timeout -- we'll reenable after we finish this next request
1326          * (or rather the first chunk of it) in pio.
1327          */
1328         drive->retry_pio++;
1329         drive->state = DMA_PIO_RETRY;
1330         ide_dma_off_quietly(drive);
1331
1332         /*
1333          * un-busy drive etc (hwgroup->busy is cleared on return) and
1334          * make sure request is sane
1335          */
1336         rq = HWGROUP(drive)->rq;
1337
1338         if (!rq)
1339                 goto out;
1340
1341         HWGROUP(drive)->rq = NULL;
1342
1343         rq->errors = 0;
1344
1345         if (!rq->bio)
1346                 goto out;
1347
1348         rq->sector = rq->bio->bi_sector;
1349         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1350         rq->hard_cur_sectors = rq->current_nr_sectors;
1351         rq->buffer = bio_data(rq->bio);
1352 out:
1353         return ret;
1354 }
1355
1356 /**
1357  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1358  *      @data: timer callback magic (hwgroup)
1359  *
1360  *      An IDE command has timed out before the expected drive return
1361  *      occurred. At this point we attempt to clean up the current
1362  *      mess. If the current handler includes an expiry handler then
1363  *      we invoke the expiry handler, and providing it is happy the
1364  *      work is done. If that fails we apply generic recovery rules
1365  *      invoking the handler and checking the drive DMA status. We
1366  *      have an excessively incestuous relationship with the DMA
1367  *      logic that wants cleaning up.
1368  */
1369  
1370 void ide_timer_expiry (unsigned long data)
1371 {
1372         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1373         ide_handler_t   *handler;
1374         ide_expiry_t    *expiry;
1375         unsigned long   flags;
1376         unsigned long   wait = -1;
1377
1378         spin_lock_irqsave(&ide_lock, flags);
1379
1380         if (((handler = hwgroup->handler) == NULL) ||
1381             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1382                 /*
1383                  * Either a marginal timeout occurred
1384                  * (got the interrupt just as timer expired),
1385                  * or we were "sleeping" to give other devices a chance.
1386                  * Either way, we don't really want to complain about anything.
1387                  */
1388                 if (hwgroup->sleeping) {
1389                         hwgroup->sleeping = 0;
1390                         hwgroup->busy = 0;
1391                 }
1392         } else {
1393                 ide_drive_t *drive = hwgroup->drive;
1394                 if (!drive) {
1395                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1396                         hwgroup->handler = NULL;
1397                 } else {
1398                         ide_hwif_t *hwif;
1399                         ide_startstop_t startstop = ide_stopped;
1400                         if (!hwgroup->busy) {
1401                                 hwgroup->busy = 1;      /* paranoia */
1402                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1403                         }
1404                         if ((expiry = hwgroup->expiry) != NULL) {
1405                                 /* continue */
1406                                 if ((wait = expiry(drive)) > 0) {
1407                                         /* reset timer */
1408                                         hwgroup->timer.expires  = jiffies + wait;
1409                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1410                                         add_timer(&hwgroup->timer);
1411                                         spin_unlock_irqrestore(&ide_lock, flags);
1412                                         return;
1413                                 }
1414                         }
1415                         hwgroup->handler = NULL;
1416                         /*
1417                          * We need to simulate a real interrupt when invoking
1418                          * the handler() function, which means we need to
1419                          * globally mask the specific IRQ:
1420                          */
1421                         spin_unlock(&ide_lock);
1422                         hwif  = HWIF(drive);
1423                         /* disable_irq_nosync ?? */
1424                         disable_irq(hwif->irq);
1425                         /* local CPU only,
1426                          * as if we were handling an interrupt */
1427                         local_irq_disable();
1428                         if (hwgroup->polling) {
1429                                 startstop = handler(drive);
1430                         } else if (drive_is_ready(drive)) {
1431                                 if (drive->waiting_for_dma)
1432                                         hwgroup->hwif->dma_lost_irq(drive);
1433                                 (void)ide_ack_intr(hwif);
1434                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1435                                 startstop = handler(drive);
1436                         } else {
1437                                 if (drive->waiting_for_dma) {
1438                                         startstop = ide_dma_timeout_retry(drive, wait);
1439                                 } else
1440                                         startstop =
1441                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1442                         }
1443                         drive->service_time = jiffies - drive->service_start;
1444                         spin_lock_irq(&ide_lock);
1445                         enable_irq(hwif->irq);
1446                         if (startstop == ide_stopped)
1447                                 hwgroup->busy = 0;
1448                 }
1449         }
1450         ide_do_request(hwgroup, IDE_NO_IRQ);
1451         spin_unlock_irqrestore(&ide_lock, flags);
1452 }
1453
1454 /**
1455  *      unexpected_intr         -       handle an unexpected IDE interrupt
1456  *      @irq: interrupt line
1457  *      @hwgroup: hwgroup being processed
1458  *
1459  *      There's nothing really useful we can do with an unexpected interrupt,
1460  *      other than reading the status register (to clear it), and logging it.
