d81b9cd3465fcf80b9bf290d3aef907ea55098ac
[powerpc.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #define ASSERT(x)                                                       \
56         if (!(x)) {                                                     \
57                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
58                        __FILE__, __LINE__, #x);                         \
59         }
60
61 #define PT64_PT_BITS 9
62 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
63 #define PT32_PT_BITS 10
64 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
65
66 #define PT_WRITABLE_SHIFT 1
67
68 #define PT_PRESENT_MASK (1ULL << 0)
69 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
70 #define PT_USER_MASK (1ULL << 2)
71 #define PT_PWT_MASK (1ULL << 3)
72 #define PT_PCD_MASK (1ULL << 4)
73 #define PT_ACCESSED_MASK (1ULL << 5)
74 #define PT_DIRTY_MASK (1ULL << 6)
75 #define PT_PAGE_SIZE_MASK (1ULL << 7)
76 #define PT_PAT_MASK (1ULL << 7)
77 #define PT_GLOBAL_MASK (1ULL << 8)
78 #define PT64_NX_MASK (1ULL << 63)
79
80 #define PT_PAT_SHIFT 7
81 #define PT_DIR_PAT_SHIFT 12
82 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
83
84 #define PT32_DIR_PSE36_SIZE 4
85 #define PT32_DIR_PSE36_SHIFT 13
86 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
87
88
89 #define PT32_PTE_COPY_MASK \
90         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
91
92 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 9
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
99
100 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
101 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
102
103 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
104 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
105
106 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
107
108 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
109
110 #define PT64_LEVEL_BITS 9
111
112 #define PT64_LEVEL_SHIFT(level) \
113                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
114
115 #define PT64_LEVEL_MASK(level) \
116                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
117
118 #define PT64_INDEX(address, level)\
119         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
120
121
122 #define PT32_LEVEL_BITS 10
123
124 #define PT32_LEVEL_SHIFT(level) \
125                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
126
127 #define PT32_LEVEL_MASK(level) \
128                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
129
130 #define PT32_INDEX(address, level)\
131         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132
133
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
135 #define PT64_DIR_BASE_ADDR_MASK \
136         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137
138 #define PT32_BASE_ADDR_MASK PAGE_MASK
139 #define PT32_DIR_BASE_ADDR_MASK \
140         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
141
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 struct kvm_rmap_desc {
158         u64 *shadow_ptes[RMAP_EXT];
159         struct kvm_rmap_desc *more;
160 };
161
162 static int is_write_protection(struct kvm_vcpu *vcpu)
163 {
164         return vcpu->cr0 & CR0_WP_MASK;
165 }
166
167 static int is_cpuid_PSE36(void)
168 {
169         return 1;
170 }
171
172 static int is_nx(struct kvm_vcpu *vcpu)
173 {
174         return vcpu->shadow_efer & EFER_NX;
175 }
176
177 static int is_present_pte(unsigned long pte)
178 {
179         return pte & PT_PRESENT_MASK;
180 }
181
182 static int is_writeble_pte(unsigned long pte)
183 {
184         return pte & PT_WRITABLE_MASK;
185 }
186
187 static int is_io_pte(unsigned long pte)
188 {
189         return pte & PT_SHADOW_IO_MARK;
190 }
191
192 static int is_rmap_pte(u64 pte)
193 {
194         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
195                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
196 }
197
198 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
199                                   size_t objsize, int min)
200 {
201         void *obj;
202
203         if (cache->nobjs >= min)
204                 return 0;
205         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
206                 obj = kzalloc(objsize, GFP_NOWAIT);
207                 if (!obj)
208                         return -ENOMEM;
209                 cache->objects[cache->nobjs++] = obj;
210         }
211         return 0;
212 }
213
214 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
215 {
216         while (mc->nobjs)
217                 kfree(mc->objects[--mc->nobjs]);
218 }
219
220 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
221 {
222         int r;
223
224         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
225                                    sizeof(struct kvm_pte_chain), 4);
226         if (r)
227                 goto out;
228         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
229                                    sizeof(struct kvm_rmap_desc), 1);
230 out:
231         return r;
232 }
233
234 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
235 {
236         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
237         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
238 }
239
240 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
241                                     size_t size)
242 {
243         void *p;
244
245         BUG_ON(!mc->nobjs);
246         p = mc->objects[--mc->nobjs];
247         memset(p, 0, size);
248         return p;
249 }
250
251 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
252 {
253         if (mc->nobjs < KVM_NR_MEM_OBJS)
254                 mc->objects[mc->nobjs++] = obj;
255         else
256                 kfree(obj);
257 }
258
259 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
260 {
261         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
262                                       sizeof(struct kvm_pte_chain));
263 }
264
265 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
266                                struct kvm_pte_chain *pc)
267 {
268         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
269 }
270
271 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
272 {
273         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
274                                       sizeof(struct kvm_rmap_desc));
275 }
276
277 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
278                                struct kvm_rmap_desc *rd)
279 {
280         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
281 }
282
283 /*
284  * Reverse mapping data structures:
285  *
286  * If page->private bit zero is zero, then page->private points to the
287  * shadow page table entry that points to page_address(page).
