[PATCH] KVM: Use raw_smp_processor_id() instead of smp_processor_id() where applicable
[powerpc.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43         int size;
44         int order;
45         u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg)                                  \
49         [VCPU_SREG_##seg] = {                                   \
50                 .selector = GUEST_##seg##_SELECTOR,             \
51                 .base = GUEST_##seg##_BASE,                     \
52                 .limit = GUEST_##seg##_LIMIT,                   \
53                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
54         }
55
56 static struct kvm_vmx_segment_field {
57         unsigned selector;
58         unsigned base;
59         unsigned limit;
60         unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62         VMX_SEGMENT_FIELD(CS),
63         VMX_SEGMENT_FIELD(DS),
64         VMX_SEGMENT_FIELD(ES),
65         VMX_SEGMENT_FIELD(FS),
66         VMX_SEGMENT_FIELD(GS),
67         VMX_SEGMENT_FIELD(SS),
68         VMX_SEGMENT_FIELD(TR),
69         VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef CONFIG_X86_64
74         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76         MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 static inline int is_page_fault(u32 intr_info)
81 {
82         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
83                              INTR_INFO_VALID_MASK)) ==
84                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
85 }
86
87 static inline int is_external_interrupt(u32 intr_info)
88 {
89         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
90                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
91 }
92
93 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
94 {
95         int i;
96
97         for (i = 0; i < vcpu->nmsrs; ++i)
98                 if (vcpu->guest_msrs[i].index == msr)
99                         return &vcpu->guest_msrs[i];
100         return 0;
101 }
102
103 static void vmcs_clear(struct vmcs *vmcs)
104 {
105         u64 phys_addr = __pa(vmcs);
106         u8 error;
107
108         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
109                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
110                       : "cc", "memory");
111         if (error)
112                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
113                        vmcs, phys_addr);
114 }
115
116 static void __vcpu_clear(void *arg)
117 {
118         struct kvm_vcpu *vcpu = arg;
119         int cpu = raw_smp_processor_id();
120
121         if (vcpu->cpu == cpu)
122                 vmcs_clear(vcpu->vmcs);
123         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
124                 per_cpu(current_vmcs, cpu) = NULL;
125 }
126
127 static unsigned long vmcs_readl(unsigned long field)
128 {
129         unsigned long value;
130
131         asm volatile (ASM_VMX_VMREAD_RDX_RAX
132                       : "=a"(value) : "d"(field) : "cc");
133         return value;
134 }
135
136 static u16 vmcs_read16(unsigned long field)
137 {
138         return vmcs_readl(field);
139 }
140
141 static u32 vmcs_read32(unsigned long field)
142 {
143         return vmcs_readl(field);
144 }
145
146 static u64 vmcs_read64(unsigned long field)
147 {
148 #ifdef CONFIG_X86_64
149         return vmcs_readl(field);
150 #else
151         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
152 #endif
153 }
154
155 static void vmcs_writel(unsigned long field, unsigned long value)
156 {
157         u8 error;
158
159         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
160                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
161         if (error)
162                 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
163                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
164 }
165
166 static void vmcs_write16(unsigned long field, u16 value)
167 {
168         vmcs_writel(field, value);
169 }
170
171 static void vmcs_write32(unsigned long field, u32 value)
172 {
173         vmcs_writel(field, value);
174 }
175
176 static void vmcs_write64(unsigned long field, u64 value)
177 {
178 #ifdef CONFIG_X86_64
179         vmcs_writel(field, value);
180 #else
181         vmcs_writel(field, value);
182         asm volatile ("");
183         vmcs_writel(field+1, value >> 32);
184 #endif
185 }
186
187 /*
188  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
189  * vcpu mutex is already taken.
190  */
191 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
192 {
193         u64 phys_addr = __pa(vcpu->vmcs);
194         int cpu;
195
196         cpu = get_cpu();
197
198         if (vcpu->cpu != cpu) {
199                 smp_call_function(__vcpu_clear, vcpu, 0, 1);
200                 vcpu->launched = 0;
201         }
202
203         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
204                 u8 error;
205
206                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
207                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
208                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
209                               : "cc");
210                 if (error)
211                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
212                                vcpu->vmcs, phys_addr);
213         }
214
215         if (vcpu->cpu != cpu) {
216                 struct descriptor_table dt;
217                 unsigned long sysenter_esp;
218
219                 vcpu->cpu = cpu;
220                 /*
221                  * Linux uses per-cpu TSS and GDT, so set these when switching
222                  * processors.
