KVM: More 0 -> NULL conversions
[powerpc.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37 #include <linux/sysdev.h>
38 #include <linux/cpu.h>
39
40 #include "x86_emulate.h"
41 #include "segment_descriptor.h"
42
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
45
46 static DEFINE_SPINLOCK(kvm_lock);
47 static LIST_HEAD(vm_list);
48
49 struct kvm_arch_ops *kvm_arch_ops;
50 struct kvm_stat kvm_stat;
51 EXPORT_SYMBOL_GPL(kvm_stat);
52
53 static struct kvm_stats_debugfs_item {
54         const char *name;
55         u32 *data;
56         struct dentry *dentry;
57 } debugfs_entries[] = {
58         { "pf_fixed", &kvm_stat.pf_fixed },
59         { "pf_guest", &kvm_stat.pf_guest },
60         { "tlb_flush", &kvm_stat.tlb_flush },
61         { "invlpg", &kvm_stat.invlpg },
62         { "exits", &kvm_stat.exits },
63         { "io_exits", &kvm_stat.io_exits },
64         { "mmio_exits", &kvm_stat.mmio_exits },
65         { "signal_exits", &kvm_stat.signal_exits },
66         { "irq_window", &kvm_stat.irq_window_exits },
67         { "halt_exits", &kvm_stat.halt_exits },
68         { "request_irq", &kvm_stat.request_irq_exits },
69         { "irq_exits", &kvm_stat.irq_exits },
70         { NULL, NULL }
71 };
72
73 static struct dentry *debugfs_dir;
74
75 #define MAX_IO_MSRS 256
76
77 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
78 #define LMSW_GUEST_MASK 0x0eULL
79 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
80 #define CR8_RESEVED_BITS (~0x0fULL)
81 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
82
83 #ifdef CONFIG_X86_64
84 // LDT or TSS descriptor in the GDT. 16 bytes.
85 struct segment_descriptor_64 {
86         struct segment_descriptor s;
87         u32 base_higher;
88         u32 pad_zero;
89 };
90
91 #endif
92
93 unsigned long segment_base(u16 selector)
94 {
95         struct descriptor_table gdt;
96         struct segment_descriptor *d;
97         unsigned long table_base;
98         typedef unsigned long ul;
99         unsigned long v;
100
101         if (selector == 0)
102                 return 0;
103
104         asm ("sgdt %0" : "=m"(gdt));
105         table_base = gdt.base;
106
107         if (selector & 4) {           /* from ldt */
108                 u16 ldt_selector;
109
110                 asm ("sldt %0" : "=g"(ldt_selector));
111                 table_base = segment_base(ldt_selector);
112         }
113         d = (struct segment_descriptor *)(table_base + (selector & ~7));
114         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
115 #ifdef CONFIG_X86_64
116         if (d->system == 0
117             && (d->type == 2 || d->type == 9 || d->type == 11))
118                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
119 #endif
120         return v;
121 }
122 EXPORT_SYMBOL_GPL(segment_base);
123
124 static inline int valid_vcpu(int n)
125 {
126         return likely(n >= 0 && n < KVM_MAX_VCPUS);
127 }
128
129 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
130                    void *dest)
131 {
132         unsigned char *host_buf = dest;
133         unsigned long req_size = size;
134
135         while (size) {
136                 hpa_t paddr;
137                 unsigned now;
138                 unsigned offset;
139                 hva_t guest_buf;
140
141                 paddr = gva_to_hpa(vcpu, addr);
142
143                 if (is_error_hpa(paddr))
144                         break;
145
146                 guest_buf = (hva_t)kmap_atomic(
147                                         pfn_to_page(paddr >> PAGE_SHIFT),
148                                         KM_USER0);
149                 offset = addr & ~PAGE_MASK;
150                 guest_buf |= offset;
151                 now = min(size, PAGE_SIZE - offset);
152                 memcpy(host_buf, (void*)guest_buf, now);
153                 host_buf += now;
154                 addr += now;
155                 size -= now;
156                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
157         }
158         return req_size - size;
159 }
160 EXPORT_SYMBOL_GPL(kvm_read_guest);
161
162 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
163                     void *data)
164 {
165         unsigned char *host_buf = data;
166         unsigned long req_size = size;
167
168         while (size) {
169                 hpa_t paddr;
170                 unsigned now;
171                 unsigned offset;
172                 hva_t guest_buf;
173
174                 paddr = gva_to_hpa(vcpu, addr);
175
176                 if (is_error_hpa(paddr))
177                         break;
178
179                 guest_buf = (hva_t)kmap_atomic(
180                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
181                 offset = addr & ~PAGE_MASK;
182                 guest_buf |= offset;
183                 now = min(size, PAGE_SIZE - offset);
184                 memcpy((void*)guest_buf, host_buf, now);
185                 host_buf += now;
186                 addr += now;
187                 size -= now;
188                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
189         }
190         return req_size - size;
191 }
192 EXPORT_SYMBOL_GPL(kvm_write_guest);
193
194 static int vcpu_slot(struct kvm_vcpu *vcpu)
195 {
196         return vcpu - vcpu->kvm->vcpus;
197 }
198
199 /*
200  * Switches to specified vcpu, until a matching vcpu_put()
201  */
202 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
203 {
204         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
205
206         mutex_lock(&vcpu->mutex);
207         if (unlikely(!vcpu->vmcs)) {
208                 mutex_unlock(&vcpu->mutex);
209                 return NULL;
210         }
211         return kvm_arch_ops->vcpu_load(vcpu);
212 }
213
214 static void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216         kvm_arch_ops->vcpu_put(vcpu);
217         mutex_unlock(&vcpu->mutex);
218 }
219
220 static int kvm_dev_open(struct inode *inode, struct file *filp)
221 {
222         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
223         int i;
224
225         if (!kvm)
226                 return -ENOMEM;
227
228         spin_lock_init(&kvm->lock);
229         INIT_LIST_HEAD(&kvm->active_mmu_pages);
230         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
231                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
232
233                 mutex_init(&vcpu->mutex);
234                 vcpu->cpu = -1;
235                 vcpu->kvm = kvm;
236                 vcpu->mmu.root_hpa = INVALID_PAGE;
237                 INIT_LIST_HEAD(&vcpu->free_pages);
238                 spin_lock(&kvm_lock);
239                 list_add(&kvm->vm_list, &vm_list);
240                 spin_unlock(&kvm_lock);
241         }
242         filp->private_data = kvm;
243         return 0;
244 }
245
246 /*
247  * Free any memory in @free but not in @dont.
248  */
249 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
250                                   struct kvm_memory_slot *dont)
251 {
252         int i;
253
254         if (!dont || free->phys_mem != dont->phys_mem)
255                 if (free->phys_mem) {
256                         for (i = 0; i < free->npages; ++i)
257                                 if (free->phys_mem[i])
258                                         __free_page(free->phys_mem[i]);
259                         vfree(free->phys_mem);
260                 }
261
262         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
263                 vfree(free->dirty_bitmap);
264
265         free->phys_mem = NULL;
266         free->npages = 0;
267         free->dirty_bitmap = NULL;
268 }
269
270 static void kvm_free_physmem(struct kvm *kvm)
271 {
272         int i;
273
274         for (i = 0; i < kvm->nmemslots; ++i)
275                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
276 }
277
278 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
279 {
280         if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
281                 return;
282
283         kvm_mmu_destroy(vcpu);
284         vcpu_put(vcpu);
285         kvm_arch_ops->vcpu_free(vcpu);
286 }
287
288 static void kvm_free_vcpus(struct kvm *kvm)
289 {
290         unsigned int i;
291
292         for (i = 0; i < KVM_MAX_VCPUS; ++i)
293                 kvm_free_vcpu(&kvm->vcpus[i]);
294 }
295
296 static int kvm_dev_release(struct inode *inode, struct file *filp)
297 {
298         struct kvm *kvm = filp->private_data;
299
300         spin_lock(&kvm_lock);
301         list_del(&kvm->vm_list);
302         spin_unlock(&kvm_lock);
303         kvm_free_vcpus(kvm);
304         kvm_free_physmem(kvm);
305         kfree(kvm);
306         return 0;
307 }
308
309 static void inject_gp(struct kvm_vcpu *vcpu)
310 {
311         kvm_arch_ops->inject_gp(vcpu, 0);
312 }
313
314 /*
315  * Load the pae pdptrs.  Return true is they are all valid.
