7b22d396c149f3f24b710e601ffc7ef0fe10af59
[powerpc.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT  (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
54 {
55         return container_of(vcpu, struct vcpu_svm, vcpu);
56 }
57
58 unsigned long iopm_base;
59 unsigned long msrpm_base;
60
61 struct kvm_ldttss_desc {
62         u16 limit0;
63         u16 base0;
64         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
65         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
66         u32 base3;
67         u32 zero1;
68 } __attribute__((packed));
69
70 struct svm_cpu_data {
71         int cpu;
72
73         u64 asid_generation;
74         u32 max_asid;
75         u32 next_asid;
76         struct kvm_ldttss_desc *tss_desc;
77
78         struct page *save_area;
79 };
80
81 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
82 static uint32_t svm_features;
83
84 struct svm_init_data {
85         int cpu;
86         int r;
87 };
88
89 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
90
91 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
92 #define MSRS_RANGE_SIZE 2048
93 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
94
95 #define MAX_INST_SIZE 15
96
97 static inline u32 svm_has(u32 feat)
98 {
99         return svm_features & feat;
100 }
101
102 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
103 {
104         int word_index = __ffs(vcpu->irq_summary);
105         int bit_index = __ffs(vcpu->irq_pending[word_index]);
106         int irq = word_index * BITS_PER_LONG + bit_index;
107
108         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
109         if (!vcpu->irq_pending[word_index])
110                 clear_bit(word_index, &vcpu->irq_summary);
111         return irq;
112 }
113
114 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
115 {
116         set_bit(irq, vcpu->irq_pending);
117         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
118 }
119
120 static inline void clgi(void)
121 {
122         asm volatile (SVM_CLGI);
123 }
124
125 static inline void stgi(void)
126 {
127         asm volatile (SVM_STGI);
128 }
129
130 static inline void invlpga(unsigned long addr, u32 asid)
131 {
132         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
133 }
134
135 static inline unsigned long kvm_read_cr2(void)
136 {
137         unsigned long cr2;
138
139         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
140         return cr2;
141 }
142
143 static inline void kvm_write_cr2(unsigned long val)
144 {
145         asm volatile ("mov %0, %%cr2" :: "r" (val));
146 }
147
148 static inline unsigned long read_dr6(void)
149 {
150         unsigned long dr6;
151
152         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
153         return dr6;
154 }
155
156 static inline void write_dr6(unsigned long val)
157 {
158         asm volatile ("mov %0, %%dr6" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr7(void)
162 {
163         unsigned long dr7;
164
165         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
166         return dr7;
167 }
168
169 static inline void write_dr7(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr7" :: "r" (val));
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176         to_svm(vcpu)->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181         force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186         if (!(efer & KVM_EFER_LMA))
187                 efer &= ~KVM_EFER_LME;
188
189         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190         vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195         struct vcpu_svm *svm = to_svm(vcpu);
196
197         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
198                                                 SVM_EVTINJ_VALID_ERR |
199                                                 SVM_EVTINJ_TYPE_EXEPT |
200                                                 GP_VECTOR;
201         svm->vmcb->control.event_inj_err = error_code;
202 }
203
204 static void inject_ud(struct kvm_vcpu *vcpu)
205 {
206         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207                                                 SVM_EVTINJ_TYPE_EXEPT |
208                                                 UD_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225         struct vcpu_svm *svm = to_svm(vcpu);
226
227         if (!svm->next_rip) {
228                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229                 return;
230         }
231         if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
232                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233                        __FUNCTION__,
234                        svm->vmcb->save.rip,
235                        svm->next_rip);
236         }
237
238         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241         vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246         uint32_t eax, ebx, ecx, edx;
247
248         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249                 printk(KERN_INFO "has_svm: not amd\n");
250                 return 0;
251         }
252
253         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254         if (eax < SVM_CPUID_FUNC) {
255                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256                 return 0;
257         }
258
259         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261                 printk(KERN_DEBUG "has_svm: svm not available\n");
262                 return 0;
263         }
264         return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269         struct svm_cpu_data *svm_data
270                 = per_cpu(svm_data, raw_smp_processor_id());
271
272         if (svm_data) {
273                 uint64_t efer;
274
275                 wrmsrl(MSR_VM_HSAVE_PA, 0);
276                 rdmsrl(MSR_EFER, efer);
277                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279                 __free_page(svm_data->save_area);
280                 kfree(svm_data);
281         }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287         struct svm_cpu_data *svm_data;
288         uint64_t efer;
289 #ifdef CONFIG_X86_64
290         struct desc_ptr gdt_descr;
291 #else
292         struct Xgt_desc_struct gdt_descr;
293 #endif
294         struct desc_struct *gdt;
295         int me = raw_smp_processor_id();
296
297         if (!has_svm()) {
298                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299                 return;
300         }
301         svm_data = per_cpu(svm_data, me);
302
303         if (!svm_data) {
304                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305                        me);
306                 return;
307         }
308
309         svm_data->asid_generation = 1;
310         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311         svm_data->next_asid = svm_data->max_asid + 1;
312         svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315         gdt = (struct desc_struct *)gdt_descr.address;
316         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318         rdmsrl(MSR_EFER, efer);
319         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321         wrmsrl(MSR_VM_HSAVE_PA,
322                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327         struct svm_cpu_data *svm_data;
328         int r;
329
330         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331         if (!svm_data)
332                 return -ENOMEM;
333         svm_data->cpu = cpu;
334         svm_data->save_area = alloc_page(GFP_KERNEL);
335         r = -ENOMEM;
336         if (!svm_data->save_area)
337                 goto err_1;
338
339         per_cpu(svm_data, cpu) = svm_data;
340
341         return 0;
342
343 err_1:
344         kfree(svm_data);
345         return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350                                  int read, int write)
351 {
352         int i;
353
354         for (i = 0; i < NUM_MSR_MAPS; i++) {
