KVM: MMU: Pass the guest pde to set_pte_common
[powerpc.git] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t *table;
63         pt_element_t *ptep;
64         pt_element_t inherited_ar;
65         gfn_t gfn;
66         u32 error_code;
67 };
68
69 /*
70  * Fetch a guest pte for a guest virtual address
71  */
72 static int FNAME(walk_addr)(struct guest_walker *walker,
73                             struct kvm_vcpu *vcpu, gva_t addr,
74                             int write_fault, int user_fault, int fetch_fault)
75 {
76         hpa_t hpa;
77         struct kvm_memory_slot *slot;
78         pt_element_t *ptep;
79         pt_element_t root;
80         gfn_t table_gfn;
81
82         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
83         walker->level = vcpu->mmu.root_level;
84         walker->table = NULL;
85         root = vcpu->cr3;
86 #if PTTYPE == 64
87         if (!is_long_mode(vcpu)) {
88                 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89                 root = *walker->ptep;
90                 if (!(root & PT_PRESENT_MASK))
91                         goto not_present;
92                 --walker->level;
93         }
94 #endif
95         table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96         walker->table_gfn[walker->level - 1] = table_gfn;
97         pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98                  walker->level - 1, table_gfn);
99         slot = gfn_to_memslot(vcpu->kvm, table_gfn);
100         hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
101         walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
102
103         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
104                (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
105
106         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
107
108         for (;;) {
109                 int index = PT_INDEX(addr, walker->level);
110                 hpa_t paddr;
111
112                 ptep = &walker->table[index];
113                 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114                        ((unsigned long)ptep & PAGE_MASK));
115
116                 if (!is_present_pte(*ptep))
117                         goto not_present;
118
119                 if (write_fault && !is_writeble_pte(*ptep))
120                         if (user_fault || is_write_protection(vcpu))
121                                 goto access_error;
122
123                 if (user_fault && !(*ptep & PT_USER_MASK))
124                         goto access_error;
125
126 #if PTTYPE == 64
127                 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128                         goto access_error;
129 #endif
130
131                 if (!(*ptep & PT_ACCESSED_MASK)) {
132                         mark_page_dirty(vcpu->kvm, table_gfn);
133                         *ptep |= PT_ACCESSED_MASK;
134                 }
135
136                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137                         walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138                                 >> PAGE_SHIFT;
139                         break;
140                 }
141
142                 if (walker->level == PT_DIRECTORY_LEVEL
143                     && (*ptep & PT_PAGE_SIZE_MASK)
144                     && (PTTYPE == 64 || is_pse(vcpu))) {
145                         walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146                                 >> PAGE_SHIFT;
147                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
148                         break;
149                 }
150
151                 walker->inherited_ar &= walker->table[index];
152                 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
153                 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
154                 kunmap_atomic(walker->table, KM_USER0);
155                 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
156                                             KM_USER0);
157                 --walker->level;
158                 walker->table_gfn[walker->level - 1 ] = table_gfn;
159                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
160                          walker->level - 1, table_gfn);
161         }
162         walker->ptep = ptep;
163         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
164         return 1;
165
166 not_present:
167         walker->error_code = 0;
168         goto err;
169
170 access_error:
171         walker->error_code = PFERR_PRESENT_MASK;
172
173 err:
174         if (write_fault)
175                 walker->error_code |= PFERR_WRITE_MASK;
176         if (user_fault)
177                 walker->error_code |= PFERR_USER_MASK;
178         if (fetch_fault)
179                 walker->error_code |= PFERR_FETCH_MASK;
180         return 0;
181 }
182
183 static void FNAME(release_walker)(struct guest_walker *walker)
184 {
185         if (walker->table)
186                 kunmap_atomic(walker->table, KM_USER0);
187 }
188
189 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
190                                         struct guest_walker *walker)
191 {
192         mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
193 }
194
195 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
196                                   u64 *shadow_pte,
197                                   gpa_t gaddr,
198                                   pt_element_t *gpte,
199                                   u64 access_bits,
200                                   gfn_t gfn)
201 {
202         hpa_t paddr;
203         int dirty = *gpte & PT_DIRTY_MASK;
204
205         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
206         if (!dirty)
207                 access_bits &= ~PT_WRITABLE_MASK;
208
209         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
210
211         *shadow_pte |= access_bits;
212
213         if (is_error_hpa(paddr)) {
214                 *shadow_pte |= gaddr;
215                 *shadow_pte |= PT_SHADOW_IO_MARK;
216                 *shadow_pte &= ~PT_PRESENT_MASK;
217                 return;
218         }
219
220         *shadow_pte |= paddr;
221
222         if (access_bits & PT_WRITABLE_MASK) {
223                 struct kvm_mmu_page *shadow;
224
225                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
226                 if (shadow) {
227                         pgprintk("%s: found shadow page for %lx, marking ro\n",
228                                  __FUNCTION__, gfn);
229                         access_bits &= ~PT_WRITABLE_MASK;
