KVM: Per-vcpu statistics
[powerpc.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/vmalloc.h>
20 #include <linux/highmem.h>
21 #include <linux/profile.h>
22 #include <asm/desc.h>
23
24 #include "kvm_svm.h"
25 #include "x86_emulate.h"
26
27 MODULE_AUTHOR("Qumranet");
28 MODULE_LICENSE("GPL");
29
30 #define IOPM_ALLOC_ORDER 2
31 #define MSRPM_ALLOC_ORDER 1
32
33 #define DB_VECTOR 1
34 #define UD_VECTOR 6
35 #define GP_VECTOR 13
36
37 #define DR7_GD_MASK (1 << 13)
38 #define DR6_BD_MASK (1 << 13)
39 #define CR4_DE_MASK (1UL << 3)
40
41 #define SEG_TYPE_LDT 2
42 #define SEG_TYPE_BUSY_TSS16 3
43
44 #define KVM_EFER_LMA (1 << 10)
45 #define KVM_EFER_LME (1 << 8)
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_DEATURE_SVML (1 << 2)
50
51 unsigned long iopm_base;
52 unsigned long msrpm_base;
53
54 struct kvm_ldttss_desc {
55         u16 limit0;
56         u16 base0;
57         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
58         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
59         u32 base3;
60         u32 zero1;
61 } __attribute__((packed));
62
63 struct svm_cpu_data {
64         int cpu;
65
66         u64 asid_generation;
67         u32 max_asid;
68         u32 next_asid;
69         struct kvm_ldttss_desc *tss_desc;
70
71         struct page *save_area;
72 };
73
74 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
75 static uint32_t svm_features;
76
77 struct svm_init_data {
78         int cpu;
79         int r;
80 };
81
82 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
83
84 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
85 #define MSRS_RANGE_SIZE 2048
86 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
87
88 #define MAX_INST_SIZE 15
89
90 static inline u32 svm_has(u32 feat)
91 {
92         return svm_features & feat;
93 }
94
95 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
96 {
97         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
98         u16 cs_attrib;
99
100         if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
101                 return 2;
102
103         cs_attrib = sa->cs.attrib;
104
105         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
106                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
107 }
108
109 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
110 {
111         int word_index = __ffs(vcpu->irq_summary);
112         int bit_index = __ffs(vcpu->irq_pending[word_index]);
113         int irq = word_index * BITS_PER_LONG + bit_index;
114
115         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
116         if (!vcpu->irq_pending[word_index])
117                 clear_bit(word_index, &vcpu->irq_summary);
118         return irq;
119 }
120
121 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
122 {
123         set_bit(irq, vcpu->irq_pending);
124         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
125 }
126
127 static inline void clgi(void)
128 {
129         asm volatile (SVM_CLGI);
130 }
131
132 static inline void stgi(void)
133 {
134         asm volatile (SVM_STGI);
135 }
136
137 static inline void invlpga(unsigned long addr, u32 asid)
138 {
139         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
140 }
141
142 static inline unsigned long kvm_read_cr2(void)
143 {
144         unsigned long cr2;
145
146         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
147         return cr2;
148 }
149
150 static inline void kvm_write_cr2(unsigned long val)
151 {
152         asm volatile ("mov %0, %%cr2" :: "r" (val));
153 }
154
155 static inline unsigned long read_dr6(void)
156 {
157         unsigned long dr6;
158
159         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
160         return dr6;
161 }
162
163 static inline void write_dr6(unsigned long val)
164 {
165         asm volatile ("mov %0, %%dr6" :: "r" (val));
166 }
167
168 static inline unsigned long read_dr7(void)
169 {
170         unsigned long dr7;
171
172         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
173         return dr7;
174 }
175
176 static inline void write_dr7(unsigned long val)
177 {
178         asm volatile ("mov %0, %%dr7" :: "r" (val));
179 }
180
181 static inline void force_new_asid(struct kvm_vcpu *vcpu)
182 {
183         vcpu->svm->asid_generation--;
184 }
185
186 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
187 {
188         force_new_asid(vcpu);
189 }
190
191 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
192 {
193         if (!(efer & KVM_EFER_LMA))
194                 efer &= ~KVM_EFER_LME;
195
196         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
197         vcpu->shadow_efer = efer;
198 }
199
200 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
201 {
202         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
203                                                 SVM_EVTINJ_VALID_ERR |
204                                                 SVM_EVTINJ_TYPE_EXEPT |
205                                                 GP_VECTOR;
206         vcpu->svm->vmcb->control.event_inj_err = error_code;
207 }
208
209 static void inject_ud(struct kvm_vcpu *vcpu)
210 {
211         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
212                                                 SVM_EVTINJ_TYPE_EXEPT |
213                                                 UD_VECTOR;
214 }
215
216 static int is_page_fault(uint32_t info)
217 {
218         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
219         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
220 }
221
222 static int is_external_interrupt(u32 info)
223 {
224         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
225         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
226 }
227
228 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
229 {
230         if (!vcpu->svm->next_rip) {
231                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
232                 return;
233         }
234         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
235                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
236                        __FUNCTION__,
237                        vcpu->svm->vmcb->save.rip,
238                        vcpu->svm->next_rip);
239         }
240
241         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
242         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
243
244         vcpu->interrupt_window_open = 1;
245 }
246
247 static int has_svm(void)
248 {
249         uint32_t eax, ebx, ecx, edx;
250
251         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
252                 printk(KERN_INFO "has_svm: not amd\n");
253                 return 0;
254         }
255
256         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
257         if (eax < SVM_CPUID_FUNC) {
258                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
259                 return 0;
260         }
261
262         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
263         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
264                 printk(KERN_DEBUG "has_svm: svm not available\n");
265                 return 0;
266         }
267         return 1;
268 }
269
270 static void svm_hardware_disable(void *garbage)
271 {
272         struct svm_cpu_data *svm_data
273                 = per_cpu(svm_data, raw_smp_processor_id());
274
275         if (svm_data) {
276                 uint64_t efer;
277
278                 wrmsrl(MSR_VM_HSAVE_PA, 0);
279                 rdmsrl(MSR_EFER, efer);
280                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