1461  *      There should be no way that an irq can happen before we're ready for it,
1462  *      so we needn't worry much about losing an "important" interrupt here.
1463  *
1464  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1465  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1466  *      looks "good", we just ignore the interrupt completely.
1467  *
1468  *      This routine assumes __cli() is in effect when called.
1469  *
1470  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1471  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1472  *      we could screw up by interfering with a new request being set up for 
1473  *      irq15.
1474  *
1475  *      In reality, this is a non-issue.  The new command is not sent unless 
1476  *      the drive is ready to accept one, in which case we know the drive is
1477  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1478  *      before completing the issuance of any new drive command, so we will not
1479  *      be accidentally invoked as a result of any valid command completion
1480  *      interrupt.
1481  *
1482  *      Note that we must walk the entire hwgroup here. We know which hwif
1483  *      is doing the current command, but we don't know which hwif burped
1484  *      mysteriously.
1485  */
1486  
1487 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1488 {
1489         u8 stat;
1490         ide_hwif_t *hwif = hwgroup->hwif;
1491
1492         /*
1493          * handle the unexpected interrupt
1494          */
1495         do {
1496                 if (hwif->irq == irq) {
1497                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1498                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1499                                 /* Try to not flood the console with msgs */
1500                                 static unsigned long last_msgtime, count;
1501                                 ++count;
1502                                 if (time_after(jiffies, last_msgtime + HZ)) {
1503                                         last_msgtime = jiffies;
1504                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1505                                                 "status=0x%02x, count=%ld\n",
1506                                                 hwif->name,
1507                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1508                                 }
1509                         }
1510                 }
1511         } while ((hwif = hwif->next) != hwgroup->hwif);
1512 }
1513
1514 /**
1515  *      ide_intr        -       default IDE interrupt handler
1516  *      @irq: interrupt number
1517  *      @dev_id: hwif group
1518  *      @regs: unused weirdness from the kernel irq layer
1519  *
1520  *      This is the default IRQ handler for the IDE layer. You should
1521  *      not need to override it. If you do be aware it is subtle in
1522  *      places
1523  *
1524  *      hwgroup->hwif is the interface in the group currently performing
1525  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1526  *      the IRQ handler to call. As we issue a command the handlers
1527  *      step through multiple states, reassigning the handler to the
1528  *      next step in the process. Unlike a smart SCSI controller IDE
1529  *      expects the main processor to sequence the various transfer
1530  *      stages. We also manage a poll timer to catch up with most
1531  *      timeout situations. There are still a few where the handlers
1532  *      don't ever decide to give up.
1533  *
1534  *      The handler eventually returns ide_stopped to indicate the
1535  *      request completed. At this point we issue the next request
1536  *      on the hwgroup and the process begins again.