288  *
289  * If page->private bit zero is one, (then page->private & ~1) points
290  * to a struct kvm_rmap_desc containing more mappings.
291  */
292 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
293 {
294         struct page *page;
295         struct kvm_rmap_desc *desc;
296         int i;
297
298         if (!is_rmap_pte(*spte))
299                 return;
300         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
301         if (!page_private(page)) {
302                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
303                 set_page_private(page,(unsigned long)spte);
304         } else if (!(page_private(page) & 1)) {
305                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
306                 desc = mmu_alloc_rmap_desc(vcpu);
307                 desc->shadow_ptes[0] = (u64 *)page_private(page);
308                 desc->shadow_ptes[1] = spte;
309                 set_page_private(page,(unsigned long)desc | 1);
310         } else {
311                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
312                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
313                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
314                         desc = desc->more;
315                 if (desc->shadow_ptes[RMAP_EXT-1]) {
316                         desc->more = mmu_alloc_rmap_desc(vcpu);
317                         desc = desc->more;
318                 }
319                 for (i = 0; desc->shadow_ptes[i]; ++i)
320                         ;
321                 desc->shadow_ptes[i] = spte;
322         }
323 }
324
325 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
326                                    struct page *page,
327                                    struct kvm_rmap_desc *desc,
328                                    int i,
329                                    struct kvm_rmap_desc *prev_desc)
330 {
331         int j;
332
333         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
334                 ;
335         desc->shadow_ptes[i] = desc->shadow_ptes[j];
336         desc->shadow_ptes[j] = NULL;
337         if (j != 0)
338                 return;
339         if (!prev_desc && !desc->more)
340                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
341         else
342                 if (prev_desc)
343                         prev_desc->more = desc->more;
344                 else
345                         set_page_private(page,(unsigned long)desc->more | 1);
346         mmu_free_rmap_desc(vcpu, desc);
347 }
348
349 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
350 {
351         struct page *page;
352         struct kvm_rmap_desc *desc;
353         struct kvm_rmap_desc *prev_desc;
354         int i;
355
356         if (!is_rmap_pte(*spte))
357                 return;
358         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
359         if (!page_private(page)) {
360                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
361                 BUG();
362         } else if (!(page_private(page) & 1)) {
363                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
364                 if ((u64 *)page_private(page) != spte) {
365                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
366                                spte, *spte);
367                         BUG();
368                 }
369                 set_page_private(page,0);
370         } else {
371                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
372                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
373                 prev_desc = NULL;
374                 while (desc) {
375                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
376                                 if (desc->shadow_ptes[i] == spte) {
377                                         rmap_desc_remove_entry(vcpu, page,
378                                                                desc, i,
379                                                                prev_desc);
380                                         return;
381                                 }
382                         prev_desc = desc;
383                         desc = desc->more;
384                 }
385                 BUG();
386         }
387 }
388
389 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
390 {
391         struct kvm *kvm = vcpu->kvm;
392         struct page *page;
393         struct kvm_memory_slot *slot;
394         struct kvm_rmap_desc *desc;
395         u64 *spte;
396
397         slot = gfn_to_memslot(kvm, gfn);
398         BUG_ON(!slot);
399         page = gfn_to_page(slot, gfn);
400
401         while (page_private(page)) {
402                 if (!(page_private(page) & 1))
403                         spte = (u64 *)page_private(page);
404                 else {
405                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
406                         spte = desc->shadow_ptes[0];
407                 }
408                 BUG_ON(!spte);
409                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
410                        != page_to_pfn(page));
411                 BUG_ON(!(*spte & PT_PRESENT_MASK));
412                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
413                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
414                 rmap_remove(vcpu, spte);
415                 kvm_arch_ops->tlb_flush(vcpu);
416                 *spte &= ~(u64)PT_WRITABLE_MASK;
417         }
418 }
419
420 static int is_empty_shadow_page(hpa_t page_hpa)
421 {
422         u64 *pos;
423         u64 *end;
424
425         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
426                       pos != end; pos++)
427                 if (*pos != 0) {
428                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
429                                pos, *pos);
430                         return 0;
431                 }
432         return 1;
433 }
434
435 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
436 {
437         struct kvm_mmu_page *page_head = page_header(page_hpa);
438
439         ASSERT(is_empty_shadow_page(page_hpa));
440         page_head->page_hpa = page_hpa;
441         list_move(&page_head->link, &vcpu->free_pages);
442         ++vcpu->kvm->n_free_mmu_pages;
443 }
444
445 static unsigned kvm_page_table_hashfn(gfn_t gfn)
446 {
447         return gfn;
448 }
449
450 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
451                                                u64 *parent_pte)
452 {
453         struct kvm_mmu_page *page;
454
455         if (list_empty(&vcpu->free_pages))
456                 return NULL;
457
458         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