316  */
317 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
318 {
319         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
320         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
321         int i;
322         u64 pdpte;
323         u64 *pdpt;
324         int ret;
325         struct kvm_memory_slot *memslot;
326
327         spin_lock(&vcpu->kvm->lock);
328         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
329         /* FIXME: !memslot - emulate? 0xff? */
330         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
331
332         ret = 1;
333         for (i = 0; i < 4; ++i) {
334                 pdpte = pdpt[offset + i];
335                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
336                         ret = 0;
337                         goto out;
338                 }
339         }
340
341         for (i = 0; i < 4; ++i)
342                 vcpu->pdptrs[i] = pdpt[offset + i];
343
344 out:
345         kunmap_atomic(pdpt, KM_USER0);
346         spin_unlock(&vcpu->kvm->lock);
347
348         return ret;
349 }
350
351 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
352 {
353         if (cr0 & CR0_RESEVED_BITS) {
354                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
355                        cr0, vcpu->cr0);
356                 inject_gp(vcpu);
357                 return;
358         }
359
360         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
361                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
362                 inject_gp(vcpu);
363                 return;
364         }
365
366         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
367                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
368                        "and a clear PE flag\n");
369                 inject_gp(vcpu);
370                 return;
371         }
372
373         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
374 #ifdef CONFIG_X86_64
375                 if ((vcpu->shadow_efer & EFER_LME)) {
376                         int cs_db, cs_l;
377
378                         if (!is_pae(vcpu)) {
379                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
380                                        "in long mode while PAE is disabled\n");
381                                 inject_gp(vcpu);
382                                 return;
383                         }
384                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
385                         if (cs_l) {
386                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
387                                        "in long mode while CS.L == 1\n");
388                                 inject_gp(vcpu);
389                                 return;
390
391                         }
392                 } else
393 #endif
394                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
395                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
396                                "reserved bits\n");
397                         inject_gp(vcpu);
398                         return;
399                 }
400
401         }
402
403         kvm_arch_ops->set_cr0(vcpu, cr0);
404         vcpu->cr0 = cr0;
405
406         spin_lock(&vcpu->kvm->lock);
407         kvm_mmu_reset_context(vcpu);
408         spin_unlock(&vcpu->kvm->lock);
409         return;
410 }
411 EXPORT_SYMBOL_GPL(set_cr0);
412
413 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
414 {
415         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
416         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
417 }
418 EXPORT_SYMBOL_GPL(lmsw);
419
420 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
421 {
422         if (cr4 & CR4_RESEVED_BITS) {
423                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
424                 inject_gp(vcpu);
425                 return;
426         }
427
428         if (is_long_mode(vcpu)) {
429                 if (!(cr4 & CR4_PAE_MASK)) {
430                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
431                                "in long mode\n");
432                         inject_gp(vcpu);
433                         return;
434                 }
435         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
436                    && !load_pdptrs(vcpu, vcpu->cr3)) {
437                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
438                 inject_gp(vcpu);
439         }
440
441         if (cr4 & CR4_VMXE_MASK) {
442                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
443                 inject_gp(vcpu);
444                 return;
445         }
446         kvm_arch_ops->set_cr4(vcpu, cr4);
447         spin_lock(&vcpu->kvm->lock);
448         kvm_mmu_reset_context(vcpu);
449         spin_unlock(&vcpu->kvm->lock);
450 }
451 EXPORT_SYMBOL_GPL(set_cr4);
452
453 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
454 {
455         if (is_long_mode(vcpu)) {
456                 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
457                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
458                         inject_gp(vcpu);
459                         return;
460                 }
461         } else {
462                 if (cr3 & CR3_RESEVED_BITS) {
463                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
464                         inject_gp(vcpu);
465                         return;
466                 }
467                 if (is_paging(vcpu) && is_pae(vcpu) &&
468                     !load_pdptrs(vcpu, cr3)) {
469                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
470                                "reserved bits\n");
471                         inject_gp(vcpu);
472                         return;
473                 }
474         }
475
476         vcpu->cr3 = cr3;
477         spin_lock(&vcpu->kvm->lock);
478         /*
479          * Does the new cr3 value map to physical memory? (Note, we
480          * catch an invalid cr3 even in real-mode, because it would
481          * cause trouble later on when we turn on paging anyway.)
482          *
483          * A real CPU would silently accept an invalid cr3 and would
484          * attempt to use it - with largely undefined (and often hard
485          * to debug) behavior on the guest side.
486          */
487         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
488                 inject_gp(vcpu);
489         else
490                 vcpu->mmu.new_cr3(vcpu);
491         spin_unlock(&vcpu->kvm->lock);
492 }
493 EXPORT_SYMBOL_GPL(set_cr3);
494
495 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
496 {
497         if ( cr8 & CR8_RESEVED_BITS) {
498                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
499                 inject_gp(vcpu);
500                 return;
501         }
502         vcpu->cr8 = cr8;
503 }
504 EXPORT_SYMBOL_GPL(set_cr8);
505
506 void fx_init(struct kvm_vcpu *vcpu)
507 {
508         struct __attribute__ ((__packed__)) fx_image_s {
509                 u16 control; //fcw
510                 u16 status; //fsw
511                 u16 tag; // ftw
512                 u16 opcode; //fop
513                 u64 ip; // fpu ip
514                 u64 operand;// fpu dp
515                 u32 mxcsr;
516                 u32 mxcsr_mask;
517
518         } *fx_image;
519
520         fx_save(vcpu->host_fx_image);
521         fpu_init();
522         fx_save(vcpu->guest_fx_image);
523         fx_restore(vcpu->host_fx_image);
524
525         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
526         fx_image->mxcsr = 0x1f80;
527         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
528                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
529 }
530 EXPORT_SYMBOL_GPL(fx_init);
531
532 /*
533  * Creates some virtual cpus.  Good luck creating more than one.
534  */
535 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
536 {
537         int r;
538         struct kvm_vcpu *vcpu;
539
540         r = -EINVAL;
541         if (!valid_vcpu(n))
542                 goto out;
543
544         vcpu = &kvm->vcpus[n];
545
546         mutex_lock(&vcpu->mutex);
547
548         if (vcpu->vmcs) {
549                 mutex_unlock(&vcpu->mutex);
550                 return -EEXIST;
551         }
552
553         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
554                                            FX_IMAGE_ALIGN);
555         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
556
557         r = kvm_arch_ops->vcpu_create(vcpu);
558         if (r < 0)
559                 goto out_free_vcpus;
560
561         r = kvm_mmu_create(vcpu);
562         if (r < 0)
563                 goto out_free_vcpus;
564
565         kvm_arch_ops->vcpu_load(vcpu);
566         r = kvm_mmu_setup(vcpu);
567         if (r >= 0)
568                 r = kvm_arch_ops->vcpu_setup(vcpu);
569         vcpu_put(vcpu);
570
571         if (r < 0)
572                 goto out_free_vcpus;
573
574         return 0;
575
576 out_free_vcpus:
577         kvm_free_vcpu(vcpu);
578         mutex_unlock(&vcpu->mutex);
579 out:
580         return r;
581 }
582
583 /*
584  * Allocate some memory and give it an address in the guest physical address
585  * space.
586  *
587  * Discontiguous memory is allowed, mostly for framebuffers.