1537  */
1538  
1539 irqreturn_t ide_intr (int irq, void *dev_id)
1540 {
1541         unsigned long flags;
1542         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1543         ide_hwif_t *hwif;
1544         ide_drive_t *drive;
1545         ide_handler_t *handler;
1546         ide_startstop_t startstop;
1547
1548         spin_lock_irqsave(&ide_lock, flags);
1549         hwif = hwgroup->hwif;
1550
1551         if (!ide_ack_intr(hwif)) {
1552                 spin_unlock_irqrestore(&ide_lock, flags);
1553                 return IRQ_NONE;
1554         }
1555
1556         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1557                 /*
1558                  * Not expecting an interrupt from this drive.
1559                  * That means this could be:
1560                  *      (1) an interrupt from another PCI device
1561                  *      sharing the same PCI INT# as us.
1562                  * or   (2) a drive just entered sleep or standby mode,
1563                  *      and is interrupting to let us know.
1564                  * or   (3) a spurious interrupt of unknown origin.
1565                  *
1566                  * For PCI, we cannot tell the difference,
1567                  * so in that case we just ignore it and hope it goes away.
1568                  *
1569                  * FIXME: unexpected_intr should be hwif-> then we can
1570                  * remove all the ifdef PCI crap
1571                  */
1572 #ifdef CONFIG_BLK_DEV_IDEPCI
1573                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1574 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1575                 {
1576                         /*
1577                          * Probably not a shared PCI interrupt,
1578                          * so we can safely try to do something about it:
1579                          */
1580                         unexpected_intr(irq, hwgroup);
1581 #ifdef CONFIG_BLK_DEV_IDEPCI
1582                 } else {
1583                         /*
1584                          * Whack the status register, just in case
1585                          * we have a leftover pending IRQ.
1586                          */
1587                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1588 #endif /* CONFIG_BLK_DEV_IDEPCI */
1589                 }
1590                 spin_unlock_irqrestore(&ide_lock, flags);
1591                 return IRQ_NONE;
1592         }
1593         drive = hwgroup->drive;
1594         if (!drive) {
1595                 /*
1596                  * This should NEVER happen, and there isn't much
1597                  * we could do about it here.
1598                  *
1599                  * [Note - this can occur if the drive is hot unplugged]
1600                  */
1601                 spin_unlock_irqrestore(&ide_lock, flags);
1602                 return IRQ_HANDLED;
1603         }
1604         if (!drive_is_ready(drive)) {
1605                 /*
1606                  * This happens regularly when we share a PCI IRQ with
1607                  * another device.  Unfortunately, it can also happen
1608                  * with some buggy drives that trigger the IRQ before
1609                  * their status register is up to date.  Hopefully we have
1610                  * enough advance overhead that the latter isn't a problem.
1611                  */
1612                 spin_unlock_irqrestore(&ide_lock, flags);
1613                 return IRQ_NONE;
1614         }
1615         if (!hwgroup->busy) {
1616                 hwgroup->busy = 1;      /* paranoia */
1617                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1618         }
1619         hwgroup->handler = NULL;
1620         hwgroup->req_gen++;
1621         del_timer(&hwgroup->timer);
1622         spin_unlock(&ide_lock);
1623
1624         /* Some controllers might set DMA INTR no matter DMA or PIO;
1625          * bmdma status might need to be cleared even for
1626          * PIO interrupts to prevent spurious/lost irq.
1627          */
1628         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1629                 /* ide_dma_end() needs bmdma status for error checking.
1630                  * So, skip clearing bmdma status here and leave it
1631                  * to ide_dma_end() if this is dma interrupt.
1632                  */
1633                 hwif->ide_dma_clear_irq(drive);
1634
1635         if (drive->unmask)
1636                 local_irq_enable_in_hardirq();
1637         /* service this interrupt, may set handler for next interrupt */
1638         startstop = handler(drive);
1639         spin_lock_irq(&ide_lock);
1640
1641         /*
1642          * Note that handler() may have set things up for another
1643          * interrupt to occur soon, but it cannot happen until
1644          * we exit from this routine, because it will be the
1645          * same irq as is currently being serviced here, and Linux
1646          * won't allow another of the same (on any CPU) until we return.
