Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[powerpc.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/bitops.h>
57
58 int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate,
59                       int nr_sectors)
60 {
61         int ret = 1;
62
63         BUG_ON(!(rq->flags & REQ_STARTED));
64
65         /*
66          * if failfast is set on a request, override number of sectors and
67          * complete the whole request right now
68          */
69         if (blk_noretry_request(rq) && end_io_error(uptodate))
70                 nr_sectors = rq->hard_nr_sectors;
71
72         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73                 rq->errors = -EIO;
74
75         /*
76          * decide whether to reenable DMA -- 3 is a random magic for now,
77          * if we DMA timeout more than 3 times, just stay in PIO
78          */
79         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
80                 drive->state = 0;
81                 HWGROUP(drive)->hwif->ide_dma_on(drive);
82         }
83
84         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
85                 add_disk_randomness(rq->rq_disk);
86                 blkdev_dequeue_request(rq);
87                 HWGROUP(drive)->rq = NULL;
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94 EXPORT_SYMBOL(__ide_end_request);
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_sectors)
121                 nr_sectors = rq->hard_cur_sectors;
122
123         ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
124
125         spin_unlock_irqrestore(&ide_lock, flags);
126         return ret;
127 }
128 EXPORT_SYMBOL(ide_end_request);
129
130 /*
131  * Power Management state machine. This one is rather trivial for now,
132  * we should probably add more, like switching back to PIO on suspend
133  * to help some BIOSes, re-do the door locking on resume, etc...
134  */
135
136 enum {
137         ide_pm_flush_cache      = ide_pm_state_start_suspend,
138         idedisk_pm_standby,
139
140         idedisk_pm_idle         = ide_pm_state_start_resume,
141         ide_pm_restore_dma,
142 };
143
144 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
145 {
146         if (drive->media != ide_disk)
147                 return;
148
149         switch (rq->pm->pm_step) {
150         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
151                 if (rq->pm->pm_state == PM_EVENT_FREEZE)
152                         rq->pm->pm_step = ide_pm_state_completed;
153                 else
154                         rq->pm->pm_step = idedisk_pm_standby;
155                 break;
156         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
157                 rq->pm->pm_step = ide_pm_state_completed;
158                 break;
159         case idedisk_pm_idle:           /* Resume step 1 (idle) complete */
160                 rq->pm->pm_step = ide_pm_restore_dma;
161                 break;
162         }
163 }
164
165 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
166 {
167         ide_task_t *args = rq->special;
168
169         memset(args, 0, sizeof(*args));
170
171         if (drive->media != ide_disk) {
172                 /* skip idedisk_pm_idle for ATAPI devices */
173                 if (rq->pm->pm_step == idedisk_pm_idle)
174                         rq->pm->pm_step = ide_pm_restore_dma;
175         }
176
177         switch (rq->pm->pm_step) {
178         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
179                 if (drive->media != ide_disk)
180                         break;
181                 /* Not supported? Switch to next step now. */
182                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
183                         ide_complete_power_step(drive, rq, 0, 0);
184                         return ide_stopped;
185                 }
186                 if (ide_id_has_flush_cache_ext(drive->id))
187                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
188                 else
189                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
190                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
191                 args->handler      = &task_no_data_intr;
192                 return do_rw_taskfile(drive, args);
193
194         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
195                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
196                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
197                 args->handler      = &task_no_data_intr;
198                 return do_rw_taskfile(drive, args);
199
200         case idedisk_pm_idle:           /* Resume step 1 (idle) */
201                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
202                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
203                 args->handler = task_no_data_intr;
204                 return do_rw_taskfile(drive, args);
205
206         case ide_pm_restore_dma:        /* Resume step 2 (restore DMA) */
207                 /*
208                  * Right now, all we do is call hwif->ide_dma_check(drive),
209                  * we could be smarter and check for current xfer_speed
210                  * in struct drive etc...
211                  */
212                 if ((drive->id->capability & 1) == 0)
213                         break;
214                 if (drive->hwif->ide_dma_check == NULL)
215                         break;
216                 drive->hwif->ide_dma_check(drive);
217                 break;
218         }
219         rq->pm->pm_step = ide_pm_state_completed;
220         return ide_stopped;
221 }
222
223 /**
224  *      ide_complete_pm_request - end the current Power Management request
225  *      @drive: target drive
226  *      @rq: request
227  *
228  *      This function cleans up the current PM request and stops the queue
229  *      if necessary.
230  */
231 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
232 {
233         unsigned long flags;
234
235 #ifdef DEBUG_PM
236         printk("%s: completing PM request, %s\n", drive->name,
237                blk_pm_suspend_request(rq) ? "suspend" : "resume");
238 #endif
239         spin_lock_irqsave(&ide_lock, flags);
240         if (blk_pm_suspend_request(rq)) {
241                 blk_stop_queue(drive->queue);
242         } else {
243                 drive->blocked = 0;
244                 blk_start_queue(drive->queue);
245         }
246         blkdev_dequeue_request(rq);
247         HWGROUP(drive)->rq = NULL;
248         end_that_request_last(rq, 1);
249         spin_unlock_irqrestore(&ide_lock, flags);
250 }
251
252 /*
253  * FIXME: probably move this somewhere else, name is bad too :)
254  */
255 u64 ide_get_error_location(ide_drive_t *drive, char *args)
256 {
257         u32 high, low;
258         u8 hcyl, lcyl, sect;
259         u64 sector;
260
261         high = 0;
262         hcyl = args[5];
263         lcyl = args[4];
264         sect = args[3];
265
266         if (ide_id_has_flush_cache_ext(drive->id)) {
267                 low = (hcyl << 16) | (lcyl << 8) | sect;
268                 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
269                 high = ide_read_24(drive);
270         } else {
271                 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
272                 if (cur & 0x40) {
273                         high = cur & 0xf;
274                         low = (hcyl << 16) | (lcyl << 8) | sect;
275                 } else {
276                         low = hcyl * drive->head * drive->sect;
277                         low += lcyl * drive->sect;
278                         low += sect - 1;
279                 }
280         }
281
282         sector = ((u64) high << 24) | low;
283         return sector;
284 }
285 EXPORT_SYMBOL(ide_get_error_location);
286
287 /**
288  *      ide_end_drive_cmd       -       end an explicit drive command
289  *      @drive: command 
290  *      @stat: status bits
291  *      @err: error bits
292  *
293  *      Clean up after success/failure of an explicit drive command.
294  *      These get thrown onto the queue so they are synchronized with
295  *      real I/O operations on the drive.
296  *
297  *      In LBA48 mode we have to read the register set twice to get
298  *      all the extra information out.
