Pull rework-memory-attribute-aliasing into release branch
[powerpc.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
69
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 struct fragment_info {
92         struct list_head list;
93         int offset;
94         int len;
95 };
96
97 struct partial_datagram {
98         struct list_head list;
99         u16 dgl;
100         u16 dg_size;
101         u16 ether_type;
102         struct sk_buff *skb;
103         char *pbuf;
104         struct list_head frag_info;
105 };
106
107 struct pdg_list {
108         struct list_head list;          /* partial datagram list per node       */
109         unsigned int sz;                /* partial datagram list size per node  */
110         spinlock_t lock;                /* partial datagram lock                */
111 };
112
113 struct eth1394_host_info {
114         struct hpsb_host *host;
115         struct net_device *dev;
116 };
117
118 struct eth1394_node_ref {
119         struct unit_directory *ud;
120         struct list_head list;
121 };
122
123 struct eth1394_node_info {
124         u16 maxpayload;                 /* Max payload                  */
125         u8 sspd;                        /* Max speed                    */
126         u64 fifo;                       /* FIFO address                 */
127         struct pdg_list pdg;            /* partial RX datagram lists    */
128         int dgl;                        /* Outgoing datagram label      */
129 };
130
131 /* Our ieee1394 highlevel driver */
132 #define ETH1394_DRIVER_NAME "eth1394"
133 static const char driver_name[] = ETH1394_DRIVER_NAME;
134
135 static kmem_cache_t *packet_task_cache;
136
137 static struct hpsb_highlevel eth1394_highlevel;
138
139 /* Use common.lf to determine header len */
140 static const int hdr_type_len[] = {
141         sizeof (struct eth1394_uf_hdr),
142         sizeof (struct eth1394_ff_hdr),
143         sizeof (struct eth1394_sf_hdr),
144         sizeof (struct eth1394_sf_hdr)
145 };
146
147 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
148 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
149
150 /* For now, this needs to be 1500, so that XP works with us */
151 #define ETH1394_DATA_LEN        ETH_DATA_LEN
152
153 static const u16 eth1394_speedto_maxpayload[] = {
154 /*     S100, S200, S400, S800, S1600, S3200 */
155         512, 1024, 2048, 4096,  4096,  4096
156 };
157
158 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
159 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
160 MODULE_LICENSE("GPL");
161
162 /* The max_partial_datagrams parameter is the maximum number of fragmented
163  * datagrams per node that eth1394 will keep in memory.  Providing an upper
164  * bound allows us to limit the amount of memory that partial datagrams
165  * consume in the event that some partial datagrams are never completed.
166  */
167 static int max_partial_datagrams = 25;
168 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
169 MODULE_PARM_DESC(max_partial_datagrams,
170                  "Maximum number of partially received fragmented datagrams "
171                  "(default = 25).");
172
173
174 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
175                             unsigned short type, void *daddr, void *saddr,
176                             unsigned len);
177 static int ether1394_rebuild_header(struct sk_buff *skb);
178 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
179 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
180 static void ether1394_header_cache_update(struct hh_cache *hh,
181                                           struct net_device *dev,
182                                           unsigned char * haddr);
183 static int ether1394_mac_addr(struct net_device *dev, void *p);
184
185 static void purge_partial_datagram(struct list_head *old);
186 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
187 static void ether1394_iso(struct hpsb_iso *iso);
188
189 static struct ethtool_ops ethtool_ops;
190
191 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
192                            quadlet_t *data, u64 addr, size_t len, u16 flags);
193 static void ether1394_add_host (struct hpsb_host *host);
194 static void ether1394_remove_host (struct hpsb_host *host);
195 static void ether1394_host_reset (struct hpsb_host *host);
196
197 /* Function for incoming 1394 packets */
198 static struct hpsb_address_ops addr_ops = {
199         .write =        ether1394_write,
200 };
201
202 /* Ieee1394 highlevel driver functions */
203 static struct hpsb_highlevel eth1394_highlevel = {
204         .name =         driver_name,
205         .add_host =     ether1394_add_host,
206         .remove_host =  ether1394_remove_host,
207         .host_reset =   ether1394_host_reset,
208 };
209
210
211 /* This is called after an "ifup" */
212 static int ether1394_open (struct net_device *dev)
213 {
214         struct eth1394_priv *priv = netdev_priv(dev);
215         int ret = 0;
216
217         /* Something bad happened, don't even try */
218         if (priv->bc_state == ETHER1394_BC_ERROR) {
219                 /* we'll try again */
220                 priv->iso = hpsb_iso_recv_init(priv->host,
221                                                ETHER1394_ISO_BUF_SIZE,
222                                                ETHER1394_GASP_BUFFERS,
223                                                priv->broadcast_channel,
224                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
225                                                1, ether1394_iso);
226                 if (priv->iso == NULL) {
227                         ETH1394_PRINT(KERN_ERR, dev->name,
228                                       "Could not allocate isochronous receive "
229                                       "context for the broadcast channel\n");
230                         priv->bc_state = ETHER1394_BC_ERROR;
231                         ret = -EAGAIN;
232                 } else {
233                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
234                                 priv->bc_state = ETHER1394_BC_STOPPED;
235                         else
236                                 priv->bc_state = ETHER1394_BC_RUNNING;
237                 }
238         }
239
240         if (ret)
241                 return ret;
242
243         netif_start_queue (dev);
244         return 0;
245 }
246
247 /* This is called after an "ifdown" */
248 static int ether1394_stop (struct net_device *dev)
249 {
250         netif_stop_queue (dev);
251         return 0;
252 }
253
254 /* Return statistics to the caller */
255 static struct net_device_stats *ether1394_stats (struct net_device *dev)
256 {
257         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
258 }
259
260 /* What to do if we timeout. I think a host reset is probably in order, so
261  * that's what we do. Should we increment the stat counters too?  */
262 static void ether1394_tx_timeout (struct net_device *dev)
263 {
264         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265                        ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
266
267         highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
268
269         netif_wake_queue (dev);
270 }
271
272 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
273 {
274         struct eth1394_priv *priv = netdev_priv(dev);
275
276         if ((new_mtu < 68) ||
277             (new_mtu > min(ETH1394_DATA_LEN,
278                            (int)((1 << (priv->host->csr.max_rec + 1)) -
279                                  (sizeof(union eth1394_hdr) +
280                                   ETHER1394_GASP_OVERHEAD)))))
281                 return -EINVAL;
282         dev->mtu = new_mtu;
283         return 0;
284 }
285
286 static void purge_partial_datagram(struct list_head *old)
287 {
288         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
289         struct list_head *lh, *n;
290
291         list_for_each_safe(lh, n, &pd->frag_info) {
292                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
293                 list_del(lh);
294                 kfree(fi);
295         }
296         list_del(old);
297         kfree_skb(pd->skb);
298         kfree(pd);
299 }
300
301 /******************************************
302  * 1394 bus activity functions
303  ******************************************/
304
305 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
306                                                   struct unit_directory *ud)
307 {
308         struct eth1394_node_ref *node;
309
310         list_for_each_entry(node, inl, list)
311                 if (node->ud == ud)
312                         return node;
313
314         return NULL;
315 }
316