588  */
589 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
590                                            struct kvm_memory_region *mem)
591 {
592         int r;
593         gfn_t base_gfn;
594         unsigned long npages;
595         unsigned long i;
596         struct kvm_memory_slot *memslot;
597         struct kvm_memory_slot old, new;
598         int memory_config_version;
599
600         r = -EINVAL;
601         /* General sanity checks */
602         if (mem->memory_size & (PAGE_SIZE - 1))
603                 goto out;
604         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
605                 goto out;
606         if (mem->slot >= KVM_MEMORY_SLOTS)
607                 goto out;
608         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
609                 goto out;
610
611         memslot = &kvm->memslots[mem->slot];
612         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
613         npages = mem->memory_size >> PAGE_SHIFT;
614
615         if (!npages)
616                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
617
618 raced:
619         spin_lock(&kvm->lock);
620
621         memory_config_version = kvm->memory_config_version;
622         new = old = *memslot;
623
624         new.base_gfn = base_gfn;
625         new.npages = npages;
626         new.flags = mem->flags;
627
628         /* Disallow changing a memory slot's size. */
629         r = -EINVAL;
630         if (npages && old.npages && npages != old.npages)
631                 goto out_unlock;
632
633         /* Check for overlaps */
634         r = -EEXIST;
635         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
636                 struct kvm_memory_slot *s = &kvm->memslots[i];
637
638                 if (s == memslot)
639                         continue;
640                 if (!((base_gfn + npages <= s->base_gfn) ||
641                       (base_gfn >= s->base_gfn + s->npages)))
642                         goto out_unlock;
643         }
644         /*
645          * Do memory allocations outside lock.  memory_config_version will
646          * detect any races.
647          */
648         spin_unlock(&kvm->lock);
649
650         /* Deallocate if slot is being removed */
651         if (!npages)
652                 new.phys_mem = NULL;
653
654         /* Free page dirty bitmap if unneeded */
655         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
656                 new.dirty_bitmap = NULL;
657
658         r = -ENOMEM;
659
660         /* Allocate if a slot is being created */
661         if (npages && !new.phys_mem) {
662                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
663
664                 if (!new.phys_mem)
665                         goto out_free;
666
667                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
668                 for (i = 0; i < npages; ++i) {
669                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
670                                                      | __GFP_ZERO);
671                         if (!new.phys_mem[i])
672                                 goto out_free;
673                         set_page_private(new.phys_mem[i],0);
674                 }
675         }
676
677         /* Allocate page dirty bitmap if needed */
678         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
679                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
680
681                 new.dirty_bitmap = vmalloc(dirty_bytes);
682                 if (!new.dirty_bitmap)
683                         goto out_free;
684                 memset(new.dirty_bitmap, 0, dirty_bytes);
685         }
686
687         spin_lock(&kvm->lock);
688
689         if (memory_config_version != kvm->memory_config_version) {
690                 spin_unlock(&kvm->lock);
691                 kvm_free_physmem_slot(&new, &old);
692                 goto raced;
693         }
694
695         r = -EAGAIN;
696         if (kvm->busy)
697                 goto out_unlock;
698
699         if (mem->slot >= kvm->nmemslots)
700                 kvm->nmemslots = mem->slot + 1;
701
702         *memslot = new;
703         ++kvm->memory_config_version;
704
705         spin_unlock(&kvm->lock);
706
707         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
708                 struct kvm_vcpu *vcpu;
709
710                 vcpu = vcpu_load(kvm, i);
711                 if (!vcpu)
712                         continue;
713                 kvm_mmu_reset_context(vcpu);
714                 vcpu_put(vcpu);
715         }
716
717         kvm_free_physmem_slot(&old, &new);
718         return 0;
719
720 out_unlock:
721         spin_unlock(&kvm->lock);
722 out_free:
723         kvm_free_physmem_slot(&new, &old);
724 out:
725         return r;
726 }
727
728 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
729 {
730         spin_lock(&vcpu->kvm->lock);
731         kvm_mmu_slot_remove_write_access(vcpu, slot);
732         spin_unlock(&vcpu->kvm->lock);
733 }
734
735 /*
736  * Get (and clear) the dirty memory log for a memory slot.
737  */
738 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
739                                        struct kvm_dirty_log *log)
740 {
741         struct kvm_memory_slot *memslot;
742         int r, i;
743         int n;
744         int cleared;
745         unsigned long any = 0;
746
747         spin_lock(&kvm->lock);
748
749         /*
750          * Prevent changes to guest memory configuration even while the lock
751          * is not taken.
752          */
753         ++kvm->busy;
754         spin_unlock(&kvm->lock);
755         r = -EINVAL;
756         if (log->slot >= KVM_MEMORY_SLOTS)
757                 goto out;
758
759         memslot = &kvm->memslots[log->slot];
760         r = -ENOENT;
761         if (!memslot->dirty_bitmap)
762                 goto out;
763
764         n = ALIGN(memslot->npages, 8) / 8;
765
766         for (i = 0; !any && i < n; ++i)
767                 any = memslot->dirty_bitmap[i];
768
769         r = -EFAULT;
770         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
771                 goto out;
772
773         if (any) {
774                 cleared = 0;
775                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
776                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
777
778                         if (!vcpu)
779                                 continue;
780                         if (!cleared) {
781                                 do_remove_write_access(vcpu, log->slot);
782                                 memset(memslot->dirty_bitmap, 0, n);
783                                 cleared = 1;
784                         }
785                         kvm_arch_ops->tlb_flush(vcpu);
786                         vcpu_put(vcpu);
787                 }
788         }
789
790         r = 0;
791
792 out:
793         spin_lock(&kvm->lock);
794         --kvm->busy;
795         spin_unlock(&kvm->lock);
796         return r;
797 }
798
799 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
800 {
801         int i;
802
803         for (i = 0; i < kvm->nmemslots; ++i) {
804                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
805
806                 if (gfn >= memslot->base_gfn
807                     && gfn < memslot->base_gfn + memslot->npages)
808                         return memslot;
809         }
810         return NULL;
811 }
812 EXPORT_SYMBOL_GPL(gfn_to_memslot);
813
814 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
815 {
816         int i;
817         struct kvm_memory_slot *memslot = NULL;
818         unsigned long rel_gfn;
819
820         for (i = 0; i < kvm->nmemslots; ++i) {
821                 memslot = &kvm->memslots[i];
822
823                 if (gfn >= memslot->base_gfn
824                     && gfn < memslot->base_gfn + memslot->npages) {
825
826                         if (!memslot || !memslot->dirty_bitmap)
827                                 return;
828
829                         rel_gfn = gfn - memslot->base_gfn;
830
831                         /* avoid RMW */
832                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
833                                 set_bit(rel_gfn, memslot->dirty_bitmap);
834                         return;
835                 }
836         }
837 }
838
839 static int emulator_read_std(unsigned long addr,
840                              unsigned long *val,
841                              unsigned int bytes,
842                              struct x86_emulate_ctxt *ctxt)
843 {
844         struct kvm_vcpu *vcpu = ctxt->vcpu;
845         void *data = val;
846
847         while (bytes) {
848                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
849                 unsigned offset = addr & (PAGE_SIZE-1);
850                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
851                 unsigned long pfn;
852                 struct kvm_memory_slot *memslot;
853                 void *page;
854
855                 if (gpa == UNMAPPED_GVA)
856                         return X86EMUL_PROPAGATE_FAULT;
857                 pfn = gpa >> PAGE_SHIFT;
858                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
859                 if (!memslot)
860                         return X86EMUL_UNHANDLEABLE;
861                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
862
863                 memcpy(data, page + offset, tocopy);
864
865                 kunmap_atomic(page, KM_USER0);
866
867                 bytes -= tocopy;
868                 data += tocopy;
869                 addr += tocopy;
870         }
871
872         return X86EMUL_CONTINUE;
873 }
874
875 static int emulator_write_std(unsigned long addr,
876                               unsigned long val,
877                               unsigned int bytes,
878                               struct x86_emulate_ctxt *ctxt)
879 {