355                 if (msr >= msrpm_ranges[i] &&
356                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358                                           msrpm_ranges[i]) * 2;
359
360                         u32 *base = msrpm + (msr_offset / 32);
361                         u32 msr_shift = msr_offset % 32;
362                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363                         *base = (*base & ~(0x3 << msr_shift)) |
364                                 (mask << msr_shift);
365                         return;
366                 }
367         }
368         BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373         int cpu;
374         struct page *iopm_pages;
375         struct page *msrpm_pages;
376         void *iopm_va, *msrpm_va;
377         int r;
378
379         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
380
381         if (!iopm_pages)
382                 return -ENOMEM;
383
384         iopm_va = page_address(iopm_pages);
385         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
386         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
387         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
388
389
390         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
391
392         r = -ENOMEM;
393         if (!msrpm_pages)
394                 goto err_1;
395
396         msrpm_va = page_address(msrpm_pages);
397         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
398         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
399
400 #ifdef CONFIG_X86_64
401         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
402         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
403         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
404         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
405         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
406         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
407 #endif
408         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
409         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
410         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
411         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
412
413         for_each_online_cpu(cpu) {
414                 r = svm_cpu_init(cpu);
415                 if (r)
416                         goto err_2;
417         }
418         return 0;
419
420 err_2:
421         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
422         msrpm_base = 0;
423 err_1:
424         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
425         iopm_base = 0;
426         return r;
427 }
428
429 static __exit void svm_hardware_unsetup(void)
430 {
431         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
432         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
433         iopm_base = msrpm_base = 0;
434 }
435
436 static void init_seg(struct vmcb_seg *seg)
437 {
438         seg->selector = 0;
439         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
440                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
441         seg->limit = 0xffff;
442         seg->base = 0;
443 }
444
445 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
446 {
447         seg->selector = 0;
448         seg->attrib = SVM_SELECTOR_P_MASK | type;
449         seg->limit = 0xffff;
450         seg->base = 0;
451 }
452
453 static void init_vmcb(struct vmcb *vmcb)
454 {
455         struct vmcb_control_area *control = &vmcb->control;
456         struct vmcb_save_area *save = &vmcb->save;
457
458         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
459                                         INTERCEPT_CR3_MASK |
460                                         INTERCEPT_CR4_MASK;
461
462         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
463                                         INTERCEPT_CR3_MASK |
464                                         INTERCEPT_CR4_MASK;
465
466         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
467                                         INTERCEPT_DR1_MASK |
468                                         INTERCEPT_DR2_MASK |
469                                         INTERCEPT_DR3_MASK;
470
471         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
472                                         INTERCEPT_DR1_MASK |
473                                         INTERCEPT_DR2_MASK |
474                                         INTERCEPT_DR3_MASK |
475                                         INTERCEPT_DR5_MASK |
476                                         INTERCEPT_DR7_MASK;
477
478         control->intercept_exceptions = 1 << PF_VECTOR;
479
480
481         control->intercept =    (1ULL << INTERCEPT_INTR) |
482                                 (1ULL << INTERCEPT_NMI) |
483                                 (1ULL << INTERCEPT_SMI) |
484                 /*
485                  * selective cr0 intercept bug?
486                  *      0:   0f 22 d8                mov    %eax,%cr3
487                  *      3:   0f 20 c0                mov    %cr0,%eax
488                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
489                  *      b:   0f 22 c0                mov    %eax,%cr0
490                  * set cr3 ->interception
491                  * get cr0 ->interception
492                  * set cr0 -> no interception
493                  */
494                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
495                                 (1ULL << INTERCEPT_CPUID) |
496                                 (1ULL << INTERCEPT_HLT) |
497                                 (1ULL << INTERCEPT_INVLPGA) |
498                                 (1ULL << INTERCEPT_IOIO_PROT) |
499                                 (1ULL << INTERCEPT_MSR_PROT) |
500                                 (1ULL << INTERCEPT_TASK_SWITCH) |
501                                 (1ULL << INTERCEPT_SHUTDOWN) |
502                                 (1ULL << INTERCEPT_VMRUN) |
503                                 (1ULL << INTERCEPT_VMMCALL) |
504                                 (1ULL << INTERCEPT_VMLOAD) |
505                                 (1ULL << INTERCEPT_VMSAVE) |
506                                 (1ULL << INTERCEPT_STGI) |
507                                 (1ULL << INTERCEPT_CLGI) |
508                                 (1ULL << INTERCEPT_SKINIT) |
509                                 (1ULL << INTERCEPT_MONITOR) |
510                                 (1ULL << INTERCEPT_MWAIT);
511
512         control->iopm_base_pa = iopm_base;
513         control->msrpm_base_pa = msrpm_base;
514         control->tsc_offset = 0;
515         control->int_ctl = V_INTR_MASKING_MASK;
516
517         init_seg(&save->es);
518         init_seg(&save->ss);
519         init_seg(&save->ds);
520         init_seg(&save->fs);
521         init_seg(&save->gs);
522
523         save->cs.selector = 0xf000;
524         /* Executable/Readable Code Segment */
525         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
526                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
527         save->cs.limit = 0xffff;
528         /*
529          * cs.base should really be 0xffff0000, but vmx can't handle that, so
530          * be consistent with it.
531          *
532          * Replace when we have real mode working for vmx.
533          */
534         save->cs.base = 0xf0000;
535
536         save->gdtr.limit = 0xffff;
537         save->idtr.limit = 0xffff;
538
539         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
540         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
541
542         save->efer = MSR_EFER_SVME_MASK;
543
544         save->dr6 = 0xffff0ff0;
545         save->dr7 = 0x400;
546         save->rflags = 2;
547         save->rip = 0x0000fff0;
548
549         /*
550          * cr0 val on cpu init should be 0x60000010, we enable cpu
551          * cache by default. the orderly way is to enable cache in bios.