230                         if (is_writeble_pte(*shadow_pte)) {
231                                     *shadow_pte &= ~PT_WRITABLE_MASK;
232                                     kvm_arch_ops->tlb_flush(vcpu);
233                         }
234                 }
235         }
236
237         if (access_bits & PT_WRITABLE_MASK)
238                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
239
240         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
241         rmap_add(vcpu, shadow_pte);
242 }
243
244 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
245                            u64 *shadow_pte, u64 access_bits, gfn_t gfn)
246 {
247         ASSERT(*shadow_pte == 0);
248         access_bits &= *gpte;
249         *shadow_pte = (*gpte & PT_PTE_COPY_MASK);
250         FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
251                               gpte, access_bits, gfn);
252 }
253
254 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
255                               u64 *spte, const void *pte, int bytes)
256 {
257         pt_element_t gpte;
258
259         if (bytes < sizeof(pt_element_t))
260                 return;
261         gpte = *(const pt_element_t *)pte;
262         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
263                 return;
264         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
265         FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK,
266                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
267 }
268
269 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
270                            u64 *shadow_pte, u64 access_bits, gfn_t gfn)
271 {
272         gpa_t gaddr;
273
274         ASSERT(*shadow_pte == 0);
275         access_bits &= *gpde;
276         gaddr = (gpa_t)gfn << PAGE_SHIFT;
277         if (PTTYPE == 32 && is_cpuid_PSE36())
278                 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
279                         (32 - PT32_DIR_PSE36_SHIFT);
280         *shadow_pte = *gpde & PT_PTE_COPY_MASK;
281         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
282                               gpde, access_bits, gfn);
283 }
284
285 /*
286  * Fetch a shadow pte for a specific level in the paging hierarchy.
287  */
288 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
289                               struct guest_walker *walker)
290 {
291         hpa_t shadow_addr;
292         int level;
293         u64 *shadow_ent;
294         u64 *prev_shadow_ent = NULL;
295         pt_element_t *guest_ent = walker->ptep;
296
297         if (!is_present_pte(*guest_ent))
298                 return NULL;
299
300         shadow_addr = vcpu->mmu.root_hpa;
301         level = vcpu->mmu.shadow_root_level;
302         if (level == PT32E_ROOT_LEVEL) {
303                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
304                 shadow_addr &= PT64_BASE_ADDR_MASK;
305                 --level;
306         }
307
308         for (; ; level--) {
309                 u32 index = SHADOW_PT_INDEX(addr, level);
310                 struct kvm_mmu_page *shadow_page;
311                 u64 shadow_pte;
312                 int metaphysical;
313                 gfn_t table_gfn;
314                 unsigned hugepage_access = 0;
315
316                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
317                 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
318                         if (level == PT_PAGE_TABLE_LEVEL)
319                                 return shadow_ent;
320                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
321                         prev_shadow_ent = shadow_ent;
322                         continue;
323                 }
324
325                 if (level == PT_PAGE_TABLE_LEVEL)
326                         break;
327
328                 if (level - 1 == PT_PAGE_TABLE_LEVEL
329                     && walker->level == PT_DIRECTORY_LEVEL) {
330                         metaphysical = 1;
331                         hugepage_access = *guest_ent;
332                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
333                         hugepage_access >>= PT_WRITABLE_SHIFT;
334                         table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
335                                 >> PAGE_SHIFT;
336                 } else {
337                         metaphysical = 0;
338                         table_gfn = walker->table_gfn[level - 2];
339                 }
340                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
341                                                metaphysical, hugepage_access,
342                                                shadow_ent);
343                 shadow_addr = __pa(shadow_page->spt);
344                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
345                         | PT_WRITABLE_MASK | PT_USER_MASK;
346                 *shadow_ent = shadow_pte;
347                 prev_shadow_ent = shadow_ent;
348         }
349
350         if (walker->level == PT_DIRECTORY_LEVEL) {
351                 if (prev_shadow_ent)
352                         *prev_shadow_ent |= PT_SHADOW_PS_MARK;
353                 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
354                                walker->inherited_ar, walker->gfn);
355         } else {
356                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
357                 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
358                                walker->inherited_ar,
359                                walker->gfn);
360         }
361         return shadow_ent;
362 }
363
364 /*
365  * The guest faulted for write.  We need to
366  *
367  * - check write permissions
368  * - update the guest pte dirty bit
369  * - update our own dirty page tracking structures
370  */
371 static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
372                                u64 *shadow_ent,
373                                struct guest_walker *walker,
374                                gva_t addr,
375                                int user,
376                                int *write_pt)
377 {
378         pt_element_t *guest_ent;
379         int writable_shadow;
380         gfn_t gfn;
381         struct kvm_mmu_page *page;
382
383         if (is_writeble_pte(*shadow_ent))
384                 return !user || (*shadow_ent & PT_USER_MASK);
385
386         writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
387         if (user) {
388                 /*
389                  * User mode access.  Fail if it's a kernel page or a read-only
390                  * page.