317 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
318                                                        u64 guid)
319 {
320         struct eth1394_node_ref *node;
321
322         list_for_each_entry(node, inl, list)
323                 if (node->ud->ne->guid == guid)
324                         return node;
325
326         return NULL;
327 }
328
329 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
330                                                          nodeid_t nodeid)
331 {
332         struct eth1394_node_ref *node;
333         list_for_each_entry(node, inl, list) {
334                 if (node->ud->ne->nodeid == nodeid)
335                         return node;
336         }
337
338         return NULL;
339 }
340
341 static int eth1394_probe(struct device *dev)
342 {
343         struct unit_directory *ud;
344         struct eth1394_host_info *hi;
345         struct eth1394_priv *priv;
346         struct eth1394_node_ref *new_node;
347         struct eth1394_node_info *node_info;
348
349         ud = container_of(dev, struct unit_directory, device);
350
351         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
352         if (!hi)
353                 return -ENOENT;
354
355         new_node = kmalloc(sizeof(*new_node),
356                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
357         if (!new_node)
358                 return -ENOMEM;
359
360         node_info = kmalloc(sizeof(*node_info),
361                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
362         if (!node_info) {
363                 kfree(new_node);
364                 return -ENOMEM;
365         }
366
367         spin_lock_init(&node_info->pdg.lock);
368         INIT_LIST_HEAD(&node_info->pdg.list);
369         node_info->pdg.sz = 0;
370         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
371
372         ud->device.driver_data = node_info;
373         new_node->ud = ud;
374
375         priv = netdev_priv(hi->dev);
376         list_add_tail(&new_node->list, &priv->ip_node_list);
377
378         return 0;
379 }
380
381 static int eth1394_remove(struct device *dev)
382 {
383         struct unit_directory *ud;
384         struct eth1394_host_info *hi;
385         struct eth1394_priv *priv;
386         struct eth1394_node_ref *old_node;
387         struct eth1394_node_info *node_info;
388         struct list_head *lh, *n;
389         unsigned long flags;
390
391         ud = container_of(dev, struct unit_directory, device);
392         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393         if (!hi)
394                 return -ENOENT;
395
396         priv = netdev_priv(hi->dev);
397
398         old_node = eth1394_find_node(&priv->ip_node_list, ud);
399
400         if (old_node) {
401                 list_del(&old_node->list);
402                 kfree(old_node);
403
404                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
405
406                 spin_lock_irqsave(&node_info->pdg.lock, flags);
407                 /* The partial datagram list should be empty, but we'll just
408                  * make sure anyway... */
409                 list_for_each_safe(lh, n, &node_info->pdg.list) {
410                         purge_partial_datagram(lh);
411                 }
412                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
413
414                 kfree(node_info);
415                 ud->device.driver_data = NULL;
416         }
417         return 0;
418 }
419
420 static int eth1394_update(struct unit_directory *ud)
421 {
422         struct eth1394_host_info *hi;
423         struct eth1394_priv *priv;
424         struct eth1394_node_ref *node;
425         struct eth1394_node_info *node_info;
426
427         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428         if (!hi)
429                 return -ENOENT;
430
431         priv = netdev_priv(hi->dev);
432
433         node = eth1394_find_node(&priv->ip_node_list, ud);
434
435         if (!node) {
436                 node = kmalloc(sizeof(*node),
437                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
438                 if (!node)
439                         return -ENOMEM;
440
441                 node_info = kmalloc(sizeof(*node_info),
442                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
443                 if (!node_info) {
444                         kfree(node);
445                         return -ENOMEM;
446                 }
447
448                 spin_lock_init(&node_info->pdg.lock);
449                 INIT_LIST_HEAD(&node_info->pdg.list);
450                 node_info->pdg.sz = 0;
451
452                 ud->device.driver_data = node_info;
453                 node->ud = ud;
454
455                 priv = netdev_priv(hi->dev);
456                 list_add_tail(&node->list, &priv->ip_node_list);
457         }
458
459         return 0;
460 }
461
462
463 static struct ieee1394_device_id eth1394_id_table[] = {
464         {
465                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
466                                 IEEE1394_MATCH_VERSION),
467                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
468                 .version = ETHER1394_GASP_VERSION,
469         },
470         {}
471 };
472
473 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
474
475 static struct hpsb_protocol_driver eth1394_proto_driver = {
476         .name           = "IPv4 over 1394 Driver",
477         .id_table       = eth1394_id_table,
478         .update         = eth1394_update,
479         .driver         = {
480                 .name           = ETH1394_DRIVER_NAME,
481                 .bus            = &ieee1394_bus_type,
482                 .probe          = eth1394_probe,
483                 .remove         = eth1394_remove,
484         },
485 };
486
487
488 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
489 {
490         unsigned long flags;
491         int i;
492         struct eth1394_priv *priv = netdev_priv(dev);
493         struct hpsb_host *host = priv->host;
494         u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
495         u16 maxpayload = 1 << (host->csr.max_rec + 1);
496         int max_speed = IEEE1394_SPEED_MAX;
497
498         spin_lock_irqsave (&priv->lock, flags);
499
500         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
501         priv->bc_maxpayload = 512;
502
503         /* Determine speed limit */
504         for (i = 0; i < host->node_count; i++)
505                 if (max_speed > host->speed[i])
506                         max_speed = host->speed[i];
507         priv->bc_sspd = max_speed;
508
509         /* We'll use our maxpayload as the default mtu */
510         if (set_mtu) {
511                 dev->mtu = min(ETH1394_DATA_LEN,
512                                (int)(maxpayload -
513                                      (sizeof(union eth1394_hdr) +
514                                       ETHER1394_GASP_OVERHEAD)));
515
516                 /* Set our hardware address while we're at it */
517                 *(u64*)dev->dev_addr = guid;
518                 *(u64*)dev->broadcast = ~0x0ULL;
519         }
520
521         spin_unlock_irqrestore (&priv->lock, flags);
522 }
523
524 /* This function is called right before register_netdev */
525 static void ether1394_init_dev (struct net_device *dev)
526 {
527         /* Our functions */
528         dev->open               = ether1394_open;
529         dev->stop               = ether1394_stop;
530         dev->hard_start_xmit    = ether1394_tx;
531         dev->get_stats          = ether1394_stats;
532         dev->tx_timeout         = ether1394_tx_timeout;
533         dev->change_mtu         = ether1394_change_mtu;
534
535         dev->hard_header        = ether1394_header;
536         dev->rebuild_header     = ether1394_rebuild_header;
537         dev->hard_header_cache  = ether1394_header_cache;
538         dev->header_cache_update= ether1394_header_cache_update;
539         dev->hard_header_parse  = ether1394_header_parse;
540         dev->set_mac_address    = ether1394_mac_addr;
541         SET_ETHTOOL_OPS(dev, &ethtool_ops);
542
543         /* Some constants */
544         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
545         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
546         dev->features           = NETIF_F_HIGHDMA;
547         dev->addr_len           = ETH1394_ALEN;
548         dev->hard_header_len    = ETH1394_HLEN;
549         dev->type               = ARPHRD_IEEE1394;
550
551         ether1394_reset_priv (dev, 1);
552 }
553
554 /*
555  * This function is called every time a card is found. It is generally called
556  * when the module is installed. This is where we add all of our ethernet
557  * devices. One for each host.