552          */
553         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
554         save->cr4 = X86_CR4_PAE;
555         /* rdx = ?? */
556 }
557
558 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
559 {
560         struct vcpu_svm *svm;
561         struct page *page;
562         int err;
563
564         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
565         if (!svm) {
566                 err = -ENOMEM;
567                 goto out;
568         }
569
570         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
571         if (err)
572                 goto free_svm;
573
574         if (irqchip_in_kernel(kvm)) {
575                 err = kvm_create_lapic(&svm->vcpu);
576                 if (err < 0)
577                         goto free_svm;
578         }
579
580         page = alloc_page(GFP_KERNEL);
581         if (!page) {
582                 err = -ENOMEM;
583                 goto uninit;
584         }
585
586         svm->vmcb = page_address(page);
587         clear_page(svm->vmcb);
588         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
589         svm->asid_generation = 0;
590         memset(svm->db_regs, 0, sizeof(svm->db_regs));
591         init_vmcb(svm->vmcb);
592
593         fx_init(&svm->vcpu);
594         svm->vcpu.fpu_active = 1;
595         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
596         if (svm->vcpu.vcpu_id == 0)
597                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
598
599         return &svm->vcpu;
600
601 uninit:
602         kvm_vcpu_uninit(&svm->vcpu);
603 free_svm:
604         kmem_cache_free(kvm_vcpu_cache, svm);
605 out:
606         return ERR_PTR(err);
607 }
608
609 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
610 {
611         struct vcpu_svm *svm = to_svm(vcpu);
612
613         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
614         kvm_vcpu_uninit(vcpu);
615         kmem_cache_free(kvm_vcpu_cache, svm);
616 }
617
618 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
619 {
620         struct vcpu_svm *svm = to_svm(vcpu);
621         int i;
622
623         if (unlikely(cpu != vcpu->cpu)) {
624                 u64 tsc_this, delta;
625
626                 /*
627                  * Make sure that the guest sees a monotonically
628                  * increasing TSC.
629                  */
630                 rdtscll(tsc_this);
631                 delta = vcpu->host_tsc - tsc_this;
632                 svm->vmcb->control.tsc_offset += delta;
633                 vcpu->cpu = cpu;
634                 kvm_migrate_apic_timer(vcpu);
635         }
636
637         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
638                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
639 }
640
641 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
642 {
643         struct vcpu_svm *svm = to_svm(vcpu);
644         int i;
645
646         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
647                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
648
649         rdtscll(vcpu->host_tsc);
650 }
651
652 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
653 {
654 }
655
656 static void svm_cache_regs(struct kvm_vcpu *vcpu)
657 {
658         struct vcpu_svm *svm = to_svm(vcpu);
659
660         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
661         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
662         vcpu->rip = svm->vmcb->save.rip;
663 }
664
665 static void svm_decache_regs(struct kvm_vcpu *vcpu)
666 {
667         struct vcpu_svm *svm = to_svm(vcpu);
668         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
669         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
670         svm->vmcb->save.rip = vcpu->rip;
671 }
672
673 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
674 {
675         return to_svm(vcpu)->vmcb->save.rflags;
676 }
677
678 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
679 {
680         to_svm(vcpu)->vmcb->save.rflags = rflags;
681 }
682
683 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
684 {
685         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
686
687         switch (seg) {
688         case VCPU_SREG_CS: return &save->cs;
689         case VCPU_SREG_DS: return &save->ds;
690         case VCPU_SREG_ES: return &save->es;
691         case VCPU_SREG_FS: return &save->fs;
692         case VCPU_SREG_GS: return &save->gs;
693         case VCPU_SREG_SS: return &save->ss;
694         case VCPU_SREG_TR: return &save->tr;
695         case VCPU_SREG_LDTR: return &save->ldtr;
696         }
697         BUG();
698         return NULL;
699 }
700
701 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
702 {
703         struct vmcb_seg *s = svm_seg(vcpu, seg);
704
705         return s->base;
706 }
707
708 static void svm_get_segment(struct kvm_vcpu *vcpu,
709                             struct kvm_segment *var, int seg)
710 {
711         struct vmcb_seg *s = svm_seg(vcpu, seg);
712
713         var->base = s->base;
714         var->limit = s->limit;
715         var->selector = s->selector;
716         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
717         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
718         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
719         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
720         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
721         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
722         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
723         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
724         var->unusable = !var->present;
725 }
726
727 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
728 {
729         struct vcpu_svm *svm = to_svm(vcpu);
730
731         dt->limit = svm->vmcb->save.idtr.limit;
732         dt->base = svm->vmcb->save.idtr.base;
733 }
734
735 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
736 {
737         struct vcpu_svm *svm = to_svm(vcpu);
738
739         svm->vmcb->save.idtr.limit = dt->limit;
740         svm->vmcb->save.idtr.base = dt->base ;
741 }
742
743 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
744 {
745         struct vcpu_svm *svm = to_svm(vcpu);
746
747         dt->limit = svm->vmcb->save.gdtr.limit;
748         dt->base = svm->vmcb->save.gdtr.base;
749 }
750
751 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
752 {
753         struct vcpu_svm *svm = to_svm(vcpu);
754
755         svm->vmcb->save.gdtr.limit = dt->limit;
756         svm->vmcb->save.gdtr.base = dt->base ;
757 }
758
759 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
760 {
761 }
762
763 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765         struct vcpu_svm *svm = to_svm(vcpu);
766
767 #ifdef CONFIG_X86_64
768         if (vcpu->shadow_efer & KVM_EFER_LME) {
769                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
770                         vcpu->shadow_efer |= KVM_EFER_LMA;
771                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
