[PATCH] KVM: Add missing include
[powerpc.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29 #define MSR_IA32_FEATURE_CONTROL                0x03a
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef __x86_64__
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44         int size;
45         int order;
46         u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg)                                  \
50         [VCPU_SREG_##seg] = {                                   \
51                 .selector = GUEST_##seg##_SELECTOR,             \
52                 .base = GUEST_##seg##_BASE,                     \
53                 .limit = GUEST_##seg##_LIMIT,                   \
54                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
55         }
56
57 static struct kvm_vmx_segment_field {
58         unsigned selector;
59         unsigned base;
60         unsigned limit;
61         unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63         VMX_SEGMENT_FIELD(CS),
64         VMX_SEGMENT_FIELD(DS),
65         VMX_SEGMENT_FIELD(ES),
66         VMX_SEGMENT_FIELD(FS),
67         VMX_SEGMENT_FIELD(GS),
68         VMX_SEGMENT_FIELD(SS),
69         VMX_SEGMENT_FIELD(TR),
70         VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 static const u32 vmx_msr_index[] = {
74 #ifdef __x86_64__
75         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77         MSR_EFER, MSR_K6_STAR,
78 };
79 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
80
81 struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr);
82
83 static inline int is_page_fault(u32 intr_info)
84 {
85         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
86                              INTR_INFO_VALID_MASK)) ==
87                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
88 }
89
90 static inline int is_external_interrupt(u32 intr_info)
91 {
92         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
93                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
94 }
95
96 static void vmcs_clear(struct vmcs *vmcs)
97 {
98         u64 phys_addr = __pa(vmcs);
99         u8 error;
100
101         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
102                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
103                       : "cc", "memory");
104         if (error)
105                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
106                        vmcs, phys_addr);
107 }
108
109 static void __vcpu_clear(void *arg)
110 {
111         struct kvm_vcpu *vcpu = arg;
112         int cpu = smp_processor_id();
113
114         if (vcpu->cpu == cpu)
115                 vmcs_clear(vcpu->vmcs);
116         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
117                 per_cpu(current_vmcs, cpu) = NULL;
118 }
119
120 static unsigned long vmcs_readl(unsigned long field)
121 {
122         unsigned long value;
123
124         asm volatile (ASM_VMX_VMREAD_RDX_RAX
125                       : "=a"(value) : "d"(field) : "cc");
126         return value;
127 }
128
129 static u16 vmcs_read16(unsigned long field)
130 {
131         return vmcs_readl(field);
132 }
133
134 static u32 vmcs_read32(unsigned long field)
135 {
136         return vmcs_readl(field);
137 }
138
139 static u64 vmcs_read64(unsigned long field)
140 {
141 #ifdef __x86_64__
142         return vmcs_readl(field);
143 #else
144         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
145 #endif
146 }
147
148 static void vmcs_writel(unsigned long field, unsigned long value)
149 {
150         u8 error;
151
152         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
153                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
154         if (error)
155                 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
156                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
157 }
158
159 static void vmcs_write16(unsigned long field, u16 value)
160 {
161         vmcs_writel(field, value);
162 }
163
164 static void vmcs_write32(unsigned long field, u32 value)
165 {
166         vmcs_writel(field, value);
167 }
168
169 static void vmcs_write64(unsigned long field, u64 value)
170 {
171 #ifdef __x86_64__
172         vmcs_writel(field, value);
173 #else
174         vmcs_writel(field, value);
175         asm volatile ("");
176         vmcs_writel(field+1, value >> 32);
177 #endif
178 }
179
180 /*
181  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
182  * vcpu mutex is already taken.
183  */
184 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
185 {
186         u64 phys_addr = __pa(vcpu->vmcs);
187         int cpu;
188
189         cpu = get_cpu();
190
191         if (vcpu->cpu != cpu) {
192                 smp_call_function(__vcpu_clear, vcpu, 0, 1);
193                 vcpu->launched = 0;
194         }
195
196         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
197                 u8 error;
198
199                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
200                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
201                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
202                               : "cc");
203                 if (error)
204                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
205                                vcpu->vmcs, phys_addr);
206         }
207
208         if (vcpu->cpu != cpu) {
209                 struct descriptor_table dt;
210                 unsigned long sysenter_esp;
211
212                 vcpu->cpu = cpu;
213                 /*
214                  * Linux uses per-cpu TSS and GDT, so set these when switching
215                  * processors.
216                  */
217                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
218                 get_gdt(&dt);
219                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
220
221                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
222                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
223         }
224         return vcpu;
225 }
226
227 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
228 {
229         put_cpu();
230 }
231
232 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
233 {
234         return vmcs_readl(GUEST_RFLAGS);
235 }
236
237 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
238 {
239         vmcs_writel(GUEST_RFLAGS, rflags);
240 }
241
242 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
243 {
244         unsigned long rip;
245         u32 interruptibility;
246
247         rip = vmcs_readl(GUEST_RIP);
248         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
249         vmcs_writel(GUEST_RIP, rip);
250
251         /*
252          * We emulated an instruction, so temporary interrupt blocking
253          * should be removed, if set.
254          */
255         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
256         if (interruptibility & 3)
257                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
258                              interruptibility & ~3);
259 }
260
261 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
262 {
263         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
264                vmcs_readl(GUEST_RIP));
265         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
266         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
267                      GP_VECTOR |
268                      INTR_TYPE_EXCEPTION |
269                      INTR_INFO_DELIEVER_CODE_MASK |
270                      INTR_INFO_VALID_MASK);
271 }
272
273 /*
274  * reads and returns guest's timestamp counter "register"
275  * guest_tsc = host_tsc + tsc_offset    -- 21.3
276  */
277 static u64 guest_read_tsc(void)
278 {
279         u64 host_tsc, tsc_offset;
280
281         rdtscll(host_tsc);
282         tsc_offset = vmcs_read64(TSC_OFFSET);
283         return host_tsc + tsc_offset;
284 }
285
286 /*
287  * writes 'guest_tsc' into guest's timestamp counter "register"
288  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
289  */
290 static void guest_write_tsc(u64 guest_tsc)
291 {
292         u64 host_tsc;
293
294         rdtscll(host_tsc);
295         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
296 }
297
298 static void reload_tss(void)
299 {
300 #ifndef __x86_64__
301
302         /*
303          * VT restores TR but not its size.  Useless.
304          */
305         struct descriptor_table gdt;
306         struct segment_descriptor *descs;
307
308         get_gdt(&gdt);
309         descs = (void *)gdt.base;
310         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
311         load_TR_desc();
312 #endif
313 }
314
315 /*
316  * Reads an msr value (of 'msr_index') into 'pdata'.
317  * Returns 0 on success, non-0 otherwise.
318  * Assumes vcpu_load() was already called.