558  */
559 static void ether1394_add_host (struct hpsb_host *host)
560 {
561         struct eth1394_host_info *hi = NULL;
562         struct net_device *dev = NULL;
563         struct eth1394_priv *priv;
564         u64 fifo_addr;
565
566         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
567                 return;
568
569         fifo_addr = hpsb_allocate_and_register_addrspace(
570                         &eth1394_highlevel, host, &addr_ops,
571                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
572                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
573         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
574                 goto out;
575
576         /* We should really have our own alloc_hpsbdev() function in
577          * net_init.c instead of calling the one for ethernet then hijacking
578          * it for ourselves.  That way we'd be a real networking device. */
579         dev = alloc_etherdev(sizeof (struct eth1394_priv));
580
581         if (dev == NULL) {
582                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
583                                  "etherdevice for IEEE 1394 device %s-%d\n",
584                                  host->driver->name, host->id);
585                 goto out;
586         }
587
588         SET_MODULE_OWNER(dev);
589         SET_NETDEV_DEV(dev, &host->device);
590
591         priv = netdev_priv(dev);
592
593         INIT_LIST_HEAD(&priv->ip_node_list);
594
595         spin_lock_init(&priv->lock);
596         priv->host = host;
597         priv->local_fifo = fifo_addr;
598
599         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
600
601         if (hi == NULL) {
602                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
603                                  "hostinfo for IEEE 1394 device %s-%d\n",
604                                  host->driver->name, host->id);
605                 goto out;
606         }
607
608         ether1394_init_dev(dev);
609
610         if (register_netdev (dev)) {
611                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
612                 goto out;
613         }
614
615         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
616                        host->id);
617
618         hi->host = host;
619         hi->dev = dev;
620
621         /* Ignore validity in hopes that it will be set in the future.  It'll
622          * be checked when the eth device is opened. */
623         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
624
625         priv->iso = hpsb_iso_recv_init(host,
626                                        ETHER1394_ISO_BUF_SIZE,
627                                        ETHER1394_GASP_BUFFERS,
628                                        priv->broadcast_channel,
629                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
630                                        1, ether1394_iso);
631         if (priv->iso == NULL) {
632                 ETH1394_PRINT(KERN_ERR, dev->name,
633                               "Could not allocate isochronous receive context "
634                               "for the broadcast channel\n");
635                 priv->bc_state = ETHER1394_BC_ERROR;
636         } else {
637                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
638                         priv->bc_state = ETHER1394_BC_STOPPED;
639                 else
640                         priv->bc_state = ETHER1394_BC_RUNNING;
641         }
642
643         return;
644
645 out:
646         if (dev != NULL)
647                 free_netdev(dev);
648         if (hi)
649                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
650
651         return;
652 }
653
654 /* Remove a card from our list */
655 static void ether1394_remove_host (struct hpsb_host *host)
656 {
657         struct eth1394_host_info *hi;
658
659         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
660         if (hi != NULL) {
661                 struct eth1394_priv *priv = netdev_priv(hi->dev);
662
663                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
664                                           priv->local_fifo);
665
666                 if (priv->iso != NULL)
667                         hpsb_iso_shutdown(priv->iso);
668
669                 if (hi->dev) {
670                         unregister_netdev (hi->dev);
671                         free_netdev(hi->dev);
672                 }
673         }
674
675         return;
676 }
677
678 /* A reset has just arisen */
679 static void ether1394_host_reset (struct hpsb_host *host)
680 {
681         struct eth1394_host_info *hi;
682         struct eth1394_priv *priv;
683         struct net_device *dev;
684         struct list_head *lh, *n;
685         struct eth1394_node_ref *node;
686         struct eth1394_node_info *node_info;
687         unsigned long flags;
688
689         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
690
691         /* This can happen for hosts that we don't use */
692         if (hi == NULL)
693                 return;
694
695         dev = hi->dev;
696         priv = (struct eth1394_priv *)netdev_priv(dev);
697
698         /* Reset our private host data, but not our mtu */
699         netif_stop_queue (dev);
700         ether1394_reset_priv (dev, 0);
701
702         list_for_each_entry(node, &priv->ip_node_list, list) {
703                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
704
705                 spin_lock_irqsave(&node_info->pdg.lock, flags);
706
707                 list_for_each_safe(lh, n, &node_info->pdg.list) {
708                         purge_partial_datagram(lh);
709                 }
710
711                 INIT_LIST_HEAD(&(node_info->pdg.list));
712                 node_info->pdg.sz = 0;
713
714                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
715         }
716
717         netif_wake_queue (dev);
718 }
719
720 /******************************************
721  * HW Header net device functions
722  ******************************************/
723 /* These functions have been adapted from net/ethernet/eth.c */
724
725
726 /* Create a fake MAC header for an arbitrary protocol layer.