772                 }
773
774                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
775                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
776                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
777                 }
778         }
779 #endif
780         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
781                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
782                 vcpu->fpu_active = 1;
783         }
784
785         vcpu->cr0 = cr0;
786         cr0 |= X86_CR0_PG | X86_CR0_WP;
787         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
788         svm->vmcb->save.cr0 = cr0;
789 }
790
791 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
792 {
793        vcpu->cr4 = cr4;
794        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
795 }
796
797 static void svm_set_segment(struct kvm_vcpu *vcpu,
798                             struct kvm_segment *var, int seg)
799 {
800         struct vcpu_svm *svm = to_svm(vcpu);
801         struct vmcb_seg *s = svm_seg(vcpu, seg);
802
803         s->base = var->base;
804         s->limit = var->limit;
805         s->selector = var->selector;
806         if (var->unusable)
807                 s->attrib = 0;
808         else {
809                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
810                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
811                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
812                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
813                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
814                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
815                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
816                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
817         }
818         if (seg == VCPU_SREG_CS)
819                 svm->vmcb->save.cpl
820                         = (svm->vmcb->save.cs.attrib
821                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
822
823 }
824
825 /* FIXME:
826
827         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
828         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
829
830 */
831
832 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
833 {
834         return -EOPNOTSUPP;
835 }
836
837 static int svm_get_irq(struct kvm_vcpu *vcpu)
838 {
839         struct vcpu_svm *svm = to_svm(vcpu);
840         u32 exit_int_info = svm->vmcb->control.exit_int_info;
841
842         if (is_external_interrupt(exit_int_info))
843                 return exit_int_info & SVM_EVTINJ_VEC_MASK;
844         return -1;
845 }
846
847 static void load_host_msrs(struct kvm_vcpu *vcpu)
848 {
849 #ifdef CONFIG_X86_64
850         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
851 #endif
852 }
853
854 static void save_host_msrs(struct kvm_vcpu *vcpu)
855 {
856 #ifdef CONFIG_X86_64
857         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
858 #endif
859 }
860
861 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
862 {
863         if (svm_data->next_asid > svm_data->max_asid) {
864                 ++svm_data->asid_generation;
865                 svm_data->next_asid = 1;
866                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
867         }
868
869         svm->vcpu.cpu = svm_data->cpu;
870         svm->asid_generation = svm_data->asid_generation;
871         svm->vmcb->control.asid = svm_data->next_asid++;
872 }
873
874 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
875 {
876         return to_svm(vcpu)->db_regs[dr];
877 }
878
879 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
880                        int *exception)
881 {
882         struct vcpu_svm *svm = to_svm(vcpu);
883
884         *exception = 0;
885
886         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
887                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
888                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
889                 *exception = DB_VECTOR;
890                 return;
891         }
892
893         switch (dr) {
894         case 0 ... 3:
895                 svm->db_regs[dr] = value;
896                 return;
897         case 4 ... 5:
898                 if (vcpu->cr4 & X86_CR4_DE) {
899                         *exception = UD_VECTOR;
900                         return;
901                 }
902         case 7: {
903                 if (value & ~((1ULL << 32) - 1)) {
904                         *exception = GP_VECTOR;
905                         return;
906                 }
907                 svm->vmcb->save.dr7 = value;
908                 return;
909         }
910         default:
911                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
912                        __FUNCTION__, dr);
913                 *exception = UD_VECTOR;
914                 return;
915         }
916 }
917
918 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
919 {
920         u32 exit_int_info = svm->vmcb->control.exit_int_info;
921         struct kvm *kvm = svm->vcpu.kvm;
922         u64 fault_address;
923         u32 error_code;
924         enum emulation_result er;
925         int r;
926
927         if (!irqchip_in_kernel(kvm) &&
928                 is_external_interrupt(exit_int_info))
929                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
930
931         mutex_lock(&kvm->lock);
932
933         fault_address  = svm->vmcb->control.exit_info_2;
934         error_code = svm->vmcb->control.exit_info_1;
935         r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
936         if (r < 0) {
937                 mutex_unlock(&kvm->lock);
938                 return r;
939         }
940         if (!r) {
941                 mutex_unlock(&kvm->lock);
942                 return 1;
943         }
944         er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
945                                  error_code);
946         mutex_unlock(&kvm->lock);
947
948         switch (er) {
949         case EMULATE_DONE:
950                 return 1;
951         case EMULATE_DO_MMIO:
952                 ++svm->vcpu.stat.mmio_exits;
953                 return 0;
954         case EMULATE_FAIL:
955                 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
956                 break;
957         default:
958                 BUG();
959         }
960
961         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
962         return 0;
963 }
964
965 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
966 {
967         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
968         if (!(svm->vcpu.cr0 & X86_CR0_TS))
969                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
970         svm->vcpu.fpu_active = 1;
971
972         return 1;
973 }
974
975 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
976 {
977         /*
978          * VMCB is undefined after a SHUTDOWN intercept
979          * so reinitialize it.