319  */
320 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
321 {
322         u64 data;
323         struct vmx_msr_entry *msr;
324
325         if (!pdata) {
326                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
327                 return -EINVAL;
328         }
329
330         switch (msr_index) {
331 #ifdef __x86_64__
332         case MSR_FS_BASE:
333                 data = vmcs_readl(GUEST_FS_BASE);
334                 break;
335         case MSR_GS_BASE:
336                 data = vmcs_readl(GUEST_GS_BASE);
337                 break;
338         case MSR_EFER:
339                 data = vcpu->shadow_efer;
340                 break;
341 #endif
342         case MSR_IA32_TIME_STAMP_COUNTER:
343                 data = guest_read_tsc();
344                 break;
345         case MSR_IA32_SYSENTER_CS:
346                 data = vmcs_read32(GUEST_SYSENTER_CS);
347                 break;
348         case MSR_IA32_SYSENTER_EIP:
349                 data = vmcs_read32(GUEST_SYSENTER_EIP);
350                 break;
351         case MSR_IA32_SYSENTER_ESP:
352                 data = vmcs_read32(GUEST_SYSENTER_ESP);
353                 break;
354         case MSR_IA32_MC0_CTL:
355         case MSR_IA32_MCG_STATUS:
356         case MSR_IA32_MCG_CAP:
357         case MSR_IA32_MC0_MISC:
358         case MSR_IA32_MC0_MISC+4:
359         case MSR_IA32_MC0_MISC+8:
360         case MSR_IA32_MC0_MISC+12:
361         case MSR_IA32_MC0_MISC+16:
362         case MSR_IA32_UCODE_REV:
363                 /* MTRR registers */
364         case 0xfe:
365         case 0x200 ... 0x2ff:
366                 data = 0;
367                 break;
368         case MSR_IA32_APICBASE:
369                 data = vcpu->apic_base;
370                 break;
371         default:
372                 msr = find_msr_entry(vcpu, msr_index);
373                 if (!msr) {
374                         printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
375                         return 1;
376                 }
377                 data = msr->data;
378                 break;
379         }
380
381         *pdata = data;
382         return 0;
383 }
384
385 /*
386  * Writes msr value into into the appropriate "register".
387  * Returns 0 on success, non-0 otherwise.
388  * Assumes vcpu_load() was already called.
389  */
390 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
391 {
392         struct vmx_msr_entry *msr;
393         switch (msr_index) {
394 #ifdef __x86_64__
395         case MSR_FS_BASE:
396                 vmcs_writel(GUEST_FS_BASE, data);
397                 break;
398         case MSR_GS_BASE:
399                 vmcs_writel(GUEST_GS_BASE, data);
400                 break;
401 #endif
402         case MSR_IA32_SYSENTER_CS:
403                 vmcs_write32(GUEST_SYSENTER_CS, data);
404                 break;
405         case MSR_IA32_SYSENTER_EIP:
406                 vmcs_write32(GUEST_SYSENTER_EIP, data);
407                 break;
408         case MSR_IA32_SYSENTER_ESP:
409                 vmcs_write32(GUEST_SYSENTER_ESP, data);
410                 break;
411 #ifdef __x86_64
412         case MSR_EFER:
413                 set_efer(vcpu, data);
414                 break;
415         case MSR_IA32_MC0_STATUS:
416                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
417                             , __FUNCTION__, data);
418                 break;
419 #endif
420         case MSR_IA32_TIME_STAMP_COUNTER: {
421                 guest_write_tsc(data);
422                 break;
423         }
424         case MSR_IA32_UCODE_REV:
425         case MSR_IA32_UCODE_WRITE:
426         case 0x200 ... 0x2ff: /* MTRRs */
427                 break;
428         case MSR_IA32_APICBASE:
429                 vcpu->apic_base = data;
430                 break;
431         default:
432                 msr = find_msr_entry(vcpu, msr_index);
433                 if (!msr) {
434                         printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
435                         return 1;
436                 }
437                 msr->data = data;
438                 break;
439         }
440
441         return 0;
442 }
443
444 /*
445  * Sync the rsp and rip registers into the vcpu structure.  This allows
446  * registers to be accessed by indexing vcpu->regs.
447  */
448 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
449 {
450         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
451         vcpu->rip = vmcs_readl(GUEST_RIP);
452 }
453
454 /*
455  * Syncs rsp and rip back into the vmcs.  Should be called after possible
456  * modification.
457  */
458 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
459 {
460         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
461         vmcs_writel(GUEST_RIP, vcpu->rip);
462 }
463
464 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
465 {
466         unsigned long dr7 = 0x400;
467         u32 exception_bitmap;
468         int old_singlestep;
469
470         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
471         old_singlestep = vcpu->guest_debug.singlestep;
472
473         vcpu->guest_debug.enabled = dbg->enabled;
474         if (vcpu->guest_debug.enabled) {
475                 int i;
476
477                 dr7 |= 0x200;  /* exact */
478                 for (i = 0; i < 4; ++i) {
479                         if (!dbg->breakpoints[i].enabled)
480                                 continue;
481                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
482                         dr7 |= 2 << (i*2);    /* global enable */
483                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
484                 }
485
486                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
487
488                 vcpu->guest_debug.singlestep = dbg->singlestep;
489         } else {
490                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
491                 vcpu->guest_debug.singlestep = 0;
492         }
493
494         if (old_singlestep && !vcpu->guest_debug.singlestep) {
495                 unsigned long flags;
496
497                 flags = vmcs_readl(GUEST_RFLAGS);
498                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
499                 vmcs_writel(GUEST_RFLAGS, flags);
500         }
501
502         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
503         vmcs_writel(GUEST_DR7, dr7);
504
505         return 0;
506 }
507
508 static __init int cpu_has_kvm_support(void)
509 {
510         unsigned long ecx = cpuid_ecx(1);
511         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
512 }
513
514 static __init int vmx_disabled_by_bios(void)
515 {
516         u64 msr;
517
518         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
519         return (msr & 5) == 1; /* locked but not enabled */
520 }
521
522 static __init void hardware_enable(void *garbage)
523 {
524         int cpu = raw_smp_processor_id();
525         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
526         u64 old;
527
528         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
529         if ((old & 5) == 0)
530                 /* enable and lock */
531                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
532         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
533         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
534                       : "memory", "cc");
535 }
536
537 static void hardware_disable(void *garbage)
538 {
539         asm volatile (ASM_VMX_VMXOFF : : : "cc");
540 }
541
542 static __init void setup_vmcs_descriptor(void)
543 {
544         u32 vmx_msr_low, vmx_msr_high;
545
546         rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
547         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
548         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
549         vmcs_descriptor.revision_id = vmx_msr_low;
550 };
551
552 static struct vmcs *alloc_vmcs_cpu(int cpu)
553 {
554         int node = cpu_to_node(cpu);
555         struct page *pages;
556         struct vmcs *vmcs;
557
558         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
559         if (!pages)
560                 return NULL;
561         vmcs = page_address(pages);
562         memset(vmcs, 0, vmcs_descriptor.size);
563         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
564         return vmcs;
565 }
566
567 static struct vmcs *alloc_vmcs(void)
568 {
569         return alloc_vmcs_cpu(smp_processor_id());
570 }
571
572 static void free_vmcs(struct vmcs *vmcs)
573 {
574         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
575 }
576
577 static __exit void free_kvm_area(void)
578 {
579         int cpu;
580
581         for_each_online_cpu(cpu)
582                 free_vmcs(per_cpu(vmxarea, cpu));
583 }
584
585 extern struct vmcs *alloc_vmcs_cpu(int cpu);
586
587 static __init int alloc_kvm_area(void)
588 {
589         int cpu;
590
591         for_each_online_cpu(cpu) {
592                 struct vmcs *vmcs;
593
594                 vmcs = alloc_vmcs_cpu(cpu);
595                 if (!vmcs) {
596                         free_kvm_area();
597                         return -ENOMEM;
598                 }
599
600                 per_cpu(vmxarea, cpu) = vmcs;
601         }
602         return 0;
603 }
604
605 static __init int hardware_setup(void)
606 {
607         setup_vmcs_descriptor();
608         return alloc_kvm_area();
609 }
610
611 static __exit void hardware_unsetup(void)
612 {
613         free_kvm_area();
614 }
615
