[PATCH] KVM: Implement a few system configuration msrs
[powerpc.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29 #define MSR_IA32_FEATURE_CONTROL                0x03a
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44         int size;
45         int order;
46         u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg)                                  \
50         [VCPU_SREG_##seg] = {                                   \
51                 .selector = GUEST_##seg##_SELECTOR,             \
52                 .base = GUEST_##seg##_BASE,                     \
53                 .limit = GUEST_##seg##_LIMIT,                   \
54                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
55         }
56
57 static struct kvm_vmx_segment_field {
58         unsigned selector;
59         unsigned base;
60         unsigned limit;
61         unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63         VMX_SEGMENT_FIELD(CS),
64         VMX_SEGMENT_FIELD(DS),
65         VMX_SEGMENT_FIELD(ES),
66         VMX_SEGMENT_FIELD(FS),
67         VMX_SEGMENT_FIELD(GS),
68         VMX_SEGMENT_FIELD(SS),
69         VMX_SEGMENT_FIELD(TR),
70         VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77         MSR_EFER, MSR_K6_STAR,
78 };
79 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
80
81 static inline int is_page_fault(u32 intr_info)
82 {
83         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84                              INTR_INFO_VALID_MASK)) ==
85                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
86 }
87
88 static inline int is_external_interrupt(u32 intr_info)
89 {
90         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
92 }
93
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
95 {
96         int i;
97
98         for (i = 0; i < vcpu->nmsrs; ++i)
99                 if (vcpu->guest_msrs[i].index == msr)
100                         return &vcpu->guest_msrs[i];
101         return 0;
102 }
103
104 static void vmcs_clear(struct vmcs *vmcs)
105 {
106         u64 phys_addr = __pa(vmcs);
107         u8 error;
108
109         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111                       : "cc", "memory");
112         if (error)
113                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114                        vmcs, phys_addr);
115 }
116
117 static void __vcpu_clear(void *arg)
118 {
119         struct kvm_vcpu *vcpu = arg;
120         int cpu = smp_processor_id();
121
122         if (vcpu->cpu == cpu)
123                 vmcs_clear(vcpu->vmcs);
124         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125                 per_cpu(current_vmcs, cpu) = NULL;
126 }
127
128 static unsigned long vmcs_readl(unsigned long field)
129 {
130         unsigned long value;
131
132         asm volatile (ASM_VMX_VMREAD_RDX_RAX
133                       : "=a"(value) : "d"(field) : "cc");
134         return value;
135 }
136
137 static u16 vmcs_read16(unsigned long field)
138 {
139         return vmcs_readl(field);
140 }
141
142 static u32 vmcs_read32(unsigned long field)
143 {
144         return vmcs_readl(field);
145 }
146
147 static u64 vmcs_read64(unsigned long field)
148 {
149 #ifdef CONFIG_X86_64
150         return vmcs_readl(field);
151 #else
152         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
153 #endif
154 }
155
156 static void vmcs_writel(unsigned long field, unsigned long value)
157 {
158         u8 error;
159
160         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
161                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
162         if (error)
163                 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
164                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
165 }
166
167 static void vmcs_write16(unsigned long field, u16 value)
168 {
169         vmcs_writel(field, value);
170 }
171
172 static void vmcs_write32(unsigned long field, u32 value)
173 {
174         vmcs_writel(field, value);
175 }
176
177 static void vmcs_write64(unsigned long field, u64 value)
178 {
179 #ifdef CONFIG_X86_64
180         vmcs_writel(field, value);
181 #else
182         vmcs_writel(field, value);
183         asm volatile ("");
184         vmcs_writel(field+1, value >> 32);
185 #endif
186 }
187
188 /*
189  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
190  * vcpu mutex is already taken.
191  */
192 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
193 {
194         u64 phys_addr = __pa(vcpu->vmcs);
195         int cpu;
196
197         cpu = get_cpu();
198
199         if (vcpu->cpu != cpu) {
200                 smp_call_function(__vcpu_clear, vcpu, 0, 1);
201                 vcpu->launched = 0;
202         }
203
204         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
205                 u8 error;
206
207                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
208                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
209                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210                               : "cc");
211                 if (error)
212                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
213                                vcpu->vmcs, phys_addr);
214         }
215
216         if (vcpu->cpu != cpu) {
217                 struct descriptor_table dt;
218                 unsigned long sysenter_esp;
219
220                 vcpu->cpu = cpu;
221                 /*
222                  * Linux uses per-cpu TSS and GDT, so set these when switching
223                  * processors.
224                  */
225                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
226                 get_gdt(&dt);
227                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
228
229                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
230                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
231         }
232         return vcpu;
233 }
234
235 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
236 {
237         put_cpu();
238 }
239
240 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
241 {
242         return vmcs_readl(GUEST_RFLAGS);
243 }
244
245 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
246 {
247         vmcs_writel(GUEST_RFLAGS, rflags);
248 }
249
250 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
251 {
252         unsigned long rip;
253         u32 interruptibility;
254
255         rip = vmcs_readl(GUEST_RIP);
256         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
257         vmcs_writel(GUEST_RIP, rip);
258
259         /*
260          * We emulated an instruction, so temporary interrupt blocking
261          * should be removed, if set.
262          */
263         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
264         if (interruptibility & 3)
265                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
266                              interruptibility & ~3);
267 }
268
269 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
270 {
271         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
272                vmcs_readl(GUEST_RIP));
273         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
274         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
275                      GP_VECTOR |
276                      INTR_TYPE_EXCEPTION |
277                      INTR_INFO_DELIEVER_CODE_MASK |
278                      INTR_INFO_VALID_MASK);
279 }
280
281 /*
282  * reads and returns guest's timestamp counter "register"
283  * guest_tsc = host_tsc + tsc_offset    -- 21.3
284  */
285 static u64 guest_read_tsc(void)
286 {
287         u64 host_tsc, tsc_offset;
288
289         rdtscll(host_tsc);
290         tsc_offset = vmcs_read64(TSC_OFFSET);
291         return host_tsc + tsc_offset;
292 }
293
294 /*
295  * writes 'guest_tsc' into guest's timestamp counter "register"
296  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
297  */
298 static void guest_write_tsc(u64 guest_tsc)
299 {
300         u64 host_tsc;
301
302         rdtscll(host_tsc);
303         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
304 }
305
306 static void reload_tss(void)
307 {
308 #ifndef CONFIG_X86_64
309
310         /*
311          * VT restores TR but not its size.  Useless.
312          */
313         struct descriptor_table gdt;
314         struct segment_descriptor *descs;
315
316         get_gdt(&gdt);
317         descs = (void *)gdt.base;
318         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
319         load_TR_desc();
320 #endif
321 }
322
323 /*
324  * Reads an msr value (of 'msr_index') into 'pdata'.
325  * Returns 0 on success, non-0 otherwise.