299  */
300  
301 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
302 {
303         ide_hwif_t *hwif = HWIF(drive);
304         unsigned long flags;
305         struct request *rq;
306
307         spin_lock_irqsave(&ide_lock, flags);
308         rq = HWGROUP(drive)->rq;
309         spin_unlock_irqrestore(&ide_lock, flags);
310
311         if (rq->flags & REQ_DRIVE_CMD) {
312                 u8 *args = (u8 *) rq->buffer;
313                 if (rq->errors == 0)
314                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
315
316                 if (args) {
317                         args[0] = stat;
318                         args[1] = err;
319                         args[2] = hwif->INB(IDE_NSECTOR_REG);
320                 }
321         } else if (rq->flags & REQ_DRIVE_TASK) {
322                 u8 *args = (u8 *) rq->buffer;
323                 if (rq->errors == 0)
324                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
325
326                 if (args) {
327                         args[0] = stat;
328                         args[1] = err;
329                         args[2] = hwif->INB(IDE_NSECTOR_REG);
330                         args[3] = hwif->INB(IDE_SECTOR_REG);
331                         args[4] = hwif->INB(IDE_LCYL_REG);
332                         args[5] = hwif->INB(IDE_HCYL_REG);
333                         args[6] = hwif->INB(IDE_SELECT_REG);
334                 }
335         } else if (rq->flags & REQ_DRIVE_TASKFILE) {
336                 ide_task_t *args = (ide_task_t *) rq->special;
337                 if (rq->errors == 0)
338                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339                         
340                 if (args) {
341                         if (args->tf_in_flags.b.data) {
342                                 u16 data                                = hwif->INW(IDE_DATA_REG);
343                                 args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
344                                 args->hobRegister[IDE_DATA_OFFSET]      = (data >> 8) & 0xFF;
345                         }
346                         args->tfRegister[IDE_ERROR_OFFSET]   = err;
347                         /* be sure we're looking at the low order bits */
348                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
349                         args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
350                         args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
351                         args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
352                         args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
353                         args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
354                         args->tfRegister[IDE_STATUS_OFFSET]  = stat;
355
356                         if (drive->addressing == 1) {
357                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
358                                 args->hobRegister[IDE_FEATURE_OFFSET]   = hwif->INB(IDE_FEATURE_REG);
359                                 args->hobRegister[IDE_NSECTOR_OFFSET]   = hwif->INB(IDE_NSECTOR_REG);
360                                 args->hobRegister[IDE_SECTOR_OFFSET]    = hwif->INB(IDE_SECTOR_REG);
361                                 args->hobRegister[IDE_LCYL_OFFSET]      = hwif->INB(IDE_LCYL_REG);
362                                 args->hobRegister[IDE_HCYL_OFFSET]      = hwif->INB(IDE_HCYL_REG);
363                         }
364                 }
365         } else if (blk_pm_request(rq)) {
366 #ifdef DEBUG_PM
367                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
368                         drive->name, rq->pm->pm_step, stat, err);
369 #endif
370                 ide_complete_power_step(drive, rq, stat, err);
371                 if (rq->pm->pm_step == ide_pm_state_completed)
372                         ide_complete_pm_request(drive, rq);
373                 return;
374         }
375
376         spin_lock_irqsave(&ide_lock, flags);
377         blkdev_dequeue_request(rq);
378         HWGROUP(drive)->rq = NULL;
379         rq->errors = err;
380         end_that_request_last(rq, !rq->errors);
381         spin_unlock_irqrestore(&ide_lock, flags);
382 }
383
384 EXPORT_SYMBOL(ide_end_drive_cmd);
385
386 /**
387  *      try_to_flush_leftover_data      -       flush junk
388  *      @drive: drive to flush
389  *
390  *      try_to_flush_leftover_data() is invoked in response to a drive
391  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
392  *      resetting the drive, this routine tries to clear the condition
393  *      by read a sector's worth of data from the drive.  Of course,
394  *      this may not help if the drive is *waiting* for data from *us*.
395  */
396 static void try_to_flush_leftover_data (ide_drive_t *drive)
397 {
398         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
399
400         if (drive->media != ide_disk)
401                 return;
402         while (i > 0) {
403                 u32 buffer[16];
404                 u32 wcount = (i > 16) ? 16 : i;
405
406                 i -= wcount;
407                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
408         }
409 }
410
411 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
412 {
413         if (rq->rq_disk) {
414                 ide_driver_t *drv;
415
416                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
417                 drv->end_request(drive, 0, 0);
418         } else
419                 ide_end_request(drive, 0, 0);
420 }
421
422 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
423 {
424         ide_hwif_t *hwif = drive->hwif;
425
426         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
427                 /* other bits are useless when BUSY */
428                 rq->errors |= ERROR_RESET;
429         } else if (stat & ERR_STAT) {
430                 /* err has different meaning on cdrom and tape */
431                 if (err == ABRT_ERR) {
432                         if (drive->select.b.lba &&
433                             /* some newer drives don't support WIN_SPECIFY */
434                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
435                                 return ide_stopped;
436                 } else if ((err & BAD_CRC) == BAD_CRC) {
437                         /* UDMA crc error, just retry the operation */
438                         drive->crc_count++;
439                 } else if (err & (BBD_ERR | ECC_ERR)) {
440                         /* retries won't help these */
441                         rq->errors = ERROR_MAX;
442                 } else if (err & TRK0_ERR) {
443                         /* help it find track zero */
444                         rq->errors |= ERROR_RECAL;
445                 }
446         }
447
448         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
449                 try_to_flush_leftover_data(drive);
450
451         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
452                 /* force an abort */
453                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
454
455         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
456                 ide_kill_rq(drive, rq);
457         else {
458                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
459                         ++rq->errors;
460                         return ide_do_reset(drive);
461                 }
462                 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
463                         drive->special.b.recalibrate = 1;
464                 ++rq->errors;
465         }
466         return ide_stopped;
467 }
468
469 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
470 {
471         ide_hwif_t *hwif = drive->hwif;
472
473         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
474                 /* other bits are useless when BUSY */
475                 rq->errors |= ERROR_RESET;
476         } else {
477                 /* add decoding error stuff */
478         }
479
480         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
481                 /* force an abort */
482                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
483
484         if (rq->errors >= ERROR_MAX) {
485                 ide_kill_rq(drive, rq);
486         } else {
487                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
488                         ++rq->errors;
489                         return ide_do_reset(drive);
490                 }
491                 ++rq->errors;
492         }
493
494         return ide_stopped;
495 }
496
497 ide_startstop_t
498 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
499 {
500         if (drive->media == ide_disk)
501                 return ide_ata_error(drive, rq, stat, err);
502         return ide_atapi_error(drive, rq, stat, err);
503 }
504
505 EXPORT_SYMBOL_GPL(__ide_error);
506
507 /**
508  *      ide_error       -       handle an error on the IDE
509  *      @drive: drive the error occurred on
510  *      @msg: message to report
511  *      @stat: status bits
512  *
513  *      ide_error() takes action based on the error returned by the drive.