281                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
282                 __free_page(svm_data->save_area);
283                 kfree(svm_data);
284         }
285 }
286
287 static void svm_hardware_enable(void *garbage)
288 {
289
290         struct svm_cpu_data *svm_data;
291         uint64_t efer;
292 #ifdef CONFIG_X86_64
293         struct desc_ptr gdt_descr;
294 #else
295         struct Xgt_desc_struct gdt_descr;
296 #endif
297         struct desc_struct *gdt;
298         int me = raw_smp_processor_id();
299
300         if (!has_svm()) {
301                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
302                 return;
303         }
304         svm_data = per_cpu(svm_data, me);
305
306         if (!svm_data) {
307                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
308                        me);
309                 return;
310         }
311
312         svm_data->asid_generation = 1;
313         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
314         svm_data->next_asid = svm_data->max_asid + 1;
315         svm_features = cpuid_edx(SVM_CPUID_FUNC);
316
317         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
318         gdt = (struct desc_struct *)gdt_descr.address;
319         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
320
321         rdmsrl(MSR_EFER, efer);
322         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
323
324         wrmsrl(MSR_VM_HSAVE_PA,
325                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
326 }
327
328 static int svm_cpu_init(int cpu)
329 {
330         struct svm_cpu_data *svm_data;
331         int r;
332
333         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
334         if (!svm_data)
335                 return -ENOMEM;
336         svm_data->cpu = cpu;
337         svm_data->save_area = alloc_page(GFP_KERNEL);
338         r = -ENOMEM;
339         if (!svm_data->save_area)
340                 goto err_1;
341
342         per_cpu(svm_data, cpu) = svm_data;
343
344         return 0;
345
346 err_1:
347         kfree(svm_data);
348         return r;
349
350 }
351
352 static int set_msr_interception(u32 *msrpm, unsigned msr,
353                                 int read, int write)
354 {
355         int i;
356
357         for (i = 0; i < NUM_MSR_MAPS; i++) {
358                 if (msr >= msrpm_ranges[i] &&
359                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
360                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
361                                           msrpm_ranges[i]) * 2;
362
363                         u32 *base = msrpm + (msr_offset / 32);
364                         u32 msr_shift = msr_offset % 32;
365                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
366                         *base = (*base & ~(0x3 << msr_shift)) |
367                                 (mask << msr_shift);
368                         return 1;
369                 }
370         }
371         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
372         return 0;
373 }
374
375 static __init int svm_hardware_setup(void)
376 {
377         int cpu;
378         struct page *iopm_pages;
379         struct page *msrpm_pages;
380         void *msrpm_va;
381         int r;
382
383         kvm_emulator_want_group7_invlpg();
384
385         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
386
387         if (!iopm_pages)
388                 return -ENOMEM;
389         memset(page_address(iopm_pages), 0xff,
390                                         PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
391         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
392
393
394         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
395
396         r = -ENOMEM;
397         if (!msrpm_pages)
398                 goto err_1;
399
400         msrpm_va = page_address(msrpm_pages);
401         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
402         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
403
404 #ifdef CONFIG_X86_64
405         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
406         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
407         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
408         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
409         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
410         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
411 #endif
412         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
413         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
414         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
415         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
416
417         for_each_online_cpu(cpu) {
418                 r = svm_cpu_init(cpu);
419                 if (r)
420                         goto err_2;
421         }
422         return 0;
423
424 err_2:
425         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
426         msrpm_base = 0;
427 err_1:
428         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
429         iopm_base = 0;
430         return r;
431 }
432
433 static __exit void svm_hardware_unsetup(void)
434 {
435         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
436         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
437         iopm_base = msrpm_base = 0;
438 }
439
440 static void init_seg(struct vmcb_seg *seg)
441 {
442         seg->selector = 0;
443         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
444                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
445         seg->limit = 0xffff;
446         seg->base = 0;
447 }
448
449 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
450 {
451         seg->selector = 0;
452         seg->attrib = SVM_SELECTOR_P_MASK | type;
453         seg->limit = 0xffff;
454         seg->base = 0;
455 }
456
457 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
458 {
459         return 0;
460 }
461
462 static void init_vmcb(struct vmcb *vmcb)
463 {
464         struct vmcb_control_area *control = &vmcb->control;
465         struct vmcb_save_area *save = &vmcb->save;
466
467         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
468                                         INTERCEPT_CR3_MASK |
469                                         INTERCEPT_CR4_MASK;
470
471         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
472                                         INTERCEPT_CR3_MASK |
473                                         INTERCEPT_CR4_MASK;
474
475         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
476                                         INTERCEPT_DR1_MASK |
477                                         INTERCEPT_DR2_MASK |
478                                         INTERCEPT_DR3_MASK;
479
480         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
481                                         INTERCEPT_DR1_MASK |
482                                         INTERCEPT_DR2_MASK |
483                                         INTERCEPT_DR3_MASK |
484                                         INTERCEPT_DR5_MASK |
485                                         INTERCEPT_DR7_MASK;
486
487         control->intercept_exceptions = 1 << PF_VECTOR;
488
489
490         control->intercept =    (1ULL << INTERCEPT_INTR) |
491                                 (1ULL << INTERCEPT_NMI) |
492                                 (1ULL << INTERCEPT_SMI) |
493                 /*
494                  * selective cr0 intercept bug?
