KVM: Per-vcpu statistics
[powerpc.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <asm/io.h>
26 #include <asm/desc.h>
27
28 #include "segment_descriptor.h"
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43         int size;
44         int order;
45         u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg)                                  \
49         [VCPU_SREG_##seg] = {                                   \
50                 .selector = GUEST_##seg##_SELECTOR,             \
51                 .base = GUEST_##seg##_BASE,                     \
52                 .limit = GUEST_##seg##_LIMIT,                   \
53                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
54         }
55
56 static struct kvm_vmx_segment_field {
57         unsigned selector;
58         unsigned base;
59         unsigned limit;
60         unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62         VMX_SEGMENT_FIELD(CS),
63         VMX_SEGMENT_FIELD(DS),
64         VMX_SEGMENT_FIELD(ES),
65         VMX_SEGMENT_FIELD(FS),
66         VMX_SEGMENT_FIELD(GS),
67         VMX_SEGMENT_FIELD(SS),
68         VMX_SEGMENT_FIELD(TR),
69         VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 /*
73  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
74  * away by decrementing the array size.
75  */
76 static const u32 vmx_msr_index[] = {
77 #ifdef CONFIG_X86_64
78         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
79 #endif
80         MSR_EFER, MSR_K6_STAR,
81 };
82 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
83
84 #ifdef CONFIG_X86_64
85 static unsigned msr_offset_kernel_gs_base;
86 #define NR_64BIT_MSRS 4
87 /*
88  * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
89  * mechanism (cpu bug AA24)
90  */
91 #define NR_BAD_MSRS 2
92 #else
93 #define NR_64BIT_MSRS 0
94 #define NR_BAD_MSRS 0
95 #endif
96
97 static inline int is_page_fault(u32 intr_info)
98 {
99         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
100                              INTR_INFO_VALID_MASK)) ==
101                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
102 }
103
104 static inline int is_external_interrupt(u32 intr_info)
105 {
106         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
107                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
108 }
109
110 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
111 {
112         int i;
113
114         for (i = 0; i < vcpu->nmsrs; ++i)
115                 if (vcpu->guest_msrs[i].index == msr)
116                         return &vcpu->guest_msrs[i];
117         return NULL;
118 }
119
120 static void vmcs_clear(struct vmcs *vmcs)
121 {
122         u64 phys_addr = __pa(vmcs);
123         u8 error;
124
125         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
126                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
127                       : "cc", "memory");
128         if (error)
129                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
130                        vmcs, phys_addr);
131 }
132
133 static void __vcpu_clear(void *arg)
134 {
135         struct kvm_vcpu *vcpu = arg;
136         int cpu = raw_smp_processor_id();
137
138         if (vcpu->cpu == cpu)
139                 vmcs_clear(vcpu->vmcs);
140         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
141                 per_cpu(current_vmcs, cpu) = NULL;
142 }
143
144 static void vcpu_clear(struct kvm_vcpu *vcpu)
145 {
146         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
147                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
148         else
149                 __vcpu_clear(vcpu);
150         vcpu->launched = 0;
151 }
152
153 static unsigned long vmcs_readl(unsigned long field)
154 {
155         unsigned long value;
156
157         asm volatile (ASM_VMX_VMREAD_RDX_RAX
158                       : "=a"(value) : "d"(field) : "cc");
159         return value;
160 }
161
162 static u16 vmcs_read16(unsigned long field)
163 {
164         return vmcs_readl(field);
165 }
166
167 static u32 vmcs_read32(unsigned long field)
168 {
169         return vmcs_readl(field);
170 }
171
172 static u64 vmcs_read64(unsigned long field)
173 {
174 #ifdef CONFIG_X86_64
175         return vmcs_readl(field);
176 #else
177         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
178 #endif
179 }
180
181 static noinline void vmwrite_error(unsigned long field, unsigned long value)
182 {
183         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
184                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
185         dump_stack();
186 }
187
188 static void vmcs_writel(unsigned long field, unsigned long value)
189 {
190         u8 error;
191
192         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
193                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
194         if (unlikely(error))
195                 vmwrite_error(field, value);
196 }
197
198 static void vmcs_write16(unsigned long field, u16 value)
199 {
200         vmcs_writel(field, value);
201 }
202
203 static void vmcs_write32(unsigned long field, u32 value)
204 {
205         vmcs_writel(field, value);
206 }
207
208 static void vmcs_write64(unsigned long field, u64 value)
209 {
210 #ifdef CONFIG_X86_64
211         vmcs_writel(field, value);
212 #else
213         vmcs_writel(field, value);
214         asm volatile ("");
215         vmcs_writel(field+1, value >> 32);
216 #endif
217 }
218
219 /*
220  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
221  * vcpu mutex is already taken.
222  */
223 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
224 {
225         u64 phys_addr = __pa(vcpu->vmcs);
226         int cpu;
227
228         cpu = get_cpu();
229
230         if (vcpu->cpu != cpu)
231                 vcpu_clear(vcpu);
232
233         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
234                 u8 error;
235
236                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
237                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
238                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
239                               : "cc");
240                 if (error)
241                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
242                                vcpu->vmcs, phys_addr);
243         }
244
245         if (vcpu->cpu != cpu) {
246                 struct descriptor_table dt;
247                 unsigned long sysenter_esp;
248
249                 vcpu->cpu = cpu;
250                 /*
251                  * Linux uses per-cpu TSS and GDT, so set these when switching
252                  * processors.
253                  */
254                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
255                 get_gdt(&dt);
256                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
257
258                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
259                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
260         }
261 }
262
263 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
264 {
265         put_cpu();
266 }
267
268 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
269 {
270         vcpu_clear(vcpu);
271 }
272
273 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
274 {
275         return vmcs_readl(GUEST_RFLAGS);
276 }
277
278 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
279 {
280         vmcs_writel(GUEST_RFLAGS, rflags);
281 }
282
283 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
284 {
285         unsigned long rip;
286         u32 interruptibility;
287
288         rip = vmcs_readl(GUEST_RIP);
289         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
290         vmcs_writel(GUEST_RIP, rip);
291
292         /*
293          * We emulated an instruction, so temporary interrupt blocking
294          * should be removed, if set.
295          */
296         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
297         if (interruptibility & 3)
298                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
299                              interruptibility & ~3);
300         vcpu->interrupt_window_open = 1;
301 }
302
303 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
304 {
305         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
306                vmcs_readl(GUEST_RIP));
307         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
308         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
309                      GP_VECTOR |
310                      INTR_TYPE_EXCEPTION |
311                      INTR_INFO_DELIEVER_CODE_MASK |
312                      INTR_INFO_VALID_MASK);
313 }
314
315 /*
316  * Set up the vmcs to automatically save and restore system
317  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
318  * mode, as fiddling with msrs is very expensive.
319  */
320 static void setup_msrs(struct kvm_vcpu *vcpu)
321 {
322         int nr_skip, nr_good_msrs;
323
324         if (is_long_mode(vcpu))
325                 nr_skip = NR_BAD_MSRS;
326         else
327                 nr_skip = NR_64BIT_MSRS;
328         nr_good_msrs = vcpu->nmsrs - nr_skip;
329
330         /*
331          * MSR_K6_STAR is only needed on long mode guests, and only
332          * if efer.sce is enabled.
