[PATCH] KVM: MMU: Fix cmpxchg8b emulation
[powerpc.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_window", &kvm_stat.irq_window_exits },
62         { "halt_exits", &kvm_stat.halt_exits },
63         { "request_irq", &kvm_stat.request_irq_exits },
64         { "irq_exits", &kvm_stat.irq_exits },
65         { 0, 0 }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81         struct segment_descriptor s;
82         u32 base_higher;
83         u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90         struct descriptor_table gdt;
91         struct segment_descriptor *d;
92         unsigned long table_base;
93         typedef unsigned long ul;
94         unsigned long v;
95
96         if (selector == 0)
97                 return 0;
98
99         asm ("sgdt %0" : "=m"(gdt));
100         table_base = gdt.base;
101
102         if (selector & 4) {           /* from ldt */
103                 u16 ldt_selector;
104
105                 asm ("sldt %0" : "=g"(ldt_selector));
106                 table_base = segment_base(ldt_selector);
107         }
108         d = (struct segment_descriptor *)(table_base + (selector & ~7));
109         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111         if (d->system == 0
112             && (d->type == 2 || d->type == 9 || d->type == 11))
113                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115         return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121         return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125                              gva_t addr,
126                              unsigned long size,
127                              void *dest)
128 {
129         unsigned char *host_buf = dest;
130         unsigned long req_size = size;
131
132         while (size) {
133                 hpa_t paddr;
134                 unsigned now;
135                 unsigned offset;
136                 hva_t guest_buf;
137
138                 paddr = gva_to_hpa(vcpu, addr);
139
140                 if (is_error_hpa(paddr))
141                         break;
142
143                 guest_buf = (hva_t)kmap_atomic(
144                                         pfn_to_page(paddr >> PAGE_SHIFT),
145                                         KM_USER0);
146                 offset = addr & ~PAGE_MASK;
147                 guest_buf |= offset;
148                 now = min(size, PAGE_SIZE - offset);
149                 memcpy(host_buf, (void*)guest_buf, now);
150                 host_buf += now;
151                 addr += now;
152                 size -= now;
153                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154         }
155         return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160                              gva_t addr,
161                              unsigned long size,
162                              void *data)
163 {
164         unsigned char *host_buf = data;
165         unsigned long req_size = size;
166
167         while (size) {
168                 hpa_t paddr;
169                 unsigned now;
170                 unsigned offset;
171                 hva_t guest_buf;
172
173                 paddr = gva_to_hpa(vcpu, addr);
174
175                 if (is_error_hpa(paddr))
176                         break;
177
178                 guest_buf = (hva_t)kmap_atomic(
179                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180                 offset = addr & ~PAGE_MASK;
181                 guest_buf |= offset;
182                 now = min(size, PAGE_SIZE - offset);
183                 memcpy((void*)guest_buf, host_buf, now);
184                 host_buf += now;
185                 addr += now;
186                 size -= now;
187                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188         }
189         return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195         return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199  * Switches to specified vcpu, until a matching vcpu_put()
200  */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205         mutex_lock(&vcpu->mutex);
206         if (unlikely(!vcpu->vmcs)) {
207                 mutex_unlock(&vcpu->mutex);
208                 return 0;
209         }
210         return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         kvm_arch_ops->vcpu_put(vcpu);
216         mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222         int i;
223
224         if (!kvm)
225                 return -ENOMEM;
226
227         spin_lock_init(&kvm->lock);
228         INIT_LIST_HEAD(&kvm->active_mmu_pages);
229         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232                 mutex_init(&vcpu->mutex);
233                 vcpu->mmu.root_hpa = INVALID_PAGE;
234                 INIT_LIST_HEAD(&vcpu->free_pages);
235         }
236         filp->private_data = kvm;
237         return 0;
238 }
239
240 /*
241  * Free any memory in @free but not in @dont.
242  */
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244                                   struct kvm_memory_slot *dont)
245 {
246         int i;
247
248         if (!dont || free->phys_mem != dont->phys_mem)
249                 if (free->phys_mem) {
250                         for (i = 0; i < free->npages; ++i)
251                                 if (free->phys_mem[i])
252                                         __free_page(free->phys_mem[i]);
253                         vfree(free->phys_mem);
254                 }
255
256         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257                 vfree(free->dirty_bitmap);
258
259         free->phys_mem = 0;
260         free->npages = 0;
261         free->dirty_bitmap = 0;
262 }
263
264 static void kvm_free_physmem(struct kvm *kvm)
265 {
266         int i;
267
268         for (i = 0; i < kvm->nmemslots; ++i)
269                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
270 }
271
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
273 {
274         kvm_arch_ops->vcpu_free(vcpu);
275         kvm_mmu_destroy(vcpu);
276 }
277
278 static void kvm_free_vcpus(struct kvm *kvm)
279 {
280         unsigned int i;
281
282         for (i = 0; i < KVM_MAX_VCPUS; ++i)
283                 kvm_free_vcpu(&kvm->vcpus[i]);
284 }
285
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
287 {
288         struct kvm *kvm = filp->private_data;
289
290         kvm_free_vcpus(kvm);
291         kvm_free_physmem(kvm);
292         kfree(kvm);
293         return 0;
294 }
295
296 static void inject_gp(struct kvm_vcpu *vcpu)
297 {
298         kvm_arch_ops->inject_gp(vcpu, 0);
299 }
300
301 /*
302  * Load the pae pdptrs.  Return true is they are all valid.