495                  *      0:   0f 22 d8                mov    %eax,%cr3
496                  *      3:   0f 20 c0                mov    %cr0,%eax
497                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
498                  *      b:   0f 22 c0                mov    %eax,%cr0
499                  * set cr3 ->interception
500                  * get cr0 ->interception
501                  * set cr0 -> no interception
502                  */
503                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
504                                 (1ULL << INTERCEPT_CPUID) |
505                                 (1ULL << INTERCEPT_HLT) |
506                                 (1ULL << INTERCEPT_INVLPGA) |
507                                 (1ULL << INTERCEPT_IOIO_PROT) |
508                                 (1ULL << INTERCEPT_MSR_PROT) |
509                                 (1ULL << INTERCEPT_TASK_SWITCH) |
510                                 (1ULL << INTERCEPT_SHUTDOWN) |
511                                 (1ULL << INTERCEPT_VMRUN) |
512                                 (1ULL << INTERCEPT_VMMCALL) |
513                                 (1ULL << INTERCEPT_VMLOAD) |
514                                 (1ULL << INTERCEPT_VMSAVE) |
515                                 (1ULL << INTERCEPT_STGI) |
516                                 (1ULL << INTERCEPT_CLGI) |
517                                 (1ULL << INTERCEPT_SKINIT) |
518                                 (1ULL << INTERCEPT_MONITOR) |
519                                 (1ULL << INTERCEPT_MWAIT);
520
521         control->iopm_base_pa = iopm_base;
522         control->msrpm_base_pa = msrpm_base;
523         control->tsc_offset = 0;
524         control->int_ctl = V_INTR_MASKING_MASK;
525         if (svm_has(SVM_FEATURE_LBRV))
526                 control->lbr_ctl = 1ULL;
527
528         init_seg(&save->es);
529         init_seg(&save->ss);
530         init_seg(&save->ds);
531         init_seg(&save->fs);
532         init_seg(&save->gs);
533
534         save->cs.selector = 0xf000;
535         /* Executable/Readable Code Segment */
536         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
537                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
538         save->cs.limit = 0xffff;
539         /*
540          * cs.base should really be 0xffff0000, but vmx can't handle that, so
541          * be consistent with it.
542          *
543          * Replace when we have real mode working for vmx.
544          */
545         save->cs.base = 0xf0000;
546
547         save->gdtr.limit = 0xffff;
548         save->idtr.limit = 0xffff;
549
550         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
551         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
552
553         save->efer = MSR_EFER_SVME_MASK;
554
555         save->dr6 = 0xffff0ff0;
556         save->dr7 = 0x400;
557         save->rflags = 2;
558         save->rip = 0x0000fff0;
559
560         /*
561          * cr0 val on cpu init should be 0x60000010, we enable cpu
562          * cache by default. the orderly way is to enable cache in bios.
563          */
564         save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
565         save->cr4 = CR4_PAE_MASK;
566         /* rdx = ?? */
567 }
568
569 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
570 {
571         struct page *page;
572         int r;
573
574         r = -ENOMEM;
575         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
576         if (!vcpu->svm)
577                 goto out1;
578         page = alloc_page(GFP_KERNEL);
579         if (!page)
580                 goto out2;
581
582         vcpu->svm->vmcb = page_address(page);
583         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
584         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
585         vcpu->svm->asid_generation = 0;
586         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
587         init_vmcb(vcpu->svm->vmcb);
588
589         fx_init(vcpu);
590         vcpu->apic_base = 0xfee00000 |
591                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
592                         MSR_IA32_APICBASE_ENABLE;
593
594         return 0;
595
596 out2:
597         kfree(vcpu->svm);
598 out1:
599         return r;
600 }
601
602 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
603 {
604         if (!vcpu->svm)
605                 return;
606         if (vcpu->svm->vmcb)
607                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
608         kfree(vcpu->svm);
609 }
610
611 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
612 {
613         int cpu;
614
615         cpu = get_cpu();
616         if (unlikely(cpu != vcpu->cpu)) {
617                 u64 tsc_this, delta;
618
619                 /*
620                  * Make sure that the guest sees a monotonically
621                  * increasing TSC.