333          */
334         if (find_msr_entry(vcpu, MSR_K6_STAR)) {
335                 --nr_good_msrs;
336 #ifdef CONFIG_X86_64
337                 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
338                         ++nr_good_msrs;
339 #endif
340         }
341
342         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
343                     virt_to_phys(vcpu->guest_msrs + nr_skip));
344         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
345                     virt_to_phys(vcpu->guest_msrs + nr_skip));
346         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
347                     virt_to_phys(vcpu->host_msrs + nr_skip));
348         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
349         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
350         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
351 }
352
353 /*
354  * reads and returns guest's timestamp counter "register"
355  * guest_tsc = host_tsc + tsc_offset    -- 21.3
356  */
357 static u64 guest_read_tsc(void)
358 {
359         u64 host_tsc, tsc_offset;
360
361         rdtscll(host_tsc);
362         tsc_offset = vmcs_read64(TSC_OFFSET);
363         return host_tsc + tsc_offset;
364 }
365
366 /*
367  * writes 'guest_tsc' into guest's timestamp counter "register"
368  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
369  */
370 static void guest_write_tsc(u64 guest_tsc)
371 {
372         u64 host_tsc;
373
374         rdtscll(host_tsc);
375         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
376 }
377
378 static void reload_tss(void)
379 {
380 #ifndef CONFIG_X86_64
381
382         /*
383          * VT restores TR but not its size.  Useless.
384          */
385         struct descriptor_table gdt;
386         struct segment_descriptor *descs;
387
388         get_gdt(&gdt);
389         descs = (void *)gdt.base;
390         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
391         load_TR_desc();
392 #endif
393 }
394
395 /*
396  * Reads an msr value (of 'msr_index') into 'pdata'.
397  * Returns 0 on success, non-0 otherwise.
398  * Assumes vcpu_load() was already called.
399  */
400 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
401 {
402         u64 data;
403         struct vmx_msr_entry *msr;
404
405         if (!pdata) {
406                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
407                 return -EINVAL;
408         }
409
410         switch (msr_index) {
411 #ifdef CONFIG_X86_64
412         case MSR_FS_BASE:
413                 data = vmcs_readl(GUEST_FS_BASE);
414                 break;
415         case MSR_GS_BASE:
416                 data = vmcs_readl(GUEST_GS_BASE);
417                 break;
418         case MSR_EFER:
419                 return kvm_get_msr_common(vcpu, msr_index, pdata);
420 #endif
421         case MSR_IA32_TIME_STAMP_COUNTER:
422                 data = guest_read_tsc();
423                 break;
424         case MSR_IA32_SYSENTER_CS:
425                 data = vmcs_read32(GUEST_SYSENTER_CS);
426                 break;
427         case MSR_IA32_SYSENTER_EIP:
428                 data = vmcs_readl(GUEST_SYSENTER_EIP);
429                 break;
430         case MSR_IA32_SYSENTER_ESP:
431                 data = vmcs_readl(GUEST_SYSENTER_ESP);
432                 break;
433         default:
434                 msr = find_msr_entry(vcpu, msr_index);
435                 if (msr) {
436                         data = msr->data;
437                         break;
438                 }
439                 return kvm_get_msr_common(vcpu, msr_index, pdata);
440         }
441
442         *pdata = data;
443         return 0;
444 }
445
446 /*
447  * Writes msr value into into the appropriate "register".
448  * Returns 0 on success, non-0 otherwise.
449  * Assumes vcpu_load() was already called.
450  */
451 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
452 {
453         struct vmx_msr_entry *msr;
454         switch (msr_index) {
455 #ifdef CONFIG_X86_64
456         case MSR_EFER:
457                 return kvm_set_msr_common(vcpu, msr_index, data);
458         case MSR_FS_BASE:
459                 vmcs_writel(GUEST_FS_BASE, data);
460                 break;
461         case MSR_GS_BASE:
462                 vmcs_writel(GUEST_GS_BASE, data);
463                 break;
464 #endif
465         case MSR_IA32_SYSENTER_CS:
466                 vmcs_write32(GUEST_SYSENTER_CS, data);
467                 break;
468         case MSR_IA32_SYSENTER_EIP:
469                 vmcs_writel(GUEST_SYSENTER_EIP, data);
470                 break;
471         case MSR_IA32_SYSENTER_ESP:
472                 vmcs_writel(GUEST_SYSENTER_ESP, data);
473                 break;
474         case MSR_IA32_TIME_STAMP_COUNTER:
475                 guest_write_tsc(data);
476                 break;
477         default:
478                 msr = find_msr_entry(vcpu, msr_index);
479                 if (msr) {
480                         msr->data = data;
481                         break;
482                 }
483                 return kvm_set_msr_common(vcpu, msr_index, data);
484                 msr->data = data;
485                 break;
486         }
487
488         return 0;
489 }
490
491 /*
492  * Sync the rsp and rip registers into the vcpu structure.  This allows
493  * registers to be accessed by indexing vcpu->regs.
494  */
495 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
496 {
497         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
498         vcpu->rip = vmcs_readl(GUEST_RIP);
499 }
500
501 /*
502  * Syncs rsp and rip back into the vmcs.  Should be called after possible
503  * modification.