303  */
304 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
305 {
306         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
307         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
308         int i;
309         u64 pdpte;
310         u64 *pdpt;
311         int ret;
312         struct kvm_memory_slot *memslot;
313
314         spin_lock(&vcpu->kvm->lock);
315         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
316         /* FIXME: !memslot - emulate? 0xff? */
317         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
318
319         ret = 1;
320         for (i = 0; i < 4; ++i) {
321                 pdpte = pdpt[offset + i];
322                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
323                         ret = 0;
324                         goto out;
325                 }
326         }
327
328         for (i = 0; i < 4; ++i)
329                 vcpu->pdptrs[i] = pdpt[offset + i];
330
331 out:
332         kunmap_atomic(pdpt, KM_USER0);
333         spin_unlock(&vcpu->kvm->lock);
334
335         return ret;
336 }
337
338 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
339 {
340         if (cr0 & CR0_RESEVED_BITS) {
341                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
342                        cr0, vcpu->cr0);
343                 inject_gp(vcpu);
344                 return;
345         }
346
347         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
348                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
349                 inject_gp(vcpu);
350                 return;
351         }
352
353         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
354                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
355                        "and a clear PE flag\n");
356                 inject_gp(vcpu);
357                 return;
358         }
359
360         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
361 #ifdef CONFIG_X86_64
362                 if ((vcpu->shadow_efer & EFER_LME)) {
363                         int cs_db, cs_l;
364
365                         if (!is_pae(vcpu)) {
366                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
367                                        "in long mode while PAE is disabled\n");
368                                 inject_gp(vcpu);
369                                 return;
370                         }
371                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
372                         if (cs_l) {
373                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
374                                        "in long mode while CS.L == 1\n");
375                                 inject_gp(vcpu);
376                                 return;
377
378                         }
379                 } else
380 #endif
381                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
382                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
383                                "reserved bits\n");
384                         inject_gp(vcpu);
385                         return;
386                 }
387
388         }
389
390         kvm_arch_ops->set_cr0(vcpu, cr0);
391         vcpu->cr0 = cr0;
392
393         spin_lock(&vcpu->kvm->lock);
394         kvm_mmu_reset_context(vcpu);
395         spin_unlock(&vcpu->kvm->lock);
396         return;
397 }
398 EXPORT_SYMBOL_GPL(set_cr0);
399
400 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
401 {
402         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
403         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
404 }
405 EXPORT_SYMBOL_GPL(lmsw);
406
407 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
408 {
409         if (cr4 & CR4_RESEVED_BITS) {
410                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
411                 inject_gp(vcpu);
412                 return;
413         }
414
415         if (is_long_mode(vcpu)) {
416                 if (!(cr4 & CR4_PAE_MASK)) {
417                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
418                                "in long mode\n");
419                         inject_gp(vcpu);
420                         return;
421                 }
422         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
423                    && !load_pdptrs(vcpu, vcpu->cr3)) {
424                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
425                 inject_gp(vcpu);
426         }
427
428         if (cr4 & CR4_VMXE_MASK) {
429                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
430                 inject_gp(vcpu);
431                 return;
432         }
433         kvm_arch_ops->set_cr4(vcpu, cr4);
434         spin_lock(&vcpu->kvm->lock);
435         kvm_mmu_reset_context(vcpu);
436         spin_unlock(&vcpu->kvm->lock);
437 }
438 EXPORT_SYMBOL_GPL(set_cr4);
439
440 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
441 {
442         if (is_long_mode(vcpu)) {
443                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
444                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
445                         inject_gp(vcpu);
446                         return;
447                 }
448         } else {
449                 if (cr3 & CR3_RESEVED_BITS) {
450                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
451                         inject_gp(vcpu);
452                         return;
453                 }
454                 if (is_paging(vcpu) && is_pae(vcpu) &&
455                     !load_pdptrs(vcpu, cr3)) {
456                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
457                                "reserved bits\n");
458                         inject_gp(vcpu);
459                         return;
460                 }
461         }
462
463         vcpu->cr3 = cr3;
464         spin_lock(&vcpu->kvm->lock);
465         vcpu->mmu.new_cr3(vcpu);
466         spin_unlock(&vcpu->kvm->lock);
467 }
468 EXPORT_SYMBOL_GPL(set_cr3);
469
470 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
471 {
472         if ( cr8 & CR8_RESEVED_BITS) {
473                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
474                 inject_gp(vcpu);
475                 return;
476         }
477         vcpu->cr8 = cr8;
478 }
479 EXPORT_SYMBOL_GPL(set_cr8);
480
481 void fx_init(struct kvm_vcpu *vcpu)
482 {
483         struct __attribute__ ((__packed__)) fx_image_s {
484                 u16 control; //fcw
485                 u16 status; //fsw
486                 u16 tag; // ftw
487                 u16 opcode; //fop
488                 u64 ip; // fpu ip
489                 u64 operand;// fpu dp
490                 u32 mxcsr;
491                 u32 mxcsr_mask;
492
493         } *fx_image;
494
495         fx_save(vcpu->host_fx_image);
496         fpu_init();
497         fx_save(vcpu->guest_fx_image);
498         fx_restore(vcpu->host_fx_image);
499
500         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
501         fx_image->mxcsr = 0x1f80;
502         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
503                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
504 }
505 EXPORT_SYMBOL_GPL(fx_init);
506
507 /*
508  * Creates some virtual cpus.  Good luck creating more than one.
509  */
510 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
511 {
512         int r;
513         struct kvm_vcpu *vcpu;
514
515         r = -EINVAL;
516         if (!valid_vcpu(n))
517                 goto out;
518
519         vcpu = &kvm->vcpus[n];
520
521         mutex_lock(&vcpu->mutex);
522
523         if (vcpu->vmcs) {
524                 mutex_unlock(&vcpu->mutex);
525                 return -EEXIST;
526         }
527
528         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
529                                            FX_IMAGE_ALIGN);
530         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
531
532         vcpu->cpu = -1;  /* First load will set up TR */
533         vcpu->kvm = kvm;
534         r = kvm_arch_ops->vcpu_create(vcpu);
535         if (r < 0)
536                 goto out_free_vcpus;
537
538         r = kvm_mmu_create(vcpu);
539         if (r < 0)
540                 goto out_free_vcpus;
541
542         kvm_arch_ops->vcpu_load(vcpu);
543         r = kvm_mmu_setup(vcpu);
544         if (r >= 0)
545                 r = kvm_arch_ops->vcpu_setup(vcpu);
546         vcpu_put(vcpu);
547
548         if (r < 0)
549                 goto out_free_vcpus;
550
551         return 0;
552
553 out_free_vcpus:
554         kvm_free_vcpu(vcpu);
555         mutex_unlock(&vcpu->mutex);
556 out:
557         return r;
558 }
559
560 /*
561  * Allocate some memory and give it an address in the guest physical address
562  * space.
563  *
564  * Discontiguous memory is allowed, mostly for framebuffers.
565  */
566 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
567                                            struct kvm_memory_region *mem)
568 {
569         int r;
570         gfn_t base_gfn;
571         unsigned long npages;
572         unsigned long i;
573         struct kvm_memory_slot *memslot;
574         struct kvm_memory_slot old, new;
575         int memory_config_version;
576
577         r = -EINVAL;
578         /* General sanity checks */
579         if (mem->memory_size & (PAGE_SIZE - 1))
580                 goto out;
581         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
582                 goto out;
583         if (mem->slot >= KVM_MEMORY_SLOTS)
584                 goto out;
585         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
586                 goto out;
587
588         memslot = &kvm->memslots[mem->slot];
589         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
590         npages = mem->memory_size >> PAGE_SHIFT;
591
592         if (!npages)
593                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
594
595 raced:
596         spin_lock(&kvm->lock);
597
598         memory_config_version = kvm->memory_config_version;
599         new = old = *memslot;
600
601         new.base_gfn = base_gfn;
602         new.npages = npages;
603         new.flags = mem->flags;
604
605         /* Disallow changing a memory slot's size. */
606         r = -EINVAL;
607         if (npages && old.npages && npages != old.npages)
608                 goto out_unlock;
609
610         /* Check for overlaps */
611         r = -EEXIST;
612         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
613                 struct kvm_memory_slot *s = &kvm->memslots[i];
614
615                 if (s == memslot)
616                         continue;
617                 if (!((base_gfn + npages <= s->base_gfn) ||
618                       (base_gfn >= s->base_gfn + s->npages)))
619                         goto out_unlock;
620         }
621         /*
622          * Do memory allocations outside lock.  memory_config_version will
623          * detect any races.
