KVM: MMU: Make setting shadow ptes atomic on i386
[powerpc.git] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t *table;
63         pt_element_t *ptep;
64         pt_element_t inherited_ar;
65         gfn_t gfn;
66         u32 error_code;
67 };
68
69 /*
70  * Fetch a guest pte for a guest virtual address
71  */
72 static int FNAME(walk_addr)(struct guest_walker *walker,
73                             struct kvm_vcpu *vcpu, gva_t addr,
74                             int write_fault, int user_fault, int fetch_fault)
75 {
76         hpa_t hpa;
77         struct kvm_memory_slot *slot;
78         pt_element_t *ptep;
79         pt_element_t root;
80         gfn_t table_gfn;
81
82         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
83         walker->level = vcpu->mmu.root_level;
84         walker->table = NULL;
85         root = vcpu->cr3;
86 #if PTTYPE == 64
87         if (!is_long_mode(vcpu)) {
88                 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89                 root = *walker->ptep;
90                 if (!(root & PT_PRESENT_MASK))
91                         goto not_present;
92                 --walker->level;
93         }
94 #endif
95         table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96         walker->table_gfn[walker->level - 1] = table_gfn;
97         pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98                  walker->level - 1, table_gfn);
99         slot = gfn_to_memslot(vcpu->kvm, table_gfn);
100         hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
101         walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
102
103         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
104                (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
105
106         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
107
108         for (;;) {
109                 int index = PT_INDEX(addr, walker->level);
110                 hpa_t paddr;
111
112                 ptep = &walker->table[index];
113                 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114                        ((unsigned long)ptep & PAGE_MASK));
115
116                 if (!is_present_pte(*ptep))
117                         goto not_present;
118
119                 if (write_fault && !is_writeble_pte(*ptep))
120                         if (user_fault || is_write_protection(vcpu))
121                                 goto access_error;
122
123                 if (user_fault && !(*ptep & PT_USER_MASK))
124                         goto access_error;
125
126 #if PTTYPE == 64
127                 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128                         goto access_error;
129 #endif
130
131                 if (!(*ptep & PT_ACCESSED_MASK)) {
132                         mark_page_dirty(vcpu->kvm, table_gfn);
133                         *ptep |= PT_ACCESSED_MASK;
134                 }
135
136                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137                         walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138                                 >> PAGE_SHIFT;
139                         break;
140                 }
141
142                 if (walker->level == PT_DIRECTORY_LEVEL
143                     && (*ptep & PT_PAGE_SIZE_MASK)
144                     && (PTTYPE == 64 || is_pse(vcpu))) {
145                         walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146                                 >> PAGE_SHIFT;
147                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
148                         break;
149                 }
150
151                 walker->inherited_ar &= walker->table[index];
152                 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
153                 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
154                 kunmap_atomic(walker->table, KM_USER0);
155                 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
156                                             KM_USER0);
157                 --walker->level;
158                 walker->table_gfn[walker->level - 1 ] = table_gfn;
159                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
160                          walker->level - 1, table_gfn);
161         }
162         walker->ptep = ptep;
163         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
164         return 1;
165
166 not_present:
167         walker->error_code = 0;
168         goto err;
169
170 access_error:
171         walker->error_code = PFERR_PRESENT_MASK;
172
173 err:
174         if (write_fault)
175                 walker->error_code |= PFERR_WRITE_MASK;
176         if (user_fault)
177                 walker->error_code |= PFERR_USER_MASK;
178         if (fetch_fault)
179                 walker->error_code |= PFERR_FETCH_MASK;
180         return 0;
181 }
182
183 static void FNAME(release_walker)(struct guest_walker *walker)
184 {
185         if (walker->table)
186                 kunmap_atomic(walker->table, KM_USER0);
187 }
188
189 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
190                                         struct guest_walker *walker)
191 {
192         mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
193 }
194
195 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
196                                   u64 *shadow_pte,
197                                   gpa_t gaddr,
198                                   pt_element_t *gpte,
199                                   u64 access_bits,
200                                   int user_fault,
201                                   int write_fault,
202                                   int *ptwrite,
203                                   struct guest_walker *walker,
204                                   gfn_t gfn)
205 {
206         hpa_t paddr;
207         int dirty = *gpte & PT_DIRTY_MASK;
208         u64 spte = *shadow_pte;
209         int was_rmapped = is_rmap_pte(spte);
210
211         pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
212                  " user_fault %d gfn %lx\n",
213                  __FUNCTION__, spte, (u64)*gpte, access_bits,
214                  write_fault, user_fault, gfn);
215
216         if (write_fault && !dirty) {
217                 *gpte |= PT_DIRTY_MASK;
218                 dirty = 1;
219                 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
220         }
221
222         spte |= *gpte & PT_PTE_COPY_MASK;
223         spte |= access_bits << PT_SHADOW_BITS_OFFSET;
224         if (!dirty)
225                 access_bits &= ~PT_WRITABLE_MASK;
226
227         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
228
229         spte |= PT_PRESENT_MASK;
230         if (access_bits & PT_USER_MASK)
231                 spte |= PT_USER_MASK;
232
233         if (is_error_hpa(paddr)) {
234                 spte |= gaddr;
235                 spte |= PT_SHADOW_IO_MARK;
236                 spte &= ~PT_PRESENT_MASK;
237                 set_shadow_pte(shadow_pte, spte);
238                 return;
239         }
240
241         spte |= paddr;
242
243         if (!write_fault && (spte & PT_SHADOW_USER_MASK) &&
244             !(spte & PT_USER_MASK)) {
245                 /*
246                  * If supervisor write protect is disabled, we shadow kernel
247                  * pages as user pages so we can trap the write access.