504  */
505 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
506 {
507         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
508         vmcs_writel(GUEST_RIP, vcpu->rip);
509 }
510
511 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
512 {
513         unsigned long dr7 = 0x400;
514         u32 exception_bitmap;
515         int old_singlestep;
516
517         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
518         old_singlestep = vcpu->guest_debug.singlestep;
519
520         vcpu->guest_debug.enabled = dbg->enabled;
521         if (vcpu->guest_debug.enabled) {
522                 int i;
523
524                 dr7 |= 0x200;  /* exact */
525                 for (i = 0; i < 4; ++i) {
526                         if (!dbg->breakpoints[i].enabled)
527                                 continue;
528                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
529                         dr7 |= 2 << (i*2);    /* global enable */
530                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
531                 }
532
533                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
534
535                 vcpu->guest_debug.singlestep = dbg->singlestep;
536         } else {
537                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
538                 vcpu->guest_debug.singlestep = 0;
539         }
540
541         if (old_singlestep && !vcpu->guest_debug.singlestep) {
542                 unsigned long flags;
543
544                 flags = vmcs_readl(GUEST_RFLAGS);
545                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
546                 vmcs_writel(GUEST_RFLAGS, flags);
547         }
548
549         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
550         vmcs_writel(GUEST_DR7, dr7);
551
552         return 0;
553 }
554
555 static __init int cpu_has_kvm_support(void)
556 {
557         unsigned long ecx = cpuid_ecx(1);
558         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
559 }
560
561 static __init int vmx_disabled_by_bios(void)
562 {
563         u64 msr;
564
565         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
566         return (msr & 5) == 1; /* locked but not enabled */
567 }
568
569 static void hardware_enable(void *garbage)
570 {
571         int cpu = raw_smp_processor_id();
572         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
573         u64 old;
574
575         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
576         if ((old & 5) != 5)
577                 /* enable and lock */
578                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
579         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
580         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
581                       : "memory", "cc");
582 }
583
584 static void hardware_disable(void *garbage)
585 {
586         asm volatile (ASM_VMX_VMXOFF : : : "cc");
587 }
588
589 static __init void setup_vmcs_descriptor(void)
590 {
591         u32 vmx_msr_low, vmx_msr_high;
592
593         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
594         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
595         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
596         vmcs_descriptor.revision_id = vmx_msr_low;
597 }
598
599 static struct vmcs *alloc_vmcs_cpu(int cpu)
600 {
601         int node = cpu_to_node(cpu);
602         struct page *pages;
603         struct vmcs *vmcs;
604
605         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
606         if (!pages)
607                 return NULL;
608         vmcs = page_address(pages);
609         memset(vmcs, 0, vmcs_descriptor.size);
610         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
611         return vmcs;
612 }
613
614 static struct vmcs *alloc_vmcs(void)
615 {
616         return alloc_vmcs_cpu(raw_smp_processor_id());
617 }
618
619 static void free_vmcs(struct vmcs *vmcs)
620 {
621         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
622 }
623
624 static __exit void free_kvm_area(void)
625 {
626         int cpu;
627
628         for_each_online_cpu(cpu)
629                 free_vmcs(per_cpu(vmxarea, cpu));
630 }
631
632 extern struct vmcs *alloc_vmcs_cpu(int cpu);
633
634 static __init int alloc_kvm_area(void)
635 {
636         int cpu;
637
638         for_each_online_cpu(cpu) {
639                 struct vmcs *vmcs;
640
641                 vmcs = alloc_vmcs_cpu(cpu);
642                 if (!vmcs) {
643                         free_kvm_area();
644                         return -ENOMEM;
645                 }
646
647                 per_cpu(vmxarea, cpu) = vmcs;
648         }
649         return 0;
650 }
651
652 static __init int hardware_setup(void)
653 {
654         setup_vmcs_descriptor();
655         return alloc_kvm_area();
656 }
657
658 static __exit void hardware_unsetup(void)
659 {
660         free_kvm_area();
661 }
662
663 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
664 {
665         if (vcpu->rmode.active)
666                 vmcs_write32(EXCEPTION_BITMAP, ~0);
667         else
668                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
669 }
670
671 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
672 {
673         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
674
675         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
676                 vmcs_write16(sf->selector, save->selector);
677                 vmcs_writel(sf->base, save->base);
678                 vmcs_write32(sf->limit, save->limit);
679                 vmcs_write32(sf->ar_bytes, save->ar);
680         } else {
681                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
682                         << AR_DPL_SHIFT;
683                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
684         }
685 }
686
687 static void enter_pmode(struct kvm_vcpu *vcpu)
688 {
689         unsigned long flags;
690
691         vcpu->rmode.active = 0;
692
693         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
694         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
695         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
696
697         flags = vmcs_readl(GUEST_RFLAGS);
698         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
699         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
700         vmcs_writel(GUEST_RFLAGS, flags);
701
702         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
703                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
704
705         update_exception_bitmap(vcpu);
706
707         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
708         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
709         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
710         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
711
712         vmcs_write16(GUEST_SS_SELECTOR, 0);
713         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
714
715         vmcs_write16(GUEST_CS_SELECTOR,
716                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
717         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
718 }
719
720 static int rmode_tss_base(struct kvm* kvm)
721 {
722         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
723         return base_gfn << PAGE_SHIFT;
724 }
725
726 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
727 {
728         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
729
730         save->selector = vmcs_read16(sf->selector);
731         save->base = vmcs_readl(sf->base);
732         save->limit = vmcs_read32(sf->limit);
733         save->ar = vmcs_read32(sf->ar_bytes);
734         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
735         vmcs_write32(sf->limit, 0xffff);
736         vmcs_write32(sf->ar_bytes, 0xf3);
737 }
738
739 static void enter_rmode(struct kvm_vcpu *vcpu)
740 {
741         unsigned long flags;
742
743         vcpu->rmode.active = 1;
744
745         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
746         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
747
748         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
749         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
750
751         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
752         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
753
754         flags = vmcs_readl(GUEST_RFLAGS);
755         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
756
757         flags |= IOPL_MASK | X86_EFLAGS_VM;
758
759         vmcs_writel(GUEST_RFLAGS, flags);
760         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
761         update_exception_bitmap(vcpu);
762
763         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
764         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
765         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
766
767         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
768         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
769         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
770                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
771         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
772
773         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
774         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
775         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
776         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
777 }
778
779 #ifdef CONFIG_X86_64
780
781 static void enter_lmode(struct kvm_vcpu *vcpu)
782 {
783         u32 guest_tr_ar;
784
785         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
786         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
787                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
788                        __FUNCTION__);
789                 vmcs_write32(GUEST_TR_AR_BYTES,
790                              (guest_tr_ar & ~AR_TYPE_MASK)
791                              | AR_TYPE_BUSY_64_TSS);
792         }
793
794         vcpu->shadow_efer |= EFER_LMA;
795
796         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
797         vmcs_write32(VM_ENTRY_CONTROLS,
798                      vmcs_read32(VM_ENTRY_CONTROLS)
799                      | VM_ENTRY_CONTROLS_IA32E_MASK);
800 }
801
802 static void exit_lmode(struct kvm_vcpu *vcpu)
803 {
804         vcpu->shadow_efer &= ~EFER_LMA;
805
806         vmcs_write32(VM_ENTRY_CONTROLS,
807                      vmcs_read32(VM_ENTRY_CONTROLS)
808                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
809 }
810
811 #endif
812
813 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
814 {
815         vcpu->cr0 &= KVM_GUEST_CR0_MASK;
816         vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
817
818         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
819         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
820 }
821
822 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
823 {
824         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
825                 enter_pmode(vcpu);
826
827         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
828                 enter_rmode(vcpu);
829
830 #ifdef CONFIG_X86_64
831         if (vcpu->shadow_efer & EFER_LME) {
832                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
833                         enter_lmode(vcpu);
834                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
835                         exit_lmode(vcpu);
836         }
837 #endif
838
839         vmcs_writel(CR0_READ_SHADOW, cr0);
840         vmcs_writel(GUEST_CR0,
841                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
842         vcpu->cr0 = cr0;
843 }
844
845 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
846 {
847         vmcs_writel(GUEST_CR3, cr3);
848 }
849
850 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
851 {
852         vmcs_writel(CR4_READ_SHADOW, cr4);
853         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
854                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
855         vcpu->cr4 = cr4;
856 }
857
858 #ifdef CONFIG_X86_64
859
860 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
861 {
862         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
863
864         vcpu->shadow_efer = efer;
865         if (efer & EFER_LMA) {
866                 vmcs_write32(VM_ENTRY_CONTROLS,
867                                      vmcs_read32(VM_ENTRY_CONTROLS) |
868                                      VM_ENTRY_CONTROLS_IA32E_MASK);
869                 msr->data = efer;
870
871         } else {
872                 vmcs_write32(VM_ENTRY_CONTROLS,
873                                      vmcs_read32(VM_ENTRY_CONTROLS) &
874                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
875
876                 msr->data = efer & ~EFER_LME;
877         }
878         setup_msrs(vcpu);
879 }
880
881 #endif
882
883 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
884 {
885         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
886
887         return vmcs_readl(sf->base);
888 }
889
890 static void vmx_get_segment(struct kvm_vcpu *vcpu,
891                             struct kvm_segment *var, int seg)
892 {
893         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
894         u32 ar;
895
896         var->base = vmcs_readl(sf->base);
897         var->limit = vmcs_read32(sf->limit);
898         var->selector = vmcs_read16(sf->selector);
899         ar = vmcs_read32(sf->ar_bytes);
900         if (ar & AR_UNUSABLE_MASK)
901                 ar = 0;
902         var->type = ar & 15;
903         var->s = (ar >> 4) & 1;
904         var->dpl = (ar >> 5) & 3;
905         var->present = (ar >> 7) & 1;
906         var->avl = (ar >> 12) & 1;
907         var->l = (ar >> 13) & 1;
908         var->db = (ar >> 14) & 1;
909         var->g = (ar >> 15) & 1;
910         var->unusable = (ar >> 16) & 1;
911 }
912
913 static void vmx_set_segment(struct kvm_vcpu *vcpu,
914                             struct kvm_segment *var, int seg)
915 {
916         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
917         u32 ar;
918
919         vmcs_writel(sf->base, var->base);
920         vmcs_write32(sf->limit, var->limit);
921         vmcs_write16(sf->selector, var->selector);
922         if (vcpu->rmode.active && var->s) {
923                 /*
924                  * Hack real-mode segments into vm86 compatibility.