624          */
625         spin_unlock(&kvm->lock);
626
627         /* Deallocate if slot is being removed */
628         if (!npages)
629                 new.phys_mem = 0;
630
631         /* Free page dirty bitmap if unneeded */
632         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
633                 new.dirty_bitmap = 0;
634
635         r = -ENOMEM;
636
637         /* Allocate if a slot is being created */
638         if (npages && !new.phys_mem) {
639                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
640
641                 if (!new.phys_mem)
642                         goto out_free;
643
644                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
645                 for (i = 0; i < npages; ++i) {
646                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
647                                                      | __GFP_ZERO);
648                         if (!new.phys_mem[i])
649                                 goto out_free;
650                         new.phys_mem[i]->private = 0;
651                 }
652         }
653
654         /* Allocate page dirty bitmap if needed */
655         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
656                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
657
658                 new.dirty_bitmap = vmalloc(dirty_bytes);
659                 if (!new.dirty_bitmap)
660                         goto out_free;
661                 memset(new.dirty_bitmap, 0, dirty_bytes);
662         }
663
664         spin_lock(&kvm->lock);
665
666         if (memory_config_version != kvm->memory_config_version) {
667                 spin_unlock(&kvm->lock);
668                 kvm_free_physmem_slot(&new, &old);
669                 goto raced;
670         }
671
672         r = -EAGAIN;
673         if (kvm->busy)
674                 goto out_unlock;
675
676         if (mem->slot >= kvm->nmemslots)
677                 kvm->nmemslots = mem->slot + 1;
678
679         *memslot = new;
680         ++kvm->memory_config_version;
681
682         spin_unlock(&kvm->lock);
683
684         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
685                 struct kvm_vcpu *vcpu;
686
687                 vcpu = vcpu_load(kvm, i);
688                 if (!vcpu)
689                         continue;
690                 kvm_mmu_reset_context(vcpu);
691                 vcpu_put(vcpu);
692         }
693
694         kvm_free_physmem_slot(&old, &new);
695         return 0;
696
697 out_unlock:
698         spin_unlock(&kvm->lock);
699 out_free:
700         kvm_free_physmem_slot(&new, &old);
701 out:
702         return r;
703 }
704
705 /*
706  * Get (and clear) the dirty memory log for a memory slot.
707  */
708 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
709                                        struct kvm_dirty_log *log)
710 {
711         struct kvm_memory_slot *memslot;
712         int r, i;
713         int n;
714         unsigned long any = 0;
715
716         spin_lock(&kvm->lock);
717
718         /*
719          * Prevent changes to guest memory configuration even while the lock
720          * is not taken.
721          */
722         ++kvm->busy;
723         spin_unlock(&kvm->lock);
724         r = -EINVAL;
725         if (log->slot >= KVM_MEMORY_SLOTS)
726                 goto out;
727
728         memslot = &kvm->memslots[log->slot];
729         r = -ENOENT;
730         if (!memslot->dirty_bitmap)
731                 goto out;
732
733         n = ALIGN(memslot->npages, 8) / 8;
734
735         for (i = 0; !any && i < n; ++i)
736                 any = memslot->dirty_bitmap[i];
737
738         r = -EFAULT;
739         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
740                 goto out;
741
742
743         if (any) {
744                 spin_lock(&kvm->lock);
745                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
746                 spin_unlock(&kvm->lock);
747                 memset(memslot->dirty_bitmap, 0, n);
748                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
749                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
750
751                         if (!vcpu)
752                                 continue;
753                         kvm_arch_ops->tlb_flush(vcpu);
754                         vcpu_put(vcpu);
755                 }
756         }
757
758         r = 0;
759
760 out:
761         spin_lock(&kvm->lock);
762         --kvm->busy;
763         spin_unlock(&kvm->lock);
764         return r;
765 }
766
767 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
768 {
769         int i;
770
771         for (i = 0; i < kvm->nmemslots; ++i) {
772                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
773
774                 if (gfn >= memslot->base_gfn
775                     && gfn < memslot->base_gfn + memslot->npages)
776                         return memslot;
777         }
778         return 0;
779 }
780 EXPORT_SYMBOL_GPL(gfn_to_memslot);
781
782 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
783 {
784         int i;
785         struct kvm_memory_slot *memslot = 0;
786         unsigned long rel_gfn;
787
788         for (i = 0; i < kvm->nmemslots; ++i) {
789                 memslot = &kvm->memslots[i];
790
791                 if (gfn >= memslot->base_gfn
792                     && gfn < memslot->base_gfn + memslot->npages) {
793
794                         if (!memslot || !memslot->dirty_bitmap)
795                                 return;
796
797                         rel_gfn = gfn - memslot->base_gfn;
798
799                         /* avoid RMW */
800                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
801                                 set_bit(rel_gfn, memslot->dirty_bitmap);
802                         return;
803                 }
804         }
805 }
806
807 static int emulator_read_std(unsigned long addr,
808                              unsigned long *val,
809                              unsigned int bytes,
810                              struct x86_emulate_ctxt *ctxt)
811 {
812         struct kvm_vcpu *vcpu = ctxt->vcpu;
813         void *data = val;
814
815         while (bytes) {
816                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
817                 unsigned offset = addr & (PAGE_SIZE-1);
818                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
819                 unsigned long pfn;
820                 struct kvm_memory_slot *memslot;
821                 void *page;
822
823                 if (gpa == UNMAPPED_GVA)
824                         return X86EMUL_PROPAGATE_FAULT;
825                 pfn = gpa >> PAGE_SHIFT;
826                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
827                 if (!memslot)
828                         return X86EMUL_UNHANDLEABLE;