727  * saddr=NULL means use device source address
728  * daddr=NULL means leave destination address (eg unresolved arp). */
729 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
730                             unsigned short type, void *daddr, void *saddr,
731                             unsigned len)
732 {
733         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
734
735         eth->h_proto = htons(type);
736
737         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
738                 memset(eth->h_dest, 0, dev->addr_len);
739                 return(dev->hard_header_len);
740         }
741
742         if (daddr) {
743                 memcpy(eth->h_dest,daddr,dev->addr_len);
744                 return dev->hard_header_len;
745         }
746
747         return -dev->hard_header_len;
748
749 }
750
751
752 /* Rebuild the faked MAC header. This is called after an ARP
753  * (or in future other address resolution) has completed on this
754  * sk_buff. We now let ARP fill in the other fields.
755  *
756  * This routine CANNOT use cached dst->neigh!
757  * Really, it is used only when dst->neigh is wrong.
758  */
759 static int ether1394_rebuild_header(struct sk_buff *skb)
760 {
761         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
762         struct net_device *dev = skb->dev;
763
764         switch (eth->h_proto) {
765
766 #ifdef CONFIG_INET
767         case __constant_htons(ETH_P_IP):
768                 return arp_find((unsigned char*)&eth->h_dest, skb);
769 #endif
770         default:
771                 ETH1394_PRINT(KERN_DEBUG, dev->name,
772                               "unable to resolve type %04x addresses.\n",
773                               ntohs(eth->h_proto));
774                 break;
775         }
776
777         return 0;
778 }
779
780 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
781 {
782         struct net_device *dev = skb->dev;
783         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
784         return ETH1394_ALEN;
785 }
786
787
788 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
789 {
790         unsigned short type = hh->hh_type;
791         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
792                                                       (16 - ETH1394_HLEN));
793         struct net_device *dev = neigh->dev;
794
795         if (type == htons(ETH_P_802_3))
796                 return -1;
797
798         eth->h_proto = type;
799         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
800
801         hh->hh_len = ETH1394_HLEN;
802         return 0;
803 }
804
805 /* Called by Address Resolution module to notify changes in address. */
806 static void ether1394_header_cache_update(struct hh_cache *hh,
807                                           struct net_device *dev,
808                                           unsigned char * haddr)
809 {
810         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
811 }
812
813 static int ether1394_mac_addr(struct net_device *dev, void *p)
814 {
815         if (netif_running(dev))
816                 return -EBUSY;
817
818         /* Not going to allow setting the MAC address, we really need to use
819          * the real one supplied by the hardware */
820          return -EINVAL;
821  }
822
823
824
825 /******************************************
826  * Datagram reception code
827  ******************************************/
828
829 /* Copied from net/ethernet/eth.c */
830 static inline u16 ether1394_type_trans(struct sk_buff *skb,
831                                        struct net_device *dev)
832 {
833         struct eth1394hdr *eth;
834         unsigned char *rawp;
835
836         skb->mac.raw = skb->data;
837         skb_pull (skb, ETH1394_HLEN);
838         eth = eth1394_hdr(skb);
839
840         if (*eth->h_dest & 1) {
841                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
842                         skb->pkt_type = PACKET_BROADCAST;
843 #if 0
844                 else
845                         skb->pkt_type = PACKET_MULTICAST;
846 #endif
847         } else {
848                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
849                         skb->pkt_type = PACKET_OTHERHOST;
850         }
851
852         if (ntohs (eth->h_proto) >= 1536)
853                 return eth->h_proto;
854
855         rawp = skb->data;
856
857         if (*(unsigned short *)rawp == 0xFFFF)
858                 return htons (ETH_P_802_3);
859
860         return htons (ETH_P_802_2);
861 }
862
863 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
864  * We also perform ARP translation here, if need be.  */
865 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
866                                         struct net_device *dev,
867                                         nodeid_t srcid, nodeid_t destid,
868                                         u16 ether_type)
869 {
870         struct eth1394_priv *priv = netdev_priv(dev);
871         u64 dest_hw;
872         unsigned short ret = 0;
873
874         /* Setup our hw addresses. We use these to build the
875          * ethernet header.  */
876         if (destid == (LOCAL_BUS | ALL_NODES))
877                 dest_hw = ~0ULL;  /* broadcast */
878         else
879                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
880                                       priv->host->csr.guid_lo);
881
882         /* If this is an ARP packet, convert it. First, we want to make
883          * use of some of the fields, since they tell us a little bit
884          * about the sending machine.  */
885         if (ether_type == htons(ETH_P_ARP)) {
886                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
887                 struct arphdr *arp = (struct arphdr *)skb->data;
888                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
889                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
890                         ntohl(arp1394->fifo_lo);
891                 u8 max_rec = min(priv->host->csr.max_rec,
892                                  (u8)(arp1394->max_rec));
893                 int sspd = arp1394->sspd;
894                 u16 maxpayload;
895                 struct eth1394_node_ref *node;
896                 struct eth1394_node_info *node_info;
897
898                 /* Sanity check. MacOSX seems to be sending us 131 in this
899                  * field (atleast on my Panther G5). Not sure why. */
900                 if (sspd > 5 || sspd < 0)
901                         sspd = 0;
902
903                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
904
905                 node = eth1394_find_node_guid(&priv->ip_node_list,
906                                               be64_to_cpu(arp1394->s_uniq_id));
907                 if (!node) {
908                         return 0;
909                 }
910
911                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
912
913                 /* Update our speed/payload/fifo_offset table */
914                 node_info->maxpayload = maxpayload;
915                 node_info->sspd =       sspd;
916                 node_info->fifo =       fifo_addr;
917
918                 /* Now that we're done with the 1394 specific stuff, we'll
919                  * need to alter some of the data.  Believe it or not, all
920                  * that needs to be done is sender_IP_address needs to be
921                  * moved, the destination hardware address get stuffed
922                  * in and the hardware address length set to 8.