880         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
881                addr, bytes);
882         return X86EMUL_UNHANDLEABLE;
883 }
884
885 static int emulator_read_emulated(unsigned long addr,
886                                   unsigned long *val,
887                                   unsigned int bytes,
888                                   struct x86_emulate_ctxt *ctxt)
889 {
890         struct kvm_vcpu *vcpu = ctxt->vcpu;
891
892         if (vcpu->mmio_read_completed) {
893                 memcpy(val, vcpu->mmio_data, bytes);
894                 vcpu->mmio_read_completed = 0;
895                 return X86EMUL_CONTINUE;
896         } else if (emulator_read_std(addr, val, bytes, ctxt)
897                    == X86EMUL_CONTINUE)
898                 return X86EMUL_CONTINUE;
899         else {
900                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
901
902                 if (gpa == UNMAPPED_GVA)
903                         return X86EMUL_PROPAGATE_FAULT;
904                 vcpu->mmio_needed = 1;
905                 vcpu->mmio_phys_addr = gpa;
906                 vcpu->mmio_size = bytes;
907                 vcpu->mmio_is_write = 0;
908
909                 return X86EMUL_UNHANDLEABLE;
910         }
911 }
912
913 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
914                                unsigned long val, int bytes)
915 {
916         struct kvm_memory_slot *m;
917         struct page *page;
918         void *virt;
919
920         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
921                 return 0;
922         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
923         if (!m)
924                 return 0;
925         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
926         kvm_mmu_pre_write(vcpu, gpa, bytes);
927         virt = kmap_atomic(page, KM_USER0);
928         memcpy(virt + offset_in_page(gpa), &val, bytes);
929         kunmap_atomic(virt, KM_USER0);
930         kvm_mmu_post_write(vcpu, gpa, bytes);
931         return 1;
932 }
933
934 static int emulator_write_emulated(unsigned long addr,
935                                    unsigned long val,
936                                    unsigned int bytes,
937                                    struct x86_emulate_ctxt *ctxt)
938 {
939         struct kvm_vcpu *vcpu = ctxt->vcpu;
940         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
941
942         if (gpa == UNMAPPED_GVA)
943                 return X86EMUL_PROPAGATE_FAULT;
944
945         if (emulator_write_phys(vcpu, gpa, val, bytes))
946                 return X86EMUL_CONTINUE;
947
948         vcpu->mmio_needed = 1;
949         vcpu->mmio_phys_addr = gpa;
950         vcpu->mmio_size = bytes;
951         vcpu->mmio_is_write = 1;
952         memcpy(vcpu->mmio_data, &val, bytes);
953
954         return X86EMUL_CONTINUE;
955 }
956
957 static int emulator_cmpxchg_emulated(unsigned long addr,
958                                      unsigned long old,
959                                      unsigned long new,
960                                      unsigned int bytes,
961                                      struct x86_emulate_ctxt *ctxt)
962 {
963         static int reported;
964
965         if (!reported) {
966                 reported = 1;
967                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
968         }
969         return emulator_write_emulated(addr, new, bytes, ctxt);
970 }
971
972 #ifdef CONFIG_X86_32
973
974 static int emulator_cmpxchg8b_emulated(unsigned long addr,
975                                        unsigned long old_lo,
976                                        unsigned long old_hi,
977                                        unsigned long new_lo,
978                                        unsigned long new_hi,
979                                        struct x86_emulate_ctxt *ctxt)
980 {
981         static int reported;
982         int r;
983
984         if (!reported) {
985                 reported = 1;
986                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
987         }
988         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
989         if (r != X86EMUL_CONTINUE)
990                 return r;
991         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
992 }
993
994 #endif
995
996 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
997 {
998         return kvm_arch_ops->get_segment_base(vcpu, seg);
999 }
1000
1001 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1002 {
1003         return X86EMUL_CONTINUE;
1004 }
1005
1006 int emulate_clts(struct kvm_vcpu *vcpu)
1007 {
1008         unsigned long cr0;
1009
1010         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1011         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1012         kvm_arch_ops->set_cr0(vcpu, cr0);
1013         return X86EMUL_CONTINUE;
1014 }
1015
1016 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1017 {
1018         struct kvm_vcpu *vcpu = ctxt->vcpu;
1019
1020         switch (dr) {
1021         case 0 ... 3:
1022                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1023                 return X86EMUL_CONTINUE;
1024         default:
1025                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1026                        __FUNCTION__, dr);
1027                 return X86EMUL_UNHANDLEABLE;
1028         }
1029 }
1030
1031 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1032 {
1033         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1034         int exception;
1035
1036         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1037         if (exception) {
1038                 /* FIXME: better handling */
1039                 return X86EMUL_UNHANDLEABLE;
1040         }
1041         return X86EMUL_CONTINUE;
1042 }
1043
1044 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1045 {
1046         static int reported;
1047         u8 opcodes[4];
1048         unsigned long rip = ctxt->vcpu->rip;
1049         unsigned long rip_linear;
1050
1051         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1052
1053         if (reported)
1054                 return;
1055
1056         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1057
1058         printk(KERN_ERR "emulation failed but !mmio_needed?"
1059                " rip %lx %02x %02x %02x %02x\n",
1060                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1061         reported = 1;
1062 }
1063
1064 struct x86_emulate_ops emulate_ops = {
1065         .read_std            = emulator_read_std,
1066         .write_std           = emulator_write_std,
1067         .read_emulated       = emulator_read_emulated,
1068         .write_emulated      = emulator_write_emulated,
1069         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1070 #ifdef CONFIG_X86_32
1071         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1072 #endif
1073 };
1074
1075 int emulate_instruction(struct kvm_vcpu *vcpu,
1076                         struct kvm_run *run,
1077                         unsigned long cr2,
1078                         u16 error_code)
1079 {
1080         struct x86_emulate_ctxt emulate_ctxt;
1081         int r;
1082         int cs_db, cs_l;
1083
1084         kvm_arch_ops->cache_regs(vcpu);
1085
1086         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1087
1088         emulate_ctxt.vcpu = vcpu;
1089         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1090         emulate_ctxt.cr2 = cr2;
1091         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1092                 ? X86EMUL_MODE_REAL : cs_l
1093                 ? X86EMUL_MODE_PROT64 : cs_db
1094                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1095
1096         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1097                 emulate_ctxt.cs_base = 0;
1098                 emulate_ctxt.ds_base = 0;
1099                 emulate_ctxt.es_base = 0;
1100                 emulate_ctxt.ss_base = 0;
1101         } else {
1102                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1103                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1104                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1105                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1106         }
1107
1108         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1109         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1110
1111         vcpu->mmio_is_write = 0;
1112         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1113
1114         if ((r || vcpu->mmio_is_write) && run) {
1115                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1116                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1117                 run->mmio.len = vcpu->mmio_size;
1118                 run->mmio.is_write = vcpu->mmio_is_write;
1119         }
1120
1121         if (r) {
1122                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1123                         return EMULATE_DONE;
1124                 if (!vcpu->mmio_needed) {
1125                         report_emulation_failure(&emulate_ctxt);
1126                         return EMULATE_FAIL;
1127                 }
1128                 return EMULATE_DO_MMIO;
1129         }
1130
1131         kvm_arch_ops->decache_regs(vcpu);
1132         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1133
1134         if (vcpu->mmio_is_write)
1135                 return EMULATE_DO_MMIO;
1136
1137         return EMULATE_DONE;
1138 }
1139 EXPORT_SYMBOL_GPL(emulate_instruction);
1140
1141 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1142 {
1143         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1144
1145         kvm_arch_ops->decache_regs(vcpu);
1146         ret = -KVM_EINVAL;
1147 #ifdef CONFIG_X86_64
1148         if (is_long_mode(vcpu)) {