223                  */
224                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
225                 get_gdt(&dt);
226                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
227
228                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
229                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
230         }
231         return vcpu;
232 }
233
234 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
235 {
236         put_cpu();
237 }
238
239 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
240 {
241         return vmcs_readl(GUEST_RFLAGS);
242 }
243
244 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
245 {
246         vmcs_writel(GUEST_RFLAGS, rflags);
247 }
248
249 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
250 {
251         unsigned long rip;
252         u32 interruptibility;
253
254         rip = vmcs_readl(GUEST_RIP);
255         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
256         vmcs_writel(GUEST_RIP, rip);
257
258         /*
259          * We emulated an instruction, so temporary interrupt blocking
260          * should be removed, if set.
261          */
262         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
263         if (interruptibility & 3)
264                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
265                              interruptibility & ~3);
266 }
267
268 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
269 {
270         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
271                vmcs_readl(GUEST_RIP));
272         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
273         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
274                      GP_VECTOR |
275                      INTR_TYPE_EXCEPTION |
276                      INTR_INFO_DELIEVER_CODE_MASK |
277                      INTR_INFO_VALID_MASK);
278 }
279
280 /*
281  * reads and returns guest's timestamp counter "register"
282  * guest_tsc = host_tsc + tsc_offset    -- 21.3
283  */
284 static u64 guest_read_tsc(void)
285 {
286         u64 host_tsc, tsc_offset;
287
288         rdtscll(host_tsc);
289         tsc_offset = vmcs_read64(TSC_OFFSET);
290         return host_tsc + tsc_offset;
291 }
292
293 /*
294  * writes 'guest_tsc' into guest's timestamp counter "register"
295  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
296  */
297 static void guest_write_tsc(u64 guest_tsc)
298 {
299         u64 host_tsc;
300
301         rdtscll(host_tsc);
302         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
303 }
304
305 static void reload_tss(void)
306 {
307 #ifndef CONFIG_X86_64
308
309         /*
310          * VT restores TR but not its size.  Useless.
311          */
312         struct descriptor_table gdt;
313         struct segment_descriptor *descs;
314
315         get_gdt(&gdt);
316         descs = (void *)gdt.base;
317         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
318         load_TR_desc();
319 #endif
320 }
321
322 /*
323  * Reads an msr value (of 'msr_index') into 'pdata'.
324  * Returns 0 on success, non-0 otherwise.
325  * Assumes vcpu_load() was already called.
326  */
327 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
328 {
329         u64 data;
330         struct vmx_msr_entry *msr;
331
332         if (!pdata) {
333                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
334                 return -EINVAL;
335         }
336
337         switch (msr_index) {
338 #ifdef CONFIG_X86_64
339         case MSR_FS_BASE:
340                 data = vmcs_readl(GUEST_FS_BASE);
341                 break;
342         case MSR_GS_BASE:
343                 data = vmcs_readl(GUEST_GS_BASE);
344                 break;
345         case MSR_EFER:
346                 return kvm_get_msr_common(vcpu, msr_index, pdata);
347 #endif
348         case MSR_IA32_TIME_STAMP_COUNTER:
349                 data = guest_read_tsc();
350                 break;
351         case MSR_IA32_SYSENTER_CS:
352                 data = vmcs_read32(GUEST_SYSENTER_CS);
353                 break;
354         case MSR_IA32_SYSENTER_EIP:
355                 data = vmcs_read32(GUEST_SYSENTER_EIP);
356                 break;
357         case MSR_IA32_SYSENTER_ESP:
358                 data = vmcs_read32(GUEST_SYSENTER_ESP);
359                 break;
360         default:
361                 msr = find_msr_entry(vcpu, msr_index);
362                 if (msr) {
363                         data = msr->data;
364                         break;
365                 }
366                 return kvm_get_msr_common(vcpu, msr_index, pdata);
367         }
368
369         *pdata = data;
370         return 0;
371 }
372
373 /*
374  * Writes msr value into into the appropriate "register".
375  * Returns 0 on success, non-0 otherwise.
376  * Assumes vcpu_load() was already called.