459         list_move(&page->link, &vcpu->kvm->active_mmu_pages);
460         ASSERT(is_empty_shadow_page(page->page_hpa));
461         page->slot_bitmap = 0;
462         page->multimapped = 0;
463         page->parent_pte = parent_pte;
464         --vcpu->kvm->n_free_mmu_pages;
465         return page;
466 }
467
468 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
469                                     struct kvm_mmu_page *page, u64 *parent_pte)
470 {
471         struct kvm_pte_chain *pte_chain;
472         struct hlist_node *node;
473         int i;
474
475         if (!parent_pte)
476                 return;
477         if (!page->multimapped) {
478                 u64 *old = page->parent_pte;
479
480                 if (!old) {
481                         page->parent_pte = parent_pte;
482                         return;
483                 }
484                 page->multimapped = 1;
485                 pte_chain = mmu_alloc_pte_chain(vcpu);
486                 INIT_HLIST_HEAD(&page->parent_ptes);
487                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
488                 pte_chain->parent_ptes[0] = old;
489         }
490         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
491                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
492                         continue;
493                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
494                         if (!pte_chain->parent_ptes[i]) {
495                                 pte_chain->parent_ptes[i] = parent_pte;
496                                 return;
497                         }
498         }
499         pte_chain = mmu_alloc_pte_chain(vcpu);
500         BUG_ON(!pte_chain);
501         hlist_add_head(&pte_chain->link, &page->parent_ptes);
502         pte_chain->parent_ptes[0] = parent_pte;
503 }
504
505 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
506                                        struct kvm_mmu_page *page,
507                                        u64 *parent_pte)
508 {
509         struct kvm_pte_chain *pte_chain;
510         struct hlist_node *node;
511         int i;
512
513         if (!page->multimapped) {
514                 BUG_ON(page->parent_pte != parent_pte);
515                 page->parent_pte = NULL;
516                 return;
517         }
518         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
519                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
520                         if (!pte_chain->parent_ptes[i])
521                                 break;
522                         if (pte_chain->parent_ptes[i] != parent_pte)
523                                 continue;
524                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
525                                 && pte_chain->parent_ptes[i + 1]) {
526                                 pte_chain->parent_ptes[i]
527                                         = pte_chain->parent_ptes[i + 1];
528                                 ++i;
529                         }
530                         pte_chain->parent_ptes[i] = NULL;
531                         if (i == 0) {
532                                 hlist_del(&pte_chain->link);
533                                 mmu_free_pte_chain(vcpu, pte_chain);
534                                 if (hlist_empty(&page->parent_ptes)) {
535                                         page->multimapped = 0;
536                                         page->parent_pte = NULL;
537                                 }
538                         }
539                         return;
540                 }
541         BUG();
542 }
543
544 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
545                                                 gfn_t gfn)
546 {
547         unsigned index;
548         struct hlist_head *bucket;
549         struct kvm_mmu_page *page;
550         struct hlist_node *node;
551
552         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
553         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
554         bucket = &vcpu->kvm->mmu_page_hash[index];
555         hlist_for_each_entry(page, node, bucket, hash_link)
556                 if (page->gfn == gfn && !page->role.metaphysical) {
557                         pgprintk("%s: found role %x\n",
558                                  __FUNCTION__, page->role.word);
559                         return page;
560                 }
561         return NULL;
562 }
563
564 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
565                                              gfn_t gfn,
566                                              gva_t gaddr,
567                                              unsigned level,
568                                              int metaphysical,
569                                              unsigned hugepage_access,
570                                              u64 *parent_pte)
571 {
572         union kvm_mmu_page_role role;
573         unsigned index;
574         unsigned quadrant;
575         struct hlist_head *bucket;
576         struct kvm_mmu_page *page;
577         struct hlist_node *node;
578
579         role.word = 0;
580         role.glevels = vcpu->mmu.root_level;
581         role.level = level;
582         role.metaphysical = metaphysical;
583         role.hugepage_access = hugepage_access;
584         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
585                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
586                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
587                 role.quadrant = quadrant;
588         }
589         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
590                  gfn, role.word);
591         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
592         bucket = &vcpu->kvm->mmu_page_hash[index];
593         hlist_for_each_entry(page, node, bucket, hash_link)
594                 if (page->gfn == gfn && page->role.word == role.word) {
595                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
596                         pgprintk("%s: found\n", __FUNCTION__);
597                         return page;
598                 }
599         page = kvm_mmu_alloc_page(vcpu, parent_pte);
600         if (!page)
601                 return page;
602         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
603         page->gfn = gfn;
604         page->role = role;
605         hlist_add_head(&page->hash_link, bucket);
606         if (!metaphysical)
607                 rmap_write_protect(vcpu, gfn);
608         return page;
609 }
610
611 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
612                                          struct kvm_mmu_page *page)
613 {
614         unsigned i;