326  * Assumes vcpu_load() was already called.
327  */
328 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
329 {
330         u64 data;
331         struct vmx_msr_entry *msr;
332
333         if (!pdata) {
334                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
335                 return -EINVAL;
336         }
337
338         switch (msr_index) {
339 #ifdef CONFIG_X86_64
340         case MSR_FS_BASE:
341                 data = vmcs_readl(GUEST_FS_BASE);
342                 break;
343         case MSR_GS_BASE:
344                 data = vmcs_readl(GUEST_GS_BASE);
345                 break;
346         case MSR_EFER:
347                 data = vcpu->shadow_efer;
348                 break;
349 #endif
350         case MSR_IA32_TIME_STAMP_COUNTER:
351                 data = guest_read_tsc();
352                 break;
353         case MSR_IA32_SYSENTER_CS:
354                 data = vmcs_read32(GUEST_SYSENTER_CS);
355                 break;
356         case MSR_IA32_SYSENTER_EIP:
357                 data = vmcs_read32(GUEST_SYSENTER_EIP);
358                 break;
359         case MSR_IA32_SYSENTER_ESP:
360                 data = vmcs_read32(GUEST_SYSENTER_ESP);
361                 break;
362         case 0xc0010010: /* SYSCFG */
363         case 0xc0010015: /* HWCR */
364         case MSR_IA32_PLATFORM_ID:
365         case MSR_IA32_P5_MC_ADDR:
366         case MSR_IA32_P5_MC_TYPE:
367         case MSR_IA32_MC0_CTL:
368         case MSR_IA32_MCG_STATUS:
369         case MSR_IA32_MCG_CAP:
370         case MSR_IA32_MC0_MISC:
371         case MSR_IA32_MC0_MISC+4:
372         case MSR_IA32_MC0_MISC+8:
373         case MSR_IA32_MC0_MISC+12:
374         case MSR_IA32_MC0_MISC+16:
375         case MSR_IA32_UCODE_REV:
376                 /* MTRR registers */
377         case 0xfe:
378         case 0x200 ... 0x2ff:
379                 data = 0;
380                 break;
381         case MSR_IA32_APICBASE:
382                 data = vcpu->apic_base;
383                 break;
384         default:
385                 msr = find_msr_entry(vcpu, msr_index);
386                 if (!msr) {
387                         printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
388                         return 1;
389                 }
390                 data = msr->data;
391                 break;
392         }
393
394         *pdata = data;
395         return 0;
396 }
397
398 /*
399  * Writes msr value into into the appropriate "register".
400  * Returns 0 on success, non-0 otherwise.
401  * Assumes vcpu_load() was already called.
402  */
403 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
404 {
405         struct vmx_msr_entry *msr;
406         switch (msr_index) {
407 #ifdef CONFIG_X86_64
408         case MSR_FS_BASE:
409                 vmcs_writel(GUEST_FS_BASE, data);
410                 break;
411         case MSR_GS_BASE:
412                 vmcs_writel(GUEST_GS_BASE, data);
413                 break;
414 #endif
415         case MSR_IA32_SYSENTER_CS:
416                 vmcs_write32(GUEST_SYSENTER_CS, data);
417                 break;
418         case MSR_IA32_SYSENTER_EIP:
419                 vmcs_write32(GUEST_SYSENTER_EIP, data);
420                 break;
421         case MSR_IA32_SYSENTER_ESP:
422                 vmcs_write32(GUEST_SYSENTER_ESP, data);
423                 break;
424 #ifdef __x86_64
425         case MSR_EFER:
426                 set_efer(vcpu, data);
427                 break;
428         case MSR_IA32_MC0_STATUS:
429                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
430                             , __FUNCTION__, data);
431                 break;
432 #endif
433         case MSR_IA32_TIME_STAMP_COUNTER: {
434                 guest_write_tsc(data);
435                 break;
436         }
437         case MSR_IA32_UCODE_REV:
438         case MSR_IA32_UCODE_WRITE:
439         case 0x200 ... 0x2ff: /* MTRRs */
440                 break;
441         case MSR_IA32_APICBASE:
442                 vcpu->apic_base = data;
443                 break;
444         default:
445                 msr = find_msr_entry(vcpu, msr_index);
446                 if (!msr) {
447                         printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
448                         return 1;
449                 }
450                 msr->data = data;
451                 break;
452         }
453
454         return 0;
455 }
456
457 /*
458  * Sync the rsp and rip registers into the vcpu structure.  This allows
459  * registers to be accessed by indexing vcpu->regs.
460  */
461 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
462 {
463         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
464         vcpu->rip = vmcs_readl(GUEST_RIP);
465 }
466
467 /*
468  * Syncs rsp and rip back into the vmcs.  Should be called after possible
469  * modification.
470  */
471 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
472 {
473         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
474         vmcs_writel(GUEST_RIP, vcpu->rip);
475 }
476
477 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
478 {
479         unsigned long dr7 = 0x400;
480         u32 exception_bitmap;
481         int old_singlestep;
482
483         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
484         old_singlestep = vcpu->guest_debug.singlestep;
485
486         vcpu->guest_debug.enabled = dbg->enabled;
487         if (vcpu->guest_debug.enabled) {
488                 int i;
489
490                 dr7 |= 0x200;  /* exact */
491                 for (i = 0; i < 4; ++i) {
492                         if (!dbg->breakpoints[i].enabled)
493                                 continue;
494                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
495                         dr7 |= 2 << (i*2);    /* global enable */
496                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
497                 }
498
499                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
500
501                 vcpu->guest_debug.singlestep = dbg->singlestep;
502         } else {
503                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
504                 vcpu->guest_debug.singlestep = 0;
505         }
506
507         if (old_singlestep && !vcpu->guest_debug.singlestep) {
508                 unsigned long flags;
509
510                 flags = vmcs_readl(GUEST_RFLAGS);
511                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
512                 vmcs_writel(GUEST_RFLAGS, flags);
513         }
514
515         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
516         vmcs_writel(GUEST_DR7, dr7);
517
518         return 0;
519 }
520
521 static __init int cpu_has_kvm_support(void)
522 {
523         unsigned long ecx = cpuid_ecx(1);
524         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
525 }
526
527 static __init int vmx_disabled_by_bios(void)
528 {
529         u64 msr;
530
531         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
532         return (msr & 5) == 1; /* locked but not enabled */
533 }
534
535 static __init void hardware_enable(void *garbage)
536 {
537         int cpu = raw_smp_processor_id();
538         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
539         u64 old;
540
541         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
542         if ((old & 5) != 5)
543                 /* enable and lock */
544                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
545         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
546         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
547                       : "memory", "cc");
548 }
549
550 static void hardware_disable(void *garbage)
551 {
552         asm volatile (ASM_VMX_VMXOFF : : : "cc");
553 }
554
555 static __init void setup_vmcs_descriptor(void)
556 {
557         u32 vmx_msr_low, vmx_msr_high;
558
559         rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
560         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
561         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
562         vmcs_descriptor.revision_id = vmx_msr_low;
563 };
564
565 static struct vmcs *alloc_vmcs_cpu(int cpu)
566 {
567         int node = cpu_to_node(cpu);
568         struct page *pages;
569         struct vmcs *vmcs;
570
571         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
572         if (!pages)
573                 return NULL;
574         vmcs = page_address(pages);
575         memset(vmcs, 0, vmcs_descriptor.size);
576         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
577         return vmcs;
578 }
579
580 static struct vmcs *alloc_vmcs(void)
581 {
582         return alloc_vmcs_cpu(smp_processor_id());
583 }
584
585 static void free_vmcs(struct vmcs *vmcs)
586 {
587         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
588 }
589
590 static __exit void free_kvm_area(void)
591 {
592         int cpu;
593
594         for_each_online_cpu(cpu)
595                 free_vmcs(per_cpu(vmxarea, cpu));
596 }
597
598 extern struct vmcs *alloc_vmcs_cpu(int cpu);
599
600 static __init int alloc_kvm_area(void)
601 {
602         int cpu;
603
604         for_each_online_cpu(cpu) {
605                 struct vmcs *vmcs;
606
607                 vmcs = alloc_vmcs_cpu(cpu);
608                 if (!vmcs) {
609                         free_kvm_area();
610                         return -ENOMEM;
611                 }
612
613                 per_cpu(vmxarea, cpu) = vmcs;
614         }
615         return 0;
616 }
617
618 static __init int hardware_setup(void)
619 {