923                  *
924                  * IMPORTANT: The code below overwrites 1394 specific data
925                  * needed above so keep the munging of the data for the
926                  * higher level IP stack last. */
927
928                 arp->ar_hln = 8;
929                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
930                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
931                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
932
933                 if (arp->ar_op == htons(ARPOP_REQUEST))
934                         /* just set ARP req target unique ID to 0 */
935                         *((u64*)arp_ptr) = 0;
936                 else
937                         *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
938         }
939
940         /* Now add the ethernet header. */
941         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
942                              skb->len) >= 0)
943                 ret = ether1394_type_trans(skb, dev);
944
945         return ret;
946 }
947
948 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
949 {
950         struct fragment_info *fi;
951
952         list_for_each_entry(fi, frag_list, list) {
953                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
954                        ((offset + len - 1) < fi->offset)))
955                         return 1;
956         }
957         return 0;
958 }
959
960 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
961 {
962         struct partial_datagram *pd;
963
964         list_for_each_entry(pd, pdgl, list) {
965                 if (pd->dgl == dgl)
966                         return &pd->list;
967         }
968         return NULL;
969 }
970
971 /* Assumes that new fragment does not overlap any existing fragments */
972 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
973 {
974         struct list_head *lh;
975         struct fragment_info *fi, *fi2, *new;
976
977         list_for_each(lh, frag_info) {
978                 fi = list_entry(lh, struct fragment_info, list);
979                 if ((fi->offset + fi->len) == offset) {
980                         /* The new fragment can be tacked on to the end */
981                         fi->len += len;
982                         /* Did the new fragment plug a hole? */
983                         fi2 = list_entry(lh->next, struct fragment_info, list);
984                         if ((fi->offset + fi->len) == fi2->offset) {
985                                 /* glue fragments together */
986                                 fi->len += fi2->len;
987                                 list_del(lh->next);
988                                 kfree(fi2);
989                         }
990                         return 0;
991                 } else if ((offset + len) == fi->offset) {
992                         /* The new fragment can be tacked on to the beginning */
993                         fi->offset = offset;
994                         fi->len += len;
995                         /* Did the new fragment plug a hole? */
996                         fi2 = list_entry(lh->prev, struct fragment_info, list);
997                         if ((fi2->offset + fi2->len) == fi->offset) {
998                                 /* glue fragments together */
999                                 fi2->len += fi->len;
1000                                 list_del(lh);
1001                                 kfree(fi);
1002                         }
1003                         return 0;
1004                 } else if (offset > (fi->offset + fi->len)) {
1005                         break;
1006                 } else if ((offset + len) < fi->offset) {
1007                         lh = lh->prev;
1008                         break;
1009                 }
1010         }
1011
1012         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1013         if (!new)
1014                 return -ENOMEM;
1015
1016         new->offset = offset;
1017         new->len = len;
1018
1019         list_add(&new->list, lh);
1020
1021         return 0;
1022 }
1023
1024 static inline int new_partial_datagram(struct net_device *dev,
1025                                        struct list_head *pdgl, int dgl,
1026                                        int dg_size, char *frag_buf,
1027                                        int frag_off, int frag_len)
1028 {
1029         struct partial_datagram *new;
1030
1031         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1032         if (!new)
1033                 return -ENOMEM;
1034
1035         INIT_LIST_HEAD(&new->frag_info);
1036
1037         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1038                 kfree(new);
1039                 return -ENOMEM;
1040         }
1041
1042         new->dgl = dgl;
1043         new->dg_size = dg_size;
1044
1045         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1046         if (!new->skb) {
1047                 struct fragment_info *fi = list_entry(new->frag_info.next,
1048                                                       struct fragment_info,
1049                                                       list);
1050                 kfree(fi);
1051                 kfree(new);
1052                 return -ENOMEM;
1053         }
1054
1055         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1056         new->pbuf = skb_put(new->skb, dg_size);
1057         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1058
1059         list_add(&new->list, pdgl);
1060
1061         return 0;
1062 }
1063
1064 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1065                                           char *frag_buf, int frag_off, int frag_len)
1066 {
1067         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1068
1069         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1070                 return -ENOMEM;
1071         }
1072
1073         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1074
1075         /* Move list entry to beginnig of list so that oldest partial
1076          * datagrams percolate to the end of the list */
1077         list_del(lh);
1078         list_add(lh, pdgl);
1079
1080         return 0;
1081 }
1082
1083 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1084 {
1085         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1086         struct fragment_info *fi = list_entry(pd->frag_info.next,
1087                                               struct fragment_info, list);
1088
1089         return (fi->len == dg_size);
1090 }
1091
1092 /* Packet reception. We convert the IP1394 encapsulation header to an
1093  * ethernet header, and fill it with some of our other fields. This is
1094  * an incoming packet from the 1394 bus.  */
1095 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1096                                   char *buf, int len)
1097 {
1098         struct sk_buff *skb;
1099         unsigned long flags;
1100         struct eth1394_priv *priv = netdev_priv(dev);
1101         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1102         u16 ether_type = 0;  /* initialized to clear warning */
1103         int hdr_len;
1104         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1105         struct eth1394_node_info *node_info;
1106
1107         if (!ud) {
1108                 struct eth1394_node_ref *node;
1109                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1110                 if (!node) {
1111                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1112                                    "lookup failure: " NODE_BUS_FMT,
1113                                    NODE_BUS_ARGS(priv->host, srcid));
1114                         priv->stats.rx_dropped++;
1115                         return -1;
1116                 }
1117                 ud = node->ud;
1118
1119                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1120         }
1121
1122         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1123
1124         /* First, did we receive a fragmented or unfragmented datagram? */
1125         hdr->words.word1 = ntohs(hdr->words.word1);
1126
1127         hdr_len = hdr_type_len[hdr->common.lf];
1128
1129         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1130                 /* An unfragmented datagram has been received by the ieee1394
1131                  * bus. Build an skbuff around it so we can pass it to the
1132                  * high level network layer. */
1133
1134                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1135                 if (!skb) {
1136                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1137                         priv->stats.rx_dropped++;
1138                         return -1;
1139                 }
1140                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1141                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1142                 ether_type = hdr->uf.ether_type;
1143         } else {
1144                 /* A datagram fragment has been received, now the fun begins. */
1145
1146                 struct list_head *pdgl, *lh;
1147                 struct partial_datagram *pd;
1148                 int fg_off;
1149                 int fg_len = len - hdr_len;
1150                 int dg_size;
1151                 int dgl;
1152                 int retval;
1153                 struct pdg_list *pdg = &(node_info->pdg);
1154