615         u64 *pt;
616         u64 ent;
617
618         pt = __va(page->page_hpa);
619
620         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
621                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
622                         if (pt[i] & PT_PRESENT_MASK)
623                                 rmap_remove(vcpu, &pt[i]);
624                         pt[i] = 0;
625                 }
626                 kvm_arch_ops->tlb_flush(vcpu);
627                 return;
628         }
629
630         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
631                 ent = pt[i];
632
633                 pt[i] = 0;
634                 if (!(ent & PT_PRESENT_MASK))
635                         continue;
636                 ent &= PT64_BASE_ADDR_MASK;
637                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
638         }
639 }
640
641 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
642                              struct kvm_mmu_page *page,
643                              u64 *parent_pte)
644 {
645         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
646 }
647
648 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
649                              struct kvm_mmu_page *page)
650 {
651         u64 *parent_pte;
652
653         while (page->multimapped || page->parent_pte) {
654                 if (!page->multimapped)
655                         parent_pte = page->parent_pte;
656                 else {
657                         struct kvm_pte_chain *chain;
658
659                         chain = container_of(page->parent_ptes.first,
660                                              struct kvm_pte_chain, link);
661                         parent_pte = chain->parent_ptes[0];
662                 }
663                 BUG_ON(!parent_pte);
664                 kvm_mmu_put_page(vcpu, page, parent_pte);
665                 *parent_pte = 0;
666         }
667         kvm_mmu_page_unlink_children(vcpu, page);
668         if (!page->root_count) {
669                 hlist_del(&page->hash_link);
670                 kvm_mmu_free_page(vcpu, page->page_hpa);
671         } else
672                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
673 }
674
675 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
676 {
677         unsigned index;
678         struct hlist_head *bucket;
679         struct kvm_mmu_page *page;
680         struct hlist_node *node, *n;
681         int r;
682
683         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
684         r = 0;
685         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
686         bucket = &vcpu->kvm->mmu_page_hash[index];
687         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
688                 if (page->gfn == gfn && !page->role.metaphysical) {
689                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
690                                  page->role.word);
691                         kvm_mmu_zap_page(vcpu, page);
692                         r = 1;
693                 }
694         return r;
695 }
696
697 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
698 {
699         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
700         struct kvm_mmu_page *page_head = page_header(__pa(pte));
701
702         __set_bit(slot, &page_head->slot_bitmap);
703 }
704
705 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
706 {
707         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
708
709         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
710 }
711
712 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
713 {
714         struct kvm_memory_slot *slot;
715         struct page *page;
716
717         ASSERT((gpa & HPA_ERR_MASK) == 0);
718         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
719         if (!slot)
720                 return gpa | HPA_ERR_MASK;
721         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
722         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
723                 | (gpa & (PAGE_SIZE-1));
724 }
725
726 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
727 {
728         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
729
730         if (gpa == UNMAPPED_GVA)
731                 return UNMAPPED_GVA;
732         return gpa_to_hpa(vcpu, gpa);
733 }
734
735 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
736 {
737         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
738
739         if (gpa == UNMAPPED_GVA)
740                 return NULL;
741         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
742 }
743
744 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
745 {
746 }
747
748 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
749 {
750         int level = PT32E_ROOT_LEVEL;
751         hpa_t table_addr = vcpu->mmu.root_hpa;
752
753         for (; ; level--) {
754                 u32 index = PT64_INDEX(v, level);
755                 u64 *table;
756                 u64 pte;
757
758                 ASSERT(VALID_PAGE(table_addr));
759                 table = __va(table_addr);
760
761                 if (level == 1) {
762                         pte = table[index];
763                         if (is_present_pte(pte) && is_writeble_pte(pte))
764                                 return 0;
765                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
766                         page_header_update_slot(vcpu->kvm, table, v);
767                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
768                                                                 PT_USER_MASK;
769                         rmap_add(vcpu, &table[index]);
770                         return 0;
771                 }
772
773                 if (table[index] == 0) {
774                         struct kvm_mmu_page *new_table;
775                         gfn_t pseudo_gfn;
776
777                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
778                                 >> PAGE_SHIFT;
779                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
780                                                      v, level - 1,
781                                                      1, 0, &table[index]);
782                         if (!new_table) {
783                                 pgprintk("nonpaging_map: ENOMEM\n");
784                                 return -ENOMEM;
785                         }
786
787                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
788                                 | PT_WRITABLE_MASK | PT_USER_MASK;
789                 }
790                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
791         }
792 }
793
794 static void mmu_free_roots(struct kvm_vcpu *vcpu)
795 {
796         int i;
797         struct kvm_mmu_page *page;