925                  */
926                 if (var->base == 0xffff0000 && var->selector == 0xf000)
927                         vmcs_writel(sf->base, 0xf0000);
928                 ar = 0xf3;
929         } else if (var->unusable)
930                 ar = 1 << 16;
931         else {
932                 ar = var->type & 15;
933                 ar |= (var->s & 1) << 4;
934                 ar |= (var->dpl & 3) << 5;
935                 ar |= (var->present & 1) << 7;
936                 ar |= (var->avl & 1) << 12;
937                 ar |= (var->l & 1) << 13;
938                 ar |= (var->db & 1) << 14;
939                 ar |= (var->g & 1) << 15;
940         }
941         if (ar == 0) /* a 0 value means unusable */
942                 ar = AR_UNUSABLE_MASK;
943         vmcs_write32(sf->ar_bytes, ar);
944 }
945
946 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
947 {
948         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
949
950         *db = (ar >> 14) & 1;
951         *l = (ar >> 13) & 1;
952 }
953
954 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
955 {
956         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
957         dt->base = vmcs_readl(GUEST_IDTR_BASE);
958 }
959
960 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
961 {
962         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
963         vmcs_writel(GUEST_IDTR_BASE, dt->base);
964 }
965
966 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
967 {
968         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
969         dt->base = vmcs_readl(GUEST_GDTR_BASE);
970 }
971
972 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
973 {
974         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
975         vmcs_writel(GUEST_GDTR_BASE, dt->base);
976 }
977
978 static int init_rmode_tss(struct kvm* kvm)
979 {
980         struct page *p1, *p2, *p3;
981         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
982         char *page;
983
984         p1 = gfn_to_page(kvm, fn++);
985         p2 = gfn_to_page(kvm, fn++);
986         p3 = gfn_to_page(kvm, fn);
987
988         if (!p1 || !p2 || !p3) {
989                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
990                 return 0;
991         }
992
993         page = kmap_atomic(p1, KM_USER0);
994         memset(page, 0, PAGE_SIZE);
995         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
996         kunmap_atomic(page, KM_USER0);
997
998         page = kmap_atomic(p2, KM_USER0);
999         memset(page, 0, PAGE_SIZE);
1000         kunmap_atomic(page, KM_USER0);
1001
1002         page = kmap_atomic(p3, KM_USER0);
1003         memset(page, 0, PAGE_SIZE);
1004         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1005         kunmap_atomic(page, KM_USER0);
1006
1007         return 1;
1008 }
1009
1010 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1011 {
1012         u32 msr_high, msr_low;
1013
1014         rdmsr(msr, msr_low, msr_high);
1015
1016         val &= msr_high;
1017         val |= msr_low;
1018         vmcs_write32(vmcs_field, val);
1019 }
1020
1021 static void seg_setup(int seg)
1022 {
1023         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1024
1025         vmcs_write16(sf->selector, 0);
1026         vmcs_writel(sf->base, 0);
1027         vmcs_write32(sf->limit, 0xffff);
1028         vmcs_write32(sf->ar_bytes, 0x93);
1029 }
1030
1031 /*
1032  * Sets up the vmcs for emulated real mode.
1033  */
1034 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1035 {
1036         u32 host_sysenter_cs;
1037         u32 junk;
1038         unsigned long a;
1039         struct descriptor_table dt;
1040         int i;
1041         int ret = 0;
1042         extern asmlinkage void kvm_vmx_return(void);
1043
1044         if (!init_rmode_tss(vcpu->kvm)) {
1045                 ret = -ENOMEM;
1046                 goto out;
1047         }
1048
1049         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1050         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1051         vcpu->cr8 = 0;
1052         vcpu->apic_base = 0xfee00000 |
1053                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1054                         MSR_IA32_APICBASE_ENABLE;
1055
1056         fx_init(vcpu);
1057
1058         /*
1059          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1060          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1061          */
1062         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1063         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1064         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1065         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1066
1067         seg_setup(VCPU_SREG_DS);
1068         seg_setup(VCPU_SREG_ES);
1069         seg_setup(VCPU_SREG_FS);
1070         seg_setup(VCPU_SREG_GS);
1071         seg_setup(VCPU_SREG_SS);
1072
1073         vmcs_write16(GUEST_TR_SELECTOR, 0);
1074         vmcs_writel(GUEST_TR_BASE, 0);
1075         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1076         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1077
1078         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1079         vmcs_writel(GUEST_LDTR_BASE, 0);
1080         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1081         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1082
1083         vmcs_write32(GUEST_SYSENTER_CS, 0);
1084         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1085         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1086
1087         vmcs_writel(GUEST_RFLAGS, 0x02);
1088         vmcs_writel(GUEST_RIP, 0xfff0);
1089         vmcs_writel(GUEST_RSP, 0);
1090
1091         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1092         vmcs_writel(GUEST_DR7, 0x400);
1093
1094         vmcs_writel(GUEST_GDTR_BASE, 0);
1095         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1096
1097         vmcs_writel(GUEST_IDTR_BASE, 0);
1098         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1099
1100         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1101         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1102         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1103
1104         /* I/O */
1105         vmcs_write64(IO_BITMAP_A, 0);
1106         vmcs_write64(IO_BITMAP_B, 0);
1107
1108         guest_write_tsc(0);
1109
1110         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1111
1112         /* Special registers */
1113         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1114
1115         /* Control */
1116         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1117                                PIN_BASED_VM_EXEC_CONTROL,
1118                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1119                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1120                         );
1121         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1122                                CPU_BASED_VM_EXEC_CONTROL,
1123                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1124                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1125                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1126                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1127                                | CPU_BASED_MOV_DR_EXITING
1128                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1129                         );
1130
1131         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1132         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1133         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1134         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1135
1136         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1137         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1138         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1139
1140         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1141         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1142         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1143         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1144         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1145         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1146 #ifdef CONFIG_X86_64
1147         rdmsrl(MSR_FS_BASE, a);
1148         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1149         rdmsrl(MSR_GS_BASE, a);
1150         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1151 #else
1152         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1153         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1154 #endif
1155
1156         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1157
1158         get_idt(&dt);
1159         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1160
1161
1162         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1163
1164         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1165         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1166         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1167         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1168         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1169         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1170
1171         for (i = 0; i < NR_VMX_MSR; ++i) {
1172                 u32 index = vmx_msr_index[i];
1173                 u32 data_low, data_high;
1174                 u64 data;
1175                 int j = vcpu->nmsrs;
1176
1177                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1178                         continue;
1179                 if (wrmsr_safe(index, data_low, data_high) < 0)
1180                         continue;
1181                 data = data_low | ((u64)data_high << 32);
1182                 vcpu->host_msrs[j].index = index;
1183                 vcpu->host_msrs[j].reserved = 0;
1184                 vcpu->host_msrs[j].data = data;
1185                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1186 #ifdef CONFIG_X86_64
1187                 if (index == MSR_KERNEL_GS_BASE)
1188                         msr_offset_kernel_gs_base = j;