829                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
830
831                 memcpy(data, page + offset, tocopy);
832
833                 kunmap_atomic(page, KM_USER0);
834
835                 bytes -= tocopy;
836                 data += tocopy;
837                 addr += tocopy;
838         }
839
840         return X86EMUL_CONTINUE;
841 }
842
843 static int emulator_write_std(unsigned long addr,
844                               unsigned long val,
845                               unsigned int bytes,
846                               struct x86_emulate_ctxt *ctxt)
847 {
848         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
849                addr, bytes);
850         return X86EMUL_UNHANDLEABLE;
851 }
852
853 static int emulator_read_emulated(unsigned long addr,
854                                   unsigned long *val,
855                                   unsigned int bytes,
856                                   struct x86_emulate_ctxt *ctxt)
857 {
858         struct kvm_vcpu *vcpu = ctxt->vcpu;
859
860         if (vcpu->mmio_read_completed) {
861                 memcpy(val, vcpu->mmio_data, bytes);
862                 vcpu->mmio_read_completed = 0;
863                 return X86EMUL_CONTINUE;
864         } else if (emulator_read_std(addr, val, bytes, ctxt)
865                    == X86EMUL_CONTINUE)
866                 return X86EMUL_CONTINUE;
867         else {
868                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
869                 if (gpa == UNMAPPED_GVA)
870                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
871                 vcpu->mmio_needed = 1;
872                 vcpu->mmio_phys_addr = gpa;
873                 vcpu->mmio_size = bytes;
874                 vcpu->mmio_is_write = 0;
875
876                 return X86EMUL_UNHANDLEABLE;
877         }
878 }
879
880 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
881                                unsigned long val, int bytes)
882 {
883         struct kvm_memory_slot *m;
884         struct page *page;
885         void *virt;
886
887         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
888                 return 0;
889         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
890         if (!m)
891                 return 0;
892         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
893         kvm_mmu_pre_write(vcpu, gpa, bytes);
894         virt = kmap_atomic(page, KM_USER0);
895         memcpy(virt + offset_in_page(gpa), &val, bytes);
896         kunmap_atomic(virt, KM_USER0);
897         kvm_mmu_post_write(vcpu, gpa, bytes);
898         return 1;
899 }
900
901 static int emulator_write_emulated(unsigned long addr,
902                                    unsigned long val,
903                                    unsigned int bytes,
904                                    struct x86_emulate_ctxt *ctxt)
905 {
906         struct kvm_vcpu *vcpu = ctxt->vcpu;
907         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
908
909         if (gpa == UNMAPPED_GVA)
910                 return X86EMUL_PROPAGATE_FAULT;
911
912         if (emulator_write_phys(vcpu, gpa, val, bytes))
913                 return X86EMUL_CONTINUE;
914
915         vcpu->mmio_needed = 1;
916         vcpu->mmio_phys_addr = gpa;
917         vcpu->mmio_size = bytes;
918         vcpu->mmio_is_write = 1;
919         memcpy(vcpu->mmio_data, &val, bytes);
920
921         return X86EMUL_CONTINUE;
922 }
923
924 static int emulator_cmpxchg_emulated(unsigned long addr,
925                                      unsigned long old,
926                                      unsigned long new,
927                                      unsigned int bytes,
928                                      struct x86_emulate_ctxt *ctxt)
929 {
930         static int reported;
931
932         if (!reported) {
933                 reported = 1;
934                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
935         }
936         return emulator_write_emulated(addr, new, bytes, ctxt);
937 }
938
939 #ifdef CONFIG_X86_32
940
941 static int emulator_cmpxchg8b_emulated(unsigned long addr,
942                                        unsigned long old_lo,
943                                        unsigned long old_hi,
944                                        unsigned long new_lo,
945                                        unsigned long new_hi,
946                                        struct x86_emulate_ctxt *ctxt)
947 {
948         static int reported;
949         int r;
950
951         if (!reported) {
952                 reported = 1;
953                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
954         }
955         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
956         if (r != X86EMUL_CONTINUE)
957                 return r;
958         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
959 }
960
961 #endif
962
963 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
964 {
965         return kvm_arch_ops->get_segment_base(vcpu, seg);
966 }
967
968 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
969 {
970         return X86EMUL_CONTINUE;
971 }
972
973 int emulate_clts(struct kvm_vcpu *vcpu)
974 {
975         unsigned long cr0;
976
977         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
978         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
979         kvm_arch_ops->set_cr0(vcpu, cr0);
980         return X86EMUL_CONTINUE;
981 }
982
983 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
984 {
985         struct kvm_vcpu *vcpu = ctxt->vcpu;
986
987         switch (dr) {
988         case 0 ... 3:
989                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
990                 return X86EMUL_CONTINUE;
991         default:
992                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
993                        __FUNCTION__, dr);
994                 return X86EMUL_UNHANDLEABLE;
995         }
996 }
997
998 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
999 {
1000         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1001         int exception;
1002
1003         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1004         if (exception) {
1005                 /* FIXME: better handling */
1006                 return X86EMUL_UNHANDLEABLE;
1007         }
1008         return X86EMUL_CONTINUE;
1009 }
1010
1011 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1012 {
1013         static int reported;
1014         u8 opcodes[4];
1015         unsigned long rip = ctxt->vcpu->rip;
1016         unsigned long rip_linear;
1017
1018         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1019
1020         if (reported)
1021                 return;
1022
1023         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1024
1025         printk(KERN_ERR "emulation failed but !mmio_needed?"