798
799 #ifdef CONFIG_X86_64
800         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
801                 hpa_t root = vcpu->mmu.root_hpa;
802
803                 ASSERT(VALID_PAGE(root));
804                 page = page_header(root);
805                 --page->root_count;
806                 vcpu->mmu.root_hpa = INVALID_PAGE;
807                 return;
808         }
809 #endif
810         for (i = 0; i < 4; ++i) {
811                 hpa_t root = vcpu->mmu.pae_root[i];
812
813                 ASSERT(VALID_PAGE(root));
814                 root &= PT64_BASE_ADDR_MASK;
815                 page = page_header(root);
816                 --page->root_count;
817                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
818         }
819         vcpu->mmu.root_hpa = INVALID_PAGE;
820 }
821
822 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
823 {
824         int i;
825         gfn_t root_gfn;
826         struct kvm_mmu_page *page;
827
828         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
829
830 #ifdef CONFIG_X86_64
831         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
832                 hpa_t root = vcpu->mmu.root_hpa;
833
834                 ASSERT(!VALID_PAGE(root));
835                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
836                                         PT64_ROOT_LEVEL, 0, 0, NULL);
837                 root = page->page_hpa;
838                 ++page->root_count;
839                 vcpu->mmu.root_hpa = root;
840                 return;
841         }
842 #endif
843         for (i = 0; i < 4; ++i) {
844                 hpa_t root = vcpu->mmu.pae_root[i];
845
846                 ASSERT(!VALID_PAGE(root));
847                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
848                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
849                 else if (vcpu->mmu.root_level == 0)
850                         root_gfn = 0;
851                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
852                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
853                                         0, NULL);
854                 root = page->page_hpa;
855                 ++page->root_count;
856                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
857         }
858         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
859 }
860
861 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
862 {
863         return vaddr;
864 }
865
866 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
867                                u32 error_code)
868 {
869         gpa_t addr = gva;
870         hpa_t paddr;
871         int r;
872
873         r = mmu_topup_memory_caches(vcpu);
874         if (r)
875                 return r;
876
877         ASSERT(vcpu);
878         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
879
880
881         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
882
883         if (is_error_hpa(paddr))
884                 return 1;
885
886         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
887 }
888
889 static void nonpaging_free(struct kvm_vcpu *vcpu)
890 {
891         mmu_free_roots(vcpu);
892 }
893
894 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
895 {
896         struct kvm_mmu *context = &vcpu->mmu;
897
898         context->new_cr3 = nonpaging_new_cr3;
899         context->page_fault = nonpaging_page_fault;
900         context->gva_to_gpa = nonpaging_gva_to_gpa;
901         context->free = nonpaging_free;
902         context->root_level = 0;
903         context->shadow_root_level = PT32E_ROOT_LEVEL;
904         mmu_alloc_roots(vcpu);
905         ASSERT(VALID_PAGE(context->root_hpa));
906         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
907         return 0;
908 }
909
910 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
911 {
912         ++kvm_stat.tlb_flush;
913         kvm_arch_ops->tlb_flush(vcpu);
914 }
915
916 static void paging_new_cr3(struct kvm_vcpu *vcpu)
917 {
918         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
919         mmu_free_roots(vcpu);
920         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
921                 kvm_mmu_free_some_pages(vcpu);
922         mmu_alloc_roots(vcpu);
923         kvm_mmu_flush_tlb(vcpu);
924         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
925 }
926
927 static inline void set_pte_common(struct kvm_vcpu *vcpu,
928                              u64 *shadow_pte,
929                              gpa_t gaddr,
930                              int dirty,
931                              u64 access_bits,
932                              gfn_t gfn)
933 {
934         hpa_t paddr;
935
936         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
937         if (!dirty)
938                 access_bits &= ~PT_WRITABLE_MASK;
939
940         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
941
942         *shadow_pte |= access_bits;
943
944         if (is_error_hpa(paddr)) {
945                 *shadow_pte |= gaddr;
946                 *shadow_pte |= PT_SHADOW_IO_MARK;
947                 *shadow_pte &= ~PT_PRESENT_MASK;
948                 return;
949         }
950
951         *shadow_pte |= paddr;
952
953         if (access_bits & PT_WRITABLE_MASK) {
954                 struct kvm_mmu_page *shadow;
955
956                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
957                 if (shadow) {
958                         pgprintk("%s: found shadow page for %lx, marking ro\n",
959                                  __FUNCTION__, gfn);
960                         access_bits &= ~PT_WRITABLE_MASK;
961                         if (is_writeble_pte(*shadow_pte)) {
962                                     *shadow_pte &= ~PT_WRITABLE_MASK;
963                                     kvm_arch_ops->tlb_flush(vcpu);
964                         }
965                 }
966         }
967
968         if (access_bits & PT_WRITABLE_MASK)
969                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
970
971         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
972         rmap_add(vcpu, shadow_pte);
973 }
974
975 static void inject_page_fault(struct kvm_vcpu *vcpu,
976                               u64 addr,
977                               u32 err_code)
978 {
979         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
980 }
981
982 static inline int fix_read_pf(u64 *shadow_ent)
983 {
984         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
985             !(*shadow_ent & PT_USER_MASK)) {
986                 /*
987                  * If supervisor write protect is disabled, we shadow kernel
988                  * pages as user pages so we can trap the write access.