1149                 nr = vcpu->regs[VCPU_REGS_RAX];
1150                 a0 = vcpu->regs[VCPU_REGS_RDI];
1151                 a1 = vcpu->regs[VCPU_REGS_RSI];
1152                 a2 = vcpu->regs[VCPU_REGS_RDX];
1153                 a3 = vcpu->regs[VCPU_REGS_RCX];
1154                 a4 = vcpu->regs[VCPU_REGS_R8];
1155                 a5 = vcpu->regs[VCPU_REGS_R9];
1156         } else
1157 #endif
1158         {
1159                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1160                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1161                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1162                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1163                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1164                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1165                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1166         }
1167         switch (nr) {
1168         default:
1169                 ;
1170         }
1171         vcpu->regs[VCPU_REGS_RAX] = ret;
1172         kvm_arch_ops->cache_regs(vcpu);
1173         return 1;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_hypercall);
1176
1177 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1178 {
1179         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1180 }
1181
1182 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1183 {
1184         struct descriptor_table dt = { limit, base };
1185
1186         kvm_arch_ops->set_gdt(vcpu, &dt);
1187 }
1188
1189 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1190 {
1191         struct descriptor_table dt = { limit, base };
1192
1193         kvm_arch_ops->set_idt(vcpu, &dt);
1194 }
1195
1196 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1197                    unsigned long *rflags)
1198 {
1199         lmsw(vcpu, msw);
1200         *rflags = kvm_arch_ops->get_rflags(vcpu);
1201 }
1202
1203 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1204 {
1205         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1206         switch (cr) {
1207         case 0:
1208                 return vcpu->cr0;
1209         case 2:
1210                 return vcpu->cr2;
1211         case 3:
1212                 return vcpu->cr3;
1213         case 4:
1214                 return vcpu->cr4;
1215         default:
1216                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1217                 return 0;
1218         }
1219 }
1220
1221 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1222                      unsigned long *rflags)
1223 {
1224         switch (cr) {
1225         case 0:
1226                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1227                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1228                 break;
1229         case 2:
1230                 vcpu->cr2 = val;
1231                 break;
1232         case 3:
1233                 set_cr3(vcpu, val);
1234                 break;
1235         case 4:
1236                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1237                 break;
1238         default:
1239                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1240         }
1241 }
1242
1243 /*
1244  * Register the para guest with the host:
1245  */
1246 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1247 {
1248         struct kvm_vcpu_para_state *para_state;
1249         hpa_t para_state_hpa, hypercall_hpa;
1250         struct page *para_state_page;
1251         unsigned char *hypercall;
1252         gpa_t hypercall_gpa;
1253
1254         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1255         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1256
1257         /*
1258          * Needs to be page aligned:
1259          */
1260         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1261                 goto err_gp;
1262
1263         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1264         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1265         if (is_error_hpa(para_state_hpa))
1266                 goto err_gp;
1267
1268         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1269         para_state = kmap_atomic(para_state_page, KM_USER0);
1270
1271         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1272         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1273
1274         para_state->host_version = KVM_PARA_API_VERSION;
1275         /*
1276          * We cannot support guests that try to register themselves
1277          * with a newer API version than the host supports:
1278          */
1279         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1280                 para_state->ret = -KVM_EINVAL;
1281                 goto err_kunmap_skip;
1282         }
1283
1284         hypercall_gpa = para_state->hypercall_gpa;
1285         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1286         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1287         if (is_error_hpa(hypercall_hpa)) {
1288                 para_state->ret = -KVM_EINVAL;
1289                 goto err_kunmap_skip;
1290         }
1291
1292         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1293         vcpu->para_state_page = para_state_page;
1294         vcpu->para_state_gpa = para_state_gpa;
1295         vcpu->hypercall_gpa = hypercall_gpa;
1296
1297         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1298                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1299         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1300         kunmap_atomic(hypercall, KM_USER1);
1301
1302         para_state->ret = 0;
1303 err_kunmap_skip:
1304         kunmap_atomic(para_state, KM_USER0);
1305         return 0;
1306 err_gp:
1307         return 1;
1308 }
1309
1310 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1311 {
1312         u64 data;
1313
1314         switch (msr) {
1315         case 0xc0010010: /* SYSCFG */
1316         case 0xc0010015: /* HWCR */
1317         case MSR_IA32_PLATFORM_ID:
1318         case MSR_IA32_P5_MC_ADDR:
1319         case MSR_IA32_P5_MC_TYPE:
1320         case MSR_IA32_MC0_CTL:
1321         case MSR_IA32_MCG_STATUS:
1322         case MSR_IA32_MCG_CAP:
1323         case MSR_IA32_MC0_MISC:
1324         case MSR_IA32_MC0_MISC+4:
1325         case MSR_IA32_MC0_MISC+8:
1326         case MSR_IA32_MC0_MISC+12:
1327         case MSR_IA32_MC0_MISC+16:
1328         case MSR_IA32_UCODE_REV:
1329         case MSR_IA32_PERF_STATUS:
1330                 /* MTRR registers */
1331         case 0xfe:
1332         case 0x200 ... 0x2ff:
1333                 data = 0;
1334                 break;
1335         case 0xcd: /* fsb frequency */
1336                 data = 3;
1337                 break;
1338         case MSR_IA32_APICBASE:
1339                 data = vcpu->apic_base;
1340                 break;
1341         case MSR_IA32_MISC_ENABLE:
1342                 data = vcpu->ia32_misc_enable_msr;
1343                 break;
1344 #ifdef CONFIG_X86_64
1345         case MSR_EFER:
1346                 data = vcpu->shadow_efer;
1347                 break;
1348 #endif
1349         default:
1350                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1351                 return 1;
1352         }
1353         *pdata = data;
1354         return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1357
1358 /*
1359  * Reads an msr value (of 'msr_index') into 'pdata'.
1360  * Returns 0 on success, non-0 otherwise.
1361  * Assumes vcpu_load() was already called.
1362  */
1363 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1364 {
1365         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1366 }
1367
1368 #ifdef CONFIG_X86_64
1369
1370 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1371 {
1372         if (efer & EFER_RESERVED_BITS) {
1373                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1374                        efer);
1375                 inject_gp(vcpu);
1376                 return;
1377         }
1378
1379         if (is_paging(vcpu)
1380             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1381                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1382                 inject_gp(vcpu);
1383                 return;
1384         }
1385
1386         kvm_arch_ops->set_efer(vcpu, efer);
1387
1388         efer &= ~EFER_LMA;
1389         efer |= vcpu->shadow_efer & EFER_LMA;
1390
1391         vcpu->shadow_efer = efer;
1392 }
1393
1394 #endif
1395
1396 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1397 {
1398         switch (msr) {
1399 #ifdef CONFIG_X86_64
1400         case MSR_EFER:
1401                 set_efer(vcpu, data);
1402                 break;
1403 #endif
1404         case MSR_IA32_MC0_STATUS:
1405                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1406                        __FUNCTION__, data);
1407                 break;
1408         case MSR_IA32_UCODE_REV:
1409         case MSR_IA32_UCODE_WRITE:
1410         case 0x200 ... 0x2ff: /* MTRRs */
1411                 break;
1412         case MSR_IA32_APICBASE:
1413                 vcpu->apic_base = data;
1414                 break;
1415         case MSR_IA32_MISC_ENABLE:
1416                 vcpu->ia32_misc_enable_msr = data;
1417                 break;
1418         /*
1419          * This is the 'probe whether the host is KVM' logic:
1420          */
1421         case MSR_KVM_API_MAGIC:
1422                 return vcpu_register_para(vcpu, data);
1423
1424         default:
1425                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1426                 return 1;
1427         }
1428         return 0;
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1431
1432 /*
1433  * Writes msr value into into the appropriate "register".
1434  * Returns 0 on success, non-0 otherwise.
1435  * Assumes vcpu_load() was already called.