514  *      For normal I/O that may well include retries. We deal with
515  *      both new-style (taskfile) and old style command handling here.
516  *      In the case of taskfile command handling there is work left to
517  *      do
518  */
519  
520 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
521 {
522         struct request *rq;
523         u8 err;
524
525         err = ide_dump_status(drive, msg, stat);
526
527         if ((rq = HWGROUP(drive)->rq) == NULL)
528                 return ide_stopped;
529
530         /* retry only "normal" I/O: */
531         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
532                 rq->errors = 1;
533                 ide_end_drive_cmd(drive, stat, err);
534                 return ide_stopped;
535         }
536
537         if (rq->rq_disk) {
538                 ide_driver_t *drv;
539
540                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
541                 return drv->error(drive, rq, stat, err);
542         } else
543                 return __ide_error(drive, rq, stat, err);
544 }
545
546 EXPORT_SYMBOL_GPL(ide_error);
547
548 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
549 {
550         if (drive->media != ide_disk)
551                 rq->errors |= ERROR_RESET;
552
553         ide_kill_rq(drive, rq);
554
555         return ide_stopped;
556 }
557
558 EXPORT_SYMBOL_GPL(__ide_abort);
559
560 /**
561  *      ide_abort       -       abort pending IDE operations
562  *      @drive: drive the error occurred on
563  *      @msg: message to report
564  *
565  *      ide_abort kills and cleans up when we are about to do a 
566  *      host initiated reset on active commands. Longer term we
567  *      want handlers to have sensible abort handling themselves
568  *
569  *      This differs fundamentally from ide_error because in 
570  *      this case the command is doing just fine when we
571  *      blow it away.
572  */
573  
574 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
575 {
576         struct request *rq;
577
578         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
579                 return ide_stopped;
580
581         /* retry only "normal" I/O: */
582         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
583                 rq->errors = 1;
584                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
585                 return ide_stopped;
586         }
587
588         if (rq->rq_disk) {
589                 ide_driver_t *drv;
590
591                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
592                 return drv->abort(drive, rq);
593         } else
594                 return __ide_abort(drive, rq);
595 }
596
597 /**
598  *      ide_cmd         -       issue a simple drive command
599  *      @drive: drive the command is for
600  *      @cmd: command byte
601  *      @nsect: sector byte
602  *      @handler: handler for the command completion
603  *
604  *      Issue a simple drive command with interrupts.
605  *      The drive must be selected beforehand.
606  */
607
608 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
609                 ide_handler_t *handler)
610 {
611         ide_hwif_t *hwif = HWIF(drive);
612         if (IDE_CONTROL_REG)
613                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
614         SELECT_MASK(drive,0);
615         hwif->OUTB(nsect,IDE_NSECTOR_REG);
616         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
617 }
618
619 /**
620  *      drive_cmd_intr          -       drive command completion interrupt
621  *      @drive: drive the completion interrupt occurred on
622  *
623  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
624  *      We do any necessary data reading and then wait for the drive to
625  *      go non busy. At that point we may read the error data and complete
626  *      the request
627  */
628  
629 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
630 {
631         struct request *rq = HWGROUP(drive)->rq;
632         ide_hwif_t *hwif = HWIF(drive);
633         u8 *args = (u8 *) rq->buffer;
634         u8 stat = hwif->INB(IDE_STATUS_REG);
635         int retries = 10;
636
637         local_irq_enable();
638         if ((stat & DRQ_STAT) && args && args[3]) {
639                 u8 io_32bit = drive->io_32bit;
640                 drive->io_32bit = 0;
641                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
642                 drive->io_32bit = io_32bit;
643                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
644                         udelay(100);
645         }
646
647         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
648                 return ide_error(drive, "drive_cmd", stat);
649                 /* calls ide_end_drive_cmd */
650         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
651         return ide_stopped;
652 }
653
654 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
655 {
656         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
657         task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
658         task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
659         task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
660         task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
661         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
662
663         task->handler = &set_geometry_intr;
664 }
665
666 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
667 {
668         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
669         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
670
671         task->handler = &recal_intr;
672 }
673
674 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
675 {
676         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
677         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
678
679         task->handler = &set_multmode_intr;
680 }
681
682 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
683 {
684         special_t *s = &drive->special;
685         ide_task_t args;
686
687         memset(&args, 0, sizeof(ide_task_t));
688         args.command_type = IDE_DRIVE_TASK_NO_DATA;
689
690         if (s->b.set_geometry) {
691                 s->b.set_geometry = 0;
692                 ide_init_specify_cmd(drive, &args);
693         } else if (s->b.recalibrate) {
694                 s->b.recalibrate = 0;
695                 ide_init_restore_cmd(drive, &args);
696         } else if (s->b.set_multmode) {
697                 s->b.set_multmode = 0;
698                 if (drive->mult_req > drive->id->max_multsect)
699                         drive->mult_req = drive->id->max_multsect;
700                 ide_init_setmult_cmd(drive, &args);
701         } else if (s->all) {
702                 int special = s->all;
703                 s->all = 0;
704                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
705                 return ide_stopped;
706         }
707
708         do_rw_taskfile(drive, &args);
709
710         return ide_started;
711 }
712
713 /**
714  *      do_special              -       issue some special commands
715  *      @drive: drive the command is for
716  *
717  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
718  *      commands to a drive.  It used to do much more, but has been scaled
719  *      back.