377  */
378 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
379 {
380         struct vmx_msr_entry *msr;
381         switch (msr_index) {
382 #ifdef CONFIG_X86_64
383         case MSR_EFER:
384                 return kvm_set_msr_common(vcpu, msr_index, data);
385         case MSR_FS_BASE:
386                 vmcs_writel(GUEST_FS_BASE, data);
387                 break;
388         case MSR_GS_BASE:
389                 vmcs_writel(GUEST_GS_BASE, data);
390                 break;
391 #endif
392         case MSR_IA32_SYSENTER_CS:
393                 vmcs_write32(GUEST_SYSENTER_CS, data);
394                 break;
395         case MSR_IA32_SYSENTER_EIP:
396                 vmcs_write32(GUEST_SYSENTER_EIP, data);
397                 break;
398         case MSR_IA32_SYSENTER_ESP:
399                 vmcs_write32(GUEST_SYSENTER_ESP, data);
400                 break;
401         case MSR_IA32_TIME_STAMP_COUNTER: {
402                 guest_write_tsc(data);
403                 break;
404         }
405         default:
406                 msr = find_msr_entry(vcpu, msr_index);
407                 if (msr) {
408                         msr->data = data;
409                         break;
410                 }
411                 return kvm_set_msr_common(vcpu, msr_index, data);
412                 msr->data = data;
413                 break;
414         }
415
416         return 0;
417 }
418
419 /*
420  * Sync the rsp and rip registers into the vcpu structure.  This allows
421  * registers to be accessed by indexing vcpu->regs.
422  */
423 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
424 {
425         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
426         vcpu->rip = vmcs_readl(GUEST_RIP);
427 }
428
429 /*
430  * Syncs rsp and rip back into the vmcs.  Should be called after possible
431  * modification.
432  */
433 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
434 {
435         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
436         vmcs_writel(GUEST_RIP, vcpu->rip);
437 }
438
439 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
440 {
441         unsigned long dr7 = 0x400;
442         u32 exception_bitmap;
443         int old_singlestep;
444
445         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
446         old_singlestep = vcpu->guest_debug.singlestep;
447
448         vcpu->guest_debug.enabled = dbg->enabled;
449         if (vcpu->guest_debug.enabled) {
450                 int i;
451
452                 dr7 |= 0x200;  /* exact */
453                 for (i = 0; i < 4; ++i) {
454                         if (!dbg->breakpoints[i].enabled)
455                                 continue;
456                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
457                         dr7 |= 2 << (i*2);    /* global enable */
458                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
459                 }
460
461                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
462
463                 vcpu->guest_debug.singlestep = dbg->singlestep;
464         } else {
465                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
466                 vcpu->guest_debug.singlestep = 0;
467         }
468
469         if (old_singlestep && !vcpu->guest_debug.singlestep) {
470                 unsigned long flags;
471
472                 flags = vmcs_readl(GUEST_RFLAGS);
473                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
474                 vmcs_writel(GUEST_RFLAGS, flags);
475         }
476
477         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
478         vmcs_writel(GUEST_DR7, dr7);
479
480         return 0;
481 }
482
483 static __init int cpu_has_kvm_support(void)
484 {
485         unsigned long ecx = cpuid_ecx(1);
486         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
487 }
488
489 static __init int vmx_disabled_by_bios(void)
490 {
491         u64 msr;
492
493         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
494         return (msr & 5) == 1; /* locked but not enabled */
495 }
496
497 static __init void hardware_enable(void *garbage)
498 {
499         int cpu = raw_smp_processor_id();
500         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
501         u64 old;
502
503         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
504         if ((old & 5) != 5)
505                 /* enable and lock */
506                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
507         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
508         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
509                       : "memory", "cc");
510 }
511
512 static void hardware_disable(void *garbage)
513 {
514         asm volatile (ASM_VMX_VMXOFF : : : "cc");
515 }
516
517 static __init void setup_vmcs_descriptor(void)
518 {
519         u32 vmx_msr_low, vmx_msr_high;
520
521         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
522         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
523         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
524         vmcs_descriptor.revision_id = vmx_msr_low;
525 }
526
527 static struct vmcs *alloc_vmcs_cpu(int cpu)
528 {
529         int node = cpu_to_node(cpu);
530         struct page *pages;
531         struct vmcs *vmcs;
532
533         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
534         if (!pages)
535                 return NULL;
536         vmcs = page_address(pages);
537         memset(vmcs, 0, vmcs_descriptor.size);
538         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
539         return vmcs;
540 }
541
542 static struct vmcs *alloc_vmcs(void)
543 {
544         return alloc_vmcs_cpu(raw_smp_processor_id());
545 }
546
547 static void free_vmcs(struct vmcs *vmcs)
548 {
549         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
550 }
551
552 static __exit void free_kvm_area(void)
553 {
554         int cpu;
555
556         for_each_online_cpu(cpu)
557                 free_vmcs(per_cpu(vmxarea, cpu));
558 }
559
560 extern struct vmcs *alloc_vmcs_cpu(int cpu);
561
562 static __init int alloc_kvm_area(void)
563 {
564         int cpu;
565
566         for_each_online_cpu(cpu) {