1436  */
1437 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1438 {
1439         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1440 }
1441
1442 void kvm_resched(struct kvm_vcpu *vcpu)
1443 {
1444         vcpu_put(vcpu);
1445         cond_resched();
1446         /* Cannot fail -  no vcpu unplug yet. */
1447         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_resched);
1450
1451 void load_msrs(struct vmx_msr_entry *e, int n)
1452 {
1453         int i;
1454
1455         for (i = 0; i < n; ++i)
1456                 wrmsrl(e[i].index, e[i].data);
1457 }
1458 EXPORT_SYMBOL_GPL(load_msrs);
1459
1460 void save_msrs(struct vmx_msr_entry *e, int n)
1461 {
1462         int i;
1463
1464         for (i = 0; i < n; ++i)
1465                 rdmsrl(e[i].index, e[i].data);
1466 }
1467 EXPORT_SYMBOL_GPL(save_msrs);
1468
1469 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1470 {
1471         struct kvm_vcpu *vcpu;
1472         int r;
1473
1474         if (!valid_vcpu(kvm_run->vcpu))
1475                 return -EINVAL;
1476
1477         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1478         if (!vcpu)
1479                 return -ENOENT;
1480
1481         /* re-sync apic's tpr */
1482         vcpu->cr8 = kvm_run->cr8;
1483
1484         if (kvm_run->emulated) {
1485                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1486                 kvm_run->emulated = 0;
1487         }
1488
1489         if (kvm_run->mmio_completed) {
1490                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1491                 vcpu->mmio_read_completed = 1;
1492         }
1493
1494         vcpu->mmio_needed = 0;
1495
1496         r = kvm_arch_ops->run(vcpu, kvm_run);
1497
1498         vcpu_put(vcpu);
1499         return r;
1500 }
1501
1502 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1503 {
1504         struct kvm_vcpu *vcpu;
1505
1506         if (!valid_vcpu(regs->vcpu))
1507                 return -EINVAL;
1508
1509         vcpu = vcpu_load(kvm, regs->vcpu);
1510         if (!vcpu)
1511                 return -ENOENT;
1512
1513         kvm_arch_ops->cache_regs(vcpu);
1514
1515         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1516         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1517         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1518         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1519         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1520         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1521         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1522         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1523 #ifdef CONFIG_X86_64
1524         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1525         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1526         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1527         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1528         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1529         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1530         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1531         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1532 #endif
1533
1534         regs->rip = vcpu->rip;
1535         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1536
1537         /*
1538          * Don't leak debug flags in case they were set for guest debugging
1539          */
1540         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1541                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1542
1543         vcpu_put(vcpu);
1544
1545         return 0;
1546 }
1547
1548 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1549 {
1550         struct kvm_vcpu *vcpu;
1551
1552         if (!valid_vcpu(regs->vcpu))
1553                 return -EINVAL;
1554
1555         vcpu = vcpu_load(kvm, regs->vcpu);
1556         if (!vcpu)
1557                 return -ENOENT;
1558
1559         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1560         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1561         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1562         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1563         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1564         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1565         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1566         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1567 #ifdef CONFIG_X86_64
1568         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1569         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1570         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1571         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1572         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1573         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1574         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1575         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1576 #endif
1577
1578         vcpu->rip = regs->rip;
1579         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1580
1581         kvm_arch_ops->decache_regs(vcpu);
1582
1583         vcpu_put(vcpu);
1584
1585         return 0;
1586 }
1587
1588 static void get_segment(struct kvm_vcpu *vcpu,
1589                         struct kvm_segment *var, int seg)
1590 {
1591         return kvm_arch_ops->get_segment(vcpu, var, seg);
1592 }
1593
1594 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1595 {
1596         struct kvm_vcpu *vcpu;
1597         struct descriptor_table dt;
1598
1599         if (!valid_vcpu(sregs->vcpu))
1600                 return -EINVAL;
1601         vcpu = vcpu_load(kvm, sregs->vcpu);
1602         if (!vcpu)
1603                 return -ENOENT;
1604
1605         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1606         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1607         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1608         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1609         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1610         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1611
1612         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1613         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1614
1615         kvm_arch_ops->get_idt(vcpu, &dt);
1616         sregs->idt.limit = dt.limit;
1617         sregs->idt.base = dt.base;
1618         kvm_arch_ops->get_gdt(vcpu, &dt);
1619         sregs->gdt.limit = dt.limit;
1620         sregs->gdt.base = dt.base;
1621
1622         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1623         sregs->cr0 = vcpu->cr0;
1624         sregs->cr2 = vcpu->cr2;
1625         sregs->cr3 = vcpu->cr3;
1626         sregs->cr4 = vcpu->cr4;
1627         sregs->cr8 = vcpu->cr8;
1628         sregs->efer = vcpu->shadow_efer;
1629         sregs->apic_base = vcpu->apic_base;
1630
1631         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1632                sizeof sregs->interrupt_bitmap);
1633
1634         vcpu_put(vcpu);
1635
1636         return 0;
1637 }
1638
1639 static void set_segment(struct kvm_vcpu *vcpu,
1640                         struct kvm_segment *var, int seg)
1641 {
1642         return kvm_arch_ops->set_segment(vcpu, var, seg);
1643 }
1644
1645 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1646 {
1647         struct kvm_vcpu *vcpu;
1648         int mmu_reset_needed = 0;
1649         int i;
1650         struct descriptor_table dt;
1651
1652         if (!valid_vcpu(sregs->vcpu))
1653                 return -EINVAL;
1654         vcpu = vcpu_load(kvm, sregs->vcpu);
1655         if (!vcpu)
1656                 return -ENOENT;
1657
1658         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1659         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1660         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1661         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1662         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1663         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1664
1665         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1666         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1667
1668         dt.limit = sregs->idt.limit;
1669         dt.base = sregs->idt.base;
1670         kvm_arch_ops->set_idt(vcpu, &dt);
1671         dt.limit = sregs->gdt.limit;
1672         dt.base = sregs->gdt.base;
1673         kvm_arch_ops->set_gdt(vcpu, &dt);
1674
1675         vcpu->cr2 = sregs->cr2;
1676         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1677         vcpu->cr3 = sregs->cr3;
1678
1679         vcpu->cr8 = sregs->cr8;
1680
1681         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1682 #ifdef CONFIG_X86_64
1683         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1684 #endif
1685         vcpu->apic_base = sregs->apic_base;
1686
1687         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1688
1689         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1690         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1691
1692         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1693         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1694         if (!is_long_mode(vcpu) && is_pae(vcpu))
1695                 load_pdptrs(vcpu, vcpu->cr3);
1696
1697         if (mmu_reset_needed)
1698                 kvm_mmu_reset_context(vcpu);
1699
1700         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1701                sizeof vcpu->irq_pending);
1702         vcpu->irq_summary = 0;
1703         for (i = 0; i < NR_IRQ_WORDS; ++i)
1704                 if (vcpu->irq_pending[i])
1705                         __set_bit(i, &vcpu->irq_summary);
1706
1707         vcpu_put(vcpu);
1708
1709         return 0;
1710 }
1711
1712 /*
1713  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1714  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1715  *
1716  * This list is modified at module load time to reflect the
1717  * capabilities of the host cpu.
1718  */
1719 static u32 msrs_to_save[] = {
1720         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1721         MSR_K6_STAR,
1722 #ifdef CONFIG_X86_64
1723         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1724 #endif
1725         MSR_IA32_TIME_STAMP_COUNTER,
1726 };
1727
1728 static unsigned num_msrs_to_save;
1729
1730 static u32 emulated_msrs[] = {
1731         MSR_IA32_MISC_ENABLE,
1732 };
1733
1734 static __init void kvm_init_msr_list(void)
1735 {
1736         u32 dummy[2];
1737         unsigned i, j;
1738
1739         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1740                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1741                         continue;
1742                 if (j < i)
1743                         msrs_to_save[j] = msrs_to_save[i];
1744                 j++;
1745         }
1746         num_msrs_to_save = j;
1747 }
1748
1749 /*
1750  * Adapt set_msr() to msr_io()'s calling convention
1751  */
1752 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1753 {
1754         return set_msr(vcpu, index, *data);
1755 }
1756
1757 /*
1758  * Read or write a bunch of msrs. All parameters are kernel addresses.
1759  *
1760  * @return number of msrs set successfully.
1761  */
1762 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1763                     struct kvm_msr_entry *entries,
1764                     int (*do_msr)(struct kvm_vcpu *vcpu,
1765                                   unsigned index, u64 *data))
1766 {
1767         struct kvm_vcpu *vcpu;
1768         int i;
1769
1770         if (!valid_vcpu(msrs->vcpu))
1771                 return -EINVAL;
1772
1773         vcpu = vcpu_load(kvm, msrs->vcpu);
1774         if (!vcpu)
1775                 return -ENOENT;
1776
1777         for (i = 0; i < msrs->nmsrs; ++i)
1778                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1779                         break;
1780
1781         vcpu_put(vcpu);
1782
1783         return i;
1784 }
1785
1786 /*
1787  * Read or write a bunch of msrs. Parameters are user addresses.
1788  *
1789  * @return number of msrs set successfully.