720  */
721
722 static ide_startstop_t do_special (ide_drive_t *drive)
723 {
724         special_t *s = &drive->special;
725
726 #ifdef DEBUG
727         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
728 #endif
729         if (s->b.set_tune) {
730                 s->b.set_tune = 0;
731                 if (HWIF(drive)->tuneproc != NULL)
732                         HWIF(drive)->tuneproc(drive, drive->tune_req);
733                 return ide_stopped;
734         } else {
735                 if (drive->media == ide_disk)
736                         return ide_disk_special(drive);
737
738                 s->all = 0;
739                 drive->mult_req = 0;
740                 return ide_stopped;
741         }
742 }
743
744 void ide_map_sg(ide_drive_t *drive, struct request *rq)
745 {
746         ide_hwif_t *hwif = drive->hwif;
747         struct scatterlist *sg = hwif->sg_table;
748
749         if (hwif->sg_mapped)    /* needed by ide-scsi */
750                 return;
751
752         if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
753                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
754         } else {
755                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
756                 hwif->sg_nents = 1;
757         }
758 }
759
760 EXPORT_SYMBOL_GPL(ide_map_sg);
761
762 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
763 {
764         ide_hwif_t *hwif = drive->hwif;
765
766         hwif->nsect = hwif->nleft = rq->nr_sectors;
767         hwif->cursg = hwif->cursg_ofs = 0;
768 }
769
770 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
771
772 /**
773  *      execute_drive_command   -       issue special drive command
774  *      @drive: the drive to issue the command on
775  *      @rq: the request structure holding the command
776  *
777  *      execute_drive_cmd() issues a special drive command,  usually 
778  *      initiated by ioctl() from the external hdparm program. The
779  *      command can be a drive command, drive task or taskfile 
780  *      operation. Weirdly you can call it with NULL to wait for
781  *      all commands to finish. Don't do this as that is due to change
782  */
783
784 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
785                 struct request *rq)
786 {
787         ide_hwif_t *hwif = HWIF(drive);
788         if (rq->flags & REQ_DRIVE_TASKFILE) {
789                 ide_task_t *args = rq->special;
790  
791                 if (!args)
792                         goto done;
793
794                 hwif->data_phase = args->data_phase;
795
796                 switch (hwif->data_phase) {
797                 case TASKFILE_MULTI_OUT:
798                 case TASKFILE_OUT:
799                 case TASKFILE_MULTI_IN:
800                 case TASKFILE_IN:
801                         ide_init_sg_cmd(drive, rq);
802                         ide_map_sg(drive, rq);
803                 default:
804                         break;
805                 }
806
807                 if (args->tf_out_flags.all != 0) 
808                         return flagged_taskfile(drive, args);
809                 return do_rw_taskfile(drive, args);
810         } else if (rq->flags & REQ_DRIVE_TASK) {
811                 u8 *args = rq->buffer;
812                 u8 sel;
813  
814                 if (!args)
815                         goto done;
816 #ifdef DEBUG
817                 printk("%s: DRIVE_TASK_CMD ", drive->name);
818                 printk("cmd=0x%02x ", args[0]);
819                 printk("fr=0x%02x ", args[1]);
820                 printk("ns=0x%02x ", args[2]);
821                 printk("sc=0x%02x ", args[3]);
822                 printk("lcyl=0x%02x ", args[4]);
823                 printk("hcyl=0x%02x ", args[5]);
824                 printk("sel=0x%02x\n", args[6]);
825 #endif
826                 hwif->OUTB(args[1], IDE_FEATURE_REG);
827                 hwif->OUTB(args[3], IDE_SECTOR_REG);
828                 hwif->OUTB(args[4], IDE_LCYL_REG);
829                 hwif->OUTB(args[5], IDE_HCYL_REG);
830                 sel = (args[6] & ~0x10);
831                 if (drive->select.b.unit)
832                         sel |= 0x10;
833                 hwif->OUTB(sel, IDE_SELECT_REG);
834                 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
835                 return ide_started;
836         } else if (rq->flags & REQ_DRIVE_CMD) {
837                 u8 *args = rq->buffer;
838
839                 if (!args)
840                         goto done;
841 #ifdef DEBUG
842                 printk("%s: DRIVE_CMD ", drive->name);
843                 printk("cmd=0x%02x ", args[0]);
844                 printk("sc=0x%02x ", args[1]);
845                 printk("fr=0x%02x ", args[2]);
846                 printk("xx=0x%02x\n", args[3]);
847 #endif
848                 if (args[0] == WIN_SMART) {
849                         hwif->OUTB(0x4f, IDE_LCYL_REG);
850                         hwif->OUTB(0xc2, IDE_HCYL_REG);
851                         hwif->OUTB(args[2],IDE_FEATURE_REG);
852                         hwif->OUTB(args[1],IDE_SECTOR_REG);
853                         ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
854                         return ide_started;
855                 }
856                 hwif->OUTB(args[2],IDE_FEATURE_REG);
857                 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
858                 return ide_started;
859         }
860
861 done:
862         /*
863          * NULL is actually a valid way of waiting for
864          * all current requests to be flushed from the queue.
865          */
866 #ifdef DEBUG
867         printk("%s: DRIVE_CMD (null)\n", drive->name);
868 #endif
869         ide_end_drive_cmd(drive,
870                         hwif->INB(IDE_STATUS_REG),
871                         hwif->INB(IDE_ERROR_REG));
872         return ide_stopped;
873 }
874
875 /**
876  *      start_request   -       start of I/O and command issuing for IDE
877  *
878  *      start_request() initiates handling of a new I/O request. It
879  *      accepts commands and I/O (read/write) requests. It also does
880  *      the final remapping for weird stuff like EZDrive. Once 
881  *      device mapper can work sector level the EZDrive stuff can go away
882  *
883  *      FIXME: this function needs a rename
884  */
885  
886 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
887 {
888         ide_startstop_t startstop;
889         sector_t block;
890
891         BUG_ON(!(rq->flags & REQ_STARTED));
892
893 #ifdef DEBUG
894         printk("%s: start_request: current=0x%08lx\n",
895                 HWIF(drive)->name, (unsigned long) rq);
896 #endif
897
898         /* bail early if we've exceeded max_failures */
899         if (drive->max_failures && (drive->failures > drive->max_failures)) {
900                 goto kill_rq;
901         }
902
903         block    = rq->sector;
904         if (blk_fs_request(rq) &&
905             (drive->media == ide_disk || drive->media == ide_floppy)) {
906                 block += drive->sect0;
907         }
908         /* Yecch - this will shift the entire interval,
909            possibly killing some innocent following sector */
910         if (block == 0 && drive->remap_0_to_1 == 1)
911                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
912
913         if (blk_pm_suspend_request(rq) &&
914             rq->pm->pm_step == ide_pm_state_start_suspend)
915                 /* Mark drive blocked when starting the suspend sequence. */
916                 drive->blocked = 1;
917         else if (blk_pm_resume_request(rq) &&
918                  rq->pm->pm_step == ide_pm_state_start_resume) {
919                 /* 
920                  * The first thing we do on wakeup is to wait for BSY bit to
921                  * go away (with a looong timeout) as a drive on this hwif may
922                  * just be POSTing itself.
923                  * We do that before even selecting as the "other" device on
924                  * the bus may be broken enough to walk on our toes at this
925                  * point.