248                  */
249                 spte |= PT_USER_MASK;
250                 spte &= ~PT_WRITABLE_MASK;
251                 access_bits &= ~PT_WRITABLE_MASK;
252         }
253
254         if ((access_bits & PT_WRITABLE_MASK)
255             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
256                 struct kvm_mmu_page *shadow;
257
258                 spte |= PT_WRITABLE_MASK;
259                 if (user_fault) {
260                         mmu_unshadow(vcpu, gfn);
261                         goto unshadowed;
262                 }
263
264                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
265                 if (shadow) {
266                         pgprintk("%s: found shadow page for %lx, marking ro\n",
267                                  __FUNCTION__, gfn);
268                         access_bits &= ~PT_WRITABLE_MASK;
269                         if (is_writeble_pte(spte)) {
270                                 spte &= ~PT_WRITABLE_MASK;
271                                 kvm_arch_ops->tlb_flush(vcpu);
272                         }
273                         if (write_fault)
274                                 *ptwrite = 1;
275                 }
276         }
277
278 unshadowed:
279
280         if (access_bits & PT_WRITABLE_MASK)
281                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
282
283         set_shadow_pte(shadow_pte, spte);
284         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
285         if (!was_rmapped)
286                 rmap_add(vcpu, shadow_pte);
287 }
288
289 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
290                            u64 *shadow_pte, u64 access_bits,
291                            int user_fault, int write_fault, int *ptwrite,
292                            struct guest_walker *walker, gfn_t gfn)
293 {
294         access_bits &= *gpte;
295         FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
296                               gpte, access_bits, user_fault, write_fault,
297                               ptwrite, walker, gfn);
298 }
299
300 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
301                               u64 *spte, const void *pte, int bytes)
302 {
303         pt_element_t gpte;
304
305         if (bytes < sizeof(pt_element_t))
306                 return;
307         gpte = *(const pt_element_t *)pte;
308         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
309                 return;
310         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
311         FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
312                        0, NULL, NULL,
313                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
314 }
315
316 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
317                            u64 *shadow_pte, u64 access_bits,
318                            int user_fault, int write_fault, int *ptwrite,
319                            struct guest_walker *walker, gfn_t gfn)
320 {
321         gpa_t gaddr;
322
323         access_bits &= *gpde;
324         gaddr = (gpa_t)gfn << PAGE_SHIFT;
325         if (PTTYPE == 32 && is_cpuid_PSE36())
326                 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
327                         (32 - PT32_DIR_PSE36_SHIFT);
328         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
329                               gpde, access_bits, user_fault, write_fault,
330                               ptwrite, walker, gfn);
331 }
332
333 /*
334  * Fetch a shadow pte for a specific level in the paging hierarchy.