620         setup_vmcs_descriptor();
621         return alloc_kvm_area();
622 }
623
624 static __exit void hardware_unsetup(void)
625 {
626         free_kvm_area();
627 }
628
629 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
630 {
631         if (vcpu->rmode.active)
632                 vmcs_write32(EXCEPTION_BITMAP, ~0);
633         else
634                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
635 }
636
637 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
638 {
639         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
640
641         if (vmcs_readl(sf->base) == save->base) {
642                 vmcs_write16(sf->selector, save->selector);
643                 vmcs_writel(sf->base, save->base);
644                 vmcs_write32(sf->limit, save->limit);
645                 vmcs_write32(sf->ar_bytes, save->ar);
646         } else {
647                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
648                         << AR_DPL_SHIFT;
649                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
650         }
651 }
652
653 static void enter_pmode(struct kvm_vcpu *vcpu)
654 {
655         unsigned long flags;
656
657         vcpu->rmode.active = 0;
658
659         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
660         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
661         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
662
663         flags = vmcs_readl(GUEST_RFLAGS);
664         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
665         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
666         vmcs_writel(GUEST_RFLAGS, flags);
667
668         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
669                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
670
671         update_exception_bitmap(vcpu);
672
673         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
674         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
675         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
676         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
677
678         vmcs_write16(GUEST_SS_SELECTOR, 0);
679         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
680
681         vmcs_write16(GUEST_CS_SELECTOR,
682                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
683         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
684 }
685
686 static int rmode_tss_base(struct kvm* kvm)
687 {
688         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
689         return base_gfn << PAGE_SHIFT;
690 }
691
692 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
693 {
694         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
695
696         save->selector = vmcs_read16(sf->selector);
697         save->base = vmcs_readl(sf->base);
698         save->limit = vmcs_read32(sf->limit);
699         save->ar = vmcs_read32(sf->ar_bytes);
700         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
701         vmcs_write32(sf->limit, 0xffff);
702         vmcs_write32(sf->ar_bytes, 0xf3);
703 }
704
705 static void enter_rmode(struct kvm_vcpu *vcpu)
706 {
707         unsigned long flags;
708
709         vcpu->rmode.active = 1;
710
711         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
712         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
713
714         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
715         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
716
717         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
718         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
719
720         flags = vmcs_readl(GUEST_RFLAGS);
721         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
722
723         flags |= IOPL_MASK | X86_EFLAGS_VM;
724
725         vmcs_writel(GUEST_RFLAGS, flags);
726         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
727         update_exception_bitmap(vcpu);
728
729         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
730         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
731         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
732
733         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
734         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
735         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
736
737         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
738         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
739         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
740         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
741 }
742
743 #ifdef CONFIG_X86_64
744
745 static void enter_lmode(struct kvm_vcpu *vcpu)
746 {
747         u32 guest_tr_ar;
748
749         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
750         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
751                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
752                        __FUNCTION__);
753                 vmcs_write32(GUEST_TR_AR_BYTES,
754                              (guest_tr_ar & ~AR_TYPE_MASK)
755                              | AR_TYPE_BUSY_64_TSS);
756         }
757
758         vcpu->shadow_efer |= EFER_LMA;
759
760         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
761         vmcs_write32(VM_ENTRY_CONTROLS,
762                      vmcs_read32(VM_ENTRY_CONTROLS)
763                      | VM_ENTRY_CONTROLS_IA32E_MASK);
764 }
765
766 static void exit_lmode(struct kvm_vcpu *vcpu)
767 {
768         vcpu->shadow_efer &= ~EFER_LMA;
769
770         vmcs_write32(VM_ENTRY_CONTROLS,
771                      vmcs_read32(VM_ENTRY_CONTROLS)
772                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
773 }
774
775 #endif
776
777 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
778 {
779         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
780                 enter_pmode(vcpu);
781
782         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
783                 enter_rmode(vcpu);
784
785 #ifdef CONFIG_X86_64
786         if (vcpu->shadow_efer & EFER_LME) {
787                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
788                         enter_lmode(vcpu);
789                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
790                         exit_lmode(vcpu);
791         }
792 #endif
793
794         vmcs_writel(CR0_READ_SHADOW, cr0);
795         vmcs_writel(GUEST_CR0,
796                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
797         vcpu->cr0 = cr0;
798 }
799
800 /*
801  * Used when restoring the VM to avoid corrupting segment registers
802  */
803 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
804 {
805         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
806         update_exception_bitmap(vcpu);
807         vmcs_writel(CR0_READ_SHADOW, cr0);
808         vmcs_writel(GUEST_CR0,
809                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
810         vcpu->cr0 = cr0;
811 }
812
813 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
814 {
815         vmcs_writel(GUEST_CR3, cr3);
816 }
817
818 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
819 {
820         vmcs_writel(CR4_READ_SHADOW, cr4);
821         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
822                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
823         vcpu->cr4 = cr4;
824 }
825
826 #ifdef CONFIG_X86_64
827
828 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
829 {
830         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
831
832         vcpu->shadow_efer = efer;
833         if (efer & EFER_LMA) {
834                 vmcs_write32(VM_ENTRY_CONTROLS,
835                                      vmcs_read32(VM_ENTRY_CONTROLS) |
836                                      VM_ENTRY_CONTROLS_IA32E_MASK);
837                 msr->data = efer;
838
839         } else {
840                 vmcs_write32(VM_ENTRY_CONTROLS,
841                                      vmcs_read32(VM_ENTRY_CONTROLS) &
842                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
843
844                 msr->data = efer & ~EFER_LME;
845         }
846 }
847
848 #endif
849
850 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
851 {
852         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
853
854         return vmcs_readl(sf->base);
855 }
856
857 static void vmx_get_segment(struct kvm_vcpu *vcpu,
858                             struct kvm_segment *var, int seg)
859 {
860         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
861         u32 ar;
862
863         var->base = vmcs_readl(sf->base);
864         var->limit = vmcs_read32(sf->limit);
865         var->selector = vmcs_read16(sf->selector);
866         ar = vmcs_read32(sf->ar_bytes);
867         if (ar & AR_UNUSABLE_MASK)
868                 ar = 0;
869         var->type = ar & 15;
870         var->s = (ar >> 4) & 1;
871         var->dpl = (ar >> 5) & 3;
872         var->present = (ar >> 7) & 1;
873         var->avl = (ar >> 12) & 1;
874         var->l = (ar >> 13) & 1;
875         var->db = (ar >> 14) & 1;
876         var->g = (ar >> 15) & 1;
877         var->unusable = (ar >> 16) & 1;
878 }
879
880 static void vmx_set_segment(struct kvm_vcpu *vcpu,
881                             struct kvm_segment *var, int seg)
882 {
883         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
884         u32 ar;
885
886         vmcs_writel(sf->base, var->base);
887         vmcs_write32(sf->limit, var->limit);
888         vmcs_write16(sf->selector, var->selector);
889         if (var->unusable)