980          */
981         clear_page(svm->vmcb);
982         init_vmcb(svm->vmcb);
983
984         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
985         return 0;
986 }
987
988 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
989 {
990         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
991         int size, down, in, string, rep;
992         unsigned port;
993
994         ++svm->vcpu.stat.io_exits;
995
996         svm->next_rip = svm->vmcb->control.exit_info_2;
997
998         string = (io_info & SVM_IOIO_STR_MASK) != 0;
999
1000         if (string) {
1001                 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1002                         return 0;
1003                 return 1;
1004         }
1005
1006         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1007         port = io_info >> 16;
1008         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1009         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1010         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1011
1012         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1013 }
1014
1015 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1016 {
1017         return 1;
1018 }
1019
1020 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1021 {
1022         svm->next_rip = svm->vmcb->save.rip + 1;
1023         skip_emulated_instruction(&svm->vcpu);
1024         return kvm_emulate_halt(&svm->vcpu);
1025 }
1026
1027 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1028 {
1029         svm->next_rip = svm->vmcb->save.rip + 3;
1030         skip_emulated_instruction(&svm->vcpu);
1031         return kvm_hypercall(&svm->vcpu, kvm_run);
1032 }
1033
1034 static int invalid_op_interception(struct vcpu_svm *svm,
1035                                    struct kvm_run *kvm_run)
1036 {
1037         inject_ud(&svm->vcpu);
1038         return 1;
1039 }
1040
1041 static int task_switch_interception(struct vcpu_svm *svm,
1042                                     struct kvm_run *kvm_run)
1043 {
1044         pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1045         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1046         return 0;
1047 }
1048
1049 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1050 {
1051         svm->next_rip = svm->vmcb->save.rip + 2;
1052         kvm_emulate_cpuid(&svm->vcpu);
1053         return 1;
1054 }
1055
1056 static int emulate_on_interception(struct vcpu_svm *svm,
1057                                    struct kvm_run *kvm_run)
1058 {
1059         if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1060                 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1061         return 1;
1062 }
1063
1064 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1065 {
1066         struct vcpu_svm *svm = to_svm(vcpu);
1067
1068         switch (ecx) {
1069         case MSR_IA32_TIME_STAMP_COUNTER: {
1070                 u64 tsc;
1071
1072                 rdtscll(tsc);
1073                 *data = svm->vmcb->control.tsc_offset + tsc;
1074                 break;
1075         }
1076         case MSR_K6_STAR:
1077                 *data = svm->vmcb->save.star;
1078                 break;
1079 #ifdef CONFIG_X86_64
1080         case MSR_LSTAR:
1081                 *data = svm->vmcb->save.lstar;
1082                 break;
1083         case MSR_CSTAR:
1084                 *data = svm->vmcb->save.cstar;
1085                 break;
1086         case MSR_KERNEL_GS_BASE:
1087                 *data = svm->vmcb->save.kernel_gs_base;
1088                 break;
1089         case MSR_SYSCALL_MASK:
1090                 *data = svm->vmcb->save.sfmask;
1091                 break;
1092 #endif
1093         case MSR_IA32_SYSENTER_CS:
1094                 *data = svm->vmcb->save.sysenter_cs;
1095                 break;
1096         case MSR_IA32_SYSENTER_EIP:
1097                 *data = svm->vmcb->save.sysenter_eip;
1098                 break;
1099         case MSR_IA32_SYSENTER_ESP:
1100                 *data = svm->vmcb->save.sysenter_esp;
1101                 break;
1102         default:
1103                 return kvm_get_msr_common(vcpu, ecx, data);
1104         }
1105         return 0;
1106 }
1107
1108 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1109 {
1110         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1111         u64 data;
1112
1113         if (svm_get_msr(&svm->vcpu, ecx, &data))
1114                 svm_inject_gp(&svm->vcpu, 0);
1115         else {
1116                 svm->vmcb->save.rax = data & 0xffffffff;
1117                 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1118                 svm->next_rip = svm->vmcb->save.rip + 2;
1119                 skip_emulated_instruction(&svm->vcpu);
1120         }
1121         return 1;
1122 }
1123
1124 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1125 {
1126         struct vcpu_svm *svm = to_svm(vcpu);
1127
1128         switch (ecx) {
1129         case MSR_IA32_TIME_STAMP_COUNTER: {
1130                 u64 tsc;
1131
1132                 rdtscll(tsc);
1133                 svm->vmcb->control.tsc_offset = data - tsc;
1134                 break;
1135         }
1136         case MSR_K6_STAR:
1137                 svm->vmcb->save.star = data;
1138                 break;
1139 #ifdef CONFIG_X86_64
1140         case MSR_LSTAR:
1141                 svm->vmcb->save.lstar = data;
1142                 break;
1143         case MSR_CSTAR:
1144                 svm->vmcb->save.cstar = data;
1145                 break;
1146         case MSR_KERNEL_GS_BASE:
1147                 svm->vmcb->save.kernel_gs_base = data;
1148                 break;
1149         case MSR_SYSCALL_MASK:
1150                 svm->vmcb->save.sfmask = data;
1151                 break;
1152 #endif
1153         case MSR_IA32_SYSENTER_CS:
1154                 svm->vmcb->save.sysenter_cs = data;
1155                 break;
1156         case MSR_IA32_SYSENTER_EIP:
1157                 svm->vmcb->save.sysenter_eip = data;
1158                 break;
1159         case MSR_IA32_SYSENTER_ESP:
1160                 svm->vmcb->save.sysenter_esp = data;
1161                 break;
1162         default:
1163                 return kvm_set_msr_common(vcpu, ecx, data);
1164         }
1165         return 0;
1166 }
1167
1168 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1169 {
1170         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1171         u64 data = (svm->vmcb->save.rax & -1u)
1172                 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1173         svm->next_rip = svm->vmcb->save.rip + 2;
1174         if (svm_set_msr(&svm->vcpu, ecx, data))
1175                 svm_inject_gp(&svm->vcpu, 0);
1176         else
1177                 skip_emulated_instruction(&svm->vcpu);
1178         return 1;
1179 }
1180
1181 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1182 {
1183         if (svm->vmcb->control.exit_info_1)
1184                 return wrmsr_interception(svm, kvm_run);
1185         else
1186                 return rdmsr_interception(svm, kvm_run);
1187 }
1188
1189 static int interrupt_window_interception(struct vcpu_svm *svm,
1190                                    struct kvm_run *kvm_run)
1191 {
1192         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1193         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1194         /*
1195          * If the user space waits to inject interrupts, exit as soon as
1196          * possible
1197          */
1198         if (kvm_run->request_interrupt_window &&
1199             !svm->vcpu.irq_summary) {
1200                 ++svm->vcpu.stat.irq_window_exits;
1201                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1202                 return 0;
1203         }
1204
1205         return 1;
1206 }
1207
1208 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1209                                       struct kvm_run *kvm_run) = {
1210         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1211         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1212         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1213         /* for now: */