622                  */
623                 rdtscll(tsc_this);
624                 delta = vcpu->host_tsc - tsc_this;
625                 vcpu->svm->vmcb->control.tsc_offset += delta;
626                 vcpu->cpu = cpu;
627         }
628 }
629
630 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
631 {
632         rdtscll(vcpu->host_tsc);
633         put_cpu();
634 }
635
636 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
637 {
638 }
639
640 static void svm_cache_regs(struct kvm_vcpu *vcpu)
641 {
642         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
643         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
644         vcpu->rip = vcpu->svm->vmcb->save.rip;
645 }
646
647 static void svm_decache_regs(struct kvm_vcpu *vcpu)
648 {
649         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
650         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
651         vcpu->svm->vmcb->save.rip = vcpu->rip;
652 }
653
654 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
655 {
656         return vcpu->svm->vmcb->save.rflags;
657 }
658
659 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
660 {
661         vcpu->svm->vmcb->save.rflags = rflags;
662 }
663
664 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
665 {
666         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
667
668         switch (seg) {
669         case VCPU_SREG_CS: return &save->cs;
670         case VCPU_SREG_DS: return &save->ds;
671         case VCPU_SREG_ES: return &save->es;
672         case VCPU_SREG_FS: return &save->fs;
673         case VCPU_SREG_GS: return &save->gs;
674         case VCPU_SREG_SS: return &save->ss;
675         case VCPU_SREG_TR: return &save->tr;
676         case VCPU_SREG_LDTR: return &save->ldtr;
677         }
678         BUG();
679         return NULL;
680 }
681
682 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
683 {
684         struct vmcb_seg *s = svm_seg(vcpu, seg);
685
686         return s->base;
687 }
688
689 static void svm_get_segment(struct kvm_vcpu *vcpu,
690                             struct kvm_segment *var, int seg)
691 {
692         struct vmcb_seg *s = svm_seg(vcpu, seg);
693
694         var->base = s->base;
695         var->limit = s->limit;
696         var->selector = s->selector;
697         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
698         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
699         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
700         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
701         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
702         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
703         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
704         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
705         var->unusable = !var->present;
706 }
707
708 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
709 {
710         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
711
712         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
713         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
714 }
715
716 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
717 {
718         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
719         dt->base = vcpu->svm->vmcb->save.idtr.base;
720 }
721
722 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
723 {
724         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
725         vcpu->svm->vmcb->save.idtr.base = dt->base ;
726 }
727
728 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
729 {
730         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
731         dt->base = vcpu->svm->vmcb->save.gdtr.base;
732 }
733
734 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
735 {
736         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
737         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
738 }
739
740 static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
741 {
742 }
743
744 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
745 {
746 #ifdef CONFIG_X86_64
747         if (vcpu->shadow_efer & KVM_EFER_LME) {
748                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
749                         vcpu->shadow_efer |= KVM_EFER_LMA;
750                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
751                 }
752
753                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
754                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
755                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
756                 }
757         }
758 #endif
759         vcpu->cr0 = cr0;
760         cr0 |= CR0_PG_MASK | CR0_WP_MASK;
761         cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
762         vcpu->svm->vmcb->save.cr0 = cr0;
763 }
764
765 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
766 {
767        vcpu->cr4 = cr4;
768        vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
769 }
770
771 static void svm_set_segment(struct kvm_vcpu *vcpu,
772                             struct kvm_segment *var, int seg)
773 {
774         struct vmcb_seg *s = svm_seg(vcpu, seg);
775
776         s->base = var->base;
777         s->limit = var->limit;
778         s->selector = var->selector;
779         if (var->unusable)
780                 s->attrib = 0;
781         else {
782                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
783                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
784                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
785                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
786                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
787                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
788                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
789                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
790         }
791         if (seg == VCPU_SREG_CS)
792                 vcpu->svm->vmcb->save.cpl
793                         = (vcpu->svm->vmcb->save.cs.attrib
794                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
795
796 }
797
798 /* FIXME:
799
800         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
801         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
802
803 */
804
805 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
806 {
807         return -EOPNOTSUPP;
808 }
809
810 static void load_host_msrs(struct kvm_vcpu *vcpu)
811 {
812         int i;
813
814         for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
815                 wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
816 }
817
818 static void save_host_msrs(struct kvm_vcpu *vcpu)
819 {
820         int i;
821
822         for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
823                 rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
824 }
825
826 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
827 {
828         if (svm_data->next_asid > svm_data->max_asid) {
829                 ++svm_data->asid_generation;
830                 svm_data->next_asid = 1;
831                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
832         }
833
834         vcpu->cpu = svm_data->cpu;
835         vcpu->svm->asid_generation = svm_data->asid_generation;
836         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
837 }
838
839 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
840 {
841         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
842 }
843
844 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
845 {
846         return vcpu->svm->db_regs[dr];
847 }
848
849 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
850                        int *exception)
851 {
852         *exception = 0;
853
854         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
855                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
856                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
857                 *exception = DB_VECTOR;
858                 return;
859         }
860
861         switch (dr) {
862         case 0 ... 3:
863                 vcpu->svm->db_regs[dr] = value;
864                 return;
865         case 4 ... 5:
866                 if (vcpu->cr4 & CR4_DE_MASK) {
867                         *exception = UD_VECTOR;
868                         return;
869                 }
870         case 7: {
871                 if (value & ~((1ULL << 32) - 1)) {
872                         *exception = GP_VECTOR;
873                         return;
874                 }
875                 vcpu->svm->vmcb->save.dr7 = value;
876                 return;
877         }
878         default:
879                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
880                        __FUNCTION__, dr);
881                 *exception = UD_VECTOR;
882                 return;
883         }
884 }
885
886 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
887 {
888         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
889         u64 fault_address;
890         u32 error_code;
891         enum emulation_result er;
892         int r;
893
894         if (is_external_interrupt(exit_int_info))
895                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
896
897         spin_lock(&vcpu->kvm->lock);
898
899         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
900         error_code = vcpu->svm->vmcb->control.exit_info_1;
901         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
902         if (r < 0) {
903                 spin_unlock(&vcpu->kvm->lock);
904                 return r;
905         }
906         if (!r) {
907                 spin_unlock(&vcpu->kvm->lock);
908                 return 1;
909         }
910         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
911         spin_unlock(&vcpu->kvm->lock);
912
913         switch (er) {
914         case EMULATE_DONE:
915                 return 1;
916         case EMULATE_DO_MMIO:
917                 ++vcpu->stat.mmio_exits;
918                 kvm_run->exit_reason = KVM_EXIT_MMIO;
919                 return 0;
920         case EMULATE_FAIL:
921                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
922                 break;
923         default:
924                 BUG();
925         }
926
927         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
928         return 0;
929 }
930
931 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
932 {
933         /*
934          * VMCB is undefined after a SHUTDOWN intercept
935          * so reinitialize it.