890                 ar = 1 << 16;
891         else {
892                 ar = var->type & 15;
893                 ar |= (var->s & 1) << 4;
894                 ar |= (var->dpl & 3) << 5;
895                 ar |= (var->present & 1) << 7;
896                 ar |= (var->avl & 1) << 12;
897                 ar |= (var->l & 1) << 13;
898                 ar |= (var->db & 1) << 14;
899                 ar |= (var->g & 1) << 15;
900         }
901         if (ar == 0) /* a 0 value means unusable */
902                 ar = AR_UNUSABLE_MASK;
903         vmcs_write32(sf->ar_bytes, ar);
904 }
905
906 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
907 {
908         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
909
910         *db = (ar >> 14) & 1;
911         *l = (ar >> 13) & 1;
912 }
913
914 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
915 {
916         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
917         dt->base = vmcs_readl(GUEST_IDTR_BASE);
918 }
919
920 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
921 {
922         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
923         vmcs_writel(GUEST_IDTR_BASE, dt->base);
924 }
925
926 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
927 {
928         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
929         dt->base = vmcs_readl(GUEST_GDTR_BASE);
930 }
931
932 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
933 {
934         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
935         vmcs_writel(GUEST_GDTR_BASE, dt->base);
936 }
937
938 static int init_rmode_tss(struct kvm* kvm)
939 {
940         struct page *p1, *p2, *p3;
941         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
942         char *page;
943
944         p1 = _gfn_to_page(kvm, fn++);
945         p2 = _gfn_to_page(kvm, fn++);
946         p3 = _gfn_to_page(kvm, fn);
947
948         if (!p1 || !p2 || !p3) {
949                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
950                 return 0;
951         }
952
953         page = kmap_atomic(p1, KM_USER0);
954         memset(page, 0, PAGE_SIZE);
955         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
956         kunmap_atomic(page, KM_USER0);
957
958         page = kmap_atomic(p2, KM_USER0);
959         memset(page, 0, PAGE_SIZE);
960         kunmap_atomic(page, KM_USER0);
961
962         page = kmap_atomic(p3, KM_USER0);
963         memset(page, 0, PAGE_SIZE);
964         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
965         kunmap_atomic(page, KM_USER0);
966
967         return 1;
968 }
969
970 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
971 {
972         u32 msr_high, msr_low;
973
974         rdmsr(msr, msr_low, msr_high);
975
976         val &= msr_high;
977         val |= msr_low;
978         vmcs_write32(vmcs_field, val);
979 }
980
981 static void seg_setup(int seg)
982 {
983         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
984
985         vmcs_write16(sf->selector, 0);
986         vmcs_writel(sf->base, 0);
987         vmcs_write32(sf->limit, 0xffff);
988         vmcs_write32(sf->ar_bytes, 0x93);
989 }
990
991 /*
992  * Sets up the vmcs for emulated real mode.
993  */
994 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
995 {
996         u32 host_sysenter_cs;
997         u32 junk;
998         unsigned long a;
999         struct descriptor_table dt;
1000         int i;
1001         int ret = 0;
1002         int nr_good_msrs;
1003         extern asmlinkage void kvm_vmx_return(void);
1004
1005         if (!init_rmode_tss(vcpu->kvm)) {
1006                 ret = -ENOMEM;
1007                 goto out;
1008         }
1009
1010         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1011         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1012         vcpu->cr8 = 0;
1013         vcpu->apic_base = 0xfee00000 |
1014                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1015                         MSR_IA32_APICBASE_ENABLE;
1016
1017         fx_init(vcpu);
1018
1019         /*
1020          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1021          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1022          */
1023         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1024         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1025         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1026         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1027
1028         seg_setup(VCPU_SREG_DS);
1029         seg_setup(VCPU_SREG_ES);
1030         seg_setup(VCPU_SREG_FS);
1031         seg_setup(VCPU_SREG_GS);
1032         seg_setup(VCPU_SREG_SS);
1033
1034         vmcs_write16(GUEST_TR_SELECTOR, 0);
1035         vmcs_writel(GUEST_TR_BASE, 0);
1036         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1037         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1038
1039         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1040         vmcs_writel(GUEST_LDTR_BASE, 0);
1041         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1042         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1043
1044         vmcs_write32(GUEST_SYSENTER_CS, 0);
1045         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1046         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1047
1048         vmcs_writel(GUEST_RFLAGS, 0x02);
1049         vmcs_writel(GUEST_RIP, 0xfff0);
1050         vmcs_writel(GUEST_RSP, 0);
1051
1052         vmcs_writel(GUEST_CR3, 0);
1053
1054         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1055         vmcs_writel(GUEST_DR7, 0x400);
1056
1057         vmcs_writel(GUEST_GDTR_BASE, 0);
1058         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1059
1060         vmcs_writel(GUEST_IDTR_BASE, 0);
1061         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1062
1063         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1064         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1065         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1066
1067         /* I/O */
1068         vmcs_write64(IO_BITMAP_A, 0);
1069         vmcs_write64(IO_BITMAP_B, 0);
1070
1071         guest_write_tsc(0);
1072
1073         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1074
1075         /* Special registers */
1076         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1077
1078         /* Control */
1079         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
1080                                PIN_BASED_VM_EXEC_CONTROL,
1081                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1082                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1083                         );
1084         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
1085                                CPU_BASED_VM_EXEC_CONTROL,
1086                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1087                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1088                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1089                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1090                                | CPU_BASED_INVDPG_EXITING
1091                                | CPU_BASED_MOV_DR_EXITING
1092                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1093                         );
1094
1095         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1096         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1097         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1098         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1099
1100         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1101         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1102         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1103
1104         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1105         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1106         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1107         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1108         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1109         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1110 #ifdef CONFIG_X86_64
1111         rdmsrl(MSR_FS_BASE, a);
1112         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1113         rdmsrl(MSR_GS_BASE, a);
1114         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1115 #else
1116         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1117         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1118 #endif
1119
1120         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1121
1122         get_idt(&dt);
1123         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1124
1125
1126         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1127
1128         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1129         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1130         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1131         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1132         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1133         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1134
1135         ret = -ENOMEM;
1136         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1137         if (!vcpu->guest_msrs)
1138                 goto out;
1139         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1140         if (!vcpu->host_msrs)
1141                 goto out_free_guest_msrs;
1142
1143         for (i = 0; i < NR_VMX_MSR; ++i) {