1214         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1215         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1216         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1217         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1218         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1219         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1220         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1221         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1222         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1223         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1224         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1225         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1226         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1227         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1228         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1229         [SVM_EXIT_INTR]                         = nop_on_interception,
1230         [SVM_EXIT_NMI]                          = nop_on_interception,
1231         [SVM_EXIT_SMI]                          = nop_on_interception,
1232         [SVM_EXIT_INIT]                         = nop_on_interception,
1233         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1234         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1235         [SVM_EXIT_CPUID]                        = cpuid_interception,
1236         [SVM_EXIT_HLT]                          = halt_interception,
1237         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1238         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1239         [SVM_EXIT_IOIO]                         = io_interception,
1240         [SVM_EXIT_MSR]                          = msr_interception,
1241         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1242         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1243         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1244         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1245         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1246         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1247         [SVM_EXIT_STGI]                         = invalid_op_interception,
1248         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1249         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1250         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1251         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1252 };
1253
1254
1255 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1256 {
1257         u32 exit_code = svm->vmcb->control.exit_code;
1258
1259         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1260             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1261                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1262                        "exit_code 0x%x\n",
1263                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1264                        exit_code);
1265
1266         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1267             || svm_exit_handlers[exit_code] == 0) {
1268                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1269                 kvm_run->hw.hardware_exit_reason = exit_code;
1270                 return 0;
1271         }
1272
1273         return svm_exit_handlers[exit_code](svm, kvm_run);
1274 }
1275
1276 static void reload_tss(struct kvm_vcpu *vcpu)
1277 {
1278         int cpu = raw_smp_processor_id();
1279
1280         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1281         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1282         load_TR_desc();
1283 }
1284
1285 static void pre_svm_run(struct vcpu_svm *svm)
1286 {
1287         int cpu = raw_smp_processor_id();
1288
1289         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1290
1291         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1292         if (svm->vcpu.cpu != cpu ||
1293             svm->asid_generation != svm_data->asid_generation)
1294                 new_asid(svm, svm_data);
1295 }
1296
1297
1298 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1299 {
1300         struct vmcb_control_area *control;
1301
1302         control = &svm->vmcb->control;
1303         control->int_vector = irq;
1304         control->int_ctl &= ~V_INTR_PRIO_MASK;
1305         control->int_ctl |= V_IRQ_MASK |
1306                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1307 }
1308
1309 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1310 {
1311         struct vcpu_svm *svm = to_svm(vcpu);
1312
1313         svm_inject_irq(svm, irq);
1314 }
1315
1316 static void svm_intr_assist(struct vcpu_svm *svm)
1317 {
1318         struct vmcb *vmcb = svm->vmcb;
1319         int intr_vector = -1;
1320         struct kvm_vcpu *vcpu = &svm->vcpu;
1321
1322         kvm_inject_pending_timer_irqs(vcpu);
1323         if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1324             ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1325                 intr_vector = vmcb->control.exit_int_info &
1326                               SVM_EVTINJ_VEC_MASK;
1327                 vmcb->control.exit_int_info = 0;
1328                 svm_inject_irq(svm, intr_vector);
1329                 return;
1330         }
1331
1332         if (vmcb->control.int_ctl & V_IRQ_MASK)
1333                 return;
1334
1335         if (!kvm_cpu_has_interrupt(vcpu))
1336                 return;
1337
1338         if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1339             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1340             (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1341                 /* unable to deliver irq, set pending irq */
1342                 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1343                 svm_inject_irq(svm, 0x0);
1344                 return;
1345         }
1346         /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1347         intr_vector = kvm_cpu_get_interrupt(vcpu);
1348         svm_inject_irq(svm, intr_vector);
1349         kvm_timer_intr_post(vcpu, intr_vector);
1350 }
1351
1352 static void kvm_reput_irq(struct vcpu_svm *svm)
1353 {
1354         struct vmcb_control_area *control = &svm->vmcb->control;
1355
1356         if ((control->int_ctl & V_IRQ_MASK)
1357             && !irqchip_in_kernel(svm->vcpu.kvm)) {
1358                 control->int_ctl &= ~V_IRQ_MASK;
1359                 push_irq(&svm->vcpu, control->int_vector);
1360         }
1361
1362         svm->vcpu.interrupt_window_open =
1363                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1364 }
1365
1366 static void svm_do_inject_vector(struct vcpu_svm *svm)
1367 {
1368         struct kvm_vcpu *vcpu = &svm->vcpu;
1369         int word_index = __ffs(vcpu->irq_summary);
1370         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1371         int irq = word_index * BITS_PER_LONG + bit_index;
1372
1373         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1374         if (!vcpu->irq_pending[word_index])
1375                 clear_bit(word_index, &vcpu->irq_summary);
1376         svm_inject_irq(svm, irq);
1377 }
1378
1379 static void do_interrupt_requests(struct vcpu_svm *svm,
1380                                        struct kvm_run *kvm_run)
1381 {
1382         struct vmcb_control_area *control = &svm->vmcb->control;
1383
1384         svm->vcpu.interrupt_window_open =
1385                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1386                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1387
1388         if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1389                 /*
1390                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1391                  */
1392                 svm_do_inject_vector(svm);
1393
1394         /*
1395          * Interrupts blocked.  Wait for unblock.
1396          */
1397         if (!svm->vcpu.interrupt_window_open &&
1398             (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1399                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1400         } else
1401                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1402 }
1403
1404 static void post_kvm_run_save(struct vcpu_svm *svm,
1405                               struct kvm_run *kvm_run)
1406 {
1407         if (irqchip_in_kernel(svm->vcpu.kvm))
1408                 kvm_run->ready_for_interrupt_injection = 1;
1409         else
1410                 kvm_run->ready_for_interrupt_injection =
1411                                          (svm->vcpu.interrupt_window_open &&
1412                                           svm->vcpu.irq_summary == 0);
1413         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1414         kvm_run->cr8 = get_cr8(&svm->vcpu);
1415         kvm_run->apic_base = kvm_get_apic_base(&svm->vcpu);
1416 }
1417
1418 /*
1419  * Check if userspace requested an interrupt window, and that the
1420  * interrupt window is open.
1421  *
1422  * No need to exit to userspace if we already have an interrupt queued.