1026                " rip %lx %02x %02x %02x %02x\n",
1027                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1028         reported = 1;
1029 }
1030
1031 struct x86_emulate_ops emulate_ops = {
1032         .read_std            = emulator_read_std,
1033         .write_std           = emulator_write_std,
1034         .read_emulated       = emulator_read_emulated,
1035         .write_emulated      = emulator_write_emulated,
1036         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1037 #ifdef CONFIG_X86_32
1038         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1039 #endif
1040 };
1041
1042 int emulate_instruction(struct kvm_vcpu *vcpu,
1043                         struct kvm_run *run,
1044                         unsigned long cr2,
1045                         u16 error_code)
1046 {
1047         struct x86_emulate_ctxt emulate_ctxt;
1048         int r;
1049         int cs_db, cs_l;
1050
1051         kvm_arch_ops->cache_regs(vcpu);
1052
1053         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1054
1055         emulate_ctxt.vcpu = vcpu;
1056         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1057         emulate_ctxt.cr2 = cr2;
1058         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1059                 ? X86EMUL_MODE_REAL : cs_l
1060                 ? X86EMUL_MODE_PROT64 : cs_db
1061                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1062
1063         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1064                 emulate_ctxt.cs_base = 0;
1065                 emulate_ctxt.ds_base = 0;
1066                 emulate_ctxt.es_base = 0;
1067                 emulate_ctxt.ss_base = 0;
1068         } else {
1069                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1070                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1071                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1072                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1073         }
1074
1075         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1076         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1077
1078         vcpu->mmio_is_write = 0;
1079         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1080
1081         if ((r || vcpu->mmio_is_write) && run) {
1082                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1083                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1084                 run->mmio.len = vcpu->mmio_size;
1085                 run->mmio.is_write = vcpu->mmio_is_write;
1086         }
1087
1088         if (r) {
1089                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1090                         return EMULATE_DONE;
1091                 if (!vcpu->mmio_needed) {
1092                         report_emulation_failure(&emulate_ctxt);
1093                         return EMULATE_FAIL;
1094                 }
1095                 return EMULATE_DO_MMIO;
1096         }
1097
1098         kvm_arch_ops->decache_regs(vcpu);
1099         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1100
1101         if (vcpu->mmio_is_write)
1102                 return EMULATE_DO_MMIO;
1103
1104         return EMULATE_DONE;
1105 }
1106 EXPORT_SYMBOL_GPL(emulate_instruction);
1107
1108 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1109 {
1110         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1111 }
1112
1113 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1114 {
1115         struct descriptor_table dt = { limit, base };
1116
1117         kvm_arch_ops->set_gdt(vcpu, &dt);
1118 }
1119
1120 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1121 {
1122         struct descriptor_table dt = { limit, base };
1123
1124         kvm_arch_ops->set_idt(vcpu, &dt);
1125 }
1126
1127 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1128                    unsigned long *rflags)
1129 {
1130         lmsw(vcpu, msw);
1131         *rflags = kvm_arch_ops->get_rflags(vcpu);
1132 }
1133
1134 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1135 {
1136         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1137         switch (cr) {
1138         case 0:
1139                 return vcpu->cr0;
1140         case 2:
1141                 return vcpu->cr2;
1142         case 3:
1143                 return vcpu->cr3;
1144         case 4:
1145                 return vcpu->cr4;
1146         default:
1147                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1148                 return 0;
1149         }
1150 }
1151
1152 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1153                      unsigned long *rflags)
1154 {
1155         switch (cr) {
1156         case 0:
1157                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1158                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1159                 break;
1160         case 2:
1161                 vcpu->cr2 = val;
1162                 break;
1163         case 3:
1164                 set_cr3(vcpu, val);
1165                 break;
1166         case 4:
1167                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1168                 break;
1169         default:
1170                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1171         }
1172 }
1173
1174 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1175 {
1176         u64 data;
1177
1178         switch (msr) {
1179         case 0xc0010010: /* SYSCFG */
1180         case 0xc0010015: /* HWCR */
1181         case MSR_IA32_PLATFORM_ID:
1182         case MSR_IA32_P5_MC_ADDR:
1183         case MSR_IA32_P5_MC_TYPE:
1184         case MSR_IA32_MC0_CTL:
1185         case MSR_IA32_MCG_STATUS:
1186         case MSR_IA32_MCG_CAP:
1187         case MSR_IA32_MC0_MISC:
1188         case MSR_IA32_MC0_MISC+4:
1189         case MSR_IA32_MC0_MISC+8:
1190         case MSR_IA32_MC0_MISC+12:
1191         case MSR_IA32_MC0_MISC+16:
1192         case MSR_IA32_UCODE_REV:
1193         case MSR_IA32_PERF_STATUS:
1194                 /* MTRR registers */
1195         case 0xfe:
1196         case 0x200 ... 0x2ff:
1197                 data = 0;
1198                 break;
1199         case 0xcd: /* fsb frequency */
1200                 data = 3;
1201                 break;
1202         case MSR_IA32_APICBASE:
1203                 data = vcpu->apic_base;
1204                 break;
1205 #ifdef CONFIG_X86_64
1206         case MSR_EFER:
1207                 data = vcpu->shadow_efer;
1208                 break;
1209 #endif
1210         default:
1211                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1212                 return 1;
1213         }
1214         *pdata = data;
1215         return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1218
1219 /*
1220  * Reads an msr value (of 'msr_index') into 'pdata'.
1221  * Returns 0 on success, non-0 otherwise.
1222  * Assumes vcpu_load() was already called.
1223  */
1224 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1225 {
1226         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1227 }
1228
1229 #ifdef CONFIG_X86_64
1230
1231 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1232 {
1233         if (efer & EFER_RESERVED_BITS) {
1234                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1235                        efer);
1236                 inject_gp(vcpu);
1237                 return;
1238         }
1239
1240         if (is_paging(vcpu)
1241             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1242                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1243                 inject_gp(vcpu);
1244                 return;
1245         }
1246
1247         kvm_arch_ops->set_efer(vcpu, efer);
1248
1249         efer &= ~EFER_LMA;
1250         efer |= vcpu->shadow_efer & EFER_LMA;
1251
1252         vcpu->shadow_efer = efer;
1253 }
1254
1255 #endif
1256
1257 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1258 {
1259         switch (msr) {
1260 #ifdef CONFIG_X86_64
1261         case MSR_EFER:
1262                 set_efer(vcpu, data);
1263                 break;
1264 #endif
1265         case MSR_IA32_MC0_STATUS:
1266                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1267                        __FUNCTION__, data);
1268                 break;
1269         case MSR_IA32_UCODE_REV:
1270         case MSR_IA32_UCODE_WRITE:
1271         case 0x200 ... 0x2ff: /* MTRRs */
1272                 break;
1273         case MSR_IA32_APICBASE:
1274                 vcpu->apic_base = data;
1275                 break;
1276         default:
1277                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1278                 return 1;
1279         }
1280         return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1283
1284 /*
1285  * Writes msr value into into the appropriate "register".
1286  * Returns 0 on success, non-0 otherwise.
1287  * Assumes vcpu_load() was already called.