1144                 u32 index = vmx_msr_index[i];
1145                 u32 data_low, data_high;
1146                 u64 data;
1147                 int j = vcpu->nmsrs;
1148
1149                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1150                         continue;
1151                 data = data_low | ((u64)data_high << 32);
1152                 vcpu->host_msrs[j].index = index;
1153                 vcpu->host_msrs[j].reserved = 0;
1154                 vcpu->host_msrs[j].data = data;
1155                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1156                 ++vcpu->nmsrs;
1157         }
1158         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1159
1160         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1161         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1162                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1163         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1164                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1165         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1166                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1167         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
1168                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1169         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1170         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1171         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1172
1173
1174         /* 22.2.1, 20.8.1 */
1175         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
1176                                VM_ENTRY_CONTROLS, 0);
1177         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1178
1179 #ifdef CONFIG_X86_64
1180         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1181         vmcs_writel(TPR_THRESHOLD, 0);
1182 #endif
1183
1184         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1185         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1186
1187         vcpu->cr0 = 0x60000010;
1188         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1189         vmx_set_cr4(vcpu, 0);
1190 #ifdef CONFIG_X86_64
1191         vmx_set_efer(vcpu, 0);
1192 #endif
1193
1194         return 0;
1195
1196 out_free_guest_msrs:
1197         kfree(vcpu->guest_msrs);
1198 out:
1199         return ret;
1200 }
1201
1202 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1203 {
1204         u16 ent[2];
1205         u16 cs;
1206         u16 ip;
1207         unsigned long flags;
1208         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1209         u16 sp =  vmcs_readl(GUEST_RSP);
1210         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1211
1212         if (sp > ss_limit || sp - 6 > sp) {
1213                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1214                             __FUNCTION__,
1215                             vmcs_readl(GUEST_RSP),
1216                             vmcs_readl(GUEST_SS_BASE),
1217                             vmcs_read32(GUEST_SS_LIMIT));
1218                 return;
1219         }
1220
1221         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1222                                                                 sizeof(ent)) {
1223                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1224                 return;
1225         }
1226
1227         flags =  vmcs_readl(GUEST_RFLAGS);
1228         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1229         ip =  vmcs_readl(GUEST_RIP);
1230
1231
1232         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1233             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1234             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1235                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1236                 return;
1237         }
1238
1239         vmcs_writel(GUEST_RFLAGS, flags &
1240                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1241         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1242         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1243         vmcs_writel(GUEST_RIP, ent[0]);
1244         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1245 }
1246
1247 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1248 {
1249         int word_index = __ffs(vcpu->irq_summary);
1250         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1251         int irq = word_index * BITS_PER_LONG + bit_index;
1252
1253         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1254         if (!vcpu->irq_pending[word_index])
1255                 clear_bit(word_index, &vcpu->irq_summary);
1256
1257         if (vcpu->rmode.active) {
1258                 inject_rmode_irq(vcpu, irq);
1259                 return;
1260         }
1261         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1262                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1263 }
1264
1265 static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1266 {
1267         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
1268             && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
1269                 /*
1270                  * Interrupts enabled, and not blocked by sti or mov ss. Good.
1271                  */
1272                 kvm_do_inject_irq(vcpu);
1273         else
1274                 /*
1275                  * Interrupts blocked.  Wait for unblock.
1276                  */
1277                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1278                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1279                              | CPU_BASED_VIRTUAL_INTR_PENDING);
1280 }
1281
1282 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1283 {
1284         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1285
1286         set_debugreg(dbg->bp[0], 0);
1287         set_debugreg(dbg->bp[1], 1);
1288         set_debugreg(dbg->bp[2], 2);
1289         set_debugreg(dbg->bp[3], 3);
1290
1291         if (dbg->singlestep) {
1292                 unsigned long flags;
1293
1294                 flags = vmcs_readl(GUEST_RFLAGS);
1295                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1296                 vmcs_writel(GUEST_RFLAGS, flags);
1297         }
1298 }
1299
1300 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1301                                   int vec, u32 err_code)
1302 {
1303         if (!vcpu->rmode.active)
1304                 return 0;
1305
1306         if (vec == GP_VECTOR && err_code == 0)
1307                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1308                         return 1;
1309         return 0;
1310 }
1311
1312 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1313 {
1314         u32 intr_info, error_code;
1315         unsigned long cr2, rip;
1316         u32 vect_info;
1317         enum emulation_result er;
1318
1319         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1320         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1321
1322         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1323                                                 !is_page_fault(intr_info)) {
1324                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1325                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1326         }
1327
1328         if (is_external_interrupt(vect_info)) {
1329                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1330                 set_bit(irq, vcpu->irq_pending);
1331                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1332         }
1333
1334         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1335                 asm ("int $2");
1336                 return 1;
1337         }
1338         error_code = 0;
1339         rip = vmcs_readl(GUEST_RIP);
1340         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1341                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1342         if (is_page_fault(intr_info)) {
1343                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1344
1345                 spin_lock(&vcpu->kvm->lock);
1346                 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1347                         spin_unlock(&vcpu->kvm->lock);
1348                         return 1;
1349                 }
1350
1351                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1352                 spin_unlock(&vcpu->kvm->lock);
1353
1354                 switch (er) {
1355                 case EMULATE_DONE:
1356                         return 1;
1357                 case EMULATE_DO_MMIO:
1358                         ++kvm_stat.mmio_exits;
1359                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1360                         return 0;
1361                  case EMULATE_FAIL:
1362                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1363                         break;
1364                 default:
1365                         BUG();
1366                 }
1367         }
1368
1369         if (vcpu->rmode.active &&
1370             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1371                                                                 error_code))
1372                 return 1;
1373
1374         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1375                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1376                 return 0;
1377         }