1790  */
1791 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1792                   int (*do_msr)(struct kvm_vcpu *vcpu,
1793                                 unsigned index, u64 *data),
1794                   int writeback)
1795 {
1796         struct kvm_msrs msrs;
1797         struct kvm_msr_entry *entries;
1798         int r, n;
1799         unsigned size;
1800
1801         r = -EFAULT;
1802         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1803                 goto out;
1804
1805         r = -E2BIG;
1806         if (msrs.nmsrs >= MAX_IO_MSRS)
1807                 goto out;
1808
1809         r = -ENOMEM;
1810         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1811         entries = vmalloc(size);
1812         if (!entries)
1813                 goto out;
1814
1815         r = -EFAULT;
1816         if (copy_from_user(entries, user_msrs->entries, size))
1817                 goto out_free;
1818
1819         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1820         if (r < 0)
1821                 goto out_free;
1822
1823         r = -EFAULT;
1824         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1825                 goto out_free;
1826
1827         r = n;
1828
1829 out_free:
1830         vfree(entries);
1831 out:
1832         return r;
1833 }
1834
1835 /*
1836  * Translate a guest virtual address to a guest physical address.
1837  */
1838 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1839 {
1840         unsigned long vaddr = tr->linear_address;
1841         struct kvm_vcpu *vcpu;
1842         gpa_t gpa;
1843
1844         vcpu = vcpu_load(kvm, tr->vcpu);
1845         if (!vcpu)
1846                 return -ENOENT;
1847         spin_lock(&kvm->lock);
1848         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1849         tr->physical_address = gpa;
1850         tr->valid = gpa != UNMAPPED_GVA;
1851         tr->writeable = 1;
1852         tr->usermode = 0;
1853         spin_unlock(&kvm->lock);
1854         vcpu_put(vcpu);
1855
1856         return 0;
1857 }
1858
1859 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1860 {
1861         struct kvm_vcpu *vcpu;
1862
1863         if (!valid_vcpu(irq->vcpu))
1864                 return -EINVAL;
1865         if (irq->irq < 0 || irq->irq >= 256)
1866                 return -EINVAL;
1867         vcpu = vcpu_load(kvm, irq->vcpu);
1868         if (!vcpu)
1869                 return -ENOENT;
1870
1871         set_bit(irq->irq, vcpu->irq_pending);
1872         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1873
1874         vcpu_put(vcpu);
1875
1876         return 0;
1877 }
1878
1879 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1880                                      struct kvm_debug_guest *dbg)
1881 {
1882         struct kvm_vcpu *vcpu;
1883         int r;
1884
1885         if (!valid_vcpu(dbg->vcpu))
1886                 return -EINVAL;
1887         vcpu = vcpu_load(kvm, dbg->vcpu);
1888         if (!vcpu)
1889                 return -ENOENT;
1890
1891         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1892
1893         vcpu_put(vcpu);
1894
1895         return r;
1896 }
1897
1898 static long kvm_dev_ioctl(struct file *filp,
1899                           unsigned int ioctl, unsigned long arg)
1900 {
1901         struct kvm *kvm = filp->private_data;
1902         void __user *argp = (void __user *)arg;
1903         int r = -EINVAL;
1904
1905         switch (ioctl) {
1906         case KVM_GET_API_VERSION:
1907                 r = KVM_API_VERSION;
1908                 break;
1909         case KVM_CREATE_VCPU:
1910                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1911                 if (r)
1912                         goto out;
1913                 break;
1914         case KVM_RUN: {
1915                 struct kvm_run kvm_run;
1916
1917                 r = -EFAULT;
1918                 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1919                         goto out;
1920                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1921                 if (r < 0 &&  r != -EINTR)
1922                         goto out;
1923                 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1924                         r = -EFAULT;
1925                         goto out;
1926                 }
1927                 break;
1928         }
1929         case KVM_GET_REGS: {
1930                 struct kvm_regs kvm_regs;
1931
1932                 r = -EFAULT;
1933                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1934                         goto out;
1935                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1936                 if (r)
1937                         goto out;
1938                 r = -EFAULT;
1939                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1940                         goto out;
1941                 r = 0;
1942                 break;
1943         }
1944         case KVM_SET_REGS: {
1945                 struct kvm_regs kvm_regs;
1946
1947                 r = -EFAULT;
1948                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1949                         goto out;
1950                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1951                 if (r)
1952                         goto out;
1953                 r = 0;
1954                 break;
1955         }
1956         case KVM_GET_SREGS: {
1957                 struct kvm_sregs kvm_sregs;
1958
1959                 r = -EFAULT;
1960                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1961                         goto out;
1962                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1963                 if (r)
1964                         goto out;
1965                 r = -EFAULT;
1966                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1967                         goto out;
1968                 r = 0;
1969                 break;
1970         }
1971         case KVM_SET_SREGS: {
1972                 struct kvm_sregs kvm_sregs;
1973
1974                 r = -EFAULT;
1975                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1976                         goto out;
1977                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1978                 if (r)
1979                         goto out;
1980                 r = 0;
1981                 break;
1982         }
1983         case KVM_TRANSLATE: {
1984                 struct kvm_translation tr;
1985
1986                 r = -EFAULT;
1987                 if (copy_from_user(&tr, argp, sizeof tr))
1988                         goto out;
1989                 r = kvm_dev_ioctl_translate(kvm, &tr);
1990                 if (r)
1991                         goto out;
1992                 r = -EFAULT;
1993                 if (copy_to_user(argp, &tr, sizeof tr))
1994                         goto out;
1995                 r = 0;
1996                 break;
1997         }
1998         case KVM_INTERRUPT: {
1999                 struct kvm_interrupt irq;
2000
2001                 r = -EFAULT;
2002                 if (copy_from_user(&irq, argp, sizeof irq))
2003                         goto out;
2004                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
2005                 if (r)
2006                         goto out;
2007                 r = 0;
2008                 break;
2009         }
2010         case KVM_DEBUG_GUEST: {
2011                 struct kvm_debug_guest dbg;
2012
2013                 r = -EFAULT;
2014                 if (copy_from_user(&dbg, argp, sizeof dbg))
2015                         goto out;
2016                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
2017                 if (r)
2018                         goto out;
2019                 r = 0;
2020                 break;
2021         }
2022         case KVM_SET_MEMORY_REGION: {
2023                 struct kvm_memory_region kvm_mem;
2024
2025                 r = -EFAULT;
2026                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2027                         goto out;
2028                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
2029                 if (r)
2030                         goto out;
2031                 break;
2032         }
2033         case KVM_GET_DIRTY_LOG: {
2034                 struct kvm_dirty_log log;
2035
2036                 r = -EFAULT;
2037                 if (copy_from_user(&log, argp, sizeof log))
2038                         goto out;
2039                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
2040                 if (r)
2041                         goto out;
2042                 break;
2043         }
2044         case KVM_GET_MSRS:
2045                 r = msr_io(kvm, argp, get_msr, 1);
2046                 break;
2047         case KVM_SET_MSRS:
2048                 r = msr_io(kvm, argp, do_set_msr, 0);
2049                 break;
2050         case KVM_GET_MSR_INDEX_LIST: {
2051                 struct kvm_msr_list __user *user_msr_list = argp;
2052                 struct kvm_msr_list msr_list;
2053                 unsigned n;
2054
2055                 r = -EFAULT;
2056                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2057                         goto out;
2058                 n = msr_list.nmsrs;
2059                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2060                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2061                         goto out;
2062                 r = -E2BIG;
2063                 if (n < num_msrs_to_save)
2064                         goto out;
2065                 r = -EFAULT;
2066                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2067                                  num_msrs_to_save * sizeof(u32)))
2068                         goto out;
2069                 if (copy_to_user(user_msr_list->indices
2070                                  + num_msrs_to_save * sizeof(u32),
2071                                  &emulated_msrs,
2072                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2073                         goto out;
2074                 r = 0;
2075                 break;
2076         }
2077         default:
2078                 ;
2079         }
2080 out:
2081         return r;
2082 }
2083
2084 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
2085                                    unsigned long address,
2086                                    int *type)
2087 {
2088         struct kvm *kvm = vma->vm_file->private_data;
2089         unsigned long pgoff;
2090         struct kvm_memory_slot *slot;
2091         struct page *page;
2092
2093         *type = VM_FAULT_MINOR;
2094         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2095         slot = gfn_to_memslot(kvm, pgoff);
2096         if (!slot)
2097                 return NOPAGE_SIGBUS;
2098         page = gfn_to_page(slot, pgoff);
2099         if (!page)
2100                 return NOPAGE_SIGBUS;
2101         get_page(page);
2102         return page;
2103 }
2104
2105 static struct vm_operations_struct kvm_dev_vm_ops = {
2106         .nopage = kvm_dev_nopage,
2107 };
2108
2109 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
2110 {
2111         vma->vm_ops = &kvm_dev_vm_ops;
2112         return 0;
2113 }
2114
2115 static struct file_operations kvm_chardev_ops = {
2116         .open           = kvm_dev_open,
2117         .release        = kvm_dev_release,
2118         .unlocked_ioctl = kvm_dev_ioctl,
2119         .compat_ioctl   = kvm_dev_ioctl,
2120         .mmap           = kvm_dev_mmap,
2121 };
2122
2123 static struct miscdevice kvm_dev = {
2124         MISC_DYNAMIC_MINOR,
2125         "kvm",
2126         &kvm_chardev_ops,
2127 };
2128
2129 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2130                        void *v)
2131 {
2132         if (val == SYS_RESTART) {
2133                 /*
2134                  * Some (well, at least mine) BIOSes hang on reboot if
2135                  * in vmx root mode.