335  */
336 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
337                          struct guest_walker *walker,
338                          int user_fault, int write_fault, int *ptwrite)
339 {
340         hpa_t shadow_addr;
341         int level;
342         u64 *shadow_ent;
343         u64 *prev_shadow_ent = NULL;
344         pt_element_t *guest_ent = walker->ptep;
345
346         if (!is_present_pte(*guest_ent))
347                 return NULL;
348
349         shadow_addr = vcpu->mmu.root_hpa;
350         level = vcpu->mmu.shadow_root_level;
351         if (level == PT32E_ROOT_LEVEL) {
352                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
353                 shadow_addr &= PT64_BASE_ADDR_MASK;
354                 --level;
355         }
356
357         for (; ; level--) {
358                 u32 index = SHADOW_PT_INDEX(addr, level);
359                 struct kvm_mmu_page *shadow_page;
360                 u64 shadow_pte;
361                 int metaphysical;
362                 gfn_t table_gfn;
363                 unsigned hugepage_access = 0;
364
365                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
366                 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
367                         if (level == PT_PAGE_TABLE_LEVEL)
368                                 break;
369                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
370                         prev_shadow_ent = shadow_ent;
371                         continue;
372                 }
373
374                 if (level == PT_PAGE_TABLE_LEVEL)
375                         break;
376
377                 if (level - 1 == PT_PAGE_TABLE_LEVEL
378                     && walker->level == PT_DIRECTORY_LEVEL) {
379                         metaphysical = 1;
380                         hugepage_access = *guest_ent;
381                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
382                         hugepage_access >>= PT_WRITABLE_SHIFT;
383                         table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
384                                 >> PAGE_SHIFT;
385                 } else {
386                         metaphysical = 0;
387                         table_gfn = walker->table_gfn[level - 2];
388                 }
389                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
390                                                metaphysical, hugepage_access,
391                                                shadow_ent);
392                 shadow_addr = __pa(shadow_page->spt);
393                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
394                         | PT_WRITABLE_MASK | PT_USER_MASK;
395                 *shadow_ent = shadow_pte;
396                 prev_shadow_ent = shadow_ent;
397         }
398
399         if (walker->level == PT_DIRECTORY_LEVEL) {
400                 if (prev_shadow_ent)
401                         *prev_shadow_ent |= PT_SHADOW_PS_MARK;
402                 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
403                                walker->inherited_ar, user_fault, write_fault,
404                                ptwrite, walker, walker->gfn);
405         } else {
406                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
407                 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
408                                walker->inherited_ar, user_fault, write_fault,
409                                ptwrite, walker, walker->gfn);
410         }
411         return shadow_ent;
412 }
413
414 /*
415  * Page fault handler.  There are several causes for a page fault:
416  *   - there is no shadow pte for the guest pte
417  *   - write access through a shadow pte marked read only so that we can set
418  *     the dirty bit
419  *   - write access to a shadow pte marked read only so we can update the page
420  *     dirty bitmap, when userspace requests it
421  *   - mmio access; in this case we will never install a present shadow pte
422  *   - normal guest page fault due to the guest pte marked not present, not
423  *     writable, or not executable
424  *
425  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
426  *           a negative value on error.
427  */
428 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
429                                u32 error_code)
430 {
431         int write_fault = error_code & PFERR_WRITE_MASK;
432         int user_fault = error_code & PFERR_USER_MASK;
433         int fetch_fault = error_code & PFERR_FETCH_MASK;
434         struct guest_walker walker;
435         u64 *shadow_pte;
436         int write_pt = 0;
437         int r;
438
439         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
440         kvm_mmu_audit(vcpu, "pre page fault");
441
442         r = mmu_topup_memory_caches(vcpu);
443         if (r)
444                 return r;
445
446         /*
447          * Look up the shadow pte for the faulting address.
448          */
449         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
450                              fetch_fault);
451
452         /*
453          * The page is not mapped by the guest.  Let the guest handle it.
454          */
455         if (!r) {
456                 pgprintk("%s: guest page fault\n", __FUNCTION__);
457                 inject_page_fault(vcpu, addr, walker.error_code);
458                 FNAME(release_walker)(&walker);
459                 vcpu->last_pt_write_count = 0; /* reset fork detector */
460                 return 0;
461         }
462
463         shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
464                                   &write_pt);
465         pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
466                  shadow_pte, *shadow_pte, write_pt);
467
468         FNAME(release_walker)(&walker);
469
470         if (!write_pt)
471                 vcpu->last_pt_write_count = 0; /* reset fork detector */
472
473         /*
474          * mmio: emulate if accessible, otherwise its a guest fault.
475          */
476         if (is_io_pte(*shadow_pte))
477                 return 1;
478
479         ++vcpu->stat.pf_fixed;
480         kvm_mmu_audit(vcpu, "post page fault (fixed)");
481
482         return write_pt;
483 }
484
485 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
486 {
487         struct guest_walker walker;
488         gpa_t gpa = UNMAPPED_GVA;
489         int r;
490
491         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
492
493         if (r) {
494                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
495                 gpa |= vaddr & ~PAGE_MASK;
496         }
497
498         FNAME(release_walker)(&walker);
499         return gpa;
500 }
501
502 #undef pt_element_t
503 #undef guest_walker
504 #undef FNAME
505 #undef PT_BASE_ADDR_MASK
506 #undef PT_INDEX
507 #undef SHADOW_PT_INDEX
508 #undef PT_LEVEL_MASK
509 #undef PT_PTE_COPY_MASK
510 #undef PT_NON_PTE_COPY_MASK
511 #undef PT_DIR_BASE_ADDR_MASK
512 #undef PT_MAX_FULL_LEVELS