936          */
937         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
938         init_vmcb(vcpu->svm->vmcb);
939
940         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
941         return 0;
942 }
943
944 static int io_get_override(struct kvm_vcpu *vcpu,
945                           struct vmcb_seg **seg,
946                           int *addr_override)
947 {
948         u8 inst[MAX_INST_SIZE];
949         unsigned ins_length;
950         gva_t rip;
951         int i;
952
953         rip =  vcpu->svm->vmcb->save.rip;
954         ins_length = vcpu->svm->next_rip - rip;
955         rip += vcpu->svm->vmcb->save.cs.base;
956
957         if (ins_length > MAX_INST_SIZE)
958                 printk(KERN_DEBUG
959                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
960                        "next rip 0x%llx ins_length %u\n",
961                        __FUNCTION__,
962                        vcpu->svm->vmcb->save.cs.base,
963                        vcpu->svm->vmcb->save.rip,
964                        vcpu->svm->vmcb->control.exit_info_2,
965                        ins_length);
966
967         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
968                 /* #PF */
969                 return 0;
970
971         *addr_override = 0;
972         *seg = NULL;
973         for (i = 0; i < ins_length; i++)
974                 switch (inst[i]) {
975                 case 0xf0:
976                 case 0xf2:
977                 case 0xf3:
978                 case 0x66:
979                         continue;
980                 case 0x67:
981                         *addr_override = 1;
982                         continue;
983                 case 0x2e:
984                         *seg = &vcpu->svm->vmcb->save.cs;
985                         continue;
986                 case 0x36:
987                         *seg = &vcpu->svm->vmcb->save.ss;
988                         continue;
989                 case 0x3e:
990                         *seg = &vcpu->svm->vmcb->save.ds;
991                         continue;
992                 case 0x26:
993                         *seg = &vcpu->svm->vmcb->save.es;
994                         continue;
995                 case 0x64:
996                         *seg = &vcpu->svm->vmcb->save.fs;
997                         continue;
998                 case 0x65:
999                         *seg = &vcpu->svm->vmcb->save.gs;
1000                         continue;
1001                 default:
1002                         return 1;
1003                 }
1004         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1005         return 0;
1006 }
1007
1008 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1009 {
1010         unsigned long addr_mask;
1011         unsigned long *reg;
1012         struct vmcb_seg *seg;
1013         int addr_override;
1014         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
1015         u16 cs_attrib = save_area->cs.attrib;
1016         unsigned addr_size = get_addr_size(vcpu);
1017
1018         if (!io_get_override(vcpu, &seg, &addr_override))
1019                 return 0;
1020
1021         if (addr_override)
1022                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1023
1024         if (ins) {
1025                 reg = &vcpu->regs[VCPU_REGS_RDI];
1026                 seg = &vcpu->svm->vmcb->save.es;
1027         } else {
1028                 reg = &vcpu->regs[VCPU_REGS_RSI];
1029                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1030         }
1031
1032         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1033
1034         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1035             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1036                 *address = (*reg & addr_mask);
1037                 return addr_mask;
1038         }
1039
1040         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1041                 svm_inject_gp(vcpu, 0);
1042                 return 0;
1043         }
1044
1045         *address = (*reg & addr_mask) + seg->base;
1046         return addr_mask;
1047 }
1048
1049 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1050 {
1051         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1052         int size, down, in, string, rep;
1053         unsigned port;
1054         unsigned long count;
1055         gva_t address = 0;
1056
1057         ++vcpu->stat.io_exits;
1058
1059         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1060
1061         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1062         port = io_info >> 16;
1063         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1064         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1065         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1066         count = 1;
1067         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1068
1069         if (string) {
1070                 unsigned addr_mask;
1071
1072                 addr_mask = io_adress(vcpu, in, &address);
1073                 if (!addr_mask) {
1074                         printk(KERN_DEBUG "%s: get io address failed\n",
1075                                __FUNCTION__);
1076                         return 1;
1077                 }
1078
1079                 if (rep)
1080                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1081         }
1082         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1083                              address, rep, port);
1084 }
1085
1086 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1087 {
1088         return 1;
1089 }
1090
1091 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1092 {
1093         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1094         skip_emulated_instruction(vcpu);
1095         if (vcpu->irq_summary)
1096                 return 1;
1097
1098         kvm_run->exit_reason = KVM_EXIT_HLT;
1099         ++vcpu->stat.halt_exits;
1100         return 0;
1101 }
1102
1103 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1104 {
1105         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1106         skip_emulated_instruction(vcpu);
1107         return kvm_hypercall(vcpu, kvm_run);
1108 }
1109
1110 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1111 {
1112         inject_ud(vcpu);
1113         return 1;
1114 }
1115
1116 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1117 {
1118         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1119         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1120         return 0;
1121 }
1122
1123 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1124 {
1125         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1126         kvm_emulate_cpuid(vcpu);
1127         return 1;
1128 }
1129
1130 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1131 {
1132         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1133                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1134         return 1;
1135 }
1136
1137 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1138 {
1139         switch (ecx) {
1140         case MSR_IA32_TIME_STAMP_COUNTER: {
1141                 u64 tsc;
1142
1143                 rdtscll(tsc);
1144                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1145                 break;
1146         }
1147         case MSR_K6_STAR:
1148                 *data = vcpu->svm->vmcb->save.star;
1149                 break;
1150 #ifdef CONFIG_X86_64
1151         case MSR_LSTAR:
1152                 *data = vcpu->svm->vmcb->save.lstar;
1153                 break;
1154         case MSR_CSTAR:
1155                 *data = vcpu->svm->vmcb->save.cstar;
1156                 break;
1157         case MSR_KERNEL_GS_BASE:
1158                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1159                 break;
1160         case MSR_SYSCALL_MASK:
1161                 *data = vcpu->svm->vmcb->save.sfmask;
1162                 break;
1163 #endif
1164         case MSR_IA32_SYSENTER_CS:
1165                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1166                 break;
1167         case MSR_IA32_SYSENTER_EIP:
1168                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1169                 break;
1170         case MSR_IA32_SYSENTER_ESP:
1171                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1172                 break;
1173         default:
1174                 return kvm_get_msr_common(vcpu, ecx, data);
1175         }
1176         return 0;
1177 }
1178
1179 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1180 {
1181         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1182         u64 data;
1183
1184         if (svm_get_msr(vcpu, ecx, &data))
1185                 svm_inject_gp(vcpu, 0);
1186         else {
1187                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1188                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1189                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1190                 skip_emulated_instruction(vcpu);