989                  */
990                 *shadow_ent |= PT_USER_MASK;
991                 *shadow_ent &= ~PT_WRITABLE_MASK;
992
993                 return 1;
994
995         }
996         return 0;
997 }
998
999 static void paging_free(struct kvm_vcpu *vcpu)
1000 {
1001         nonpaging_free(vcpu);
1002 }
1003
1004 #define PTTYPE 64
1005 #include "paging_tmpl.h"
1006 #undef PTTYPE
1007
1008 #define PTTYPE 32
1009 #include "paging_tmpl.h"
1010 #undef PTTYPE
1011
1012 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1013 {
1014         struct kvm_mmu *context = &vcpu->mmu;
1015
1016         ASSERT(is_pae(vcpu));
1017         context->new_cr3 = paging_new_cr3;
1018         context->page_fault = paging64_page_fault;
1019         context->gva_to_gpa = paging64_gva_to_gpa;
1020         context->free = paging_free;
1021         context->root_level = level;
1022         context->shadow_root_level = level;
1023         mmu_alloc_roots(vcpu);
1024         ASSERT(VALID_PAGE(context->root_hpa));
1025         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1026                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1027         return 0;
1028 }
1029
1030 static int paging64_init_context(struct kvm_vcpu *vcpu)
1031 {
1032         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1033 }
1034
1035 static int paging32_init_context(struct kvm_vcpu *vcpu)
1036 {
1037         struct kvm_mmu *context = &vcpu->mmu;
1038
1039         context->new_cr3 = paging_new_cr3;
1040         context->page_fault = paging32_page_fault;
1041         context->gva_to_gpa = paging32_gva_to_gpa;
1042         context->free = paging_free;
1043         context->root_level = PT32_ROOT_LEVEL;
1044         context->shadow_root_level = PT32E_ROOT_LEVEL;
1045         mmu_alloc_roots(vcpu);
1046         ASSERT(VALID_PAGE(context->root_hpa));
1047         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1048                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1049         return 0;
1050 }
1051
1052 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1053 {
1054         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1055 }
1056
1057 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1058 {
1059         ASSERT(vcpu);
1060         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1061
1062         if (!is_paging(vcpu))
1063                 return nonpaging_init_context(vcpu);
1064         else if (is_long_mode(vcpu))
1065                 return paging64_init_context(vcpu);
1066         else if (is_pae(vcpu))
1067                 return paging32E_init_context(vcpu);
1068         else
1069                 return paging32_init_context(vcpu);
1070 }
1071
1072 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1073 {
1074         ASSERT(vcpu);
1075         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1076                 vcpu->mmu.free(vcpu);
1077                 vcpu->mmu.root_hpa = INVALID_PAGE;
1078         }
1079 }
1080
1081 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1082 {
1083         int r;
1084
1085         destroy_kvm_mmu(vcpu);
1086         r = init_kvm_mmu(vcpu);
1087         if (r < 0)
1088                 goto out;
1089         r = mmu_topup_memory_caches(vcpu);
1090 out:
1091         return r;
1092 }
1093
1094 static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
1095                                   struct kvm_mmu_page *page,
1096                                   u64 *spte)
1097 {
1098         u64 pte;
1099         struct kvm_mmu_page *child;
1100
1101         pte = *spte;
1102         if (is_present_pte(pte)) {
1103                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1104                         rmap_remove(vcpu, spte);
1105                 else {
1106                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1107                         mmu_page_remove_parent_pte(vcpu, child, spte);
1108                 }
1109         }
1110         *spte = 0;
1111 }
1112
1113 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1114 {
1115         gfn_t gfn = gpa >> PAGE_SHIFT;
1116         struct kvm_mmu_page *page;
1117         struct hlist_node *node, *n;
1118         struct hlist_head *bucket;
1119         unsigned index;
1120         u64 *spte;
1121         unsigned offset = offset_in_page(gpa);
1122         unsigned pte_size;
1123         unsigned page_offset;
1124         unsigned misaligned;
1125         int level;
1126         int flooded = 0;
1127         int npte;
1128
1129         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1130         if (gfn == vcpu->last_pt_write_gfn) {
1131                 ++vcpu->last_pt_write_count;
1132                 if (vcpu->last_pt_write_count >= 3)
1133                         flooded = 1;
1134         } else {
1135                 vcpu->last_pt_write_gfn = gfn;
1136                 vcpu->last_pt_write_count = 1;
1137         }
1138         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1139         bucket = &vcpu->kvm->mmu_page_hash[index];
1140         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1141                 if (page->gfn != gfn || page->role.metaphysical)
1142                         continue;
1143                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1144                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1145                 if (misaligned || flooded) {
1146                         /*
1147                          * Misaligned accesses are too much trouble to fix
1148                          * up; also, they usually indicate a page is not used
1149                          * as a page table.