616 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
617 {
618         if (vcpu->rmode.active)
619                 vmcs_write32(EXCEPTION_BITMAP, ~0);
620         else
621                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
622 }
623
624 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
625 {
626         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
627
628         if (vmcs_readl(sf->base) == save->base) {
629                 vmcs_write16(sf->selector, save->selector);
630                 vmcs_writel(sf->base, save->base);
631                 vmcs_write32(sf->limit, save->limit);
632                 vmcs_write32(sf->ar_bytes, save->ar);
633         } else {
634                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
635                         << AR_DPL_SHIFT;
636                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
637         }
638 }
639
640 static void enter_pmode(struct kvm_vcpu *vcpu)
641 {
642         unsigned long flags;
643
644         vcpu->rmode.active = 0;
645
646         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
647         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
648         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
649
650         flags = vmcs_readl(GUEST_RFLAGS);
651         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
652         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
653         vmcs_writel(GUEST_RFLAGS, flags);
654
655         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
656                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
657
658         update_exception_bitmap(vcpu);
659
660         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
661         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
662         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
663         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
664
665         vmcs_write16(GUEST_SS_SELECTOR, 0);
666         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
667
668         vmcs_write16(GUEST_CS_SELECTOR,
669                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
670         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
671 }
672
673 static int rmode_tss_base(struct kvm* kvm)
674 {
675         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
676         return base_gfn << PAGE_SHIFT;
677 }
678
679 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
680 {
681         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
682
683         save->selector = vmcs_read16(sf->selector);
684         save->base = vmcs_readl(sf->base);
685         save->limit = vmcs_read32(sf->limit);
686         save->ar = vmcs_read32(sf->ar_bytes);
687         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
688         vmcs_write32(sf->limit, 0xffff);
689         vmcs_write32(sf->ar_bytes, 0xf3);
690 }
691
692 static void enter_rmode(struct kvm_vcpu *vcpu)
693 {
694         unsigned long flags;
695
696         vcpu->rmode.active = 1;
697
698         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
699         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
700
701         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
702         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
703
704         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
705         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
706
707         flags = vmcs_readl(GUEST_RFLAGS);
708         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
709
710         flags |= IOPL_MASK | X86_EFLAGS_VM;
711
712         vmcs_writel(GUEST_RFLAGS, flags);
713         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
714         update_exception_bitmap(vcpu);
715
716         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
717         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
718         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
719
720         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
721         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
722
723         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
724         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
725         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
726         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
727 }
728
729 #ifdef __x86_64__
730
731 static void enter_lmode(struct kvm_vcpu *vcpu)
732 {
733         u32 guest_tr_ar;
734
735         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
736         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
737                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
738                        __FUNCTION__);
739                 vmcs_write32(GUEST_TR_AR_BYTES,
740                              (guest_tr_ar & ~AR_TYPE_MASK)
741                              | AR_TYPE_BUSY_64_TSS);
742         }
743
744         vcpu->shadow_efer |= EFER_LMA;
745
746         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
747         vmcs_write32(VM_ENTRY_CONTROLS,
748                      vmcs_read32(VM_ENTRY_CONTROLS)
749                      | VM_ENTRY_CONTROLS_IA32E_MASK);
750 }
751
752 static void exit_lmode(struct kvm_vcpu *vcpu)
753 {
754         vcpu->shadow_efer &= ~EFER_LMA;
755
756         vmcs_write32(VM_ENTRY_CONTROLS,
757                      vmcs_read32(VM_ENTRY_CONTROLS)
758                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
759 }
760
761 #endif
762
763 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
766                 enter_pmode(vcpu);
767
768         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
769                 enter_rmode(vcpu);
770
771 #ifdef __x86_64__
772         if (vcpu->shadow_efer & EFER_LME) {
773                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
774                         enter_lmode(vcpu);
775                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
776                         exit_lmode(vcpu);
777         }
778 #endif
779
780         vmcs_writel(CR0_READ_SHADOW, cr0);
781         vmcs_writel(GUEST_CR0,
782                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
783         vcpu->cr0 = cr0;
784 }
785
786 /*
787  * Used when restoring the VM to avoid corrupting segment registers
788  */
789 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
790 {
791         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
792         update_exception_bitmap(vcpu);
793         vmcs_writel(CR0_READ_SHADOW, cr0);
794         vmcs_writel(GUEST_CR0,
795                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
796         vcpu->cr0 = cr0;
797 }
798
799 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
800 {
801         vmcs_writel(GUEST_CR3, cr3);
802 }
803
804 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
805 {
806         vmcs_writel(CR4_READ_SHADOW, cr4);
807         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
808                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
809         vcpu->cr4 = cr4;
810 }
811
812 #ifdef __x86_64__
813
814 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
815 {
816         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
817
818         vcpu->shadow_efer = efer;
819         if (efer & EFER_LMA) {
820                 vmcs_write32(VM_ENTRY_CONTROLS,
821                                      vmcs_read32(VM_ENTRY_CONTROLS) |
822                                      VM_ENTRY_CONTROLS_IA32E_MASK);
823                 msr->data = efer;
824
825         } else {
826                 vmcs_write32(VM_ENTRY_CONTROLS,
827                                      vmcs_read32(VM_ENTRY_CONTROLS) &
828                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
829
830                 msr->data = efer & ~EFER_LME;
831         }
832 }
833
834 #endif
835
836 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
837 {
838         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
839
840         return vmcs_readl(sf->base);
841 }
842
843 static void vmx_get_segment(struct kvm_vcpu *vcpu,
844                             struct kvm_segment *var, int seg)
845 {
846         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
847         u32 ar;
848
849         var->base = vmcs_readl(sf->base);
850         var->limit = vmcs_read32(sf->limit);
851         var->selector = vmcs_read16(sf->selector);
852         ar = vmcs_read32(sf->ar_bytes);
853         if (ar & AR_UNUSABLE_MASK)
854                 ar = 0;
855         var->type = ar & 15;
856         var->s = (ar >> 4) & 1;
857         var->dpl = (ar >> 5) & 3;
858         var->present = (ar >> 7) & 1;
859         var->avl = (ar >> 12) & 1;
860         var->l = (ar >> 13) & 1;
861         var->db = (ar >> 14) & 1;
862         var->g = (ar >> 15) & 1;
863         var->unusable = (ar >> 16) & 1;
864 }
865
866 static void vmx_set_segment(struct kvm_vcpu *vcpu,
867                             struct kvm_segment *var, int seg)
868 {
869         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
870         u32 ar;
871
872         vmcs_writel(sf->base, var->base);
873         vmcs_write32(sf->limit, var->limit);
874         vmcs_write16(sf->selector, var->selector);
875         if (var->unusable)
876                 ar = 1 << 16;
877         else {
878                 ar = var->type & 15;
879                 ar |= (var->s & 1) << 4;
880                 ar |= (var->dpl & 3) << 5;
881                 ar |= (var->present & 1) << 7;