1288  */
1289 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1290 {
1291         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1292 }
1293
1294 void kvm_resched(struct kvm_vcpu *vcpu)
1295 {
1296         vcpu_put(vcpu);
1297         cond_resched();
1298         /* Cannot fail -  no vcpu unplug yet. */
1299         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_resched);
1302
1303 void load_msrs(struct vmx_msr_entry *e, int n)
1304 {
1305         int i;
1306
1307         for (i = 0; i < n; ++i)
1308                 wrmsrl(e[i].index, e[i].data);
1309 }
1310 EXPORT_SYMBOL_GPL(load_msrs);
1311
1312 void save_msrs(struct vmx_msr_entry *e, int n)
1313 {
1314         int i;
1315
1316         for (i = 0; i < n; ++i)
1317                 rdmsrl(e[i].index, e[i].data);
1318 }
1319 EXPORT_SYMBOL_GPL(save_msrs);
1320
1321 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1322 {
1323         struct kvm_vcpu *vcpu;
1324         int r;
1325
1326         if (!valid_vcpu(kvm_run->vcpu))
1327                 return -EINVAL;
1328
1329         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1330         if (!vcpu)
1331                 return -ENOENT;
1332
1333         if (kvm_run->emulated) {
1334                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1335                 kvm_run->emulated = 0;
1336         }
1337
1338         if (kvm_run->mmio_completed) {
1339                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1340                 vcpu->mmio_read_completed = 1;
1341         }
1342
1343         vcpu->mmio_needed = 0;
1344
1345         r = kvm_arch_ops->run(vcpu, kvm_run);
1346
1347         vcpu_put(vcpu);
1348         return r;
1349 }
1350
1351 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1352 {
1353         struct kvm_vcpu *vcpu;
1354
1355         if (!valid_vcpu(regs->vcpu))
1356                 return -EINVAL;
1357
1358         vcpu = vcpu_load(kvm, regs->vcpu);
1359         if (!vcpu)
1360                 return -ENOENT;
1361
1362         kvm_arch_ops->cache_regs(vcpu);
1363
1364         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1365         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1366         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1367         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1368         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1369         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1370         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1371         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1372 #ifdef CONFIG_X86_64
1373         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1374         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1375         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1376         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1377         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1378         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1379         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1380         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1381 #endif
1382
1383         regs->rip = vcpu->rip;
1384         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1385
1386         /*
1387          * Don't leak debug flags in case they were set for guest debugging
1388          */
1389         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1390                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1391
1392         vcpu_put(vcpu);
1393
1394         return 0;
1395 }
1396
1397 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1398 {
1399         struct kvm_vcpu *vcpu;
1400
1401         if (!valid_vcpu(regs->vcpu))
1402                 return -EINVAL;
1403
1404         vcpu = vcpu_load(kvm, regs->vcpu);
1405         if (!vcpu)
1406                 return -ENOENT;
1407
1408         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1409         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1410         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1411         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1412         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1413         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1414         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1415         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1416 #ifdef CONFIG_X86_64
1417         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1418         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1419         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1420         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1421         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1422         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1423         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1424         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1425 #endif
1426
1427         vcpu->rip = regs->rip;
1428         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1429
1430         kvm_arch_ops->decache_regs(vcpu);
1431
1432         vcpu_put(vcpu);
1433
1434         return 0;
1435 }
1436
1437 static void get_segment(struct kvm_vcpu *vcpu,
1438                         struct kvm_segment *var, int seg)
1439 {
1440         return kvm_arch_ops->get_segment(vcpu, var, seg);
1441 }
1442
1443 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1444 {
1445         struct kvm_vcpu *vcpu;
1446         struct descriptor_table dt;
1447
1448         if (!valid_vcpu(sregs->vcpu))
1449                 return -EINVAL;
1450         vcpu = vcpu_load(kvm, sregs->vcpu);
1451         if (!vcpu)
1452                 return -ENOENT;
1453
1454         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1455         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1456         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1457         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1458         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1459         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1460
1461         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1462         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1463
1464         kvm_arch_ops->get_idt(vcpu, &dt);
1465         sregs->idt.limit = dt.limit;
1466         sregs->idt.base = dt.base;
1467         kvm_arch_ops->get_gdt(vcpu, &dt);
1468         sregs->gdt.limit = dt.limit;
1469         sregs->gdt.base = dt.base;
1470
1471         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1472         sregs->cr0 = vcpu->cr0;
1473         sregs->cr2 = vcpu->cr2;
1474         sregs->cr3 = vcpu->cr3;
1475         sregs->cr4 = vcpu->cr4;
1476         sregs->cr8 = vcpu->cr8;
1477         sregs->efer = vcpu->shadow_efer;
1478         sregs->apic_base = vcpu->apic_base;
1479
1480         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1481                sizeof sregs->interrupt_bitmap);
1482
1483         vcpu_put(vcpu);
1484
1485         return 0;
1486 }
1487
1488 static void set_segment(struct kvm_vcpu *vcpu,
1489                         struct kvm_segment *var, int seg)
1490 {
1491         return kvm_arch_ops->set_segment(vcpu, var, seg);
1492 }
1493
1494 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1495 {
1496         struct kvm_vcpu *vcpu;
1497         int mmu_reset_needed = 0;
1498         int i;
1499         struct descriptor_table dt;
1500
1501         if (!valid_vcpu(sregs->vcpu))
1502                 return -EINVAL;
1503         vcpu = vcpu_load(kvm, sregs->vcpu);
1504         if (!vcpu)
1505                 return -ENOENT;
1506
1507         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1508         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1509         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1510         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1511         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1512         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1513
1514         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1515         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1516
1517         dt.limit = sregs->idt.limit;
1518         dt.base = sregs->idt.base;
1519         kvm_arch_ops->set_idt(vcpu, &dt);
1520         dt.limit = sregs->gdt.limit;
1521         dt.base = sregs->gdt.base;
1522         kvm_arch_ops->set_gdt(vcpu, &dt);
1523
1524         vcpu->cr2 = sregs->cr2;
1525         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1526         vcpu->cr3 = sregs->cr3;
1527
1528         vcpu->cr8 = sregs->cr8;
1529
1530         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1531 #ifdef CONFIG_X86_64
1532         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1533 #endif
1534         vcpu->apic_base = sregs->apic_base;
1535
1536         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1537
1538         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1539         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1540
1541         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1542         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1543         if (!is_long_mode(vcpu) && is_pae(vcpu))
1544                 load_pdptrs(vcpu, vcpu->cr3);
1545
1546         if (mmu_reset_needed)
1547                 kvm_mmu_reset_context(vcpu);
1548
1549         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1550                sizeof vcpu->irq_pending);
1551         vcpu->irq_summary = 0;
1552         for (i = 0; i < NR_IRQ_WORDS; ++i)
1553                 if (vcpu->irq_pending[i])
1554                         __set_bit(i, &vcpu->irq_summary);
1555
1556         vcpu_put(vcpu);
1557
1558         return 0;
1559 }
1560
1561 /*
1562  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1563  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1564  *
1565  * This list is modified at module load time to reflect the
1566  * capabilities of the host cpu.
1567  */
1568 static u32 msrs_to_save[] = {
1569         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1570         MSR_K6_STAR,
1571 #ifdef CONFIG_X86_64
1572         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1573 #endif
1574         MSR_IA32_TIME_STAMP_COUNTER,
1575 };
1576
1577 static unsigned num_msrs_to_save;
1578
1579 static __init void kvm_init_msr_list(void)
1580 {
1581         u32 dummy[2];
1582         unsigned i, j;
1583
1584         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1585                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1586                         continue;
1587                 if (j < i)
1588                         msrs_to_save[j] = msrs_to_save[i];
1589                 j++;
1590         }
1591         num_msrs_to_save = j;
1592 }
1593
1594 /*
1595  * Adapt set_msr() to msr_io()'s calling convention
1596  */
1597 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1598 {
1599         return set_msr(vcpu, index, *data);
1600 }
1601
1602 /*
1603  * Read or write a bunch of msrs. All parameters are kernel addresses.