567                 struct vmcs *vmcs;
568
569                 vmcs = alloc_vmcs_cpu(cpu);
570                 if (!vmcs) {
571                         free_kvm_area();
572                         return -ENOMEM;
573                 }
574
575                 per_cpu(vmxarea, cpu) = vmcs;
576         }
577         return 0;
578 }
579
580 static __init int hardware_setup(void)
581 {
582         setup_vmcs_descriptor();
583         return alloc_kvm_area();
584 }
585
586 static __exit void hardware_unsetup(void)
587 {
588         free_kvm_area();
589 }
590
591 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
592 {
593         if (vcpu->rmode.active)
594                 vmcs_write32(EXCEPTION_BITMAP, ~0);
595         else
596                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
597 }
598
599 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
600 {
601         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
602
603         if (vmcs_readl(sf->base) == save->base) {
604                 vmcs_write16(sf->selector, save->selector);
605                 vmcs_writel(sf->base, save->base);
606                 vmcs_write32(sf->limit, save->limit);
607                 vmcs_write32(sf->ar_bytes, save->ar);
608         } else {
609                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
610                         << AR_DPL_SHIFT;
611                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
612         }
613 }
614
615 static void enter_pmode(struct kvm_vcpu *vcpu)
616 {
617         unsigned long flags;
618
619         vcpu->rmode.active = 0;
620
621         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
622         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
623         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
624
625         flags = vmcs_readl(GUEST_RFLAGS);
626         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
627         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
628         vmcs_writel(GUEST_RFLAGS, flags);
629
630         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
631                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
632
633         update_exception_bitmap(vcpu);
634
635         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
636         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
637         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
638         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
639
640         vmcs_write16(GUEST_SS_SELECTOR, 0);
641         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
642
643         vmcs_write16(GUEST_CS_SELECTOR,
644                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
645         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
646 }
647
648 static int rmode_tss_base(struct kvm* kvm)
649 {
650         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
651         return base_gfn << PAGE_SHIFT;
652 }
653
654 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
655 {
656         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
657
658         save->selector = vmcs_read16(sf->selector);
659         save->base = vmcs_readl(sf->base);
660         save->limit = vmcs_read32(sf->limit);
661         save->ar = vmcs_read32(sf->ar_bytes);
662         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
663         vmcs_write32(sf->limit, 0xffff);
664         vmcs_write32(sf->ar_bytes, 0xf3);
665 }
666
667 static void enter_rmode(struct kvm_vcpu *vcpu)
668 {
669         unsigned long flags;
670
671         vcpu->rmode.active = 1;
672
673         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
674         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
675
676         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
677         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
678
679         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
680         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
681
682         flags = vmcs_readl(GUEST_RFLAGS);
683         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
684
685         flags |= IOPL_MASK | X86_EFLAGS_VM;
686
687         vmcs_writel(GUEST_RFLAGS, flags);
688         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
689         update_exception_bitmap(vcpu);
690
691         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
692         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
693         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
694
695         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
696         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
697         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
698
699         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
700         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
701         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
702         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
703 }
704
705 #ifdef CONFIG_X86_64
706
707 static void enter_lmode(struct kvm_vcpu *vcpu)
708 {
709         u32 guest_tr_ar;
710
711         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
712         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
713                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
714                        __FUNCTION__);
715                 vmcs_write32(GUEST_TR_AR_BYTES,
716                              (guest_tr_ar & ~AR_TYPE_MASK)
717                              | AR_TYPE_BUSY_64_TSS);
718         }
719
720         vcpu->shadow_efer |= EFER_LMA;
721
722         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
723         vmcs_write32(VM_ENTRY_CONTROLS,
724                      vmcs_read32(VM_ENTRY_CONTROLS)
725                      | VM_ENTRY_CONTROLS_IA32E_MASK);
726 }
727
728 static void exit_lmode(struct kvm_vcpu *vcpu)
729 {
730         vcpu->shadow_efer &= ~EFER_LMA;
731
732         vmcs_write32(VM_ENTRY_CONTROLS,
733                      vmcs_read32(VM_ENTRY_CONTROLS)
734                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
735 }
736
737 #endif
738