1423  */
1424 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1425                                           struct kvm_run *kvm_run)
1426 {
1427         return (!svm->vcpu.irq_summary &&
1428                 kvm_run->request_interrupt_window &&
1429                 svm->vcpu.interrupt_window_open &&
1430                 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1431 }
1432
1433 static void save_db_regs(unsigned long *db_regs)
1434 {
1435         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1436         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1437         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1438         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1439 }
1440
1441 static void load_db_regs(unsigned long *db_regs)
1442 {
1443         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1444         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1445         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1446         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1447 }
1448
1449 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1450 {
1451         force_new_asid(vcpu);
1452 }
1453
1454 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1455 {
1456         struct vcpu_svm *svm = to_svm(vcpu);
1457         u16 fs_selector;
1458         u16 gs_selector;
1459         u16 ldt_selector;
1460         int r;
1461
1462 again:
1463         r = kvm_mmu_reload(vcpu);
1464         if (unlikely(r))
1465                 return r;
1466
1467         clgi();
1468
1469         if (signal_pending(current)) {
1470                 stgi();
1471                 ++vcpu->stat.signal_exits;
1472                 post_kvm_run_save(svm, kvm_run);
1473                 kvm_run->exit_reason = KVM_EXIT_INTR;
1474                 return -EINTR;
1475         }
1476
1477         if (irqchip_in_kernel(vcpu->kvm))
1478                 svm_intr_assist(svm);
1479         else if (!vcpu->mmio_read_completed)
1480                 do_interrupt_requests(svm, kvm_run);
1481
1482         vcpu->guest_mode = 1;
1483         if (vcpu->requests)
1484                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1485                     svm_flush_tlb(vcpu);
1486
1487         pre_svm_run(svm);
1488
1489         save_host_msrs(vcpu);
1490         fs_selector = read_fs();
1491         gs_selector = read_gs();
1492         ldt_selector = read_ldt();
1493         svm->host_cr2 = kvm_read_cr2();
1494         svm->host_dr6 = read_dr6();
1495         svm->host_dr7 = read_dr7();
1496         svm->vmcb->save.cr2 = vcpu->cr2;
1497
1498         if (svm->vmcb->save.dr7 & 0xff) {
1499                 write_dr7(0);
1500                 save_db_regs(svm->host_db_regs);
1501                 load_db_regs(svm->db_regs);
1502         }
1503
1504         if (vcpu->fpu_active) {
1505                 fx_save(&vcpu->host_fx_image);
1506                 fx_restore(&vcpu->guest_fx_image);
1507         }
1508
1509         asm volatile (
1510 #ifdef CONFIG_X86_64
1511                 "push %%rbx; push %%rcx; push %%rdx;"
1512                 "push %%rsi; push %%rdi; push %%rbp;"
1513                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1514                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1515 #else
1516                 "push %%ebx; push %%ecx; push %%edx;"
1517                 "push %%esi; push %%edi; push %%ebp;"
1518 #endif
1519
1520 #ifdef CONFIG_X86_64
1521                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1522                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1523                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1524                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1525                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1526                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1527                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1528                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1529                 "mov %c[r10](%[svm]), %%r10 \n\t"
1530                 "mov %c[r11](%[svm]), %%r11 \n\t"
1531                 "mov %c[r12](%[svm]), %%r12 \n\t"
1532                 "mov %c[r13](%[svm]), %%r13 \n\t"
1533                 "mov %c[r14](%[svm]), %%r14 \n\t"
1534                 "mov %c[r15](%[svm]), %%r15 \n\t"
1535 #else
1536                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1537                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1538                 "mov %c[rdx](%[svm]), %%edx \n\t"
1539                 "mov %c[rsi](%[svm]), %%esi \n\t"
1540                 "mov %c[rdi](%[svm]), %%edi \n\t"
1541                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1542 #endif
1543
1544 #ifdef CONFIG_X86_64
1545                 /* Enter guest mode */
1546                 "push %%rax \n\t"
1547                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1548                 SVM_VMLOAD "\n\t"
1549                 SVM_VMRUN "\n\t"
1550                 SVM_VMSAVE "\n\t"
1551                 "pop %%rax \n\t"
1552 #else
1553                 /* Enter guest mode */
1554                 "push %%eax \n\t"
1555                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1556                 SVM_VMLOAD "\n\t"
1557                 SVM_VMRUN "\n\t"
1558                 SVM_VMSAVE "\n\t"
1559                 "pop %%eax \n\t"
1560 #endif
1561
1562                 /* Save guest registers, load host registers */
1563 #ifdef CONFIG_X86_64
1564                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1565                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1566                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1567                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1568                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1569                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1570                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1571                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1572                 "mov %%r10, %c[r10](%[svm]) \n\t"
1573                 "mov %%r11, %c[r11](%[svm]) \n\t"
1574                 "mov %%r12, %c[r12](%[svm]) \n\t"
1575                 "mov %%r13, %c[r13](%[svm]) \n\t"
1576                 "mov %%r14, %c[r14](%[svm]) \n\t"
1577                 "mov %%r15, %c[r15](%[svm]) \n\t"
1578
1579                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1580                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1581                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1582                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1583 #else
1584                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1585                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1586                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1587                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1588                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1589                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1590
1591                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1592                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1593 #endif
1594                 :
1595                 : [svm]"a"(svm),