1378         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1379         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1380         kvm_run->ex.error_code = error_code;
1381         return 0;
1382 }
1383
1384 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1385                                      struct kvm_run *kvm_run)
1386 {
1387         ++kvm_stat.irq_exits;
1388         return 1;
1389 }
1390
1391
1392 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1393 {
1394         u64 inst;
1395         gva_t rip;
1396         int countr_size;
1397         int i, n;
1398
1399         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1400                 countr_size = 2;
1401         } else {
1402                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1403
1404                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1405                               (cs_ar & AR_DB_MASK) ? 4: 2;
1406         }
1407
1408         rip =  vmcs_readl(GUEST_RIP);
1409         if (countr_size != 8)
1410                 rip += vmcs_readl(GUEST_CS_BASE);
1411
1412         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1413
1414         for (i = 0; i < n; i++) {
1415                 switch (((u8*)&inst)[i]) {
1416                 case 0xf0:
1417                 case 0xf2:
1418                 case 0xf3:
1419                 case 0x2e:
1420                 case 0x36:
1421                 case 0x3e:
1422                 case 0x26:
1423                 case 0x64:
1424                 case 0x65:
1425                 case 0x66:
1426                         break;
1427                 case 0x67:
1428                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1429                 default:
1430                         goto done;
1431                 }
1432         }
1433         return 0;
1434 done:
1435         countr_size *= 8;
1436         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1437         return 1;
1438 }
1439
1440 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1441 {
1442         u64 exit_qualification;
1443
1444         ++kvm_stat.io_exits;
1445         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1446         kvm_run->exit_reason = KVM_EXIT_IO;
1447         if (exit_qualification & 8)
1448                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1449         else
1450                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1451         kvm_run->io.size = (exit_qualification & 7) + 1;
1452         kvm_run->io.string = (exit_qualification & 16) != 0;
1453         kvm_run->io.string_down
1454                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1455         kvm_run->io.rep = (exit_qualification & 32) != 0;
1456         kvm_run->io.port = exit_qualification >> 16;
1457         if (kvm_run->io.string) {
1458                 if (!get_io_count(vcpu, &kvm_run->io.count))
1459                         return 1;
1460                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1461         } else
1462                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1463         return 0;
1464 }
1465
1466 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1467 {
1468         u64 address = vmcs_read64(EXIT_QUALIFICATION);
1469         int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1470         spin_lock(&vcpu->kvm->lock);
1471         vcpu->mmu.inval_page(vcpu, address);
1472         spin_unlock(&vcpu->kvm->lock);
1473         vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1474         return 1;
1475 }
1476
1477 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1478 {
1479         u64 exit_qualification;
1480         int cr;
1481         int reg;
1482
1483         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1484         cr = exit_qualification & 15;
1485         reg = (exit_qualification >> 8) & 15;
1486         switch ((exit_qualification >> 4) & 3) {
1487         case 0: /* mov to cr */
1488                 switch (cr) {
1489                 case 0:
1490                         vcpu_load_rsp_rip(vcpu);
1491                         set_cr0(vcpu, vcpu->regs[reg]);
1492                         skip_emulated_instruction(vcpu);
1493                         return 1;
1494                 case 3:
1495                         vcpu_load_rsp_rip(vcpu);
1496                         set_cr3(vcpu, vcpu->regs[reg]);
1497                         skip_emulated_instruction(vcpu);
1498                         return 1;
1499                 case 4:
1500                         vcpu_load_rsp_rip(vcpu);
1501                         set_cr4(vcpu, vcpu->regs[reg]);
1502                         skip_emulated_instruction(vcpu);
1503                         return 1;
1504                 case 8:
1505                         vcpu_load_rsp_rip(vcpu);
1506                         set_cr8(vcpu, vcpu->regs[reg]);
1507                         skip_emulated_instruction(vcpu);
1508                         return 1;
1509                 };
1510                 break;
1511         case 1: /*mov from cr*/
1512                 switch (cr) {
1513                 case 3:
1514                         vcpu_load_rsp_rip(vcpu);
1515                         vcpu->regs[reg] = vcpu->cr3;
1516                         vcpu_put_rsp_rip(vcpu);
1517                         skip_emulated_instruction(vcpu);
1518                         return 1;
1519                 case 8:
1520                         printk(KERN_DEBUG "handle_cr: read CR8 "
1521                                "cpu erratum AA15\n");
1522                         vcpu_load_rsp_rip(vcpu);
1523                         vcpu->regs[reg] = vcpu->cr8;
1524                         vcpu_put_rsp_rip(vcpu);
1525                         skip_emulated_instruction(vcpu);
1526                         return 1;
1527                 }
1528                 break;
1529         case 3: /* lmsw */
1530                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1531
1532                 skip_emulated_instruction(vcpu);
1533                 return 1;
1534         default:
1535                 break;
1536         }
1537         kvm_run->exit_reason = 0;
1538         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1539                (int)(exit_qualification >> 4) & 3, cr);
1540         return 0;
1541 }
1542
1543 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1544 {
1545         u64 exit_qualification;
1546         unsigned long val;
1547         int dr, reg;
1548
1549         /*
1550          * FIXME: this code assumes the host is debugging the guest.
1551          *        need to deal with guest debugging itself too.
1552          */
1553         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1554         dr = exit_qualification & 7;
1555         reg = (exit_qualification >> 8) & 15;
1556         vcpu_load_rsp_rip(vcpu);
1557         if (exit_qualification & 16) {
1558                 /* mov from dr */
1559                 switch (dr) {
1560                 case 6:
1561                         val = 0xffff0ff0;
1562                         break;
1563                 case 7:
1564                         val = 0x400;
1565                         break;
1566                 default:
1567                         val = 0;
1568                 }
1569                 vcpu->regs[reg] = val;
1570         } else {
1571                 /* mov to dr */
1572         }
1573         vcpu_put_rsp_rip(vcpu);
1574         skip_emulated_instruction(vcpu);
1575         return 1;
1576 }
1577
1578 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1579 {
1580         kvm_run->exit_reason = KVM_EXIT_CPUID;
1581         return 0;
1582 }
1583
1584 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1585 {
1586         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1587         u64 data;
1588
1589         if (vmx_get_msr(vcpu, ecx, &data)) {
1590                 vmx_inject_gp(vcpu, 0);
1591                 return 1;
1592         }
1593
1594         /* FIXME: handling of bits 32:63 of rax, rdx */
1595         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1596         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1597         skip_emulated_instruction(vcpu);
1598         return 1;
1599 }
1600
1601 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1602 {
1603         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1604         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1605                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1606
1607         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1608                 vmx_inject_gp(vcpu, 0);
1609                 return 1;
1610         }
1611
1612         skip_emulated_instruction(vcpu);
1613         return 1;
1614 }
1615
1616 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1617                                    struct kvm_run *kvm_run)
1618 {
1619         /* Turn off interrupt window reporting. */
1620         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1621                      vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1622                      & ~CPU_BASED_VIRTUAL_INTR_PENDING);
1623         return 1;
1624 }
1625
1626 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1627 {
1628         skip_emulated_instruction(vcpu);
1629         if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
1630                 return 1;
1631
1632         kvm_run->exit_reason = KVM_EXIT_HLT;
1633         return 0;
1634 }
1635
1636 /*
1637  * The exit handlers return 1 if the exit was handled fully and guest execution
1638  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1639  * to be done to userspace and return 0.