882                 ar |= (var->avl & 1) << 12;
883                 ar |= (var->l & 1) << 13;
884                 ar |= (var->db & 1) << 14;
885                 ar |= (var->g & 1) << 15;
886         }
887         vmcs_write32(sf->ar_bytes, ar);
888 }
889
890 static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
891 {
892         return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
893 }
894
895 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
896 {
897         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
898
899         *db = (ar >> 14) & 1;
900         *l = (ar >> 13) & 1;
901 }
902
903 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
904 {
905         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
906         dt->base = vmcs_readl(GUEST_IDTR_BASE);
907 }
908
909 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
910 {
911         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
912         vmcs_writel(GUEST_IDTR_BASE, dt->base);
913 }
914
915 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
916 {
917         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
918         dt->base = vmcs_readl(GUEST_GDTR_BASE);
919 }
920
921 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
922 {
923         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
924         vmcs_writel(GUEST_GDTR_BASE, dt->base);
925 }
926
927 static int init_rmode_tss(struct kvm* kvm)
928 {
929         struct page *p1, *p2, *p3;
930         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
931         char *page;
932
933         p1 = _gfn_to_page(kvm, fn++);
934         p2 = _gfn_to_page(kvm, fn++);
935         p3 = _gfn_to_page(kvm, fn);
936
937         if (!p1 || !p2 || !p3) {
938                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
939                 return 0;
940         }
941
942         page = kmap_atomic(p1, KM_USER0);
943         memset(page, 0, PAGE_SIZE);
944         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
945         kunmap_atomic(page, KM_USER0);
946
947         page = kmap_atomic(p2, KM_USER0);
948         memset(page, 0, PAGE_SIZE);
949         kunmap_atomic(page, KM_USER0);
950
951         page = kmap_atomic(p3, KM_USER0);
952         memset(page, 0, PAGE_SIZE);
953         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
954         kunmap_atomic(page, KM_USER0);
955
956         return 1;
957 }
958
959 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
960 {
961         u32 msr_high, msr_low;
962
963         rdmsr(msr, msr_low, msr_high);
964
965         val &= msr_high;
966         val |= msr_low;
967         vmcs_write32(vmcs_field, val);
968 }
969
970 static void seg_setup(int seg)
971 {
972         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
973
974         vmcs_write16(sf->selector, 0);
975         vmcs_writel(sf->base, 0);
976         vmcs_write32(sf->limit, 0xffff);
977         vmcs_write32(sf->ar_bytes, 0x93);
978 }
979
980 /*
981  * Sets up the vmcs for emulated real mode.
982  */
983 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
984 {
985         u32 host_sysenter_cs;
986         u32 junk;
987         unsigned long a;
988         struct descriptor_table dt;
989         int i;
990         int ret = 0;
991         int nr_good_msrs;
992         extern asmlinkage void kvm_vmx_return(void);
993
994         if (!init_rmode_tss(vcpu->kvm)) {
995                 ret = -ENOMEM;
996                 goto out;
997         }
998
999         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1000         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1001         vcpu->cr8 = 0;
1002         vcpu->apic_base = 0xfee00000 |
1003                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1004                         MSR_IA32_APICBASE_ENABLE;
1005
1006         fx_init(vcpu);
1007
1008         /*
1009          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1010          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1011          */
1012         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1013         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1014         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1015         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1016
1017         seg_setup(VCPU_SREG_DS);
1018         seg_setup(VCPU_SREG_ES);
1019         seg_setup(VCPU_SREG_FS);
1020         seg_setup(VCPU_SREG_GS);
1021         seg_setup(VCPU_SREG_SS);
1022
1023         vmcs_write16(GUEST_TR_SELECTOR, 0);
1024         vmcs_writel(GUEST_TR_BASE, 0);
1025         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1026         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1027
1028         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1029         vmcs_writel(GUEST_LDTR_BASE, 0);
1030         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1031         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1032
1033         vmcs_write32(GUEST_SYSENTER_CS, 0);
1034         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1035         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1036
1037         vmcs_writel(GUEST_RFLAGS, 0x02);
1038         vmcs_writel(GUEST_RIP, 0xfff0);
1039         vmcs_writel(GUEST_RSP, 0);
1040
1041         vmcs_writel(GUEST_CR3, 0);
1042
1043         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1044         vmcs_writel(GUEST_DR7, 0x400);
1045
1046         vmcs_writel(GUEST_GDTR_BASE, 0);
1047         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1048
1049         vmcs_writel(GUEST_IDTR_BASE, 0);
1050         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1051
1052         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1053         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1054         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1055
1056         /* I/O */
1057         vmcs_write64(IO_BITMAP_A, 0);
1058         vmcs_write64(IO_BITMAP_B, 0);
1059
1060         guest_write_tsc(0);
1061
1062         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1063
1064         /* Special registers */
1065         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1066
1067         /* Control */
1068         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
1069                                PIN_BASED_VM_EXEC_CONTROL,
1070                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1071                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1072                         );
1073         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
1074                                CPU_BASED_VM_EXEC_CONTROL,
1075                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1076                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1077                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1078                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1079                                | CPU_BASED_INVDPG_EXITING
1080                                | CPU_BASED_MOV_DR_EXITING
1081                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1082                         );
1083
1084         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1085         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1086         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1087         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1088
1089         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1090         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1091         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1092
1093         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1094         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1095         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1096         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1097         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1098         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1099 #ifdef __x86_64__
1100         rdmsrl(MSR_FS_BASE, a);
1101         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1102         rdmsrl(MSR_GS_BASE, a);
1103         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1104 #else
1105         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1106         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1107 #endif
1108
1109         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1110
1111         get_idt(&dt);
1112         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1113
1114
1115         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1116
1117         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1118         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1119         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1120         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1121         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1122         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1123
1124         ret = -ENOMEM;
1125         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1126         if (!vcpu->guest_msrs)
1127                 goto out;
1128         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129         if (!vcpu->host_msrs)
1130                 goto out_free_guest_msrs;
1131
1132         for (i = 0; i < NR_VMX_MSR; ++i) {
1133                 u32 index = vmx_msr_index[i];
1134                 u32 data_low, data_high;