926                  */
927                 int rc;
928 #ifdef DEBUG_PM
929                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
930 #endif
931                 rc = ide_wait_not_busy(HWIF(drive), 35000);
932                 if (rc)
933                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
934                 SELECT_DRIVE(drive);
935                 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
936                 rc = ide_wait_not_busy(HWIF(drive), 10000);
937                 if (rc)
938                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
939         }
940
941         SELECT_DRIVE(drive);
942         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
943                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
944                 return startstop;
945         }
946         if (!drive->special.all) {
947                 ide_driver_t *drv;
948
949                 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
950                         return execute_drive_cmd(drive, rq);
951                 else if (rq->flags & REQ_DRIVE_TASKFILE)
952                         return execute_drive_cmd(drive, rq);
953                 else if (blk_pm_request(rq)) {
954 #ifdef DEBUG_PM
955                         printk("%s: start_power_step(step: %d)\n",
956                                 drive->name, rq->pm->pm_step);
957 #endif
958                         startstop = ide_start_power_step(drive, rq);
959                         if (startstop == ide_stopped &&
960                             rq->pm->pm_step == ide_pm_state_completed)
961                                 ide_complete_pm_request(drive, rq);
962                         return startstop;
963                 }
964
965                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
966                 return drv->do_request(drive, rq, block);
967         }
968         return do_special(drive);
969 kill_rq:
970         ide_kill_rq(drive, rq);
971         return ide_stopped;
972 }
973
974 /**
975  *      ide_stall_queue         -       pause an IDE device
976  *      @drive: drive to stall
977  *      @timeout: time to stall for (jiffies)
978  *
979  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
980  *      to the hwgroup by sleeping for timeout jiffies.
981  */
982  
983 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
984 {
985         if (timeout > WAIT_WORSTCASE)
986                 timeout = WAIT_WORSTCASE;
987         drive->sleep = timeout + jiffies;
988         drive->sleeping = 1;
989 }
990
991 EXPORT_SYMBOL(ide_stall_queue);
992
993 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
994
995 /**
996  *      choose_drive            -       select a drive to service
997  *      @hwgroup: hardware group to select on
998  *
999  *      choose_drive() selects the next drive which will be serviced.
1000  *      This is necessary because the IDE layer can't issue commands
1001  *      to both drives on the same cable, unlike SCSI.
1002  */
1003  
1004 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1005 {
1006         ide_drive_t *drive, *best;
1007
1008 repeat: 
1009         best = NULL;
1010         drive = hwgroup->drive;
1011
1012         /*
1013          * drive is doing pre-flush, ordered write, post-flush sequence. even
1014          * though that is 3 requests, it must be seen as a single transaction.
1015          * we must not preempt this drive until that is complete
1016          */
1017         if (blk_queue_flushing(drive->queue)) {
1018                 /*
1019                  * small race where queue could get replugged during
1020                  * the 3-request flush cycle, just yank the plug since
1021                  * we want it to finish asap
1022                  */
1023                 blk_remove_plug(drive->queue);
1024                 return drive;
1025         }
1026
1027         do {
1028                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1029                     && !elv_queue_empty(drive->queue)) {
1030                         if (!best
1031                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1032                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1033                         {
1034                                 if (!blk_queue_plugged(drive->queue))
1035                                         best = drive;
1036                         }
1037                 }
1038         } while ((drive = drive->next) != hwgroup->drive);
1039         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1040                 long t = (signed long)(WAKEUP(best) - jiffies);
1041                 if (t >= WAIT_MIN_SLEEP) {
1042                 /*
1043                  * We *may* have some time to spare, but first let's see if
1044                  * someone can potentially benefit from our nice mood today..
1045                  */
1046                         drive = best->next;
1047                         do {
1048                                 if (!drive->sleeping
1049                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1050                                  && time_before(WAKEUP(drive), jiffies + t))
1051                                 {
1052                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1053                                         goto repeat;
1054                                 }
1055                         } while ((drive = drive->next) != best);
1056                 }
1057         }
1058         return best;
1059 }
1060
1061 /*
1062  * Issue a new request to a drive from hwgroup
1063  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1064  *
1065  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1066  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1067  * may have both interfaces in a single hwgroup to "serialize" access.
1068  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1069  * together into one hwgroup for serialized access.
1070  *
1071  * Note also that several hwgroups can end up sharing a single IRQ,
1072  * possibly along with many other devices.  This is especially common in
1073  * PCI-based systems with off-board IDE controller cards.
1074  *
1075  * The IDE driver uses the single global ide_lock spinlock to protect
1076  * access to the request queues, and to protect the hwgroup->busy flag.
1077  *
1078  * The first thread into the driver for a particular hwgroup sets the
1079  * hwgroup->busy flag to indicate that this hwgroup is now active,
1080  * and then initiates processing of the top request from the request queue.
1081  *
1082  * Other threads attempting entry notice the busy setting, and will simply
1083  * queue their new requests and exit immediately.  Note that hwgroup->busy
1084  * remains set even when the driver is merely awaiting the next interrupt.
1085  * Thus, the meaning is "this hwgroup is busy processing a request".
1086  *
1087  * When processing of a request completes, the completing thread or IRQ-handler
1088  * will start the next request from the queue.  If no more work remains,
1089  * the driver will clear the hwgroup->busy flag and exit.
1090  *
1091  * The ide_lock (spinlock) is used to protect all access to the
1092  * hwgroup->busy flag, but is otherwise not needed for most processing in
1093  * the driver.  This makes the driver much more friendlier to shared IRQs
1094  * than previous designs, while remaining 100% (?) SMP safe and capable.
1095  */
1096 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1097 {
1098         ide_drive_t     *drive;
1099         ide_hwif_t      *hwif;
1100         struct request  *rq;
1101         ide_startstop_t startstop;
1102         int             loops = 0;
1103
1104         /* for atari only: POSSIBLY BROKEN HERE(?) */
1105         ide_get_lock(ide_intr, hwgroup);
1106
1107         /* caller must own ide_lock */
1108         BUG_ON(!irqs_disabled());
1109
1110         while (!hwgroup->busy) {
1111                 hwgroup->busy = 1;
1112                 drive = choose_drive(hwgroup);
1113                 if (drive == NULL) {
1114                         int sleeping = 0;
1115                         unsigned long sleep = 0; /* shut up, gcc */
1116                         hwgroup->rq = NULL;
1117                         drive = hwgroup->drive;
1118                         do {
1119                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1120                                         sleeping = 1;
1121                                         sleep = drive->sleep;
1122                                 }
1123                         } while ((drive = drive->next) != hwgroup->drive);
1124                         if (sleeping) {
1125                 /*
1126                  * Take a short snooze, and then wake up this hwgroup again.
1127                  * This gives other hwgroups on the same a chance to
1128                  * play fairly with us, just in case there are big differences
1129                  * in relative throughputs.. don't want to hog the cpu too much.