739 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
740 {
741         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
742                 enter_pmode(vcpu);
743
744         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
745                 enter_rmode(vcpu);
746
747 #ifdef CONFIG_X86_64
748         if (vcpu->shadow_efer & EFER_LME) {
749                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
750                         enter_lmode(vcpu);
751                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
752                         exit_lmode(vcpu);
753         }
754 #endif
755
756         vmcs_writel(CR0_READ_SHADOW, cr0);
757         vmcs_writel(GUEST_CR0,
758                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
759         vcpu->cr0 = cr0;
760 }
761
762 /*
763  * Used when restoring the VM to avoid corrupting segment registers
764  */
765 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
766 {
767         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
768         update_exception_bitmap(vcpu);
769         vmcs_writel(CR0_READ_SHADOW, cr0);
770         vmcs_writel(GUEST_CR0,
771                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
772         vcpu->cr0 = cr0;
773 }
774
775 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
776 {
777         vmcs_writel(GUEST_CR3, cr3);
778 }
779
780 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
781 {
782         vmcs_writel(CR4_READ_SHADOW, cr4);
783         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
784                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
785         vcpu->cr4 = cr4;
786 }
787
788 #ifdef CONFIG_X86_64
789
790 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
791 {
792         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
793
794         vcpu->shadow_efer = efer;
795         if (efer & EFER_LMA) {
796                 vmcs_write32(VM_ENTRY_CONTROLS,
797                                      vmcs_read32(VM_ENTRY_CONTROLS) |
798                                      VM_ENTRY_CONTROLS_IA32E_MASK);
799                 msr->data = efer;
800
801         } else {
802                 vmcs_write32(VM_ENTRY_CONTROLS,
803                                      vmcs_read32(VM_ENTRY_CONTROLS) &
804                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
805
806                 msr->data = efer & ~EFER_LME;
807         }
808 }
809
810 #endif
811
812 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
813 {
814         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
815
816         return vmcs_readl(sf->base);
817 }
818
819 static void vmx_get_segment(struct kvm_vcpu *vcpu,
820                             struct kvm_segment *var, int seg)
821 {
822         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
823         u32 ar;
824
825         var->base = vmcs_readl(sf->base);
826         var->limit = vmcs_read32(sf->limit);
827         var->selector = vmcs_read16(sf->selector);
828         ar = vmcs_read32(sf->ar_bytes);
829         if (ar & AR_UNUSABLE_MASK)
830                 ar = 0;
831         var->type = ar & 15;
832         var->s = (ar >> 4) & 1;
833         var->dpl = (ar >> 5) & 3;
834         var->present = (ar >> 7) & 1;
835         var->avl = (ar >> 12) & 1;
836         var->l = (ar >> 13) & 1;
837         var->db = (ar >> 14) & 1;
838         var->g = (ar >> 15) & 1;
839         var->unusable = (ar >> 16) & 1;
840 }
841
842 static void vmx_set_segment(struct kvm_vcpu *vcpu,
843                             struct kvm_segment *var, int seg)
844 {
845         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
846         u32 ar;
847
848         vmcs_writel(sf->base, var->base);
849         vmcs_write32(sf->limit, var->limit);
850         vmcs_write16(sf->selector, var->selector);
851         if (var->unusable)
852                 ar = 1 << 16;
853         else {
854                 ar = var->type & 15;
855                 ar |= (var->s & 1) << 4;
856                 ar |= (var->dpl & 3) << 5;
857                 ar |= (var->present & 1) << 7;
858                 ar |= (var->avl & 1) << 12;
859                 ar |= (var->l & 1) << 13;
860                 ar |= (var->db & 1) << 14;
861                 ar |= (var->g & 1) << 15;
862         }
863         if (ar == 0) /* a 0 value means unusable */
864                 ar = AR_UNUSABLE_MASK;
865         vmcs_write32(sf->ar_bytes, ar);
866 }
867
868 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
869 {
870         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
871
872         *db = (ar >> 14) & 1;
873         *l = (ar >> 13) & 1;
874 }
875
876 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
877 {
878         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
879         dt->base = vmcs_readl(GUEST_IDTR_BASE);
880 }
881
882 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
883 {
884         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
885         vmcs_writel(GUEST_IDTR_BASE, dt->base);
886 }
887
888 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
889 {
890         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
891         dt->base = vmcs_readl(GUEST_GDTR_BASE);
892 }
893
894 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
895 {
896         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
897         vmcs_writel(GUEST_GDTR_BASE, dt->base);
898 }
899
900 static int init_rmode_tss(struct kvm* kvm)
901 {
902         struct page *p1, *p2, *p3;
903         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
904         char *page;
905
906         p1 = _gfn_to_page(kvm, fn++);
907         p2 = _gfn_to_page(kvm, fn++);
908         p3 = _gfn_to_page(kvm, fn);
909
910         if (!p1 || !p2 || !p3) {
911                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
912                 return 0;
913         }
914
915         page = kmap_atomic(p1, KM_USER0);
916         memset(page, 0, PAGE_SIZE);
917         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
918         kunmap_atomic(page, KM_USER0);
919
920         page = kmap_atomic(p2, KM_USER0);
921         memset(page, 0, PAGE_SIZE);
922         kunmap_atomic(page, KM_USER0);