1135                 u64 data;
1136                 int j = vcpu->nmsrs;
1137
1138                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1139                         continue;
1140                 data = data_low | ((u64)data_high << 32);
1141                 vcpu->host_msrs[j].index = index;
1142                 vcpu->host_msrs[j].reserved = 0;
1143                 vcpu->host_msrs[j].data = data;
1144                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1145                 ++vcpu->nmsrs;
1146         }
1147         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1148
1149         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1150         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1151                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1152         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1153                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1154         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1155                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1156         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
1157                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1158         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1159         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1160         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1161
1162
1163         /* 22.2.1, 20.8.1 */
1164         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
1165                                VM_ENTRY_CONTROLS, 0);
1166         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1167
1168         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1169         vmcs_writel(TPR_THRESHOLD, 0);
1170
1171         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1172         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1173
1174         vcpu->cr0 = 0x60000010;
1175         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1176         vmx_set_cr4(vcpu, 0);
1177 #ifdef __x86_64__
1178         vmx_set_efer(vcpu, 0);
1179 #endif
1180
1181         return 0;
1182
1183 out_free_guest_msrs:
1184         kfree(vcpu->guest_msrs);
1185 out:
1186         return ret;
1187 }
1188
1189 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1190 {
1191         u16 ent[2];
1192         u16 cs;
1193         u16 ip;
1194         unsigned long flags;
1195         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1196         u16 sp =  vmcs_readl(GUEST_RSP);
1197         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1198
1199         if (sp > ss_limit || sp - 6 > sp) {
1200                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1201                             __FUNCTION__,
1202                             vmcs_readl(GUEST_RSP),
1203                             vmcs_readl(GUEST_SS_BASE),
1204                             vmcs_read32(GUEST_SS_LIMIT));
1205                 return;
1206         }
1207
1208         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1209                                                                 sizeof(ent)) {
1210                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1211                 return;
1212         }
1213
1214         flags =  vmcs_readl(GUEST_RFLAGS);
1215         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1216         ip =  vmcs_readl(GUEST_RIP);
1217
1218
1219         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1220             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1221             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1222                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1223                 return;
1224         }
1225
1226         vmcs_writel(GUEST_RFLAGS, flags &
1227                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1228         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1229         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1230         vmcs_writel(GUEST_RIP, ent[0]);
1231         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1232 }
1233
1234 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1235 {
1236         int word_index = __ffs(vcpu->irq_summary);
1237         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1238         int irq = word_index * BITS_PER_LONG + bit_index;
1239
1240         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1241         if (!vcpu->irq_pending[word_index])
1242                 clear_bit(word_index, &vcpu->irq_summary);
1243
1244         if (vcpu->rmode.active) {
1245                 inject_rmode_irq(vcpu, irq);
1246                 return;
1247         }
1248         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1249                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1250 }
1251
1252 static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1253 {
1254         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
1255             && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
1256                 /*
1257                  * Interrupts enabled, and not blocked by sti or mov ss. Good.
1258                  */
1259                 kvm_do_inject_irq(vcpu);
1260         else
1261                 /*
1262                  * Interrupts blocked.  Wait for unblock.
1263                  */
1264                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1265                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1266                              | CPU_BASED_VIRTUAL_INTR_PENDING);
1267 }
1268
1269 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1270 {
1271         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1272
1273         set_debugreg(dbg->bp[0], 0);
1274         set_debugreg(dbg->bp[1], 1);
1275         set_debugreg(dbg->bp[2], 2);
1276         set_debugreg(dbg->bp[3], 3);
1277
1278         if (dbg->singlestep) {
1279                 unsigned long flags;
1280
1281                 flags = vmcs_readl(GUEST_RFLAGS);
1282                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1283                 vmcs_writel(GUEST_RFLAGS, flags);
1284         }
1285 }
1286
1287 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1288                                   int vec, u32 err_code)
1289 {
1290         if (!vcpu->rmode.active)
1291                 return 0;
1292
1293         if (vec == GP_VECTOR && err_code == 0)
1294                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1295                         return 1;
1296         return 0;
1297 }
1298
1299 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1300 {
1301         u32 intr_info, error_code;
1302         unsigned long cr2, rip;
1303         u32 vect_info;
1304         enum emulation_result er;
1305
1306         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1307         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1308
1309         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1310                                                 !is_page_fault(intr_info)) {
1311                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1312                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1313         }
1314
1315         if (is_external_interrupt(vect_info)) {
1316                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1317                 set_bit(irq, vcpu->irq_pending);
1318                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1319         }
1320
1321         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1322                 asm ("int $2");
1323                 return 1;
1324         }
1325         error_code = 0;
1326         rip = vmcs_readl(GUEST_RIP);
1327         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1328                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1329         if (is_page_fault(intr_info)) {
1330                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1331
1332                 spin_lock(&vcpu->kvm->lock);
1333                 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1334                         spin_unlock(&vcpu->kvm->lock);
1335                         return 1;
1336                 }
1337
1338                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1339                 spin_unlock(&vcpu->kvm->lock);
1340
1341                 switch (er) {
1342                 case EMULATE_DONE:
1343                         return 1;
1344                 case EMULATE_DO_MMIO:
1345                         ++kvm_stat.mmio_exits;
1346                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1347                         return 0;
1348                  case EMULATE_FAIL:
1349                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1350                         break;
1351                 default:
1352                         BUG();
1353                 }
1354         }
1355
1356         if (vcpu->rmode.active &&
1357             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1358                                                                 error_code))
1359                 return 1;
1360
1361         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1362                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1363                 return 0;
1364         }
1365         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1366         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1367         kvm_run->ex.error_code = error_code;