1189 #endif
1190                 ++vcpu->nmsrs;
1191         }
1192
1193         setup_msrs(vcpu);
1194
1195         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1196                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1197
1198         /* 22.2.1, 20.8.1 */
1199         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1200                                VM_ENTRY_CONTROLS, 0);
1201         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1202
1203 #ifdef CONFIG_X86_64
1204         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1205         vmcs_writel(TPR_THRESHOLD, 0);
1206 #endif
1207
1208         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1209         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1210
1211         vcpu->cr0 = 0x60000010;
1212         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1213         vmx_set_cr4(vcpu, 0);
1214 #ifdef CONFIG_X86_64
1215         vmx_set_efer(vcpu, 0);
1216 #endif
1217
1218         return 0;
1219
1220 out:
1221         return ret;
1222 }
1223
1224 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1225 {
1226         u16 ent[2];
1227         u16 cs;
1228         u16 ip;
1229         unsigned long flags;
1230         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1231         u16 sp =  vmcs_readl(GUEST_RSP);
1232         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1233
1234         if (sp > ss_limit || sp < 6 ) {
1235                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1236                             __FUNCTION__,
1237                             vmcs_readl(GUEST_RSP),
1238                             vmcs_readl(GUEST_SS_BASE),
1239                             vmcs_read32(GUEST_SS_LIMIT));
1240                 return;
1241         }
1242
1243         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1244                                                                 sizeof(ent)) {
1245                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1246                 return;
1247         }
1248
1249         flags =  vmcs_readl(GUEST_RFLAGS);
1250         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1251         ip =  vmcs_readl(GUEST_RIP);
1252
1253
1254         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1255             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1256             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1257                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1258                 return;
1259         }
1260
1261         vmcs_writel(GUEST_RFLAGS, flags &
1262                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1263         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1264         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1265         vmcs_writel(GUEST_RIP, ent[0]);
1266         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1267 }
1268
1269 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1270 {
1271         int word_index = __ffs(vcpu->irq_summary);
1272         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1273         int irq = word_index * BITS_PER_LONG + bit_index;
1274
1275         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1276         if (!vcpu->irq_pending[word_index])
1277                 clear_bit(word_index, &vcpu->irq_summary);
1278
1279         if (vcpu->rmode.active) {
1280                 inject_rmode_irq(vcpu, irq);
1281                 return;
1282         }
1283         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1284                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1285 }
1286
1287
1288 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1289                                        struct kvm_run *kvm_run)
1290 {
1291         u32 cpu_based_vm_exec_control;
1292
1293         vcpu->interrupt_window_open =
1294                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1295                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1296
1297         if (vcpu->interrupt_window_open &&
1298             vcpu->irq_summary &&
1299             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1300                 /*
1301                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1302                  */
1303                 kvm_do_inject_irq(vcpu);
1304
1305         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1306         if (!vcpu->interrupt_window_open &&
1307             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1308                 /*
1309                  * Interrupts blocked.  Wait for unblock.
1310                  */
1311                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1312         else
1313                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1314         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1315 }
1316
1317 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1318 {
1319         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1320
1321         set_debugreg(dbg->bp[0], 0);
1322         set_debugreg(dbg->bp[1], 1);
1323         set_debugreg(dbg->bp[2], 2);
1324         set_debugreg(dbg->bp[3], 3);
1325
1326         if (dbg->singlestep) {
1327                 unsigned long flags;
1328
1329                 flags = vmcs_readl(GUEST_RFLAGS);
1330                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1331                 vmcs_writel(GUEST_RFLAGS, flags);
1332         }
1333 }
1334
1335 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1336                                   int vec, u32 err_code)
1337 {
1338         if (!vcpu->rmode.active)
1339                 return 0;
1340
1341         if (vec == GP_VECTOR && err_code == 0)
1342                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1343                         return 1;
1344         return 0;
1345 }
1346
1347 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1348 {
1349         u32 intr_info, error_code;
1350         unsigned long cr2, rip;
1351         u32 vect_info;
1352         enum emulation_result er;
1353         int r;
1354
1355         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1356         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1357
1358         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1359                                                 !is_page_fault(intr_info)) {
1360                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1361                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1362         }
1363
1364         if (is_external_interrupt(vect_info)) {
1365                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1366                 set_bit(irq, vcpu->irq_pending);
1367                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1368         }
1369
1370         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1371                 asm ("int $2");
1372                 return 1;
1373         }
1374         error_code = 0;
1375         rip = vmcs_readl(GUEST_RIP);
1376         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1377                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1378         if (is_page_fault(intr_info)) {
1379                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1380
1381                 spin_lock(&vcpu->kvm->lock);
1382                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1383                 if (r < 0) {
1384                         spin_unlock(&vcpu->kvm->lock);
1385                         return r;
1386                 }
1387                 if (!r) {
1388                         spin_unlock(&vcpu->kvm->lock);
1389                         return 1;
1390                 }
1391
1392                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1393                 spin_unlock(&vcpu->kvm->lock);
1394
1395                 switch (er) {
1396                 case EMULATE_DONE:
1397                         return 1;
1398                 case EMULATE_DO_MMIO:
1399                         ++vcpu->stat.mmio_exits;
1400                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1401                         return 0;
1402                  case EMULATE_FAIL:
1403                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1404                         break;
1405                 default:
1406                         BUG();
1407                 }
1408         }
1409
1410         if (vcpu->rmode.active &&
1411             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1412                                                                 error_code))
1413                 return 1;
1414
1415         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1416                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1417                 return 0;
1418         }
1419         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1420         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1421         kvm_run->ex.error_code = error_code;
1422         return 0;
1423 }
1424
1425 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1426                                      struct kvm_run *kvm_run)
1427 {
1428         ++vcpu->stat.irq_exits;
1429         return 1;
1430 }
1431
1432 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1433 {
1434         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1435         return 0;
1436 }
1437
1438 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1439 {
1440         u64 inst;
1441         gva_t rip;
1442         int countr_size;
1443         int i, n;
1444
1445         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1446                 countr_size = 2;
1447         } else {
1448                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1449
1450                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1451                               (cs_ar & AR_DB_MASK) ? 4: 2;
1452         }
1453
1454         rip =  vmcs_readl(GUEST_RIP);
1455         if (countr_size != 8)
1456                 rip += vmcs_readl(GUEST_CS_BASE);
1457
1458         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1459
1460         for (i = 0; i < n; i++) {