1130                  */
1131                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1132                                         sleep = jiffies + WAIT_MIN_SLEEP;
1133 #if 1
1134                                 if (timer_pending(&hwgroup->timer))
1135                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1136 #endif
1137                                 /* so that ide_timer_expiry knows what to do */
1138                                 hwgroup->sleeping = 1;
1139                                 mod_timer(&hwgroup->timer, sleep);
1140                                 /* we purposely leave hwgroup->busy==1
1141                                  * while sleeping */
1142                         } else {
1143                                 /* Ugly, but how can we sleep for the lock
1144                                  * otherwise? perhaps from tq_disk?
1145                                  */
1146
1147                                 /* for atari only */
1148                                 ide_release_lock();
1149                                 hwgroup->busy = 0;
1150                         }
1151
1152                         /* no more work for this hwgroup (for now) */
1153                         return;
1154                 }
1155         again:
1156                 hwif = HWIF(drive);
1157                 if (hwgroup->hwif->sharing_irq &&
1158                     hwif != hwgroup->hwif &&
1159                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1160                         /* set nIEN for previous hwif */
1161                         SELECT_INTERRUPT(drive);
1162                 }
1163                 hwgroup->hwif = hwif;
1164                 hwgroup->drive = drive;
1165                 drive->sleeping = 0;
1166                 drive->service_start = jiffies;
1167
1168                 if (blk_queue_plugged(drive->queue)) {
1169                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1170                         break;
1171                 }
1172
1173                 /*
1174                  * we know that the queue isn't empty, but this can happen
1175                  * if the q->prep_rq_fn() decides to kill a request
1176                  */
1177                 rq = elv_next_request(drive->queue);
1178                 if (!rq) {
1179                         hwgroup->busy = 0;
1180                         break;
1181                 }
1182
1183                 /*
1184                  * Sanity: don't accept a request that isn't a PM request
1185                  * if we are currently power managed. This is very important as
1186                  * blk_stop_queue() doesn't prevent the elv_next_request()
1187                  * above to return us whatever is in the queue. Since we call
1188                  * ide_do_request() ourselves, we end up taking requests while
1189                  * the queue is blocked...
1190                  * 
1191                  * We let requests forced at head of queue with ide-preempt
1192                  * though. I hope that doesn't happen too much, hopefully not
1193                  * unless the subdriver triggers such a thing in its own PM
1194                  * state machine.
1195                  *
1196                  * We count how many times we loop here to make sure we service
1197                  * all drives in the hwgroup without looping for ever
1198                  */
1199                 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1200                         drive = drive->next ? drive->next : hwgroup->drive;
1201                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1202                                 goto again;
1203                         /* We clear busy, there should be no pending ATA command at this point. */
1204                         hwgroup->busy = 0;
1205                         break;
1206                 }
1207
1208                 hwgroup->rq = rq;
1209
1210                 /*
1211                  * Some systems have trouble with IDE IRQs arriving while
1212                  * the driver is still setting things up.  So, here we disable
1213                  * the IRQ used by this interface while the request is being started.
1214                  * This may look bad at first, but pretty much the same thing
1215                  * happens anyway when any interrupt comes in, IDE or otherwise
1216                  *  -- the kernel masks the IRQ while it is being handled.
1217                  */
1218                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1219                         disable_irq_nosync(hwif->irq);
1220                 spin_unlock(&ide_lock);
1221                 local_irq_enable();
1222                         /* allow other IRQs while we start this request */
1223                 startstop = start_request(drive, rq);
1224                 spin_lock_irq(&ide_lock);
1225                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1226                         enable_irq(hwif->irq);
1227                 if (startstop == ide_stopped)
1228                         hwgroup->busy = 0;
1229         }
1230 }
1231
1232 /*
1233  * Passes the stuff to ide_do_request
1234  */
1235 void do_ide_request(request_queue_t *q)
1236 {
1237         ide_drive_t *drive = q->queuedata;
1238
1239         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1240 }
1241
1242 /*
1243  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1244  * retry the current request in pio mode instead of risking tossing it
1245  * all away
1246  */
1247 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1248 {
1249         ide_hwif_t *hwif = HWIF(drive);
1250         struct request *rq;
1251         ide_startstop_t ret = ide_stopped;
1252
1253         /*
1254          * end current dma transaction
1255          */
1256
1257         if (error < 0) {
1258                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1259                 (void)HWIF(drive)->ide_dma_end(drive);
1260                 ret = ide_error(drive, "dma timeout error",
1261                                                 hwif->INB(IDE_STATUS_REG));
1262         } else {
1263                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1264                 (void) hwif->ide_dma_timeout(drive);
1265         }
1266
1267         /*
1268          * disable dma for now, but remember that we did so because of
1269          * a timeout -- we'll reenable after we finish this next request
1270          * (or rather the first chunk of it) in pio.
1271          */
1272         drive->retry_pio++;
1273         drive->state = DMA_PIO_RETRY;
1274         (void) hwif->ide_dma_off_quietly(drive);
1275
1276         /*
1277          * un-busy drive etc (hwgroup->busy is cleared on return) and
1278          * make sure request is sane
1279          */
1280         rq = HWGROUP(drive)->rq;
1281         HWGROUP(drive)->rq = NULL;
1282
1283         rq->errors = 0;
1284
1285         if (!rq->bio)
1286                 goto out;
1287
1288         rq->sector = rq->bio->bi_sector;
1289         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1290         rq->hard_cur_sectors = rq->current_nr_sectors;
1291         rq->buffer = bio_data(rq->bio);
1292 out:
1293         return ret;
1294 }
1295
1296 /**
1297  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1298  *      @data: timer callback magic (hwgroup)
1299  *
1300  *      An IDE command has timed out before the expected drive return
1301  *      occurred. At this point we attempt to clean up the current
1302  *      mess. If the current handler includes an expiry handler then
1303  *      we invoke the expiry handler, and providing it is happy the
1304  *      work is done. If that fails we apply generic recovery rules
1305  *      invoking the handler and checking the drive DMA status. We
1306  *      have an excessively incestuous relationship with the DMA
1307  *      logic that wants cleaning up.
1308  */
1309  
1310 void ide_timer_expiry (unsigned long data)
1311 {
1312         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1313         ide_handler_t   *handler;
1314         ide_expiry_t    *expiry;
1315         unsigned long   flags;
1316         unsigned long   wait = -1;
1317
1318         spin_lock_irqsave(&ide_lock, flags);
1319
1320         if ((handler = hwgroup->handler) == NULL) {
1321                 /*
1322                  * Either a marginal timeout occurred
1323                  * (got the interrupt just as timer expired),
1324                  * or we were "sleeping" to give other devices a chance.