1640  */
1641 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1642                                       struct kvm_run *kvm_run) = {
1643         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1644         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1645         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1646         [EXIT_REASON_INVLPG]                  = handle_invlpg,
1647         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1648         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1649         [EXIT_REASON_CPUID]                   = handle_cpuid,
1650         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1651         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1652         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1653         [EXIT_REASON_HLT]                     = handle_halt,
1654 };
1655
1656 static const int kvm_vmx_max_exit_handlers =
1657         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1658
1659 /*
1660  * The guest has exited.  See if we can fix it or if we need userspace
1661  * assistance.
1662  */
1663 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1664 {
1665         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1666         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1667
1668         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1669                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1670                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1671                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1672         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1673         if (exit_reason < kvm_vmx_max_exit_handlers
1674             && kvm_vmx_exit_handlers[exit_reason])
1675                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1676         else {
1677                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1678                 kvm_run->hw.hardware_exit_reason = exit_reason;
1679         }
1680         return 0;
1681 }
1682
1683 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1684 {
1685         u8 fail;
1686         u16 fs_sel, gs_sel, ldt_sel;
1687         int fs_gs_ldt_reload_needed;
1688
1689 again:
1690         /*
1691          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1692          * allow segment selectors with cpl > 0 or ti == 1.
1693          */
1694         fs_sel = read_fs();
1695         gs_sel = read_gs();
1696         ldt_sel = read_ldt();
1697         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1698         if (!fs_gs_ldt_reload_needed) {
1699                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1700                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1701         } else {
1702                 vmcs_write16(HOST_FS_SELECTOR, 0);
1703                 vmcs_write16(HOST_GS_SELECTOR, 0);
1704         }
1705
1706 #ifdef CONFIG_X86_64
1707         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1708         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1709 #else
1710         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1711         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1712 #endif
1713
1714         if (vcpu->irq_summary &&
1715             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1716                 kvm_try_inject_irq(vcpu);
1717
1718         if (vcpu->guest_debug.enabled)
1719                 kvm_guest_debug_pre(vcpu);
1720
1721         fx_save(vcpu->host_fx_image);
1722         fx_restore(vcpu->guest_fx_image);
1723
1724         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1725         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1726
1727         asm (
1728                 /* Store host registers */
1729                 "pushf \n\t"
1730 #ifdef CONFIG_X86_64
1731                 "push %%rax; push %%rbx; push %%rdx;"
1732                 "push %%rsi; push %%rdi; push %%rbp;"
1733                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1734                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1735                 "push %%rcx \n\t"
1736                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1737 #else
1738                 "pusha; push %%ecx \n\t"
1739                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1740 #endif
1741                 /* Check if vmlaunch of vmresume is needed */
1742                 "cmp $0, %1 \n\t"
1743                 /* Load guest registers.  Don't clobber flags. */
1744 #ifdef CONFIG_X86_64
1745                 "mov %c[cr2](%3), %%rax \n\t"
1746                 "mov %%rax, %%cr2 \n\t"
1747                 "mov %c[rax](%3), %%rax \n\t"
1748                 "mov %c[rbx](%3), %%rbx \n\t"
1749                 "mov %c[rdx](%3), %%rdx \n\t"
1750                 "mov %c[rsi](%3), %%rsi \n\t"
1751                 "mov %c[rdi](%3), %%rdi \n\t"
1752                 "mov %c[rbp](%3), %%rbp \n\t"
1753                 "mov %c[r8](%3),  %%r8  \n\t"
1754                 "mov %c[r9](%3),  %%r9  \n\t"
1755                 "mov %c[r10](%3), %%r10 \n\t"
1756                 "mov %c[r11](%3), %%r11 \n\t"
1757                 "mov %c[r12](%3), %%r12 \n\t"
1758                 "mov %c[r13](%3), %%r13 \n\t"
1759                 "mov %c[r14](%3), %%r14 \n\t"
1760                 "mov %c[r15](%3), %%r15 \n\t"
1761                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1762 #else
1763                 "mov %c[cr2](%3), %%eax \n\t"
1764                 "mov %%eax,   %%cr2 \n\t"
1765                 "mov %c[rax](%3), %%eax \n\t"
1766                 "mov %c[rbx](%3), %%ebx \n\t"
1767                 "mov %c[rdx](%3), %%edx \n\t"
1768                 "mov %c[rsi](%3), %%esi \n\t"
1769                 "mov %c[rdi](%3), %%edi \n\t"
1770                 "mov %c[rbp](%3), %%ebp \n\t"
1771                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1772 #endif
1773                 /* Enter guest mode */
1774                 "jne launched \n\t"
1775                 ASM_VMX_VMLAUNCH "\n\t"
1776                 "jmp kvm_vmx_return \n\t"
1777                 "launched: " ASM_VMX_VMRESUME "\n\t"
1778                 ".globl kvm_vmx_return \n\t"
1779                 "kvm_vmx_return: "
1780                 /* Save guest registers, load host registers, keep flags */
1781 #ifdef CONFIG_X86_64
1782                 "xchg %3,     0(%%rsp) \n\t"
1783                 "mov %%rax, %c[rax](%3) \n\t"
1784                 "mov %%rbx, %c[rbx](%3) \n\t"
1785                 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1786                 "mov %%rdx, %c[rdx](%3) \n\t"
1787                 "mov %%rsi, %c[rsi](%3) \n\t"
1788                 "mov %%rdi, %c[rdi](%3) \n\t"
1789                 "mov %%rbp, %c[rbp](%3) \n\t"
1790                 "mov %%r8,  %c[r8](%3) \n\t"
1791                 "mov %%r9,  %c[r9](%3) \n\t"
1792                 "mov %%r10, %c[r10](%3) \n\t"
1793                 "mov %%r11, %c[r11](%3) \n\t"
1794                 "mov %%r12, %c[r12](%3) \n\t"
1795                 "mov %%r13, %c[r13](%3) \n\t"
1796                 "mov %%r14, %c[r14](%3) \n\t"
1797                 "mov %%r15, %c[r15](%3) \n\t"
1798                 "mov %%cr2, %%rax   \n\t"
1799                 "mov %%rax, %c[cr2](%3) \n\t"
1800                 "mov 0(%%rsp), %3 \n\t"
1801
1802                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1803                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1804                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1805                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1806 #else
1807                 "xchg %3, 0(%%esp) \n\t"
1808                 "mov %%eax, %c[rax](%3) \n\t"
1809                 "mov %%ebx, %c[rbx](%3) \n\t"
1810                 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1811                 "mov %%edx, %c[rdx](%3) \n\t"