923
924         page = kmap_atomic(p3, KM_USER0);
925         memset(page, 0, PAGE_SIZE);
926         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
927         kunmap_atomic(page, KM_USER0);
928
929         return 1;
930 }
931
932 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
933 {
934         u32 msr_high, msr_low;
935
936         rdmsr(msr, msr_low, msr_high);
937
938         val &= msr_high;
939         val |= msr_low;
940         vmcs_write32(vmcs_field, val);
941 }
942
943 static void seg_setup(int seg)
944 {
945         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
946
947         vmcs_write16(sf->selector, 0);
948         vmcs_writel(sf->base, 0);
949         vmcs_write32(sf->limit, 0xffff);
950         vmcs_write32(sf->ar_bytes, 0x93);
951 }
952
953 /*
954  * Sets up the vmcs for emulated real mode.
955  */
956 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
957 {
958         u32 host_sysenter_cs;
959         u32 junk;
960         unsigned long a;
961         struct descriptor_table dt;
962         int i;
963         int ret = 0;
964         int nr_good_msrs;
965         extern asmlinkage void kvm_vmx_return(void);
966
967         if (!init_rmode_tss(vcpu->kvm)) {
968                 ret = -ENOMEM;
969                 goto out;
970         }
971
972         memset(vcpu->regs, 0, sizeof(vcpu->regs));
973         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
974         vcpu->cr8 = 0;
975         vcpu->apic_base = 0xfee00000 |
976                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
977                         MSR_IA32_APICBASE_ENABLE;
978
979         fx_init(vcpu);
980
981         /*
982          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
983          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
984          */
985         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
986         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
987         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
988         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
989
990         seg_setup(VCPU_SREG_DS);
991         seg_setup(VCPU_SREG_ES);
992         seg_setup(VCPU_SREG_FS);
993         seg_setup(VCPU_SREG_GS);
994         seg_setup(VCPU_SREG_SS);
995
996         vmcs_write16(GUEST_TR_SELECTOR, 0);
997         vmcs_writel(GUEST_TR_BASE, 0);
998         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
999         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1000
1001         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1002         vmcs_writel(GUEST_LDTR_BASE, 0);
1003         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1004         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1005
1006         vmcs_write32(GUEST_SYSENTER_CS, 0);
1007         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1008         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1009
1010         vmcs_writel(GUEST_RFLAGS, 0x02);
1011         vmcs_writel(GUEST_RIP, 0xfff0);
1012         vmcs_writel(GUEST_RSP, 0);
1013
1014         vmcs_writel(GUEST_CR3, 0);
1015
1016         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1017         vmcs_writel(GUEST_DR7, 0x400);
1018
1019         vmcs_writel(GUEST_GDTR_BASE, 0);
1020         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1021
1022         vmcs_writel(GUEST_IDTR_BASE, 0);
1023         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1024
1025         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1026         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1027         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1028
1029         /* I/O */
1030         vmcs_write64(IO_BITMAP_A, 0);
1031         vmcs_write64(IO_BITMAP_B, 0);
1032
1033         guest_write_tsc(0);
1034
1035         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1036
1037         /* Special registers */
1038         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1039
1040         /* Control */
1041         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1042                                PIN_BASED_VM_EXEC_CONTROL,
1043                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1044                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1045                         );
1046         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1047                                CPU_BASED_VM_EXEC_CONTROL,
1048                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1049                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1050                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1051                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1052                                | CPU_BASED_INVDPG_EXITING
1053                                | CPU_BASED_MOV_DR_EXITING
1054                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1055                         );
1056
1057         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1058         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1059         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1060         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1061
1062         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1063         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1064         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1065
1066         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1067         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1068         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1069         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1070         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1071         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1072 #ifdef CONFIG_X86_64
1073         rdmsrl(MSR_FS_BASE, a);
1074         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1075         rdmsrl(MSR_GS_BASE, a);
1076         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1077 #else
1078         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1079         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1080 #endif