1191         }
1192         return 1;
1193 }
1194
1195 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1196 {
1197         switch (ecx) {
1198         case MSR_IA32_TIME_STAMP_COUNTER: {
1199                 u64 tsc;
1200
1201                 rdtscll(tsc);
1202                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1203                 break;
1204         }
1205         case MSR_K6_STAR:
1206                 vcpu->svm->vmcb->save.star = data;
1207                 break;
1208 #ifdef CONFIG_X86_64
1209         case MSR_LSTAR:
1210                 vcpu->svm->vmcb->save.lstar = data;
1211                 break;
1212         case MSR_CSTAR:
1213                 vcpu->svm->vmcb->save.cstar = data;
1214                 break;
1215         case MSR_KERNEL_GS_BASE:
1216                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1217                 break;
1218         case MSR_SYSCALL_MASK:
1219                 vcpu->svm->vmcb->save.sfmask = data;
1220                 break;
1221 #endif
1222         case MSR_IA32_SYSENTER_CS:
1223                 vcpu->svm->vmcb->save.sysenter_cs = data;
1224                 break;
1225         case MSR_IA32_SYSENTER_EIP:
1226                 vcpu->svm->vmcb->save.sysenter_eip = data;
1227                 break;
1228         case MSR_IA32_SYSENTER_ESP:
1229                 vcpu->svm->vmcb->save.sysenter_esp = data;
1230                 break;
1231         default:
1232                 return kvm_set_msr_common(vcpu, ecx, data);
1233         }
1234         return 0;
1235 }
1236
1237 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1238 {
1239         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1240         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1241                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1242         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1243         if (svm_set_msr(vcpu, ecx, data))
1244                 svm_inject_gp(vcpu, 0);
1245         else
1246                 skip_emulated_instruction(vcpu);
1247         return 1;
1248 }
1249
1250 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1251 {
1252         if (vcpu->svm->vmcb->control.exit_info_1)
1253                 return wrmsr_interception(vcpu, kvm_run);
1254         else
1255                 return rdmsr_interception(vcpu, kvm_run);
1256 }
1257
1258 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1259                                    struct kvm_run *kvm_run)
1260 {
1261         /*
1262          * If the user space waits to inject interrupts, exit as soon as
1263          * possible
1264          */
1265         if (kvm_run->request_interrupt_window &&
1266             !vcpu->irq_summary) {
1267                 ++vcpu->stat.irq_window_exits;
1268                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1269                 return 0;
1270         }
1271
1272         return 1;
1273 }
1274
1275 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1276                                       struct kvm_run *kvm_run) = {
1277         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1278         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1279         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1280         /* for now: */
1281         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1282         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1283         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1284         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1285         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1286         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1287         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1288         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1289         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1290         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1291         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1292         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1293         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1294         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1295         [SVM_EXIT_INTR]                         = nop_on_interception,
1296         [SVM_EXIT_NMI]                          = nop_on_interception,
1297         [SVM_EXIT_SMI]                          = nop_on_interception,
1298         [SVM_EXIT_INIT]                         = nop_on_interception,
1299         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1300         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1301         [SVM_EXIT_CPUID]                        = cpuid_interception,
1302         [SVM_EXIT_HLT]                          = halt_interception,
1303         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1304         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1305         [SVM_EXIT_IOIO]                         = io_interception,
1306         [SVM_EXIT_MSR]                          = msr_interception,
1307         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1308         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1309         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1310         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1311         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1312         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1313         [SVM_EXIT_STGI]                         = invalid_op_interception,
1314         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1315         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1316         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1317         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1318 };
1319
1320
1321 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1322 {
1323         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1324
1325         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1326             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1327                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1328                        "exit_code 0x%x\n",
1329                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1330                        exit_code);
1331
1332         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1333             || svm_exit_handlers[exit_code] == 0) {
1334                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1335                 kvm_run->hw.hardware_exit_reason = exit_code;
1336                 return 0;
1337         }
1338
1339         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1340 }
1341
1342 static void reload_tss(struct kvm_vcpu *vcpu)
1343 {
1344         int cpu = raw_smp_processor_id();
1345
1346         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1347         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1348         load_TR_desc();
1349 }
1350
1351 static void pre_svm_run(struct kvm_vcpu *vcpu)
1352 {
1353         int cpu = raw_smp_processor_id();
1354
1355         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1356
1357         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1358         if (vcpu->cpu != cpu ||
1359             vcpu->svm->asid_generation != svm_data->asid_generation)
1360                 new_asid(vcpu, svm_data);
1361 }
1362
1363
1364 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1365 {
1366         struct vmcb_control_area *control;
1367
1368         control = &vcpu->svm->vmcb->control;
1369         control->int_vector = pop_irq(vcpu);
1370         control->int_ctl &= ~V_INTR_PRIO_MASK;
1371         control->int_ctl |= V_IRQ_MASK |
1372                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1373 }
1374
1375 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1376 {
1377         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1378
1379         if (control->int_ctl & V_IRQ_MASK) {
1380                 control->int_ctl &= ~V_IRQ_MASK;
1381                 push_irq(vcpu, control->int_vector);
1382         }
1383
1384         vcpu->interrupt_window_open =
1385                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1386 }
1387
1388 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1389                                        struct kvm_run *kvm_run)
1390 {
1391         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1392
1393         vcpu->interrupt_window_open =
1394                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1395                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1396
1397         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1398                 /*
1399                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1400                  */
1401                 kvm_do_inject_irq(vcpu);
1402
1403         /*
1404          * Interrupts blocked.  Wait for unblock.