1368         return 0;
1369 }
1370
1371 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1372                                      struct kvm_run *kvm_run)
1373 {
1374         ++kvm_stat.irq_exits;
1375         return 1;
1376 }
1377
1378
1379 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1380 {
1381         u64 inst;
1382         gva_t rip;
1383         int countr_size;
1384         int i, n;
1385
1386         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1387                 countr_size = 2;
1388         } else {
1389                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1390
1391                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1392                               (cs_ar & AR_DB_MASK) ? 4: 2;
1393         }
1394
1395         rip =  vmcs_readl(GUEST_RIP);
1396         if (countr_size != 8)
1397                 rip += vmcs_readl(GUEST_CS_BASE);
1398
1399         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1400
1401         for (i = 0; i < n; i++) {
1402                 switch (((u8*)&inst)[i]) {
1403                 case 0xf0:
1404                 case 0xf2:
1405                 case 0xf3:
1406                 case 0x2e:
1407                 case 0x36:
1408                 case 0x3e:
1409                 case 0x26:
1410                 case 0x64:
1411                 case 0x65:
1412                 case 0x66:
1413                         break;
1414                 case 0x67:
1415                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1416                 default:
1417                         goto done;
1418                 }
1419         }
1420         return 0;
1421 done:
1422         countr_size *= 8;
1423         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1424         return 1;
1425 }
1426
1427 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1428 {
1429         u64 exit_qualification;
1430
1431         ++kvm_stat.io_exits;
1432         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1433         kvm_run->exit_reason = KVM_EXIT_IO;
1434         if (exit_qualification & 8)
1435                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1436         else
1437                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1438         kvm_run->io.size = (exit_qualification & 7) + 1;
1439         kvm_run->io.string = (exit_qualification & 16) != 0;
1440         kvm_run->io.string_down
1441                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1442         kvm_run->io.rep = (exit_qualification & 32) != 0;
1443         kvm_run->io.port = exit_qualification >> 16;
1444         if (kvm_run->io.string) {
1445                 if (!get_io_count(vcpu, &kvm_run->io.count))
1446                         return 1;
1447                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1448         } else
1449                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1450         return 0;
1451 }
1452
1453 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1454 {
1455         u64 address = vmcs_read64(EXIT_QUALIFICATION);
1456         int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1457         spin_lock(&vcpu->kvm->lock);
1458         vcpu->mmu.inval_page(vcpu, address);
1459         spin_unlock(&vcpu->kvm->lock);
1460         vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1461         return 1;
1462 }
1463
1464 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1465 {
1466         u64 exit_qualification;
1467         int cr;
1468         int reg;
1469
1470         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1471         cr = exit_qualification & 15;
1472         reg = (exit_qualification >> 8) & 15;
1473         switch ((exit_qualification >> 4) & 3) {
1474         case 0: /* mov to cr */
1475                 switch (cr) {
1476                 case 0:
1477                         vcpu_load_rsp_rip(vcpu);
1478                         set_cr0(vcpu, vcpu->regs[reg]);
1479                         skip_emulated_instruction(vcpu);
1480                         return 1;
1481                 case 3:
1482                         vcpu_load_rsp_rip(vcpu);
1483                         set_cr3(vcpu, vcpu->regs[reg]);
1484                         skip_emulated_instruction(vcpu);
1485                         return 1;
1486                 case 4:
1487                         vcpu_load_rsp_rip(vcpu);
1488                         set_cr4(vcpu, vcpu->regs[reg]);
1489                         skip_emulated_instruction(vcpu);
1490                         return 1;
1491                 case 8:
1492                         vcpu_load_rsp_rip(vcpu);
1493                         set_cr8(vcpu, vcpu->regs[reg]);
1494                         skip_emulated_instruction(vcpu);
1495                         return 1;
1496                 };
1497                 break;
1498         case 1: /*mov from cr*/
1499                 switch (cr) {
1500                 case 3:
1501                         vcpu_load_rsp_rip(vcpu);
1502                         vcpu->regs[reg] = vcpu->cr3;
1503                         vcpu_put_rsp_rip(vcpu);
1504                         skip_emulated_instruction(vcpu);
1505                         return 1;
1506                 case 8:
1507                         printk(KERN_DEBUG "handle_cr: read CR8 "
1508                                "cpu erratum AA15\n");
1509                         vcpu_load_rsp_rip(vcpu);
1510                         vcpu->regs[reg] = vcpu->cr8;
1511                         vcpu_put_rsp_rip(vcpu);
1512                         skip_emulated_instruction(vcpu);
1513                         return 1;
1514                 }
1515                 break;
1516         case 3: /* lmsw */
1517                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1518
1519                 skip_emulated_instruction(vcpu);
1520                 return 1;
1521         default:
1522                 break;
1523         }
1524         kvm_run->exit_reason = 0;
1525         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1526                (int)(exit_qualification >> 4) & 3, cr);
1527         return 0;
1528 }
1529
1530 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1531 {
1532         u64 exit_qualification;
1533         unsigned long val;
1534         int dr, reg;
1535
1536         /*
1537          * FIXME: this code assumes the host is debugging the guest.
1538          *        need to deal with guest debugging itself too.
1539          */
1540         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1541         dr = exit_qualification & 7;
1542         reg = (exit_qualification >> 8) & 15;
1543         vcpu_load_rsp_rip(vcpu);
1544         if (exit_qualification & 16) {
1545                 /* mov from dr */
1546                 switch (dr) {
1547                 case 6:
1548                         val = 0xffff0ff0;
1549                         break;
1550                 case 7:
1551                         val = 0x400;
1552                         break;
1553                 default:
1554                         val = 0;
1555                 }
1556                 vcpu->regs[reg] = val;
1557         } else {
1558                 /* mov to dr */
1559         }
1560         vcpu_put_rsp_rip(vcpu);
1561         skip_emulated_instruction(vcpu);
1562         return 1;
1563 }
1564
1565 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1566 {
1567         kvm_run->exit_reason = KVM_EXIT_CPUID;
1568         return 0;
1569 }
1570
1571 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1572 {
1573         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1574         u64 data;
1575
1576         if (vmx_get_msr(vcpu, ecx, &data)) {
1577                 vmx_inject_gp(vcpu, 0);
1578                 return 1;
1579         }
1580
1581         /* FIXME: handling of bits 32:63 of rax, rdx */
1582         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1583         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1584         skip_emulated_instruction(vcpu);
1585         return 1;
1586 }
1587
1588 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1589 {
1590         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1591         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1592                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1593
1594         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1595                 vmx_inject_gp(vcpu, 0);
1596                 return 1;
1597         }
1598
1599         skip_emulated_instruction(vcpu);
1600         return 1;
1601 }
1602
1603 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1604                                    struct kvm_run *kvm_run)
1605 {
1606         /* Turn off interrupt window reporting. */
1607         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1608                      vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1609                      & ~CPU_BASED_VIRTUAL_INTR_PENDING);
1610         return 1;
1611 }
1612
1613 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1614 {
1615         skip_emulated_instruction(vcpu);
1616         if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
1617                 return 1;
1618
1619         kvm_run->exit_reason = KVM_EXIT_HLT;
1620         return 0;
1621 }
1622
1623 /*
1624  * The exit handlers return 1 if the exit was handled fully and guest execution
1625  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1626  * to be done to userspace and return 0.