391                  */
392                 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
393                         return 0;
394                 ASSERT(*shadow_ent & PT_USER_MASK);
395         } else
396                 /*
397                  * Kernel mode access.  Fail if it's a read-only page and
398                  * supervisor write protection is enabled.
399                  */
400                 if (!writable_shadow) {
401                         if (is_write_protection(vcpu))
402                                 return 0;
403                         *shadow_ent &= ~PT_USER_MASK;
404                 }
405
406         guest_ent = walker->ptep;
407
408         if (!is_present_pte(*guest_ent)) {
409                 *shadow_ent = 0;
410                 return 0;
411         }
412
413         gfn = walker->gfn;
414
415         if (user) {
416                 /*
417                  * Usermode page faults won't be for page table updates.
418                  */
419                 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
420                         pgprintk("%s: zap %lx %x\n",
421                                  __FUNCTION__, gfn, page->role.word);
422                         kvm_mmu_zap_page(vcpu, page);
423                 }
424         } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
425                 pgprintk("%s: found shadow page for %lx, marking ro\n",
426                          __FUNCTION__, gfn);
427                 mark_page_dirty(vcpu->kvm, gfn);
428                 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
429                 *guest_ent |= PT_DIRTY_MASK;
430                 *write_pt = 1;
431                 return 0;
432         }
433         mark_page_dirty(vcpu->kvm, gfn);
434         *shadow_ent |= PT_WRITABLE_MASK;
435         FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
436         *guest_ent |= PT_DIRTY_MASK;
437         rmap_add(vcpu, shadow_ent);
438
439         return 1;
440 }
441
442 /*
443  * Page fault handler.  There are several causes for a page fault:
444  *   - there is no shadow pte for the guest pte
445  *   - write access through a shadow pte marked read only so that we can set
446  *     the dirty bit
447  *   - write access to a shadow pte marked read only so we can update the page
448  *     dirty bitmap, when userspace requests it
449  *   - mmio access; in this case we will never install a present shadow pte
450  *   - normal guest page fault due to the guest pte marked not present, not
451  *     writable, or not executable
452  *
453  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
454  *           a negative value on error.
455  */
456 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
457                                u32 error_code)
458 {
459         int write_fault = error_code & PFERR_WRITE_MASK;
460         int user_fault = error_code & PFERR_USER_MASK;
461         int fetch_fault = error_code & PFERR_FETCH_MASK;
462         struct guest_walker walker;
463         u64 *shadow_pte;
464         int fixed;
465         int write_pt = 0;
466         int r;
467
468         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
469         kvm_mmu_audit(vcpu, "pre page fault");
470
471         r = mmu_topup_memory_caches(vcpu);
472         if (r)
473                 return r;
474
475         /*
476          * Look up the shadow pte for the faulting address.
477          */
478         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
479                              fetch_fault);
480
481         /*
482          * The page is not mapped by the guest.  Let the guest handle it.
483          */
484         if (!r) {
485                 pgprintk("%s: guest page fault\n", __FUNCTION__);
486                 inject_page_fault(vcpu, addr, walker.error_code);
487                 FNAME(release_walker)(&walker);
488                 vcpu->last_pt_write_count = 0; /* reset fork detector */
489                 return 0;
490         }
491
492         shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
493         pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
494                  shadow_pte, *shadow_pte);
495
496         /*
497          * Update the shadow pte.
498          */
499         if (write_fault)
500                 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
501                                             user_fault, &write_pt);
502         else
503                 fixed = fix_read_pf(shadow_pte);
504
505         pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
506                  shadow_pte, *shadow_pte);
507
508         FNAME(release_walker)(&walker);
509
510         if (!write_pt)
511                 vcpu->last_pt_write_count = 0; /* reset fork detector */
512
513         /*
514          * mmio: emulate if accessible, otherwise its a guest fault.
515          */
516         if (is_io_pte(*shadow_pte))
517                 return 1;
518
519         ++vcpu->stat.pf_fixed;
520         kvm_mmu_audit(vcpu, "post page fault (fixed)");
521
522         return write_pt;
523 }
524
525 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
526 {
527         struct guest_walker walker;
528         gpa_t gpa = UNMAPPED_GVA;
529         int r;
530
531         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
532
533         if (r) {
534                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
535                 gpa |= vaddr & ~PAGE_MASK;
536         }
537
538         FNAME(release_walker)(&walker);
539         return gpa;
540 }
541
542 #undef pt_element_t
543 #undef guest_walker
544 #undef FNAME
545 #undef PT_BASE_ADDR_MASK
546 #undef PT_INDEX
547 #undef SHADOW_PT_INDEX
548 #undef PT_LEVEL_MASK
549 #undef PT_PTE_COPY_MASK
550 #undef PT_NON_PTE_COPY_MASK
551 #undef PT_DIR_BASE_ADDR_MASK
552 #undef PT_MAX_FULL_LEVELS