1812                 "mov %%esi, %c[rsi](%3) \n\t"
1813                 "mov %%edi, %c[rdi](%3) \n\t"
1814                 "mov %%ebp, %c[rbp](%3) \n\t"
1815                 "mov %%cr2, %%eax  \n\t"
1816                 "mov %%eax, %c[cr2](%3) \n\t"
1817                 "mov 0(%%esp), %3 \n\t"
1818
1819                 "pop %%ecx; popa \n\t"
1820 #endif
1821                 "setbe %0 \n\t"
1822                 "popf \n\t"
1823               : "=g" (fail)
1824               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1825                 "c"(vcpu),
1826                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1827                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1828                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1829                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1830                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1831                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1832                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1833 #ifdef CONFIG_X86_64
1834                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1835                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1836                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1837                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1838                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1839                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1840                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1841                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1842 #endif
1843                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1844               : "cc", "memory" );
1845
1846         ++kvm_stat.exits;
1847
1848         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1849         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1850
1851         fx_save(vcpu->guest_fx_image);
1852         fx_restore(vcpu->host_fx_image);
1853
1854 #ifndef CONFIG_X86_64
1855         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1856 #endif
1857
1858         kvm_run->exit_type = 0;
1859         if (fail) {
1860                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1861                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1862         } else {
1863                 if (fs_gs_ldt_reload_needed) {
1864                         load_ldt(ldt_sel);
1865                         load_fs(fs_sel);
1866                         /*
1867                          * If we have to reload gs, we must take care to
1868                          * preserve our gs base.
1869                          */
1870                         local_irq_disable();
1871                         load_gs(gs_sel);
1872 #ifdef CONFIG_X86_64
1873                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1874 #endif
1875                         local_irq_enable();
1876
1877                         reload_tss();
1878                 }
1879                 vcpu->launched = 1;
1880                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1881                 if (kvm_handle_exit(kvm_run, vcpu)) {
1882                         /* Give scheduler a change to reschedule. */
1883                         if (signal_pending(current)) {
1884                                 ++kvm_stat.signal_exits;
1885                                 return -EINTR;
1886                         }
1887                         kvm_resched(vcpu);
1888                         goto again;
1889                 }
1890         }
1891         return 0;
1892 }
1893
1894 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1895 {
1896         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1897 }
1898
1899 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1900                                   unsigned long addr,
1901                                   u32 err_code)
1902 {
1903         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1904
1905         ++kvm_stat.pf_guest;
1906
1907         if (is_page_fault(vect_info)) {
1908                 printk(KERN_DEBUG "inject_page_fault: "
1909                        "double fault 0x%lx @ 0x%lx\n",
1910                        addr, vmcs_readl(GUEST_RIP));
1911                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1912                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1913                              DF_VECTOR |
1914                              INTR_TYPE_EXCEPTION |
1915                              INTR_INFO_DELIEVER_CODE_MASK |
1916                              INTR_INFO_VALID_MASK);
1917                 return;
1918         }
1919         vcpu->cr2 = addr;
1920         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1921         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1922                      PF_VECTOR |
1923                      INTR_TYPE_EXCEPTION |
1924                      INTR_INFO_DELIEVER_CODE_MASK |
1925                      INTR_INFO_VALID_MASK);
1926
1927 }
1928
1929 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1930 {
1931         if (vcpu->vmcs) {
1932                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1933                 free_vmcs(vcpu->vmcs);
1934                 vcpu->vmcs = NULL;
1935         }
1936 }
1937
1938 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1939 {
1940         vmx_free_vmcs(vcpu);
1941 }
1942
1943 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1944 {
1945         struct vmcs *vmcs;
1946
1947         vmcs = alloc_vmcs();
1948         if (!vmcs)
1949                 return -ENOMEM;
1950         vmcs_clear(vmcs);
1951         vcpu->vmcs = vmcs;
1952         vcpu->launched = 0;
1953         return 0;
1954 }
1955
1956 static struct kvm_arch_ops vmx_arch_ops = {
1957         .cpu_has_kvm_support = cpu_has_kvm_support,
1958         .disabled_by_bios = vmx_disabled_by_bios,
1959         .hardware_setup = hardware_setup,
1960         .hardware_unsetup = hardware_unsetup,
1961         .hardware_enable = hardware_enable,
1962         .hardware_disable = hardware_disable,
1963
1964         .vcpu_create = vmx_create_vcpu,
1965         .vcpu_free = vmx_free_vcpu,
1966
1967         .vcpu_load = vmx_vcpu_load,
1968         .vcpu_put = vmx_vcpu_put,
1969
1970         .set_guest_debug = set_guest_debug,
1971         .get_msr = vmx_get_msr,
1972         .set_msr = vmx_set_msr,
1973         .get_segment_base = vmx_get_segment_base,
1974         .get_segment = vmx_get_segment,
1975         .set_segment = vmx_set_segment,
1976         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
1977         .set_cr0 = vmx_set_cr0,
1978         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
1979         .set_cr3 = vmx_set_cr3,
1980         .set_cr4 = vmx_set_cr4,
1981 #ifdef CONFIG_X86_64
1982         .set_efer = vmx_set_efer,
1983 #endif
1984         .get_idt = vmx_get_idt,
1985         .set_idt = vmx_set_idt,
1986         .get_gdt = vmx_get_gdt,
1987         .set_gdt = vmx_set_gdt,
1988         .cache_regs = vcpu_load_rsp_rip,
1989         .decache_regs = vcpu_put_rsp_rip,
1990         .get_rflags = vmx_get_rflags,
1991         .set_rflags = vmx_set_rflags,
1992
1993         .tlb_flush = vmx_flush_tlb,
1994         .inject_page_fault = vmx_inject_page_fault,
1995
1996         .inject_gp = vmx_inject_gp,
1997
1998         .run = vmx_vcpu_run,
1999         .skip_emulated_instruction = skip_emulated_instruction,
2000         .vcpu_setup = vmx_vcpu_setup,
2001 };
2002
2003 static int __init vmx_init(void)
2004 {
2005         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2006 }
2007
2008 static void __exit vmx_exit(void)
2009 {
2010         kvm_exit_arch();
2011 }
2012
2013 module_init(vmx_init)
2014 module_exit(vmx_exit)