1081
1082         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1083
1084         get_idt(&dt);
1085         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1086
1087
1088         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1089
1090         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1091         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1092         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1093         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1094         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1095         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1096
1097         for (i = 0; i < NR_VMX_MSR; ++i) {
1098                 u32 index = vmx_msr_index[i];
1099                 u32 data_low, data_high;
1100                 u64 data;
1101                 int j = vcpu->nmsrs;
1102
1103                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1104                         continue;
1105                 data = data_low | ((u64)data_high << 32);
1106                 vcpu->host_msrs[j].index = index;
1107                 vcpu->host_msrs[j].reserved = 0;
1108                 vcpu->host_msrs[j].data = data;
1109                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1110                 ++vcpu->nmsrs;
1111         }
1112         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1113
1114         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1115         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1116                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1117         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1118                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1119         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1120                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1121         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1122                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1123         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1124         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1125         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1126
1127
1128         /* 22.2.1, 20.8.1 */
1129         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1130                                VM_ENTRY_CONTROLS, 0);
1131         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1132
1133 #ifdef CONFIG_X86_64
1134         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1135         vmcs_writel(TPR_THRESHOLD, 0);
1136 #endif
1137
1138         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1139         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1140
1141         vcpu->cr0 = 0x60000010;
1142         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1143         vmx_set_cr4(vcpu, 0);
1144 #ifdef CONFIG_X86_64
1145         vmx_set_efer(vcpu, 0);
1146 #endif
1147
1148         return 0;
1149
1150 out:
1151         return ret;
1152 }
1153
1154 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1155 {
1156         u16 ent[2];
1157         u16 cs;
1158         u16 ip;
1159         unsigned long flags;
1160         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1161         u16 sp =  vmcs_readl(GUEST_RSP);
1162         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1163
1164         if (sp > ss_limit || sp - 6 > sp) {
1165                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1166                             __FUNCTION__,
1167                             vmcs_readl(GUEST_RSP),
1168                             vmcs_readl(GUEST_SS_BASE),
1169                             vmcs_read32(GUEST_SS_LIMIT));
1170                 return;
1171         }
1172
1173         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1174                                                                 sizeof(ent)) {
1175                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1176                 return;
1177         }
1178
1179         flags =  vmcs_readl(GUEST_RFLAGS);
1180         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1181         ip =  vmcs_readl(GUEST_RIP);
1182
1183
1184         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1185             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1186             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1187                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1188                 return;
1189         }
1190
1191         vmcs_writel(GUEST_RFLAGS, flags &
1192                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1193         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1194         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1195         vmcs_writel(GUEST_RIP, ent[0]);
1196         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1197 }
1198
1199 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1200 {
1201         int word_index = __ffs(vcpu->irq_summary);
1202         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1203         int irq = word_index * BITS_PER_LONG + bit_index;
1204
1205         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1206         if (!vcpu->irq_pending[word_index])
1207                 clear_bit(word_index, &vcpu->irq_summary);
1208
1209         if (vcpu->rmode.active) {
1210                 inject_rmode_irq(vcpu, irq);
1211                 return;
1212         }
1213         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1214                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1215 }
1216
1217 static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1218 {
1219         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
1220             && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
1221                 /*
1222                  * Interrupts enabled, and not blocked by sti or mov ss. Good.
1223                  */
1224                 kvm_do_inject_irq(vcpu);
1225         else
1226                 /*
1227                  * Interrupts blocked.  Wait for unblock.