1155                 hdr->words.word3 = ntohs(hdr->words.word3);
1156                 /* The 4th header word is reserved so no need to do ntohs() */
1157
1158                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1159                         ether_type = hdr->ff.ether_type;
1160                         dgl = hdr->ff.dgl;
1161                         dg_size = hdr->ff.dg_size + 1;
1162                         fg_off = 0;
1163                 } else {
1164                         hdr->words.word2 = ntohs(hdr->words.word2);
1165                         dgl = hdr->sf.dgl;
1166                         dg_size = hdr->sf.dg_size + 1;
1167                         fg_off = hdr->sf.fg_off;
1168                 }
1169                 spin_lock_irqsave(&pdg->lock, flags);
1170
1171                 pdgl = &(pdg->list);
1172                 lh = find_partial_datagram(pdgl, dgl);
1173
1174                 if (lh == NULL) {
1175                         while (pdg->sz >= max_partial_datagrams) {
1176                                 /* remove the oldest */
1177                                 purge_partial_datagram(pdgl->prev);
1178                                 pdg->sz--;
1179                         }
1180
1181                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1182                                                       buf + hdr_len, fg_off,
1183                                                       fg_len);
1184                         if (retval < 0) {
1185                                 spin_unlock_irqrestore(&pdg->lock, flags);
1186                                 goto bad_proto;
1187                         }
1188                         pdg->sz++;
1189                         lh = find_partial_datagram(pdgl, dgl);
1190                 } else {
1191                         struct partial_datagram *pd;
1192
1193                         pd = list_entry(lh, struct partial_datagram, list);
1194
1195                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1196                                 /* Overlapping fragments, obliterate old
1197                                  * datagram and start new one. */
1198                                 purge_partial_datagram(lh);
1199                                 retval = new_partial_datagram(dev, pdgl, dgl,
1200                                                               dg_size,
1201                                                               buf + hdr_len,
1202                                                               fg_off, fg_len);
1203                                 if (retval < 0) {
1204                                         pdg->sz--;
1205                                         spin_unlock_irqrestore(&pdg->lock, flags);
1206                                         goto bad_proto;
1207                                 }
1208                         } else {
1209                                 retval = update_partial_datagram(pdgl, lh,
1210                                                                  buf + hdr_len,
1211                                                                  fg_off, fg_len);
1212                                 if (retval < 0) {
1213                                         /* Couldn't save off fragment anyway
1214                                          * so might as well obliterate the
1215                                          * datagram now. */
1216                                         purge_partial_datagram(lh);
1217                                         pdg->sz--;
1218                                         spin_unlock_irqrestore(&pdg->lock, flags);
1219                                         goto bad_proto;
1220                                 }
1221                         } /* fragment overlap */
1222                 } /* new datagram or add to existing one */
1223
1224                 pd = list_entry(lh, struct partial_datagram, list);
1225
1226                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1227                         pd->ether_type = ether_type;
1228                 }
1229
1230                 if (is_datagram_complete(lh, dg_size)) {
1231                         ether_type = pd->ether_type;
1232                         pdg->sz--;
1233                         skb = skb_get(pd->skb);
1234                         purge_partial_datagram(lh);
1235                         spin_unlock_irqrestore(&pdg->lock, flags);
1236                 } else {
1237                         /* Datagram is not complete, we're done for the
1238                          * moment. */
1239                         spin_unlock_irqrestore(&pdg->lock, flags);
1240                         return 0;
1241                 }
1242         } /* unframgented datagram or fragmented one */
1243
1244         /* Write metadata, and then pass to the receive level */
1245         skb->dev = dev;
1246         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1247
1248         /* Parse the encapsulation header. This actually does the job of
1249          * converting to an ethernet frame header, aswell as arp
1250          * conversion if needed. ARP conversion is easier in this
1251          * direction, since we are using ethernet as our backend.  */
1252         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1253                                               ether_type);
1254
1255
1256         spin_lock_irqsave(&priv->lock, flags);
1257         if (!skb->protocol) {
1258                 priv->stats.rx_errors++;
1259                 priv->stats.rx_dropped++;
1260                 dev_kfree_skb_any(skb);
1261                 goto bad_proto;
1262         }
1263
1264         if (netif_rx(skb) == NET_RX_DROP) {
1265                 priv->stats.rx_errors++;
1266                 priv->stats.rx_dropped++;
1267                 goto bad_proto;
1268         }
1269
1270         /* Statistics */
1271         priv->stats.rx_packets++;
1272         priv->stats.rx_bytes += skb->len;
1273
1274 bad_proto:
1275         if (netif_queue_stopped(dev))
1276                 netif_wake_queue(dev);
1277         spin_unlock_irqrestore(&priv->lock, flags);
1278
1279         dev->last_rx = jiffies;
1280
1281         return 0;
1282 }
1283
1284 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1285                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1286 {
1287         struct eth1394_host_info *hi;
1288
1289         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1290         if (hi == NULL) {
1291                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1292                                 host->driver->name);
1293                 return RCODE_ADDRESS_ERROR;
1294         }
1295
1296         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1297                 return RCODE_ADDRESS_ERROR;
1298         else
1299                 return RCODE_COMPLETE;
1300 }
1301
1302 static void ether1394_iso(struct hpsb_iso *iso)
1303 {
1304         quadlet_t *data;
1305         char *buf;
1306         struct eth1394_host_info *hi;
1307         struct net_device *dev;
1308         struct eth1394_priv *priv;
1309         unsigned int len;
1310         u32 specifier_id;
1311         u16 source_id;
1312         int i;
1313         int nready;
1314
1315         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1316         if (hi == NULL) {
1317                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1318                                 iso->host->driver->name);
1319                 return;
1320         }
1321
1322         dev = hi->dev;
1323
1324         nready = hpsb_iso_n_ready(iso);
1325         for (i = 0; i < nready; i++) {
1326                 struct hpsb_iso_packet_info *info =
1327                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1328                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1329
1330                 /* skip over GASP header */
1331                 buf = (char *)data + 8;
1332                 len = info->len - 8;
1333
1334                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1335                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1336                 source_id = be32_to_cpu(data[0]) >> 16;
1337
1338                 priv = netdev_priv(dev);
1339
1340                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1341                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1342                         /* This packet is not for us */
1343                         continue;
1344                 }
1345                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1346                                        buf, len);
1347         }
1348
1349         hpsb_iso_recv_release_packets(iso, i);
1350
1351         dev->last_rx = jiffies;
1352 }
1353
1354 /******************************************
1355  * Datagram transmission code
1356  ******************************************/
1357
1358 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1359  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1360  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1361  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1362  * judge.
1363  *
1364  * Now that the EUI is used for the hardware address all we need to do to make
1365  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1366  * speed, and unicast FIFO address information between the sender_unique_id
1367  * and the IP addresses.