1461                 switch (((u8*)&inst)[i]) {
1462                 case 0xf0:
1463                 case 0xf2:
1464                 case 0xf3:
1465                 case 0x2e:
1466                 case 0x36:
1467                 case 0x3e:
1468                 case 0x26:
1469                 case 0x64:
1470                 case 0x65:
1471                 case 0x66:
1472                         break;
1473                 case 0x67:
1474                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1475                 default:
1476                         goto done;
1477                 }
1478         }
1479         return 0;
1480 done:
1481         countr_size *= 8;
1482         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1483         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1484         return 1;
1485 }
1486
1487 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1488 {
1489         u64 exit_qualification;
1490         int size, down, in, string, rep;
1491         unsigned port;
1492         unsigned long count;
1493         gva_t address;
1494
1495         ++vcpu->stat.io_exits;
1496         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1497         in = (exit_qualification & 8) != 0;
1498         size = (exit_qualification & 7) + 1;
1499         string = (exit_qualification & 16) != 0;
1500         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1501         count = 1;
1502         rep = (exit_qualification & 32) != 0;
1503         port = exit_qualification >> 16;
1504         address = 0;
1505         if (string) {
1506                 if (rep && !get_io_count(vcpu, &count))
1507                         return 1;
1508                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1509         }
1510         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1511                              address, rep, port);
1512 }
1513
1514 static void
1515 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1516 {
1517         /*
1518          * Patch in the VMCALL instruction:
1519          */
1520         hypercall[0] = 0x0f;
1521         hypercall[1] = 0x01;
1522         hypercall[2] = 0xc1;
1523         hypercall[3] = 0xc3;
1524 }
1525
1526 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1527 {
1528         u64 exit_qualification;
1529         int cr;
1530         int reg;
1531
1532         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1533         cr = exit_qualification & 15;
1534         reg = (exit_qualification >> 8) & 15;
1535         switch ((exit_qualification >> 4) & 3) {
1536         case 0: /* mov to cr */
1537                 switch (cr) {
1538                 case 0:
1539                         vcpu_load_rsp_rip(vcpu);
1540                         set_cr0(vcpu, vcpu->regs[reg]);
1541                         skip_emulated_instruction(vcpu);
1542                         return 1;
1543                 case 3:
1544                         vcpu_load_rsp_rip(vcpu);
1545                         set_cr3(vcpu, vcpu->regs[reg]);
1546                         skip_emulated_instruction(vcpu);
1547                         return 1;
1548                 case 4:
1549                         vcpu_load_rsp_rip(vcpu);
1550                         set_cr4(vcpu, vcpu->regs[reg]);
1551                         skip_emulated_instruction(vcpu);
1552                         return 1;
1553                 case 8:
1554                         vcpu_load_rsp_rip(vcpu);
1555                         set_cr8(vcpu, vcpu->regs[reg]);
1556                         skip_emulated_instruction(vcpu);
1557                         return 1;
1558                 };
1559                 break;
1560         case 1: /*mov from cr*/
1561                 switch (cr) {
1562                 case 3:
1563                         vcpu_load_rsp_rip(vcpu);
1564                         vcpu->regs[reg] = vcpu->cr3;
1565                         vcpu_put_rsp_rip(vcpu);
1566                         skip_emulated_instruction(vcpu);
1567                         return 1;
1568                 case 8:
1569                         printk(KERN_DEBUG "handle_cr: read CR8 "
1570                                "cpu erratum AA15\n");
1571                         vcpu_load_rsp_rip(vcpu);
1572                         vcpu->regs[reg] = vcpu->cr8;
1573                         vcpu_put_rsp_rip(vcpu);
1574                         skip_emulated_instruction(vcpu);
1575                         return 1;
1576                 }
1577                 break;
1578         case 3: /* lmsw */
1579                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1580
1581                 skip_emulated_instruction(vcpu);
1582                 return 1;
1583         default:
1584                 break;
1585         }
1586         kvm_run->exit_reason = 0;
1587         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1588                (int)(exit_qualification >> 4) & 3, cr);
1589         return 0;
1590 }
1591
1592 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1593 {
1594         u64 exit_qualification;
1595         unsigned long val;
1596         int dr, reg;
1597
1598         /*
1599          * FIXME: this code assumes the host is debugging the guest.
1600          *        need to deal with guest debugging itself too.
1601          */
1602         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1603         dr = exit_qualification & 7;
1604         reg = (exit_qualification >> 8) & 15;
1605         vcpu_load_rsp_rip(vcpu);
1606         if (exit_qualification & 16) {
1607                 /* mov from dr */
1608                 switch (dr) {
1609                 case 6:
1610                         val = 0xffff0ff0;
1611                         break;
1612                 case 7:
1613                         val = 0x400;
1614                         break;
1615                 default:
1616                         val = 0;
1617                 }
1618                 vcpu->regs[reg] = val;
1619         } else {
1620                 /* mov to dr */
1621         }
1622         vcpu_put_rsp_rip(vcpu);
1623         skip_emulated_instruction(vcpu);
1624         return 1;
1625 }
1626
1627 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1628 {
1629         kvm_emulate_cpuid(vcpu);
1630         return 1;
1631 }
1632
1633 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1634 {
1635         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1636         u64 data;
1637
1638         if (vmx_get_msr(vcpu, ecx, &data)) {
1639                 vmx_inject_gp(vcpu, 0);
1640                 return 1;
1641         }
1642
1643         /* FIXME: handling of bits 32:63 of rax, rdx */
1644         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1645         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1646         skip_emulated_instruction(vcpu);
1647         return 1;
1648 }
1649
1650 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1651 {
1652         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1653         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1654                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1655
1656         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1657                 vmx_inject_gp(vcpu, 0);
1658                 return 1;
1659         }
1660
1661         skip_emulated_instruction(vcpu);
1662         return 1;
1663 }
1664
1665 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1666                               struct kvm_run *kvm_run)
1667 {
1668         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1669         kvm_run->cr8 = vcpu->cr8;
1670         kvm_run->apic_base = vcpu->apic_base;
1671         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1672                                                   vcpu->irq_summary == 0);
1673 }
1674
1675 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1676                                    struct kvm_run *kvm_run)
1677 {
1678         /*
1679          * If the user space waits to inject interrupts, exit as soon as
1680          * possible
1681          */
1682         if (kvm_run->request_interrupt_window &&
1683             !vcpu->irq_summary) {
1684                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1685                 ++vcpu->stat.irq_window_exits;
1686                 return 0;
1687         }
1688         return 1;
1689 }
1690
1691 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1692 {
1693         skip_emulated_instruction(vcpu);
1694         if (vcpu->irq_summary)
1695                 return 1;
1696
1697         kvm_run->exit_reason = KVM_EXIT_HLT;
1698         ++vcpu->stat.halt_exits;
1699         return 0;
1700 }
1701
1702 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1703 {
1704         skip_emulated_instruction(vcpu);
1705         return kvm_hypercall(vcpu, kvm_run);
1706 }
1707
1708 /*
1709  * The exit handlers return 1 if the exit was handled fully and guest execution
1710  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1711  * to be done to userspace and return 0.
1712  */
1713 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1714                                       struct kvm_run *kvm_run) = {
1715         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1716         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1717         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1718         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1719         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1720         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1721         [EXIT_REASON_CPUID]                   = handle_cpuid,
1722         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1723         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1724         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1725         [EXIT_REASON_HLT]                     = handle_halt,
1726         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1727 };
1728
1729 static const int kvm_vmx_max_exit_handlers =
1730         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1731
1732 /*
1733  * The guest has exited.  See if we can fix it or if we need userspace
1734  * assistance.