1405          */
1406         if (!vcpu->interrupt_window_open &&
1407             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1408                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1409         } else
1410                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1411 }
1412
1413 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1414                               struct kvm_run *kvm_run)
1415 {
1416         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1417                                                   vcpu->irq_summary == 0);
1418         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1419         kvm_run->cr8 = vcpu->cr8;
1420         kvm_run->apic_base = vcpu->apic_base;
1421 }
1422
1423 /*
1424  * Check if userspace requested an interrupt window, and that the
1425  * interrupt window is open.
1426  *
1427  * No need to exit to userspace if we already have an interrupt queued.
1428  */
1429 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1430                                           struct kvm_run *kvm_run)
1431 {
1432         return (!vcpu->irq_summary &&
1433                 kvm_run->request_interrupt_window &&
1434                 vcpu->interrupt_window_open &&
1435                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1436 }
1437
1438 static void save_db_regs(unsigned long *db_regs)
1439 {
1440         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1441         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1442         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1443         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1444 }
1445
1446 static void load_db_regs(unsigned long *db_regs)
1447 {
1448         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1449         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1450         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1451         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1452 }
1453
1454 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1455 {
1456         u16 fs_selector;
1457         u16 gs_selector;
1458         u16 ldt_selector;
1459         int r;
1460
1461 again:
1462         if (!vcpu->mmio_read_completed)
1463                 do_interrupt_requests(vcpu, kvm_run);
1464
1465         clgi();
1466
1467         pre_svm_run(vcpu);
1468
1469         save_host_msrs(vcpu);
1470         fs_selector = read_fs();
1471         gs_selector = read_gs();
1472         ldt_selector = read_ldt();
1473         vcpu->svm->host_cr2 = kvm_read_cr2();
1474         vcpu->svm->host_dr6 = read_dr6();
1475         vcpu->svm->host_dr7 = read_dr7();
1476         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1477
1478         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1479                 write_dr7(0);
1480                 save_db_regs(vcpu->svm->host_db_regs);
1481                 load_db_regs(vcpu->svm->db_regs);
1482         }
1483
1484         fx_save(vcpu->host_fx_image);
1485         fx_restore(vcpu->guest_fx_image);
1486
1487         asm volatile (
1488 #ifdef CONFIG_X86_64
1489                 "push %%rbx; push %%rcx; push %%rdx;"
1490                 "push %%rsi; push %%rdi; push %%rbp;"
1491                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1492                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1493 #else
1494                 "push %%ebx; push %%ecx; push %%edx;"
1495                 "push %%esi; push %%edi; push %%ebp;"
1496 #endif
1497
1498 #ifdef CONFIG_X86_64
1499                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1500                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1501                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1502                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1503                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1504                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1505                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1506                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1507                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1508                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1509                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1510                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1511                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1512                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1513 #else
1514                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1515                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1516                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1517                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1518                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1519                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1520 #endif
1521
1522 #ifdef CONFIG_X86_64
1523                 /* Enter guest mode */
1524                 "push %%rax \n\t"
1525                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1526                 "mov %c[vmcb](%%rax), %%rax \n\t"
1527                 SVM_VMLOAD "\n\t"
1528                 SVM_VMRUN "\n\t"
1529                 SVM_VMSAVE "\n\t"
1530                 "pop %%rax \n\t"
1531 #else
1532                 /* Enter guest mode */
1533                 "push %%eax \n\t"
1534                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1535                 "mov %c[vmcb](%%eax), %%eax \n\t"
1536                 SVM_VMLOAD "\n\t"
1537                 SVM_VMRUN "\n\t"
1538                 SVM_VMSAVE "\n\t"
1539                 "pop %%eax \n\t"
1540 #endif
1541
1542                 /* Save guest registers, load host registers */
1543 #ifdef CONFIG_X86_64
1544                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1545                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1546                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1547                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1548                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1549                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1550                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1551                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1552                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1553                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1554                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1555                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1556                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1557                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1558
1559                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1560                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1561                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1562                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1563 #else
1564                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1565                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1566                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1567                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1568                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1569                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1570