1368  */
1369 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1370                                             struct net_device *dev)
1371 {
1372         struct eth1394_priv *priv = netdev_priv(dev);
1373
1374         struct arphdr *arp = (struct arphdr *)skb->data;
1375         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1376         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1377
1378         /* Believe it or not, all that need to happen is sender IP get moved
1379          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1380         arp1394->hw_addr_len    = 16;
1381         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1382         arp1394->max_rec        = priv->host->csr.max_rec;
1383         arp1394->sspd           = priv->host->csr.lnk_spd;
1384         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1385         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1386
1387         return;
1388 }
1389
1390 /* We need to encapsulate the standard header with our own. We use the
1391  * ethernet header's proto for our own. */
1392 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1393                                                       __be16 proto,
1394                                                       union eth1394_hdr *hdr,
1395                                                       u16 dg_size, u16 dgl)
1396 {
1397         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1398
1399         /* Does it all fit in one packet? */
1400         if (dg_size <= adj_max_payload) {
1401                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1402                 hdr->uf.ether_type = proto;
1403         } else {
1404                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1405                 hdr->ff.ether_type = proto;
1406                 hdr->ff.dg_size = dg_size - 1;
1407                 hdr->ff.dgl = dgl;
1408                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1409         }
1410         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1411 }
1412
1413 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1414                                                  unsigned int max_payload,
1415                                                  union eth1394_hdr *hdr)
1416 {
1417         union eth1394_hdr *bufhdr;
1418         int ftype = hdr->common.lf;
1419         int hdrsz = hdr_type_len[ftype];
1420         unsigned int adj_max_payload = max_payload - hdrsz;
1421
1422         switch(ftype) {
1423         case ETH1394_HDR_LF_UF:
1424                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1425                 bufhdr->words.word1 = htons(hdr->words.word1);
1426                 bufhdr->words.word2 = hdr->words.word2;
1427                 break;
1428
1429         case ETH1394_HDR_LF_FF:
1430                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1431                 bufhdr->words.word1 = htons(hdr->words.word1);
1432                 bufhdr->words.word2 = hdr->words.word2;
1433                 bufhdr->words.word3 = htons(hdr->words.word3);
1434                 bufhdr->words.word4 = 0;
1435
1436                 /* Set frag type here for future interior fragments */
1437                 hdr->common.lf = ETH1394_HDR_LF_IF;
1438                 hdr->sf.fg_off = 0;
1439                 break;
1440
1441         default:
1442                 hdr->sf.fg_off += adj_max_payload;
1443                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1444                 if (max_payload >= skb->len)
1445                         hdr->common.lf = ETH1394_HDR_LF_LF;
1446                 bufhdr->words.word1 = htons(hdr->words.word1);
1447                 bufhdr->words.word2 = htons(hdr->words.word2);
1448                 bufhdr->words.word3 = htons(hdr->words.word3);
1449                 bufhdr->words.word4 = 0;
1450         }
1451
1452         return min(max_payload, skb->len);
1453 }
1454
1455 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1456 {
1457         struct hpsb_packet *p;
1458
1459         p = hpsb_alloc_packet(0);
1460         if (p) {
1461                 p->host = host;
1462                 p->generation = get_hpsb_generation(host);
1463                 p->type = hpsb_async;
1464         }
1465         return p;
1466 }
1467
1468 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1469                                               struct hpsb_host *host,
1470                                               nodeid_t node, u64 addr,
1471                                               void * data, int tx_len)
1472 {
1473         p->node_id = node;
1474         p->data = NULL;
1475
1476         p->tcode = TCODE_WRITEB;
1477         p->header[1] = (host->node_id << 16) | (addr >> 32);
1478         p->header[2] = addr & 0xffffffff;
1479
1480         p->header_size = 16;
1481         p->expect_response = 1;
1482
1483         if (hpsb_get_tlabel(p)) {
1484                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1485                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1486                 return -1;
1487         }
1488         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1489                 | (1 << 8) | (TCODE_WRITEB << 4);
1490
1491         p->header[3] = tx_len << 16;
1492         p->data_size = (tx_len + 3) & ~3;
1493         p->data = (quadlet_t*)data;
1494
1495         return 0;
1496 }
1497
1498 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1499                                               struct eth1394_priv *priv,
1500                                               struct sk_buff *skb, int length)
1501 {
1502         p->header_size = 4;
1503         p->tcode = TCODE_STREAM_DATA;
1504
1505         p->header[0] = (length << 16) | (3 << 14)
1506                 | ((priv->broadcast_channel) << 8)
1507                 | (TCODE_STREAM_DATA << 4);
1508         p->data_size = length;
1509         p->data = ((quadlet_t*)skb->data) - 2;
1510         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1511                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1512         p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1513                                  ETHER1394_GASP_VERSION);
1514
1515         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1516          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1517          * value based on packet->node_id if packet->node_id is not set. */
1518         p->node_id = ALL_NODES;
1519         p->speed_code = priv->bc_sspd;
1520 }
1521
1522 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1523 {
1524         if (packet->tcode != TCODE_STREAM_DATA)
1525                 hpsb_free_tlabel(packet);
1526         hpsb_free_packet(packet);
1527 }
1528
1529 static void ether1394_complete_cb(void *__ptask);
1530
1531 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1532 {
1533         struct eth1394_priv *priv = ptask->priv;
1534         struct hpsb_packet *packet = NULL;
1535
1536         packet = ether1394_alloc_common_packet(priv->host);
1537         if (!packet)
1538                 return -1;
1539
1540         if (ptask->tx_type == ETH1394_GASP) {
1541                 int length = tx_len + (2 * sizeof(quadlet_t));
1542
1543                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1544         } else if (ether1394_prep_write_packet(packet, priv->host,
1545                                                ptask->dest_node,
1546                                                ptask->addr, ptask->skb->data,
1547                                                tx_len)) {
1548                 hpsb_free_packet(packet);
1549                 return -1;
1550         }
1551
1552         ptask->packet = packet;
1553         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1554                                       ptask);
1555
1556         if (hpsb_send_packet(packet) < 0) {
1557                 ether1394_free_packet(packet);
1558                 return -1;
1559         }
1560
1561         return 0;
1562 }
1563
1564
1565 /* Task function to be run when a datagram transmission is completed */
1566 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1567 {