1735  */
1736 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1737 {
1738         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1739         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1740
1741         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1742                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1743                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1744                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1745         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1746         if (exit_reason < kvm_vmx_max_exit_handlers
1747             && kvm_vmx_exit_handlers[exit_reason])
1748                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1749         else {
1750                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1751                 kvm_run->hw.hardware_exit_reason = exit_reason;
1752         }
1753         return 0;
1754 }
1755
1756 /*
1757  * Check if userspace requested an interrupt window, and that the
1758  * interrupt window is open.
1759  *
1760  * No need to exit to userspace if we already have an interrupt queued.
1761  */
1762 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1763                                           struct kvm_run *kvm_run)
1764 {
1765         return (!vcpu->irq_summary &&
1766                 kvm_run->request_interrupt_window &&
1767                 vcpu->interrupt_window_open &&
1768                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1769 }
1770
1771 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1772 {
1773         u8 fail;
1774         u16 fs_sel, gs_sel, ldt_sel;
1775         int fs_gs_ldt_reload_needed;
1776         int r;
1777
1778 again:
1779         /*
1780          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1781          * allow segment selectors with cpl > 0 or ti == 1.
1782          */
1783         fs_sel = read_fs();
1784         gs_sel = read_gs();
1785         ldt_sel = read_ldt();
1786         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1787         if (!fs_gs_ldt_reload_needed) {
1788                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1789                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1790         } else {
1791                 vmcs_write16(HOST_FS_SELECTOR, 0);
1792                 vmcs_write16(HOST_GS_SELECTOR, 0);
1793         }
1794
1795 #ifdef CONFIG_X86_64
1796         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1797         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1798 #else
1799         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1800         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1801 #endif
1802
1803         if (!vcpu->mmio_read_completed)
1804                 do_interrupt_requests(vcpu, kvm_run);
1805
1806         if (vcpu->guest_debug.enabled)
1807                 kvm_guest_debug_pre(vcpu);
1808
1809         fx_save(vcpu->host_fx_image);
1810         fx_restore(vcpu->guest_fx_image);
1811
1812 #ifdef CONFIG_X86_64
1813         if (is_long_mode(vcpu)) {
1814                 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1815                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1816         }
1817 #endif
1818
1819         asm (
1820                 /* Store host registers */
1821                 "pushf \n\t"
1822 #ifdef CONFIG_X86_64
1823                 "push %%rax; push %%rbx; push %%rdx;"
1824                 "push %%rsi; push %%rdi; push %%rbp;"
1825                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1826                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1827                 "push %%rcx \n\t"
1828                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1829 #else
1830                 "pusha; push %%ecx \n\t"
1831                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1832 #endif
1833                 /* Check if vmlaunch of vmresume is needed */
1834                 "cmp $0, %1 \n\t"
1835                 /* Load guest registers.  Don't clobber flags. */
1836 #ifdef CONFIG_X86_64
1837                 "mov %c[cr2](%3), %%rax \n\t"
1838                 "mov %%rax, %%cr2 \n\t"
1839                 "mov %c[rax](%3), %%rax \n\t"
1840                 "mov %c[rbx](%3), %%rbx \n\t"
1841                 "mov %c[rdx](%3), %%rdx \n\t"
1842                 "mov %c[rsi](%3), %%rsi \n\t"
1843                 "mov %c[rdi](%3), %%rdi \n\t"
1844                 "mov %c[rbp](%3), %%rbp \n\t"
1845                 "mov %c[r8](%3),  %%r8  \n\t"
1846                 "mov %c[r9](%3),  %%r9  \n\t"
1847                 "mov %c[r10](%3), %%r10 \n\t"
1848                 "mov %c[r11](%3), %%r11 \n\t"
1849                 "mov %c[r12](%3), %%r12 \n\t"
1850                 "mov %c[r13](%3), %%r13 \n\t"
1851                 "mov %c[r14](%3), %%r14 \n\t"
1852                 "mov %c[r15](%3), %%r15 \n\t"
1853                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1854 #else
1855                 "mov %c[cr2](%3), %%eax \n\t"
1856                 "mov %%eax,   %%cr2 \n\t"
1857                 "mov %c[rax](%3), %%eax \n\t"
1858                 "mov %c[rbx](%3), %%ebx \n\t"
1859                 "mov %c[rdx](%3), %%edx \n\t"
1860                 "mov %c[rsi](%3), %%esi \n\t"
1861                 "mov %c[rdi](%3), %%edi \n\t"
1862                 "mov %c[rbp](%3), %%ebp \n\t"
1863                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1864 #endif
1865                 /* Enter guest mode */
1866                 "jne launched \n\t"
1867                 ASM_VMX_VMLAUNCH "\n\t"
1868                 "jmp kvm_vmx_return \n\t"
1869                 "launched: " ASM_VMX_VMRESUME "\n\t"
1870                 ".globl kvm_vmx_return \n\t"
1871                 "kvm_vmx_return: "
1872                 /* Save guest registers, load host registers, keep flags */
1873 #ifdef CONFIG_X86_64
1874                 "xchg %3,     (%%rsp) \n\t"
1875                 "mov %%rax, %c[rax](%3) \n\t"
1876                 "mov %%rbx, %c[rbx](%3) \n\t"
1877                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1878                 "mov %%rdx, %c[rdx](%3) \n\t"
1879                 "mov %%rsi, %c[rsi](%3) \n\t"
1880                 "mov %%rdi, %c[rdi](%3) \n\t"
1881                 "mov %%rbp, %c[rbp](%3) \n\t"
1882                 "mov %%r8,  %c[r8](%3) \n\t"
1883                 "mov %%r9,  %c[r9](%3) \n\t"
1884                 "mov %%r10, %c[r10](%3) \n\t"
1885                 "mov %%r11, %c[r11](%3) \n\t"
1886                 "mov %%r12, %c[r12](%3) \n\t"
1887                 "mov %%r13, %c[r13](%3) \n\t"
1888                 "mov %%r14, %c[r14](%3) \n\t"
1889                 "mov %%r15, %c[r15](%3) \n\t"
1890                 "mov %%cr2, %%rax   \n\t"
1891                 "mov %%rax, %c[cr2](%3) \n\t"
1892                 "mov (%%rsp), %3 \n\t"
1893
1894                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1895                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1896                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1897                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1898 #else
1899                 "xchg %3, (%%esp) \n\t"
1900                 "mov %%eax, %c[rax](%3) \n\t"
1901                 "mov %%ebx, %c[rbx](%3) \n\t"
1902                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1903                 "mov %%edx, %c[rdx](%3) \n\t"
1904                 "mov %%esi, %c[rsi](%3) \n\t"
1905                 "mov %%edi, %c[rdi](%3) \n\t"
1906                 "mov %%ebp, %c[rbp](%3) \n\t"
1907                 "mov %%cr2, %%eax  \n\t"
1908                 "mov %%eax, %c[cr2](%3) \n\t"
1909                 "mov (%%esp), %3 \n\t"
1910
1911                 "pop %%ecx; popa \n\t"
1912 #endif
1913                 "setbe %0 \n\t"
1914                 "popf \n\t"
1915               : "=q" (fail)
1916               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1917                 "c"(vcpu),
1918                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1919                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1920                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1921                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1922                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1923                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1924                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1925 #ifdef CONFIG_X86_64
1926                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1927                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1928                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1929                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1930                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1931                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1932                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1933                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1934 #endif
1935                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1936               : "cc", "memory" );
1937
1938         /*
1939          * Reload segment selectors ASAP. (it's needed for a functional
1940          * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1941          * relies on having 0 in %gs for the CPU PDA to work.)