1647          */
1648         drive->service_time = jiffies - drive->service_start;
1649         if (startstop == ide_stopped) {
1650                 if (hwgroup->handler == NULL) { /* paranoia */
1651                         hwgroup->busy = 0;
1652                         ide_do_request(hwgroup, hwif->irq);
1653                 } else {
1654                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1655                                 "on exit\n", drive->name);
1656                 }
1657         }
1658         spin_unlock_irqrestore(&ide_lock, flags);
1659         return IRQ_HANDLED;
1660 }
1661
1662 /**
1663  *      ide_init_drive_cmd      -       initialize a drive command request
1664  *      @rq: request object
1665  *
1666  *      Initialize a request before we fill it in and send it down to
1667  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1668  *      now it doesn't do a lot, but if that changes abusers will have a
1669  *      nasty surprise.
1670  */
1671
1672 void ide_init_drive_cmd (struct request *rq)
1673 {
1674         memset(rq, 0, sizeof(*rq));
1675         rq->ref_count = 1;
1676 }
1677
1678 EXPORT_SYMBOL(ide_init_drive_cmd);
1679
1680 /**
1681  *      ide_do_drive_cmd        -       issue IDE special command
1682  *      @drive: device to issue command
1683  *      @rq: request to issue
1684  *      @action: action for processing
1685  *
1686  *      This function issues a special IDE device request
1687  *      onto the request queue.
1688  *
1689  *      If action is ide_wait, then the rq is queued at the end of the
1690  *      request queue, and the function sleeps until it has been processed.
1691  *      This is for use when invoked from an ioctl handler.
1692  *
1693  *      If action is ide_preempt, then the rq is queued at the head of
1694  *      the request queue, displacing the currently-being-processed
1695  *      request and this function returns immediately without waiting
1696  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1697  *      intended for careful use by the ATAPI tape/cdrom driver code.
1698  *
1699  *      If action is ide_end, then the rq is queued at the end of the
1700  *      request queue, and the function returns immediately without waiting
1701  *      for the new rq to be completed. This is again intended for careful
1702  *      use by the ATAPI tape/cdrom driver code.
1703  */
1704  
1705 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1706 {
1707         unsigned long flags;
1708         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1709         DECLARE_COMPLETION_ONSTACK(wait);
1710         int where = ELEVATOR_INSERT_BACK, err;
1711         int must_wait = (action == ide_wait || action == ide_head_wait);
1712
1713         rq->errors = 0;
1714
1715         /*
1716          * we need to hold an extra reference to request for safe inspection
1717          * after completion
1718          */
1719         if (must_wait) {
1720                 rq->ref_count++;
1721                 rq->end_io_data = &wait;
1722                 rq->end_io = blk_end_sync_rq;
1723         }
1724
1725         spin_lock_irqsave(&ide_lock, flags);
1726         if (action == ide_preempt)
1727                 hwgroup->rq = NULL;
1728         if (action == ide_preempt || action == ide_head_wait) {
1729                 where = ELEVATOR_INSERT_FRONT;
1730                 rq->cmd_flags |= REQ_PREEMPT;
1731         }
1732         __elv_add_request(drive->queue, rq, where, 0);
1733         ide_do_request(hwgroup, IDE_NO_IRQ);
1734         spin_unlock_irqrestore(&ide_lock, flags);
1735
1736         err = 0;
1737         if (must_wait) {
1738                 wait_for_completion(&wait);
1739                 if (rq->errors)
1740                         err = -EIO;
1741
1742                 blk_put_request(rq);
1743         }
1744
1745         return err;
1746 }
1747
1748 EXPORT_SYMBOL(ide_do_drive_cmd);
1749
1750 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1751 {
1752         ide_task_t task;
1753
1754         memset(&task, 0, sizeof(task));
1755         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1756                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1757         task.tf.feature = dma;          /* Use PIO/DMA */
1758         task.tf.lbam    = bcount & 0xff;
1759         task.tf.lbah    = (bcount >> 8) & 0xff;
1760
1761         ide_tf_load(drive, &task);
1762 }
1763
1764 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);