1627  */
1628 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1629                                       struct kvm_run *kvm_run) = {
1630         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1631         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1632         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1633         [EXIT_REASON_INVLPG]                  = handle_invlpg,
1634         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1635         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1636         [EXIT_REASON_CPUID]                   = handle_cpuid,
1637         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1638         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1639         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1640         [EXIT_REASON_HLT]                     = handle_halt,
1641 };
1642
1643 static const int kvm_vmx_max_exit_handlers =
1644         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1645
1646 /*
1647  * The guest has exited.  See if we can fix it or if we need userspace
1648  * assistance.
1649  */
1650 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1651 {
1652         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1653         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1654
1655         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1656                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1657                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1658                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1659         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1660         if (exit_reason < kvm_vmx_max_exit_handlers
1661             && kvm_vmx_exit_handlers[exit_reason])
1662                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1663         else {
1664                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1665                 kvm_run->hw.hardware_exit_reason = exit_reason;
1666         }
1667         return 0;
1668 }
1669
1670 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1671 {
1672         u8 fail;
1673         u16 fs_sel, gs_sel, ldt_sel;
1674         int fs_gs_ldt_reload_needed;
1675
1676 again:
1677         /*
1678          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1679          * allow segment selectors with cpl > 0 or ti == 1.
1680          */
1681         fs_sel = read_fs();
1682         gs_sel = read_gs();
1683         ldt_sel = read_ldt();
1684         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1685         if (!fs_gs_ldt_reload_needed) {
1686                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1687                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1688         } else {
1689                 vmcs_write16(HOST_FS_SELECTOR, 0);
1690                 vmcs_write16(HOST_GS_SELECTOR, 0);
1691         }
1692
1693 #ifdef __x86_64__
1694         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1695         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1696 #else
1697         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1698         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1699 #endif
1700
1701         if (vcpu->irq_summary &&
1702             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1703                 kvm_try_inject_irq(vcpu);
1704
1705         if (vcpu->guest_debug.enabled)
1706                 kvm_guest_debug_pre(vcpu);
1707
1708         fx_save(vcpu->host_fx_image);
1709         fx_restore(vcpu->guest_fx_image);
1710
1711         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1712         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1713
1714         asm (
1715                 /* Store host registers */
1716                 "pushf \n\t"
1717 #ifdef __x86_64__
1718                 "push %%rax; push %%rbx; push %%rdx;"
1719                 "push %%rsi; push %%rdi; push %%rbp;"
1720                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1721                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1722                 "push %%rcx \n\t"
1723                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1724 #else
1725                 "pusha; push %%ecx \n\t"
1726                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1727 #endif
1728                 /* Check if vmlaunch of vmresume is needed */
1729                 "cmp $0, %1 \n\t"
1730                 /* Load guest registers.  Don't clobber flags. */
1731 #ifdef __x86_64__
1732                 "mov %c[cr2](%3), %%rax \n\t"
1733                 "mov %%rax, %%cr2 \n\t"
1734                 "mov %c[rax](%3), %%rax \n\t"
1735                 "mov %c[rbx](%3), %%rbx \n\t"
1736                 "mov %c[rdx](%3), %%rdx \n\t"
1737                 "mov %c[rsi](%3), %%rsi \n\t"
1738                 "mov %c[rdi](%3), %%rdi \n\t"
1739                 "mov %c[rbp](%3), %%rbp \n\t"
1740                 "mov %c[r8](%3),  %%r8  \n\t"
1741                 "mov %c[r9](%3),  %%r9  \n\t"
1742                 "mov %c[r10](%3), %%r10 \n\t"
1743                 "mov %c[r11](%3), %%r11 \n\t"
1744                 "mov %c[r12](%3), %%r12 \n\t"
1745                 "mov %c[r13](%3), %%r13 \n\t"
1746                 "mov %c[r14](%3), %%r14 \n\t"
1747                 "mov %c[r15](%3), %%r15 \n\t"
1748                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1749 #else
1750                 "mov %c[cr2](%3), %%eax \n\t"
1751                 "mov %%eax,   %%cr2 \n\t"
1752                 "mov %c[rax](%3), %%eax \n\t"
1753                 "mov %c[rbx](%3), %%ebx \n\t"
1754                 "mov %c[rdx](%3), %%edx \n\t"
1755                 "mov %c[rsi](%3), %%esi \n\t"
1756                 "mov %c[rdi](%3), %%edi \n\t"
1757                 "mov %c[rbp](%3), %%ebp \n\t"
1758                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1759 #endif
1760                 /* Enter guest mode */
1761                 "jne launched \n\t"
1762                 ASM_VMX_VMLAUNCH "\n\t"
1763                 "jmp kvm_vmx_return \n\t"
1764                 "launched: " ASM_VMX_VMRESUME "\n\t"
1765                 ".globl kvm_vmx_return \n\t"
1766                 "kvm_vmx_return: "
1767                 /* Save guest registers, load host registers, keep flags */
1768 #ifdef __x86_64__
1769                 "xchg %3,     0(%%rsp) \n\t"
1770                 "mov %%rax, %c[rax](%3) \n\t"
1771                 "mov %%rbx, %c[rbx](%3) \n\t"
1772                 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1773                 "mov %%rdx, %c[rdx](%3) \n\t"
1774                 "mov %%rsi, %c[rsi](%3) \n\t"
1775                 "mov %%rdi, %c[rdi](%3) \n\t"
1776                 "mov %%rbp, %c[rbp](%3) \n\t"
1777                 "mov %%r8,  %c[r8](%3) \n\t"
1778                 "mov %%r9,  %c[r9](%3) \n\t"
1779                 "mov %%r10, %c[r10](%3) \n\t"
1780                 "mov %%r11, %c[r11](%3) \n\t"
1781                 "mov %%r12, %c[r12](%3) \n\t"
1782                 "mov %%r13, %c[r13](%3) \n\t"
1783                 "mov %%r14, %c[r14](%3) \n\t"
1784                 "mov %%r15, %c[r15](%3) \n\t"
1785                 "mov %%cr2, %%rax   \n\t"
1786                 "mov %%rax, %c[cr2](%3) \n\t"
1787                 "mov 0(%%rsp), %3 \n\t"
1788
1789                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1790                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1791                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1792                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1793 #else
1794                 "xchg %3, 0(%%esp) \n\t"
1795                 "mov %%eax, %c[rax](%3) \n\t"
1796                 "mov %%ebx, %c[rbx](%3) \n\t"
1797                 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1798                 "mov %%edx, %c[rdx](%3) \n\t"
1799                 "mov %%esi, %c[rsi](%3) \n\t"
1800                 "mov %%edi, %c[rdi](%3) \n\t"
1801                 "mov %%ebp, %c[rbp](%3) \n\t"
1802                 "mov %%cr2, %%eax  \n\t"
1803                 "mov %%eax, %c[cr2](%3) \n\t"
1804                 "mov 0(%%esp), %3 \n\t"
1805
1806                 "pop %%ecx; popa \n\t"
1807 #endif
1808                 "setbe %0 \n\t"
1809                 "popf \n\t"
1810               : "=g" (fail)
1811               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1812                 "c"(vcpu),
1813                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1814                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1815                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1816                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1817                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1818                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1819                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1820 #ifdef __x86_64__
1821                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1822                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1823                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1824                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1825                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1826                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1827                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1828                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1829 #endif
1830                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1831               : "cc", "memory" );
1832
1833         ++kvm_stat.exits;
1834
1835         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1836         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1837
1838         fx_save(vcpu->guest_fx_image);
1839         fx_restore(vcpu->host_fx_image);
1840
1841 #ifndef __x86_64__
1842         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1843 #endif
1844
1845         kvm_run->exit_type = 0;
1846         if (fail) {
1847                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1848                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1849         } else {
1850                 if (fs_gs_ldt_reload_needed) {
1851                         load_ldt(ldt_sel);
1852                         load_fs(fs_sel);
1853                         /*
1854                          * If we have to reload gs, we must take care to
1855                          * preserve our gs base.