1942          */
1943         if (fs_gs_ldt_reload_needed) {
1944                 load_ldt(ldt_sel);
1945                 load_fs(fs_sel);
1946                 /*
1947                  * If we have to reload gs, we must take care to
1948                  * preserve our gs base.
1949                  */
1950                 local_irq_disable();
1951                 load_gs(gs_sel);
1952 #ifdef CONFIG_X86_64
1953                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1954 #endif
1955                 local_irq_enable();
1956
1957                 reload_tss();
1958         }
1959         ++vcpu->stat.exits;
1960
1961 #ifdef CONFIG_X86_64
1962         if (is_long_mode(vcpu)) {
1963                 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1964                 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1965         }
1966 #endif
1967
1968         fx_save(vcpu->guest_fx_image);
1969         fx_restore(vcpu->host_fx_image);
1970         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1971
1972         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1973
1974         if (fail) {
1975                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1976                 kvm_run->fail_entry.hardware_entry_failure_reason
1977                         = vmcs_read32(VM_INSTRUCTION_ERROR);
1978                 r = 0;
1979         } else {
1980                 /*
1981                  * Profile KVM exit RIPs:
1982                  */
1983                 if (unlikely(prof_on == KVM_PROFILING))
1984                         profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1985
1986                 vcpu->launched = 1;
1987                 r = kvm_handle_exit(kvm_run, vcpu);
1988                 if (r > 0) {
1989                         /* Give scheduler a change to reschedule. */
1990                         if (signal_pending(current)) {
1991                                 ++vcpu->stat.signal_exits;
1992                                 post_kvm_run_save(vcpu, kvm_run);
1993                                 kvm_run->exit_reason = KVM_EXIT_INTR;
1994                                 return -EINTR;
1995                         }
1996
1997                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1998                                 ++vcpu->stat.request_irq_exits;
1999                                 post_kvm_run_save(vcpu, kvm_run);
2000                                 kvm_run->exit_reason = KVM_EXIT_INTR;
2001                                 return -EINTR;
2002                         }
2003
2004                         kvm_resched(vcpu);
2005                         goto again;
2006                 }
2007         }
2008
2009         post_kvm_run_save(vcpu, kvm_run);
2010         return r;
2011 }
2012
2013 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2014 {
2015         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2016 }
2017
2018 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2019                                   unsigned long addr,
2020                                   u32 err_code)
2021 {
2022         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2023
2024         ++vcpu->stat.pf_guest;
2025
2026         if (is_page_fault(vect_info)) {
2027                 printk(KERN_DEBUG "inject_page_fault: "
2028                        "double fault 0x%lx @ 0x%lx\n",
2029                        addr, vmcs_readl(GUEST_RIP));
2030                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2031                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2032                              DF_VECTOR |
2033                              INTR_TYPE_EXCEPTION |
2034                              INTR_INFO_DELIEVER_CODE_MASK |
2035                              INTR_INFO_VALID_MASK);
2036                 return;
2037         }
2038         vcpu->cr2 = addr;
2039         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2040         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2041                      PF_VECTOR |
2042                      INTR_TYPE_EXCEPTION |
2043                      INTR_INFO_DELIEVER_CODE_MASK |
2044                      INTR_INFO_VALID_MASK);
2045
2046 }
2047
2048 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2049 {
2050         if (vcpu->vmcs) {
2051                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2052                 free_vmcs(vcpu->vmcs);
2053                 vcpu->vmcs = NULL;
2054         }
2055 }
2056
2057 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2058 {
2059         vmx_free_vmcs(vcpu);
2060 }
2061
2062 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2063 {
2064         struct vmcs *vmcs;
2065
2066         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2067         if (!vcpu->guest_msrs)
2068                 return -ENOMEM;
2069
2070         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2071         if (!vcpu->host_msrs)
2072                 goto out_free_guest_msrs;
2073
2074         vmcs = alloc_vmcs();
2075         if (!vmcs)
2076                 goto out_free_msrs;
2077
2078         vmcs_clear(vmcs);
2079         vcpu->vmcs = vmcs;
2080         vcpu->launched = 0;
2081
2082         return 0;
2083
2084 out_free_msrs:
2085         kfree(vcpu->host_msrs);
2086         vcpu->host_msrs = NULL;
2087
2088 out_free_guest_msrs:
2089         kfree(vcpu->guest_msrs);
2090         vcpu->guest_msrs = NULL;
2091
2092         return -ENOMEM;
2093 }
2094
2095 static struct kvm_arch_ops vmx_arch_ops = {
2096         .cpu_has_kvm_support = cpu_has_kvm_support,
2097         .disabled_by_bios = vmx_disabled_by_bios,
2098         .hardware_setup = hardware_setup,
2099         .hardware_unsetup = hardware_unsetup,
2100         .hardware_enable = hardware_enable,
2101         .hardware_disable = hardware_disable,
2102
2103         .vcpu_create = vmx_create_vcpu,
2104         .vcpu_free = vmx_free_vcpu,
2105
2106         .vcpu_load = vmx_vcpu_load,
2107         .vcpu_put = vmx_vcpu_put,
2108         .vcpu_decache = vmx_vcpu_decache,
2109
2110         .set_guest_debug = set_guest_debug,
2111         .get_msr = vmx_get_msr,
2112         .set_msr = vmx_set_msr,
2113         .get_segment_base = vmx_get_segment_base,
2114         .get_segment = vmx_get_segment,
2115         .set_segment = vmx_set_segment,
2116         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2117         .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2118         .set_cr0 = vmx_set_cr0,
2119         .set_cr3 = vmx_set_cr3,
2120         .set_cr4 = vmx_set_cr4,
2121 #ifdef CONFIG_X86_64
2122         .set_efer = vmx_set_efer,
2123 #endif
2124         .get_idt = vmx_get_idt,
2125         .set_idt = vmx_set_idt,
2126         .get_gdt = vmx_get_gdt,
2127         .set_gdt = vmx_set_gdt,
2128         .cache_regs = vcpu_load_rsp_rip,
2129         .decache_regs = vcpu_put_rsp_rip,
2130         .get_rflags = vmx_get_rflags,
2131         .set_rflags = vmx_set_rflags,
2132
2133         .tlb_flush = vmx_flush_tlb,
2134         .inject_page_fault = vmx_inject_page_fault,
2135
2136         .inject_gp = vmx_inject_gp,
2137
2138         .run = vmx_vcpu_run,
2139         .skip_emulated_instruction = skip_emulated_instruction,
2140         .vcpu_setup = vmx_vcpu_setup,
2141         .patch_hypercall = vmx_patch_hypercall,
2142 };
2143
2144 static int __init vmx_init(void)
2145 {
2146         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2147 }
2148
2149 static void __exit vmx_exit(void)
2150 {
2151         kvm_exit_arch();
2152 }
2153
2154 module_init(vmx_init)
2155 module_exit(vmx_exit)