1596                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1597                   [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1598                   [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1599                   [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1600                   [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1601                   [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1602                   [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1603 #ifdef CONFIG_X86_64
1604                   ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1605                   [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1606                   [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1607                   [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1608                   [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1609                   [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1610                   [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1611                   [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1612 #endif
1613                 : "cc", "memory" );
1614
1615         vcpu->guest_mode = 0;
1616
1617         if (vcpu->fpu_active) {
1618                 fx_save(&vcpu->guest_fx_image);
1619                 fx_restore(&vcpu->host_fx_image);
1620         }
1621
1622         if ((svm->vmcb->save.dr7 & 0xff))
1623                 load_db_regs(svm->host_db_regs);
1624
1625         vcpu->cr2 = svm->vmcb->save.cr2;
1626
1627         write_dr6(svm->host_dr6);
1628         write_dr7(svm->host_dr7);
1629         kvm_write_cr2(svm->host_cr2);
1630
1631         load_fs(fs_selector);
1632         load_gs(gs_selector);
1633         load_ldt(ldt_selector);
1634         load_host_msrs(vcpu);
1635
1636         reload_tss(vcpu);
1637
1638         /*
1639          * Profile KVM exit RIPs:
1640          */
1641         if (unlikely(prof_on == KVM_PROFILING))
1642                 profile_hit(KVM_PROFILING,
1643                         (void *)(unsigned long)svm->vmcb->save.rip);
1644
1645         stgi();
1646
1647         kvm_reput_irq(svm);
1648
1649         svm->next_rip = 0;
1650
1651         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1652                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1653                 kvm_run->fail_entry.hardware_entry_failure_reason
1654                         = svm->vmcb->control.exit_code;
1655                 post_kvm_run_save(svm, kvm_run);
1656                 return 0;
1657         }
1658
1659         r = handle_exit(svm, kvm_run);
1660         if (r > 0) {
1661                 if (dm_request_for_irq_injection(svm, kvm_run)) {
1662                         ++vcpu->stat.request_irq_exits;
1663                         post_kvm_run_save(svm, kvm_run);
1664                         kvm_run->exit_reason = KVM_EXIT_INTR;
1665                         return -EINTR;
1666                 }
1667                 kvm_resched(vcpu);
1668                 goto again;
1669         }
1670         post_kvm_run_save(svm, kvm_run);
1671         return r;
1672 }
1673
1674 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1675 {
1676         struct vcpu_svm *svm = to_svm(vcpu);
1677
1678         svm->vmcb->save.cr3 = root;
1679         force_new_asid(vcpu);
1680
1681         if (vcpu->fpu_active) {
1682                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1683                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1684                 vcpu->fpu_active = 0;
1685         }
1686 }
1687
1688 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1689                                   unsigned long  addr,
1690                                   uint32_t err_code)
1691 {
1692         struct vcpu_svm *svm = to_svm(vcpu);
1693         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1694
1695         ++vcpu->stat.pf_guest;
1696
1697         if (is_page_fault(exit_int_info)) {
1698
1699                 svm->vmcb->control.event_inj_err = 0;
1700                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1701                                                 SVM_EVTINJ_VALID_ERR |
1702                                                 SVM_EVTINJ_TYPE_EXEPT |
1703                                                 DF_VECTOR;
1704                 return;
1705         }
1706         vcpu->cr2 = addr;
1707         svm->vmcb->save.cr2 = addr;
1708         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1709                                         SVM_EVTINJ_VALID_ERR |
1710                                         SVM_EVTINJ_TYPE_EXEPT |
1711                                         PF_VECTOR;
1712         svm->vmcb->control.event_inj_err = err_code;
1713 }
1714
1715
1716 static int is_disabled(void)
1717 {
1718         u64 vm_cr;
1719
1720         rdmsrl(MSR_VM_CR, vm_cr);
1721         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1722                 return 1;
1723
1724         return 0;
1725 }
1726
1727 static void
1728 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1729 {
1730         /*
1731          * Patch in the VMMCALL instruction:
1732          */
1733         hypercall[0] = 0x0f;
1734         hypercall[1] = 0x01;
1735         hypercall[2] = 0xd9;
1736         hypercall[3] = 0xc3;
1737 }
1738
1739 static void svm_check_processor_compat(void *rtn)
1740 {
1741         *(int *)rtn = 0;
1742 }
1743
1744 static struct kvm_x86_ops svm_x86_ops = {
1745         .cpu_has_kvm_support = has_svm,
1746         .disabled_by_bios = is_disabled,
1747         .hardware_setup = svm_hardware_setup,
1748         .hardware_unsetup = svm_hardware_unsetup,
1749         .check_processor_compatibility = svm_check_processor_compat,
1750         .hardware_enable = svm_hardware_enable,
1751         .hardware_disable = svm_hardware_disable,
1752
1753         .vcpu_create = svm_create_vcpu,
1754         .vcpu_free = svm_free_vcpu,
1755
1756         .vcpu_load = svm_vcpu_load,
1757         .vcpu_put = svm_vcpu_put,
1758         .vcpu_decache = svm_vcpu_decache,
1759
1760         .set_guest_debug = svm_guest_debug,
1761         .get_msr = svm_get_msr,
1762         .set_msr = svm_set_msr,
1763         .get_segment_base = svm_get_segment_base,
1764         .get_segment = svm_get_segment,
1765         .set_segment = svm_set_segment,
1766         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1767         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1768         .set_cr0 = svm_set_cr0,
1769         .set_cr3 = svm_set_cr3,
1770         .set_cr4 = svm_set_cr4,
1771         .set_efer = svm_set_efer,
1772         .get_idt = svm_get_idt,
1773         .set_idt = svm_set_idt,
1774         .get_gdt = svm_get_gdt,
1775         .set_gdt = svm_set_gdt,
1776         .get_dr = svm_get_dr,
1777         .set_dr = svm_set_dr,
1778         .cache_regs = svm_cache_regs,
1779         .decache_regs = svm_decache_regs,
1780         .get_rflags = svm_get_rflags,
1781         .set_rflags = svm_set_rflags,
1782
1783         .tlb_flush = svm_flush_tlb,
1784         .inject_page_fault = svm_inject_page_fault,
1785
1786         .inject_gp = svm_inject_gp,
1787
1788         .run = svm_vcpu_run,
1789         .skip_emulated_instruction = skip_emulated_instruction,
1790         .patch_hypercall = svm_patch_hypercall,
1791         .get_irq = svm_get_irq,
1792         .set_irq = svm_set_irq,
1793 };
1794
1795 static int __init svm_init(void)
1796 {
1797         return kvm_init_x86(&svm_x86_ops, sizeof(struct vcpu_svm),
1798                               THIS_MODULE);
1799 }
1800
1801 static void __exit svm_exit(void)
1802 {
1803         kvm_exit_x86();
1804 }
1805
1806 module_init(svm_init)
1807 module_exit(svm_exit)