1150                          *
1151                          * If we're seeing too many writes to a page,
1152                          * it may no longer be a page table, or we may be
1153                          * forking, in which case it is better to unmap the
1154                          * page.
1155                          */
1156                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1157                                  gpa, bytes, page->role.word);
1158                         kvm_mmu_zap_page(vcpu, page);
1159                         continue;
1160                 }
1161                 page_offset = offset;
1162                 level = page->role.level;
1163                 npte = 1;
1164                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1165                         page_offset <<= 1;      /* 32->64 */
1166                         /*
1167                          * A 32-bit pde maps 4MB while the shadow pdes map
1168                          * only 2MB.  So we need to double the offset again
1169                          * and zap two pdes instead of one.
1170                          */
1171                         if (level == PT32_ROOT_LEVEL) {
1172                                 page_offset &= ~7; /* kill rounding error */
1173                                 page_offset <<= 1;
1174                                 npte = 2;
1175                         }
1176                         page_offset &= ~PAGE_MASK;
1177                 }
1178                 spte = __va(page->page_hpa);
1179                 spte += page_offset / sizeof(*spte);
1180                 while (npte--) {
1181                         mmu_pre_write_zap_pte(vcpu, page, spte);
1182                         ++spte;
1183                 }
1184         }
1185 }
1186
1187 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1188 {
1189 }
1190
1191 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1192 {
1193         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1194
1195         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1196 }
1197
1198 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1199 {
1200         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1201                 struct kvm_mmu_page *page;
1202
1203                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1204                                     struct kvm_mmu_page, link);
1205                 kvm_mmu_zap_page(vcpu, page);
1206         }
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1209
1210 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1211 {
1212         struct kvm_mmu_page *page;
1213
1214         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1215                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1216                                     struct kvm_mmu_page, link);
1217                 kvm_mmu_zap_page(vcpu, page);
1218         }
1219         while (!list_empty(&vcpu->free_pages)) {
1220                 page = list_entry(vcpu->free_pages.next,
1221                                   struct kvm_mmu_page, link);
1222                 list_del(&page->link);
1223                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1224                 page->page_hpa = INVALID_PAGE;
1225         }
1226         free_page((unsigned long)vcpu->mmu.pae_root);
1227 }
1228
1229 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1230 {
1231         struct page *page;
1232         int i;
1233
1234         ASSERT(vcpu);
1235
1236         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1237                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1238
1239                 INIT_LIST_HEAD(&page_header->link);
1240                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1241                         goto error_1;
1242                 set_page_private(page, (unsigned long)page_header);
1243                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1244                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1245                 list_add(&page_header->link, &vcpu->free_pages);
1246                 ++vcpu->kvm->n_free_mmu_pages;
1247         }
1248
1249         /*
1250          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1251          * Therefore we need to allocate shadow page tables in the first
1252          * 4GB of memory, which happens to fit the DMA32 zone.