1604  *
1605  * @return number of msrs set successfully.
1606  */
1607 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1608                     struct kvm_msr_entry *entries,
1609                     int (*do_msr)(struct kvm_vcpu *vcpu,
1610                                   unsigned index, u64 *data))
1611 {
1612         struct kvm_vcpu *vcpu;
1613         int i;
1614
1615         if (!valid_vcpu(msrs->vcpu))
1616                 return -EINVAL;
1617
1618         vcpu = vcpu_load(kvm, msrs->vcpu);
1619         if (!vcpu)
1620                 return -ENOENT;
1621
1622         for (i = 0; i < msrs->nmsrs; ++i)
1623                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1624                         break;
1625
1626         vcpu_put(vcpu);
1627
1628         return i;
1629 }
1630
1631 /*
1632  * Read or write a bunch of msrs. Parameters are user addresses.
1633  *
1634  * @return number of msrs set successfully.
1635  */
1636 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1637                   int (*do_msr)(struct kvm_vcpu *vcpu,
1638                                 unsigned index, u64 *data),
1639                   int writeback)
1640 {
1641         struct kvm_msrs msrs;
1642         struct kvm_msr_entry *entries;
1643         int r, n;
1644         unsigned size;
1645
1646         r = -EFAULT;
1647         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1648                 goto out;
1649
1650         r = -E2BIG;
1651         if (msrs.nmsrs >= MAX_IO_MSRS)
1652                 goto out;
1653
1654         r = -ENOMEM;
1655         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1656         entries = vmalloc(size);
1657         if (!entries)
1658                 goto out;
1659
1660         r = -EFAULT;
1661         if (copy_from_user(entries, user_msrs->entries, size))
1662                 goto out_free;
1663
1664         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1665         if (r < 0)
1666                 goto out_free;
1667
1668         r = -EFAULT;
1669         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1670                 goto out_free;
1671
1672         r = n;
1673
1674 out_free:
1675         vfree(entries);
1676 out:
1677         return r;
1678 }
1679
1680 /*
1681  * Translate a guest virtual address to a guest physical address.
1682  */
1683 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1684 {
1685         unsigned long vaddr = tr->linear_address;
1686         struct kvm_vcpu *vcpu;
1687         gpa_t gpa;
1688
1689         vcpu = vcpu_load(kvm, tr->vcpu);
1690         if (!vcpu)
1691                 return -ENOENT;
1692         spin_lock(&kvm->lock);
1693         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1694         tr->physical_address = gpa;
1695         tr->valid = gpa != UNMAPPED_GVA;
1696         tr->writeable = 1;
1697         tr->usermode = 0;
1698         spin_unlock(&kvm->lock);
1699         vcpu_put(vcpu);
1700
1701         return 0;
1702 }
1703
1704 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1705 {
1706         struct kvm_vcpu *vcpu;
1707
1708         if (!valid_vcpu(irq->vcpu))
1709                 return -EINVAL;
1710         if (irq->irq < 0 || irq->irq >= 256)
1711                 return -EINVAL;
1712         vcpu = vcpu_load(kvm, irq->vcpu);
1713         if (!vcpu)
1714                 return -ENOENT;
1715
1716         set_bit(irq->irq, vcpu->irq_pending);
1717         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1718
1719         vcpu_put(vcpu);
1720
1721         return 0;
1722 }
1723
1724 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1725                                      struct kvm_debug_guest *dbg)
1726 {
1727         struct kvm_vcpu *vcpu;
1728         int r;
1729
1730         if (!valid_vcpu(dbg->vcpu))
1731                 return -EINVAL;
1732         vcpu = vcpu_load(kvm, dbg->vcpu);
1733         if (!vcpu)
1734                 return -ENOENT;
1735
1736         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1737
1738         vcpu_put(vcpu);
1739
1740         return r;
1741 }
1742
1743 static long kvm_dev_ioctl(struct file *filp,
1744                           unsigned int ioctl, unsigned long arg)
1745 {
1746         struct kvm *kvm = filp->private_data;
1747         int r = -EINVAL;
1748
1749         switch (ioctl) {
1750         case KVM_GET_API_VERSION:
1751                 r = KVM_API_VERSION;
1752                 break;
1753         case KVM_CREATE_VCPU: {
1754                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1755                 if (r)
1756                         goto out;
1757                 break;
1758         }
1759         case KVM_RUN: {
1760                 struct kvm_run kvm_run;
1761
1762                 r = -EFAULT;
1763                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1764                         goto out;
1765                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1766                 if (r < 0 &&  r != -EINTR)
1767                         goto out;
1768                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1769                         r = -EFAULT;
1770                         goto out;
1771                 }
1772                 break;
1773         }
1774         case KVM_GET_REGS: {
1775                 struct kvm_regs kvm_regs;
1776
1777                 r = -EFAULT;
1778                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1779                         goto out;
1780                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1781                 if (r)
1782                         goto out;
1783                 r = -EFAULT;
1784                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1785                         goto out;
1786                 r = 0;
1787                 break;
1788         }
1789         case KVM_SET_REGS: {
1790                 struct kvm_regs kvm_regs;
1791
1792                 r = -EFAULT;
1793                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1794                         goto out;
1795                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1796                 if (r)
1797                         goto out;
1798                 r = 0;
1799                 break;
1800         }
1801         case KVM_GET_SREGS: {
1802                 struct kvm_sregs kvm_sregs;
1803
1804                 r = -EFAULT;
1805                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1806                         goto out;
1807                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1808                 if (r)
1809                         goto out;
1810                 r = -EFAULT;
1811                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1812                         goto out;
1813                 r = 0;
1814                 break;
1815         }
1816         case KVM_SET_SREGS: {
1817                 struct kvm_sregs kvm_sregs;
1818
1819                 r = -EFAULT;
1820                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1821                         goto out;
1822                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1823                 if (r)
1824                         goto out;
1825                 r = 0;
1826                 break;
1827         }
1828         case KVM_TRANSLATE: {
1829                 struct kvm_translation tr;
1830
1831                 r = -EFAULT;
1832                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1833                         goto out;
1834                 r = kvm_dev_ioctl_translate(kvm, &tr);
1835                 if (r)
1836                         goto out;
1837                 r = -EFAULT;
1838                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1839                         goto out;
1840                 r = 0;
1841                 break;
1842         }
1843         case KVM_INTERRUPT: {
1844                 struct kvm_interrupt irq;
1845
1846                 r = -EFAULT;
1847                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1848                         goto out;