1325                  * Either way, we don't really want to complain about anything.
1326                  */
1327                 if (hwgroup->sleeping) {
1328                         hwgroup->sleeping = 0;
1329                         hwgroup->busy = 0;
1330                 }
1331         } else {
1332                 ide_drive_t *drive = hwgroup->drive;
1333                 if (!drive) {
1334                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1335                         hwgroup->handler = NULL;
1336                 } else {
1337                         ide_hwif_t *hwif;
1338                         ide_startstop_t startstop = ide_stopped;
1339                         if (!hwgroup->busy) {
1340                                 hwgroup->busy = 1;      /* paranoia */
1341                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1342                         }
1343                         if ((expiry = hwgroup->expiry) != NULL) {
1344                                 /* continue */
1345                                 if ((wait = expiry(drive)) > 0) {
1346                                         /* reset timer */
1347                                         hwgroup->timer.expires  = jiffies + wait;
1348                                         add_timer(&hwgroup->timer);
1349                                         spin_unlock_irqrestore(&ide_lock, flags);
1350                                         return;
1351                                 }
1352                         }
1353                         hwgroup->handler = NULL;
1354                         /*
1355                          * We need to simulate a real interrupt when invoking
1356                          * the handler() function, which means we need to
1357                          * globally mask the specific IRQ:
1358                          */
1359                         spin_unlock(&ide_lock);
1360                         hwif  = HWIF(drive);
1361 #if DISABLE_IRQ_NOSYNC
1362                         disable_irq_nosync(hwif->irq);
1363 #else
1364                         /* disable_irq_nosync ?? */
1365                         disable_irq(hwif->irq);
1366 #endif /* DISABLE_IRQ_NOSYNC */
1367                         /* local CPU only,
1368                          * as if we were handling an interrupt */
1369                         local_irq_disable();
1370                         if (hwgroup->polling) {
1371                                 startstop = handler(drive);
1372                         } else if (drive_is_ready(drive)) {
1373                                 if (drive->waiting_for_dma)
1374                                         (void) hwgroup->hwif->ide_dma_lostirq(drive);
1375                                 (void)ide_ack_intr(hwif);
1376                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1377                                 startstop = handler(drive);
1378                         } else {
1379                                 if (drive->waiting_for_dma) {
1380                                         startstop = ide_dma_timeout_retry(drive, wait);
1381                                 } else
1382                                         startstop =
1383                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1384                         }
1385                         drive->service_time = jiffies - drive->service_start;
1386                         spin_lock_irq(&ide_lock);
1387                         enable_irq(hwif->irq);
1388                         if (startstop == ide_stopped)
1389                                 hwgroup->busy = 0;
1390                 }
1391         }
1392         ide_do_request(hwgroup, IDE_NO_IRQ);
1393         spin_unlock_irqrestore(&ide_lock, flags);
1394 }
1395
1396 /**
1397  *      unexpected_intr         -       handle an unexpected IDE interrupt
1398  *      @irq: interrupt line
1399  *      @hwgroup: hwgroup being processed
1400  *
1401  *      There's nothing really useful we can do with an unexpected interrupt,
1402  *      other than reading the status register (to clear it), and logging it.
1403  *      There should be no way that an irq can happen before we're ready for it,
1404  *      so we needn't worry much about losing an "important" interrupt here.
1405  *
1406  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1407  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1408  *      looks "good", we just ignore the interrupt completely.
1409  *
1410  *      This routine assumes __cli() is in effect when called.
1411  *
1412  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1413  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1414  *      we could screw up by interfering with a new request being set up for 
1415  *      irq15.
1416  *
1417  *      In reality, this is a non-issue.  The new command is not sent unless 
1418  *      the drive is ready to accept one, in which case we know the drive is
1419  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1420  *      before completing the issuance of any new drive command, so we will not
1421  *      be accidentally invoked as a result of any valid command completion
1422  *      interrupt.
1423  *
1424  *      Note that we must walk the entire hwgroup here. We know which hwif
1425  *      is doing the current command, but we don't know which hwif burped
1426  *      mysteriously.
1427  */
1428  
1429 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1430 {
1431         u8 stat;
1432         ide_hwif_t *hwif = hwgroup->hwif;
1433
1434         /*
1435          * handle the unexpected interrupt
1436          */
1437         do {
1438                 if (hwif->irq == irq) {
1439                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1440                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1441                                 /* Try to not flood the console with msgs */
1442                                 static unsigned long last_msgtime, count;
1443                                 ++count;
1444                                 if (time_after(jiffies, last_msgtime + HZ)) {
1445                                         last_msgtime = jiffies;
1446                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1447                                                 "status=0x%02x, count=%ld\n",
1448                                                 hwif->name,
1449                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1450                                 }
1451                         }
1452                 }
1453         } while ((hwif = hwif->next) != hwgroup->hwif);
1454 }
1455
1456 /**
1457  *      ide_intr        -       default IDE interrupt handler
1458  *      @irq: interrupt number
1459  *      @dev_id: hwif group
1460  *      @regs: unused weirdness from the kernel irq layer
1461  *
1462  *      This is the default IRQ handler for the IDE layer. You should
1463  *      not need to override it. If you do be aware it is subtle in
1464  *      places
1465  *
1466  *      hwgroup->hwif is the interface in the group currently performing
1467  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1468  *      the IRQ handler to call. As we issue a command the handlers
1469  *      step through multiple states, reassigning the handler to the
1470  *      next step in the process. Unlike a smart SCSI controller IDE
1471  *      expects the main processor to sequence the various transfer
1472  *      stages. We also manage a poll timer to catch up with most
1473  *      timeout situations. There are still a few where the handlers
1474  *      don't ever decide to give up.
1475  *
1476  *      The handler eventually returns ide_stopped to indicate the
1477  *      request completed. At this point we issue the next request
1478  *      on the hwgroup and the process begins again.
1479  */
1480  
1481 irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1482 {
1483         unsigned long flags;
1484         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1485         ide_hwif_t *hwif;
1486         ide_drive_t *drive;
1487         ide_handler_t *handler;
1488         ide_startstop_t startstop;
1489
1490         spin_lock_irqsave(&ide_lock, flags);
1491         hwif = hwgroup->hwif;
1492
1493         if (!ide_ack_intr(hwif)) {
1494                 spin_unlock_irqrestore(&ide_lock, flags);
1495                 return IRQ_NONE;
1496         }
1497
1498         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1499                 /*
1500                  * Not expecting an interrupt from this drive.