1253          */
1254         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1255         if (!page)
1256                 goto error_1;
1257         vcpu->mmu.pae_root = page_address(page);
1258         for (i = 0; i < 4; ++i)
1259                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1260
1261         return 0;
1262
1263 error_1:
1264         free_mmu_pages(vcpu);
1265         return -ENOMEM;
1266 }
1267
1268 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1269 {
1270         ASSERT(vcpu);
1271         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1272         ASSERT(list_empty(&vcpu->free_pages));
1273
1274         return alloc_mmu_pages(vcpu);
1275 }
1276
1277 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1278 {
1279         ASSERT(vcpu);
1280         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1281         ASSERT(!list_empty(&vcpu->free_pages));
1282
1283         return init_kvm_mmu(vcpu);
1284 }
1285
1286 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1287 {
1288         ASSERT(vcpu);
1289
1290         destroy_kvm_mmu(vcpu);
1291         free_mmu_pages(vcpu);
1292         mmu_free_memory_caches(vcpu);
1293 }
1294
1295 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1296 {
1297         struct kvm *kvm = vcpu->kvm;
1298         struct kvm_mmu_page *page;
1299
1300         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1301                 int i;
1302                 u64 *pt;
1303
1304                 if (!test_bit(slot, &page->slot_bitmap))
1305                         continue;
1306
1307                 pt = __va(page->page_hpa);
1308                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1309                         /* avoid RMW */
1310                         if (pt[i] & PT_WRITABLE_MASK) {
1311                                 rmap_remove(vcpu, &pt[i]);
1312                                 pt[i] &= ~PT_WRITABLE_MASK;
1313                         }
1314         }
1315 }
1316
1317 #ifdef AUDIT
1318
1319 static const char *audit_msg;
1320
1321 static gva_t canonicalize(gva_t gva)
1322 {
1323 #ifdef CONFIG_X86_64
1324         gva = (long long)(gva << 16) >> 16;
1325 #endif
1326         return gva;
1327 }
1328
1329 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1330                                 gva_t va, int level)
1331 {
1332         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1333         int i;
1334         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1335
1336         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1337                 u64 ent = pt[i];
1338
1339                 if (!ent & PT_PRESENT_MASK)
1340                         continue;
1341
1342                 va = canonicalize(va);
1343                 if (level > 1)
1344                         audit_mappings_page(vcpu, ent, va, level - 1);
1345                 else {
1346                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1347                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1348
1349                         if ((ent & PT_PRESENT_MASK)
1350                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1351                                 printk(KERN_ERR "audit error: (%s) levels %d"
1352                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1353                                        audit_msg, vcpu->mmu.root_level,
1354                                        va, gpa, hpa, ent);
1355                 }
1356         }
1357 }
1358
1359 static void audit_mappings(struct kvm_vcpu *vcpu)
1360 {
1361         unsigned i;
1362
1363         if (vcpu->mmu.root_level == 4)
1364                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1365         else
1366                 for (i = 0; i < 4; ++i)
1367                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1368                                 audit_mappings_page(vcpu,
1369                                                     vcpu->mmu.pae_root[i],
1370                                                     i << 30,
1371                                                     2);
1372 }
1373
1374 static int count_rmaps(struct kvm_vcpu *vcpu)
1375 {
1376         int nmaps = 0;
1377         int i, j, k;
1378
1379         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1380                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1381                 struct kvm_rmap_desc *d;
1382
1383                 for (j = 0; j < m->npages; ++j) {
1384                         struct page *page = m->phys_mem[j];
1385
1386                         if (!page->private)
1387                                 continue;
1388                         if (!(page->private & 1)) {
1389                                 ++nmaps;
1390                                 continue;
1391                         }
1392                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1393                         while (d) {
1394                                 for (k = 0; k < RMAP_EXT; ++k)
1395                                         if (d->shadow_ptes[k])
1396                                                 ++nmaps;
1397                                         else
1398                                                 break;
1399                                 d = d->more;
1400                         }
1401                 }
1402         }
1403         return nmaps;
1404 }
1405
1406 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1407 {
1408         int nmaps = 0;
1409         struct kvm_mmu_page *page;
1410         int i;
1411
1412         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1413                 u64 *pt = __va(page->page_hpa);
1414
1415                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1416                         continue;
1417
1418                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1419                         u64 ent = pt[i];
1420
1421                         if (!(ent & PT_PRESENT_MASK))
1422                                 continue;
1423                         if (!(ent & PT_WRITABLE_MASK))
1424                                 continue;
1425                         ++nmaps;
1426                 }
1427         }
1428         return nmaps;
1429 }
1430
1431 static void audit_rmap(struct kvm_vcpu *vcpu)
1432 {
1433         int n_rmap = count_rmaps(vcpu);
1434         int n_actual = count_writable_mappings(vcpu);
1435
1436         if (n_rmap != n_actual)
1437                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1438                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1439 }
1440
1441 static void audit_write_protection(struct kvm_vcpu *vcpu)
1442 {
1443         struct kvm_mmu_page *page;
1444
1445         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1446                 hfn_t hfn;
1447                 struct page *pg;
1448
1449                 if (page->role.metaphysical)
1450                         continue;
1451
1452                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1453                         >> PAGE_SHIFT;
1454                 pg = pfn_to_page(hfn);
1455                 if (pg->private)
1456                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1457                                " mappings: gfn %lx role %x\n",
1458                                __FUNCTION__, audit_msg, page->gfn,
1459                                page->role.word);
1460         }
1461 }
1462
1463 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1464 {
1465         int olddbg = dbg;
1466
1467         dbg = 0;
1468         audit_msg = msg;
1469         audit_rmap(vcpu);
1470         audit_write_protection(vcpu);
1471         audit_mappings(vcpu);
1472         dbg = olddbg;
1473 }
1474
1475 #endif