1849                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1850                 if (r)
1851                         goto out;
1852                 r = 0;
1853                 break;
1854         }
1855         case KVM_DEBUG_GUEST: {
1856                 struct kvm_debug_guest dbg;
1857
1858                 r = -EFAULT;
1859                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1860                         goto out;
1861                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1862                 if (r)
1863                         goto out;
1864                 r = 0;
1865                 break;
1866         }
1867         case KVM_SET_MEMORY_REGION: {
1868                 struct kvm_memory_region kvm_mem;
1869
1870                 r = -EFAULT;
1871                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1872                         goto out;
1873                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1874                 if (r)
1875                         goto out;
1876                 break;
1877         }
1878         case KVM_GET_DIRTY_LOG: {
1879                 struct kvm_dirty_log log;
1880
1881                 r = -EFAULT;
1882                 if (copy_from_user(&log, (void *)arg, sizeof log))
1883                         goto out;
1884                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1885                 if (r)
1886                         goto out;
1887                 break;
1888         }
1889         case KVM_GET_MSRS:
1890                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1891                 break;
1892         case KVM_SET_MSRS:
1893                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1894                 break;
1895         case KVM_GET_MSR_INDEX_LIST: {
1896                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1897                 struct kvm_msr_list msr_list;
1898                 unsigned n;
1899
1900                 r = -EFAULT;
1901                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1902                         goto out;
1903                 n = msr_list.nmsrs;
1904                 msr_list.nmsrs = num_msrs_to_save;
1905                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1906                         goto out;
1907                 r = -E2BIG;
1908                 if (n < num_msrs_to_save)
1909                         goto out;
1910                 r = -EFAULT;
1911                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1912                                  num_msrs_to_save * sizeof(u32)))
1913                         goto out;
1914                 r = 0;
1915         }
1916         default:
1917                 ;
1918         }
1919 out:
1920         return r;
1921 }
1922
1923 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1924                                    unsigned long address,
1925                                    int *type)
1926 {
1927         struct kvm *kvm = vma->vm_file->private_data;
1928         unsigned long pgoff;
1929         struct kvm_memory_slot *slot;
1930         struct page *page;
1931
1932         *type = VM_FAULT_MINOR;
1933         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1934         slot = gfn_to_memslot(kvm, pgoff);
1935         if (!slot)
1936                 return NOPAGE_SIGBUS;
1937         page = gfn_to_page(slot, pgoff);
1938         if (!page)
1939                 return NOPAGE_SIGBUS;
1940         get_page(page);
1941         return page;
1942 }
1943
1944 static struct vm_operations_struct kvm_dev_vm_ops = {
1945         .nopage = kvm_dev_nopage,
1946 };
1947
1948 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1949 {
1950         vma->vm_ops = &kvm_dev_vm_ops;
1951         return 0;
1952 }
1953
1954 static struct file_operations kvm_chardev_ops = {
1955         .open           = kvm_dev_open,
1956         .release        = kvm_dev_release,
1957         .unlocked_ioctl = kvm_dev_ioctl,
1958         .compat_ioctl   = kvm_dev_ioctl,
1959         .mmap           = kvm_dev_mmap,
1960 };
1961
1962 static struct miscdevice kvm_dev = {
1963         MISC_DYNAMIC_MINOR,
1964         "kvm",
1965         &kvm_chardev_ops,
1966 };
1967
1968 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1969                        void *v)
1970 {
1971         if (val == SYS_RESTART) {
1972                 /*
1973                  * Some (well, at least mine) BIOSes hang on reboot if
1974                  * in vmx root mode.
1975                  */
1976                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1977                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1978         }
1979         return NOTIFY_OK;
1980 }
1981
1982 static struct notifier_block kvm_reboot_notifier = {
1983         .notifier_call = kvm_reboot,
1984         .priority = 0,
1985 };
1986
1987 static __init void kvm_init_debug(void)
1988 {
1989         struct kvm_stats_debugfs_item *p;
1990
1991         debugfs_dir = debugfs_create_dir("kvm", 0);
1992         for (p = debugfs_entries; p->name; ++p)
1993                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1994                                                p->data);
1995 }
1996
1997 static void kvm_exit_debug(void)
1998 {
1999         struct kvm_stats_debugfs_item *p;
2000
2001         for (p = debugfs_entries; p->name; ++p)
2002                 debugfs_remove(p->dentry);
2003         debugfs_remove(debugfs_dir);
2004 }
2005
2006 hpa_t bad_page_address;
2007
2008 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2009 {
2010         int r;
2011
2012         if (kvm_arch_ops) {
2013                 printk(KERN_ERR "kvm: already loaded the other module\n");
2014                 return -EEXIST;
2015         }
2016
2017         if (!ops->cpu_has_kvm_support()) {
2018                 printk(KERN_ERR "kvm: no hardware support\n");
2019                 return -EOPNOTSUPP;
2020         }
2021         if (ops->disabled_by_bios()) {
2022                 printk(KERN_ERR "kvm: disabled by bios\n");
2023                 return -EOPNOTSUPP;
2024         }
2025
2026         kvm_arch_ops = ops;
2027
2028         r = kvm_arch_ops->hardware_setup();
2029         if (r < 0)
2030             return r;
2031
2032         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
2033         register_reboot_notifier(&kvm_reboot_notifier);
2034
2035         kvm_chardev_ops.owner = module;
2036
2037         r = misc_register(&kvm_dev);
2038         if (r) {
2039                 printk (KERN_ERR "kvm: misc device register failed\n");
2040                 goto out_free;
2041         }
2042
2043         return r;
2044
2045 out_free:
2046         unregister_reboot_notifier(&kvm_reboot_notifier);
2047         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2048         kvm_arch_ops->hardware_unsetup();
2049         return r;
2050 }
2051
2052 void kvm_exit_arch(void)
2053 {
2054         misc_deregister(&kvm_dev);
2055
2056         unregister_reboot_notifier(&kvm_reboot_notifier);
2057         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2058         kvm_arch_ops->hardware_unsetup();
2059         kvm_arch_ops = NULL;
2060 }
2061
2062 static __init int kvm_init(void)
2063 {
2064         static struct page *bad_page;
2065         int r = 0;
2066
2067         kvm_init_debug();
2068
2069         kvm_init_msr_list();
2070
2071         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2072                 r = -ENOMEM;
2073                 goto out;
2074         }
2075
2076         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2077         memset(__va(bad_page_address), 0, PAGE_SIZE);
2078
2079         return r;
2080
2081 out:
2082         kvm_exit_debug();
2083         return r;
2084 }
2085
2086 static __exit void kvm_exit(void)
2087 {
2088         kvm_exit_debug();
2089         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2090 }
2091
2092 module_init(kvm_init)
2093 module_exit(kvm_exit)
2094
2095 EXPORT_SYMBOL_GPL(kvm_init_arch);
2096 EXPORT_SYMBOL_GPL(kvm_exit_arch);