1501                  * That means this could be:
1502                  *      (1) an interrupt from another PCI device
1503                  *      sharing the same PCI INT# as us.
1504                  * or   (2) a drive just entered sleep or standby mode,
1505                  *      and is interrupting to let us know.
1506                  * or   (3) a spurious interrupt of unknown origin.
1507                  *
1508                  * For PCI, we cannot tell the difference,
1509                  * so in that case we just ignore it and hope it goes away.
1510                  *
1511                  * FIXME: unexpected_intr should be hwif-> then we can
1512                  * remove all the ifdef PCI crap
1513                  */
1514 #ifdef CONFIG_BLK_DEV_IDEPCI
1515                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1516 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1517                 {
1518                         /*
1519                          * Probably not a shared PCI interrupt,
1520                          * so we can safely try to do something about it:
1521                          */
1522                         unexpected_intr(irq, hwgroup);
1523 #ifdef CONFIG_BLK_DEV_IDEPCI
1524                 } else {
1525                         /*
1526                          * Whack the status register, just in case
1527                          * we have a leftover pending IRQ.
1528                          */
1529                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1530 #endif /* CONFIG_BLK_DEV_IDEPCI */
1531                 }
1532                 spin_unlock_irqrestore(&ide_lock, flags);
1533                 return IRQ_NONE;
1534         }
1535         drive = hwgroup->drive;
1536         if (!drive) {
1537                 /*
1538                  * This should NEVER happen, and there isn't much
1539                  * we could do about it here.
1540                  *
1541                  * [Note - this can occur if the drive is hot unplugged]
1542                  */
1543                 spin_unlock_irqrestore(&ide_lock, flags);
1544                 return IRQ_HANDLED;
1545         }
1546         if (!drive_is_ready(drive)) {
1547                 /*
1548                  * This happens regularly when we share a PCI IRQ with
1549                  * another device.  Unfortunately, it can also happen
1550                  * with some buggy drives that trigger the IRQ before
1551                  * their status register is up to date.  Hopefully we have
1552                  * enough advance overhead that the latter isn't a problem.
1553                  */
1554                 spin_unlock_irqrestore(&ide_lock, flags);
1555                 return IRQ_NONE;
1556         }
1557         if (!hwgroup->busy) {
1558                 hwgroup->busy = 1;      /* paranoia */
1559                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1560         }
1561         hwgroup->handler = NULL;
1562         del_timer(&hwgroup->timer);
1563         spin_unlock(&ide_lock);
1564
1565         if (drive->unmask)
1566                 local_irq_enable();
1567         /* service this interrupt, may set handler for next interrupt */
1568         startstop = handler(drive);
1569         spin_lock_irq(&ide_lock);
1570
1571         /*
1572          * Note that handler() may have set things up for another
1573          * interrupt to occur soon, but it cannot happen until
1574          * we exit from this routine, because it will be the
1575          * same irq as is currently being serviced here, and Linux
1576          * won't allow another of the same (on any CPU) until we return.
1577          */
1578         drive->service_time = jiffies - drive->service_start;
1579         if (startstop == ide_stopped) {
1580                 if (hwgroup->handler == NULL) { /* paranoia */
1581                         hwgroup->busy = 0;
1582                         ide_do_request(hwgroup, hwif->irq);
1583                 } else {
1584                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1585                                 "on exit\n", drive->name);
1586                 }
1587         }
1588         spin_unlock_irqrestore(&ide_lock, flags);
1589         return IRQ_HANDLED;
1590 }
1591
1592 /**
1593  *      ide_init_drive_cmd      -       initialize a drive command request
1594  *      @rq: request object
1595  *
1596  *      Initialize a request before we fill it in and send it down to
1597  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1598  *      now it doesn't do a lot, but if that changes abusers will have a
1599  *      nasty suprise.
1600  */
1601
1602 void ide_init_drive_cmd (struct request *rq)
1603 {
1604         memset(rq, 0, sizeof(*rq));
1605         rq->flags = REQ_DRIVE_CMD;
1606         rq->ref_count = 1;
1607 }
1608
1609 EXPORT_SYMBOL(ide_init_drive_cmd);
1610
1611 /**
1612  *      ide_do_drive_cmd        -       issue IDE special command
1613  *      @drive: device to issue command
1614  *      @rq: request to issue
1615  *      @action: action for processing
1616  *
1617  *      This function issues a special IDE device request
1618  *      onto the request queue.
1619  *
1620  *      If action is ide_wait, then the rq is queued at the end of the
1621  *      request queue, and the function sleeps until it has been processed.
1622  *      This is for use when invoked from an ioctl handler.
1623  *
1624  *      If action is ide_preempt, then the rq is queued at the head of
1625  *      the request queue, displacing the currently-being-processed
1626  *      request and this function returns immediately without waiting
1627  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1628  *      intended for careful use by the ATAPI tape/cdrom driver code.
1629  *
1630  *      If action is ide_end, then the rq is queued at the end of the
1631  *      request queue, and the function returns immediately without waiting
1632  *      for the new rq to be completed. This is again intended for careful
1633  *      use by the ATAPI tape/cdrom driver code.
1634  */
1635  
1636 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1637 {
1638         unsigned long flags;
1639         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1640         DECLARE_COMPLETION(wait);
1641         int where = ELEVATOR_INSERT_BACK, err;
1642         int must_wait = (action == ide_wait || action == ide_head_wait);
1643
1644         rq->errors = 0;
1645         rq->rq_status = RQ_ACTIVE;
1646
1647         /*
1648          * we need to hold an extra reference to request for safe inspection
1649          * after completion
1650          */
1651         if (must_wait) {
1652                 rq->ref_count++;
1653                 rq->waiting = &wait;
1654                 rq->end_io = blk_end_sync_rq;
1655         }
1656
1657         spin_lock_irqsave(&ide_lock, flags);
1658         if (action == ide_preempt)
1659                 hwgroup->rq = NULL;
1660         if (action == ide_preempt || action == ide_head_wait) {
1661                 where = ELEVATOR_INSERT_FRONT;
1662                 rq->flags |= REQ_PREEMPT;
1663         }
1664         __elv_add_request(drive->queue, rq, where, 0);
1665         ide_do_request(hwgroup, IDE_NO_IRQ);
1666         spin_unlock_irqrestore(&ide_lock, flags);
1667
1668         err = 0;
1669         if (must_wait) {
1670                 wait_for_completion(&wait);
1671                 rq->waiting = NULL;
1672                 if (rq->errors)
1673                         err = -EIO;
1674
1675                 blk_put_request(rq);
1676         }
1677
1678         return err;
1679 }
1680
1681 EXPORT_SYMBOL(ide_do_drive_cmd);