1571                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1572                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1573 #endif
1574                 :
1575                 : [vcpu]"a"(vcpu),
1576                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1577                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1578                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1579                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1580                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1581                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1582                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1583                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1584 #ifdef CONFIG_X86_64
1585                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1586                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1587                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1588                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1589                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1590                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1591                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1592                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1593 #endif
1594                 : "cc", "memory" );
1595
1596         fx_save(vcpu->guest_fx_image);
1597         fx_restore(vcpu->host_fx_image);
1598
1599         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1600                 load_db_regs(vcpu->svm->host_db_regs);
1601
1602         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1603
1604         write_dr6(vcpu->svm->host_dr6);
1605         write_dr7(vcpu->svm->host_dr7);
1606         kvm_write_cr2(vcpu->svm->host_cr2);
1607
1608         load_fs(fs_selector);
1609         load_gs(gs_selector);
1610         load_ldt(ldt_selector);
1611         load_host_msrs(vcpu);
1612
1613         reload_tss(vcpu);
1614
1615         /*
1616          * Profile KVM exit RIPs:
1617          */
1618         if (unlikely(prof_on == KVM_PROFILING))
1619                 profile_hit(KVM_PROFILING,
1620                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1621
1622         stgi();
1623
1624         kvm_reput_irq(vcpu);
1625
1626         vcpu->svm->next_rip = 0;
1627
1628         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1629                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1630                 kvm_run->fail_entry.hardware_entry_failure_reason
1631                         = vcpu->svm->vmcb->control.exit_code;
1632                 post_kvm_run_save(vcpu, kvm_run);
1633                 return 0;
1634         }
1635
1636         r = handle_exit(vcpu, kvm_run);
1637         if (r > 0) {
1638                 if (signal_pending(current)) {
1639                         ++vcpu->stat.signal_exits;
1640                         post_kvm_run_save(vcpu, kvm_run);
1641                         kvm_run->exit_reason = KVM_EXIT_INTR;
1642                         return -EINTR;
1643                 }
1644
1645                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1646                         ++vcpu->stat.request_irq_exits;
1647                         post_kvm_run_save(vcpu, kvm_run);
1648                         kvm_run->exit_reason = KVM_EXIT_INTR;
1649                         return -EINTR;
1650                 }
1651                 kvm_resched(vcpu);
1652                 goto again;
1653         }
1654         post_kvm_run_save(vcpu, kvm_run);
1655         return r;
1656 }
1657
1658 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1659 {
1660         force_new_asid(vcpu);
1661 }
1662
1663 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1664 {
1665         vcpu->svm->vmcb->save.cr3 = root;
1666         force_new_asid(vcpu);
1667 }
1668
1669 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1670                                   unsigned long  addr,
1671                                   uint32_t err_code)
1672 {
1673         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1674
1675         ++vcpu->stat.pf_guest;
1676
1677         if (is_page_fault(exit_int_info)) {
1678
1679                 vcpu->svm->vmcb->control.event_inj_err = 0;
1680                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1681                                                         SVM_EVTINJ_VALID_ERR |
1682                                                         SVM_EVTINJ_TYPE_EXEPT |
1683                                                         DF_VECTOR;
1684                 return;
1685         }
1686         vcpu->cr2 = addr;
1687         vcpu->svm->vmcb->save.cr2 = addr;
1688         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1689                                                 SVM_EVTINJ_VALID_ERR |
1690                                                 SVM_EVTINJ_TYPE_EXEPT |
1691                                                 PF_VECTOR;
1692         vcpu->svm->vmcb->control.event_inj_err = err_code;
1693 }
1694
1695
1696 static int is_disabled(void)
1697 {
1698         return 0;
1699 }
1700
1701 static void
1702 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1703 {
1704         /*
1705          * Patch in the VMMCALL instruction:
1706          */
1707         hypercall[0] = 0x0f;
1708         hypercall[1] = 0x01;
1709         hypercall[2] = 0xd9;
1710         hypercall[3] = 0xc3;
1711 }
1712
1713 static struct kvm_arch_ops svm_arch_ops = {
1714         .cpu_has_kvm_support = has_svm,
1715         .disabled_by_bios = is_disabled,
1716         .hardware_setup = svm_hardware_setup,
1717         .hardware_unsetup = svm_hardware_unsetup,
1718         .hardware_enable = svm_hardware_enable,
1719         .hardware_disable = svm_hardware_disable,
1720
1721         .vcpu_create = svm_create_vcpu,
1722         .vcpu_free = svm_free_vcpu,
1723
1724         .vcpu_load = svm_vcpu_load,
1725         .vcpu_put = svm_vcpu_put,
1726         .vcpu_decache = svm_vcpu_decache,
1727
1728         .set_guest_debug = svm_guest_debug,
1729         .get_msr = svm_get_msr,
1730         .set_msr = svm_set_msr,
1731         .get_segment_base = svm_get_segment_base,
1732         .get_segment = svm_get_segment,
1733         .set_segment = svm_set_segment,
1734         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1735         .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
1736         .set_cr0 = svm_set_cr0,
1737         .set_cr3 = svm_set_cr3,
1738         .set_cr4 = svm_set_cr4,
1739         .set_efer = svm_set_efer,
1740         .get_idt = svm_get_idt,
1741         .set_idt = svm_set_idt,
1742         .get_gdt = svm_get_gdt,
1743         .set_gdt = svm_set_gdt,
1744         .get_dr = svm_get_dr,
1745         .set_dr = svm_set_dr,
1746         .cache_regs = svm_cache_regs,
1747         .decache_regs = svm_decache_regs,
1748         .get_rflags = svm_get_rflags,
1749         .set_rflags = svm_set_rflags,
1750
1751         .invlpg = svm_invlpg,
1752         .tlb_flush = svm_flush_tlb,
1753         .inject_page_fault = svm_inject_page_fault,
1754
1755         .inject_gp = svm_inject_gp,
1756
1757         .run = svm_vcpu_run,
1758         .skip_emulated_instruction = skip_emulated_instruction,
1759         .vcpu_setup = svm_vcpu_setup,
1760         .patch_hypercall = svm_patch_hypercall,
1761 };
1762
1763 static int __init svm_init(void)
1764 {
1765         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1766 }
1767
1768 static void __exit svm_exit(void)
1769 {
1770         kvm_exit_arch();
1771 }
1772
1773 module_init(svm_init)
1774 module_exit(svm_exit)