2136                  */
2137                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2138                 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2139         }
2140         return NOTIFY_OK;
2141 }
2142
2143 static struct notifier_block kvm_reboot_notifier = {
2144         .notifier_call = kvm_reboot,
2145         .priority = 0,
2146 };
2147
2148 /*
2149  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2150  * cached on it.
2151  */
2152 static void decache_vcpus_on_cpu(int cpu)
2153 {
2154         struct kvm *vm;
2155         struct kvm_vcpu *vcpu;
2156         int i;
2157
2158         spin_lock(&kvm_lock);
2159         list_for_each_entry(vm, &vm_list, vm_list)
2160                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2161                         vcpu = &vm->vcpus[i];
2162                         /*
2163                          * If the vcpu is locked, then it is running on some
2164                          * other cpu and therefore it is not cached on the
2165                          * cpu in question.
2166                          *
2167                          * If it's not locked, check the last cpu it executed
2168                          * on.
2169                          */
2170                         if (mutex_trylock(&vcpu->mutex)) {
2171                                 if (vcpu->cpu == cpu) {
2172                                         kvm_arch_ops->vcpu_decache(vcpu);
2173                                         vcpu->cpu = -1;
2174                                 }
2175                                 mutex_unlock(&vcpu->mutex);
2176                         }
2177                 }
2178         spin_unlock(&kvm_lock);
2179 }
2180
2181 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2182                            void *v)
2183 {
2184         int cpu = (long)v;
2185
2186         switch (val) {
2187         case CPU_DOWN_PREPARE:
2188         case CPU_UP_CANCELED:
2189                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2190                        cpu);
2191                 decache_vcpus_on_cpu(cpu);
2192                 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2193                                          NULL, 0, 1);
2194                 break;
2195         case CPU_ONLINE:
2196                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2197                        cpu);
2198                 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2199                                          NULL, 0, 1);
2200                 break;
2201         }
2202         return NOTIFY_OK;
2203 }
2204
2205 static struct notifier_block kvm_cpu_notifier = {
2206         .notifier_call = kvm_cpu_hotplug,
2207         .priority = 20, /* must be > scheduler priority */
2208 };
2209
2210 static __init void kvm_init_debug(void)
2211 {
2212         struct kvm_stats_debugfs_item *p;
2213
2214         debugfs_dir = debugfs_create_dir("kvm", NULL);
2215         for (p = debugfs_entries; p->name; ++p)
2216                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2217                                                p->data);
2218 }
2219
2220 static void kvm_exit_debug(void)
2221 {
2222         struct kvm_stats_debugfs_item *p;
2223
2224         for (p = debugfs_entries; p->name; ++p)
2225                 debugfs_remove(p->dentry);
2226         debugfs_remove(debugfs_dir);
2227 }
2228
2229 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2230 {
2231         decache_vcpus_on_cpu(raw_smp_processor_id());
2232         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2233         return 0;
2234 }
2235
2236 static int kvm_resume(struct sys_device *dev)
2237 {
2238         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2239         return 0;
2240 }
2241
2242 static struct sysdev_class kvm_sysdev_class = {
2243         set_kset_name("kvm"),
2244         .suspend = kvm_suspend,
2245         .resume = kvm_resume,
2246 };
2247
2248 static struct sys_device kvm_sysdev = {
2249         .id = 0,
2250         .cls = &kvm_sysdev_class,
2251 };
2252
2253 hpa_t bad_page_address;
2254
2255 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2256 {
2257         int r;
2258
2259         if (kvm_arch_ops) {
2260                 printk(KERN_ERR "kvm: already loaded the other module\n");
2261                 return -EEXIST;
2262         }
2263
2264         if (!ops->cpu_has_kvm_support()) {
2265                 printk(KERN_ERR "kvm: no hardware support\n");
2266                 return -EOPNOTSUPP;
2267         }
2268         if (ops->disabled_by_bios()) {
2269                 printk(KERN_ERR "kvm: disabled by bios\n");
2270                 return -EOPNOTSUPP;
2271         }
2272
2273         kvm_arch_ops = ops;
2274
2275         r = kvm_arch_ops->hardware_setup();
2276         if (r < 0)
2277             return r;
2278
2279         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2280         r = register_cpu_notifier(&kvm_cpu_notifier);
2281         if (r)
2282                 goto out_free_1;
2283         register_reboot_notifier(&kvm_reboot_notifier);
2284
2285         r = sysdev_class_register(&kvm_sysdev_class);
2286         if (r)
2287                 goto out_free_2;
2288
2289         r = sysdev_register(&kvm_sysdev);
2290         if (r)
2291                 goto out_free_3;
2292
2293         kvm_chardev_ops.owner = module;
2294
2295         r = misc_register(&kvm_dev);
2296         if (r) {
2297                 printk (KERN_ERR "kvm: misc device register failed\n");
2298                 goto out_free;
2299         }
2300
2301         return r;
2302
2303 out_free:
2304         sysdev_unregister(&kvm_sysdev);
2305 out_free_3:
2306         sysdev_class_unregister(&kvm_sysdev_class);
2307 out_free_2:
2308         unregister_reboot_notifier(&kvm_reboot_notifier);
2309         unregister_cpu_notifier(&kvm_cpu_notifier);
2310 out_free_1:
2311         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2312         kvm_arch_ops->hardware_unsetup();
2313         return r;
2314 }
2315
2316 void kvm_exit_arch(void)
2317 {
2318         misc_deregister(&kvm_dev);
2319         sysdev_unregister(&kvm_sysdev);
2320         sysdev_class_unregister(&kvm_sysdev_class);
2321         unregister_reboot_notifier(&kvm_reboot_notifier);
2322         unregister_cpu_notifier(&kvm_cpu_notifier);
2323         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2324         kvm_arch_ops->hardware_unsetup();
2325         kvm_arch_ops = NULL;
2326 }
2327
2328 static __init int kvm_init(void)
2329 {
2330         static struct page *bad_page;
2331         int r = 0;
2332
2333         kvm_init_debug();
2334
2335         kvm_init_msr_list();
2336
2337         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2338                 r = -ENOMEM;
2339                 goto out;
2340         }
2341
2342         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2343         memset(__va(bad_page_address), 0, PAGE_SIZE);
2344
2345         return r;
2346
2347 out:
2348         kvm_exit_debug();
2349         return r;
2350 }
2351
2352 static __exit void kvm_exit(void)
2353 {
2354         kvm_exit_debug();
2355         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2356 }
2357
2358 module_init(kvm_init)
2359 module_exit(kvm_exit)
2360
2361 EXPORT_SYMBOL_GPL(kvm_init_arch);
2362 EXPORT_SYMBOL_GPL(kvm_exit_arch);