1568         struct sk_buff *skb = ptask->skb;
1569         struct net_device *dev = skb->dev;
1570         struct eth1394_priv *priv = netdev_priv(dev);
1571         unsigned long flags;
1572
1573         /* Statistics */
1574         spin_lock_irqsave(&priv->lock, flags);
1575         if (fail) {
1576                 priv->stats.tx_dropped++;
1577                 priv->stats.tx_errors++;
1578         } else {
1579                 priv->stats.tx_bytes += skb->len;
1580                 priv->stats.tx_packets++;
1581         }
1582         spin_unlock_irqrestore(&priv->lock, flags);
1583
1584         dev_kfree_skb_any(skb);
1585         kmem_cache_free(packet_task_cache, ptask);
1586 }
1587
1588
1589 /* Callback for when a packet has been sent and the status of that packet is
1590  * known */
1591 static void ether1394_complete_cb(void *__ptask)
1592 {
1593         struct packet_task *ptask = (struct packet_task *)__ptask;
1594         struct hpsb_packet *packet = ptask->packet;
1595         int fail = 0;
1596
1597         if (packet->tcode != TCODE_STREAM_DATA)
1598                 fail = hpsb_packet_success(packet);
1599
1600         ether1394_free_packet(packet);
1601
1602         ptask->outstanding_pkts--;
1603         if (ptask->outstanding_pkts > 0 && !fail) {
1604                 int tx_len;
1605
1606                 /* Add the encapsulation header to the fragment */
1607                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1608                                                &ptask->hdr);
1609                 if (ether1394_send_packet(ptask, tx_len))
1610                         ether1394_dg_complete(ptask, 1);
1611         } else {
1612                 ether1394_dg_complete(ptask, fail);
1613         }
1614 }
1615
1616
1617
1618 /* Transmit a packet (called by kernel) */
1619 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1620 {
1621         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1622         struct eth1394hdr *eth;
1623         struct eth1394_priv *priv = netdev_priv(dev);
1624         __be16 proto;
1625         unsigned long flags;
1626         nodeid_t dest_node;
1627         eth1394_tx_type tx_type;
1628         int ret = 0;
1629         unsigned int tx_len;
1630         unsigned int max_payload;
1631         u16 dg_size;
1632         u16 dgl;
1633         struct packet_task *ptask;
1634         struct eth1394_node_ref *node;
1635         struct eth1394_node_info *node_info = NULL;
1636
1637         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1638         if (ptask == NULL) {
1639                 ret = -ENOMEM;
1640                 goto fail;
1641         }
1642
1643         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1644          * it does not set our validity bit. We need to compensate for
1645          * that somewhere else, but not in eth1394. */
1646 #if 0
1647         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1648                 ret = -EAGAIN;
1649                 goto fail;
1650         }
1651 #endif
1652
1653         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1654                 ret = -ENOMEM;
1655                 goto fail;
1656         }
1657
1658         /* Get rid of the fake eth1394 header, but save a pointer */
1659         eth = (struct eth1394hdr*)skb->data;
1660         skb_pull(skb, ETH1394_HLEN);
1661
1662         proto = eth->h_proto;
1663         dg_size = skb->len;
1664
1665         /* Set the transmission type for the packet.  ARP packets and IP
1666          * broadcast packets are sent via GASP. */
1667         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1668             proto == htons(ETH_P_ARP) ||
1669             (proto == htons(ETH_P_IP) &&
1670              IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
1671                 tx_type = ETH1394_GASP;
1672                 dest_node = LOCAL_BUS | ALL_NODES;
1673                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1674                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1675                 dgl = priv->bc_dgl;
1676                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1677                         priv->bc_dgl++;
1678         } else {
1679                 node = eth1394_find_node_guid(&priv->ip_node_list,
1680                                               be64_to_cpu(*(u64*)eth->h_dest));
1681                 if (!node) {
1682                         ret = -EAGAIN;
1683                         goto fail;
1684                 }
1685                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1686                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1687                         ret = -EAGAIN;
1688                         goto fail;
1689                 }
1690
1691                 dest_node = node->ud->ne->nodeid;
1692                 max_payload = node_info->maxpayload;
1693                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1694
1695                 dgl = node_info->dgl;
1696                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1697                         node_info->dgl++;
1698                 tx_type = ETH1394_WRREQ;
1699         }
1700
1701         /* If this is an ARP packet, convert it */
1702         if (proto == htons(ETH_P_ARP))
1703                 ether1394_arp_to_1394arp (skb, dev);
1704
1705         ptask->hdr.words.word1 = 0;
1706         ptask->hdr.words.word2 = 0;
1707         ptask->hdr.words.word3 = 0;
1708         ptask->hdr.words.word4 = 0;
1709         ptask->skb = skb;
1710         ptask->priv = priv;
1711         ptask->tx_type = tx_type;
1712
1713         if (tx_type != ETH1394_GASP) {
1714                 u64 addr;
1715
1716                 spin_lock_irqsave(&priv->lock, flags);
1717                 addr = node_info->fifo;
1718                 spin_unlock_irqrestore(&priv->lock, flags);
1719
1720                 ptask->addr = addr;
1721                 ptask->dest_node = dest_node;
1722         }
1723
1724         ptask->tx_type = tx_type;
1725         ptask->max_payload = max_payload;
1726         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1727                                                              &ptask->hdr, dg_size,
1728                                                              dgl);
1729
1730         /* Add the encapsulation header to the fragment */
1731         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1732         dev->trans_start = jiffies;
1733         if (ether1394_send_packet(ptask, tx_len))
1734                 goto fail;
1735
1736         netif_wake_queue(dev);
1737         return 0;
1738 fail:
1739         if (ptask)
1740                 kmem_cache_free(packet_task_cache, ptask);
1741
1742         if (skb != NULL)
1743                 dev_kfree_skb(skb);
1744
1745         spin_lock_irqsave (&priv->lock, flags);
1746         priv->stats.tx_dropped++;
1747         priv->stats.tx_errors++;
1748         spin_unlock_irqrestore (&priv->lock, flags);
1749
1750         if (netif_queue_stopped(dev))
1751                 netif_wake_queue(dev);
1752
1753         return 0;  /* returning non-zero causes serious problems */
1754 }
1755
1756 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1757 {
1758         strcpy (info->driver, driver_name);
1759         /* FIXME XXX provide sane businfo */
1760         strcpy (info->bus_info, "ieee1394");
1761 }
1762
1763 static struct ethtool_ops ethtool_ops = {
1764         .get_drvinfo = ether1394_get_drvinfo
1765 };
1766
1767 static int __init ether1394_init_module (void)
1768 {
1769         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1770                                               0, 0, NULL, NULL);
1771
1772         /* Register ourselves as a highlevel driver */
1773         hpsb_register_highlevel(&eth1394_highlevel);
1774
1775         return hpsb_register_protocol(&eth1394_proto_driver);
1776 }
1777
1778 static void __exit ether1394_exit_module (void)
1779 {
1780         hpsb_unregister_protocol(&eth1394_proto_driver);
1781         hpsb_unregister_highlevel(&eth1394_highlevel);
1782         kmem_cache_destroy(packet_task_cache);
1783 }
1784
1785 module_init(ether1394_init_module);
1786 module_exit(ether1394_exit_module);