1856                          */
1857                         local_irq_disable();
1858                         load_gs(gs_sel);
1859 #ifdef __x86_64__
1860                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1861 #endif
1862                         local_irq_enable();
1863
1864                         reload_tss();
1865                 }
1866                 vcpu->launched = 1;
1867                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1868                 if (kvm_handle_exit(kvm_run, vcpu)) {
1869                         /* Give scheduler a change to reschedule. */
1870                         if (signal_pending(current)) {
1871                                 ++kvm_stat.signal_exits;
1872                                 return -EINTR;
1873                         }
1874                         kvm_resched(vcpu);
1875                         goto again;
1876                 }
1877         }
1878         return 0;
1879 }
1880
1881 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1882 {
1883         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1884 }
1885
1886 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1887                                   unsigned long addr,
1888                                   u32 err_code)
1889 {
1890         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1891
1892         ++kvm_stat.pf_guest;
1893
1894         if (is_page_fault(vect_info)) {
1895                 printk(KERN_DEBUG "inject_page_fault: "
1896                        "double fault 0x%lx @ 0x%lx\n",
1897                        addr, vmcs_readl(GUEST_RIP));
1898                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1899                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1900                              DF_VECTOR |
1901                              INTR_TYPE_EXCEPTION |
1902                              INTR_INFO_DELIEVER_CODE_MASK |
1903                              INTR_INFO_VALID_MASK);
1904                 return;
1905         }
1906         vcpu->cr2 = addr;
1907         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1908         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1909                      PF_VECTOR |
1910                      INTR_TYPE_EXCEPTION |
1911                      INTR_INFO_DELIEVER_CODE_MASK |
1912                      INTR_INFO_VALID_MASK);
1913
1914 }
1915
1916 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1917 {
1918         if (vcpu->vmcs) {
1919                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1920                 free_vmcs(vcpu->vmcs);
1921                 vcpu->vmcs = NULL;
1922         }
1923 }
1924
1925 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1926 {
1927         vmx_free_vmcs(vcpu);
1928 }
1929
1930 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1931 {
1932         struct vmcs *vmcs;
1933
1934         vmcs = alloc_vmcs();
1935         if (!vmcs)
1936                 return -ENOMEM;
1937         vmcs_clear(vmcs);
1938         vcpu->vmcs = vmcs;
1939         vcpu->launched = 0;
1940         return 0;
1941 }
1942
1943 static struct kvm_arch_ops vmx_arch_ops = {
1944         .cpu_has_kvm_support = cpu_has_kvm_support,
1945         .disabled_by_bios = vmx_disabled_by_bios,
1946         .hardware_setup = hardware_setup,
1947         .hardware_unsetup = hardware_unsetup,
1948         .hardware_enable = hardware_enable,
1949         .hardware_disable = hardware_disable,
1950
1951         .vcpu_create = vmx_create_vcpu,
1952         .vcpu_free = vmx_free_vcpu,
1953
1954         .vcpu_load = vmx_vcpu_load,
1955         .vcpu_put = vmx_vcpu_put,
1956
1957         .set_guest_debug = set_guest_debug,
1958         .get_msr = vmx_get_msr,
1959         .set_msr = vmx_set_msr,
1960         .get_segment_base = vmx_get_segment_base,
1961         .get_segment = vmx_get_segment,
1962         .set_segment = vmx_set_segment,
1963         .is_long_mode = vmx_is_long_mode,
1964         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
1965         .set_cr0 = vmx_set_cr0,
1966         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
1967         .set_cr3 = vmx_set_cr3,
1968         .set_cr4 = vmx_set_cr4,
1969 #ifdef __x86_64__
1970         .set_efer = vmx_set_efer,
1971 #endif
1972         .get_idt = vmx_get_idt,
1973         .set_idt = vmx_set_idt,
1974         .get_gdt = vmx_get_gdt,
1975         .set_gdt = vmx_set_gdt,
1976         .cache_regs = vcpu_load_rsp_rip,
1977         .decache_regs = vcpu_put_rsp_rip,
1978         .get_rflags = vmx_get_rflags,
1979         .set_rflags = vmx_set_rflags,
1980
1981         .tlb_flush = vmx_flush_tlb,
1982         .inject_page_fault = vmx_inject_page_fault,
1983
1984         .inject_gp = vmx_inject_gp,
1985
1986         .run = vmx_vcpu_run,
1987         .skip_emulated_instruction = skip_emulated_instruction,
1988         .vcpu_setup = vmx_vcpu_setup,
1989 };
1990
1991 static int __init vmx_init(void)
1992 {
1993         kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
1994         return 0;
1995 }
1996
1997 static void __exit vmx_exit(void)
1998 {
1999         kvm_exit_arch();
2000 }
2001
2002 module_init(vmx_init)
2003 module_exit(vmx_exit)