1228                  */
1229                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1230                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1231                              | CPU_BASED_VIRTUAL_INTR_PENDING);
1232 }
1233
1234 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1235 {
1236         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1237
1238         set_debugreg(dbg->bp[0], 0);
1239         set_debugreg(dbg->bp[1], 1);
1240         set_debugreg(dbg->bp[2], 2);
1241         set_debugreg(dbg->bp[3], 3);
1242
1243         if (dbg->singlestep) {
1244                 unsigned long flags;
1245
1246                 flags = vmcs_readl(GUEST_RFLAGS);
1247                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1248                 vmcs_writel(GUEST_RFLAGS, flags);
1249         }
1250 }
1251
1252 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1253                                   int vec, u32 err_code)
1254 {
1255         if (!vcpu->rmode.active)
1256                 return 0;
1257
1258         if (vec == GP_VECTOR && err_code == 0)
1259                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1260                         return 1;
1261         return 0;
1262 }
1263
1264 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1265 {
1266         u32 intr_info, error_code;
1267         unsigned long cr2, rip;
1268         u32 vect_info;
1269         enum emulation_result er;
1270
1271         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1272         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1273
1274         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1275                                                 !is_page_fault(intr_info)) {
1276                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1277                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1278         }
1279
1280         if (is_external_interrupt(vect_info)) {
1281                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1282                 set_bit(irq, vcpu->irq_pending);
1283                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1284         }
1285
1286         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1287                 asm ("int $2");
1288                 return 1;
1289         }
1290         error_code = 0;
1291         rip = vmcs_readl(GUEST_RIP);
1292         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1293                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1294         if (is_page_fault(intr_info)) {
1295                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1296
1297                 spin_lock(&vcpu->kvm->lock);
1298                 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1299                         spin_unlock(&vcpu->kvm->lock);
1300                         return 1;
1301                 }
1302
1303                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1304                 spin_unlock(&vcpu->kvm->lock);
1305
1306                 switch (er) {
1307                 case EMULATE_DONE:
1308                         return 1;
1309                 case EMULATE_DO_MMIO:
1310                         ++kvm_stat.mmio_exits;
1311                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1312                         return 0;
1313                  case EMULATE_FAIL:
1314                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1315                         break;
1316                 default:
1317                         BUG();
1318                 }
1319         }
1320
1321         if (vcpu->rmode.active &&
1322             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1323                                                                 error_code))
1324                 return 1;
1325
1326         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1327                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1328                 return 0;
1329         }
1330         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1331         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1332         kvm_run->ex.error_code = error_code;
1333         return 0;
1334 }
1335
1336 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1337                                      struct kvm_run *kvm_run)
1338 {
1339         ++kvm_stat.irq_exits;
1340         return 1;
1341 }
1342
1343
1344 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1345 {
1346         u64 inst;
1347         gva_t rip;
1348         int countr_size;
1349         int i, n;
1350
1351         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1352                 countr_size = 2;
1353         } else {
1354                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1355
1356                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1357                               (cs_ar & AR_DB_MASK) ? 4: 2;
1358         }
1359
1360         rip =  vmcs_readl(GUEST_RIP);
1361         if (countr_size != 8)
1362                 rip += vmcs_readl(GUEST_CS_BASE);
1363
1364         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1365
1366         for (i = 0; i < n; i++) {
1367                 switch (((u8*)&inst)[i]) {
1368                 case 0xf0:
1369                 case 0xf2:
1370                 case 0xf3:
1371                 case 0x2e:
1372                 case 0x36:
1373                 case 0x3e:
1374                 case 0x26:
1375                 case 0x64:
1376                 case 0x65:
1377                 case 0x66:
1378                         break;
1379                 case 0x67:
1380                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1381                 default:
1382                         goto done;
1383                 }
1384         }
1385         return 0;
1386 done:
1387         countr_size *= 8;
1388         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1389         return 1;
1390 }
1391
1392 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1393 {
1394         u64 exit_qualification;
1395
1396         ++kvm_stat.io_exits;
1397         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1398         kvm_run->exit_reason = KVM_EXIT_IO;
1399         if (exit_qualification & 8)
1400                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1401         else
1402                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1403         kvm_run->io.size = (exit_qualification & 7) + 1;
1404         kvm_run->io.string = (exit_qualification & 16) != 0;
1405         kvm_run->io.string_down
1406                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1407         kvm_run->io.rep = (exit_qualification & 32) != 0;
1408         kvm_run->io.port = exit_qualification >> 16;
1409         if (kvm_run->io.string) {
1410                 if (!get_io_count(vcpu, &kvm_run->io.count))
1411                         return 1;
1412                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1413         } else
1414                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1415         return 0;
1416 }
1417
1418 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1419 {
1420         u64 address = vmcs_read64(EXIT_QUALIFICATION);
1421         int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1422         spin_lock(&vcpu->kvm->lock);
1423         vcpu->mmu.inval_page(vcpu, address);
1424         spin_unlock(&vcpu->kvm->lock);
1425         vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1426         return 1;
1427 }
1428
1429 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1430 {
1431         u64 exit_qualification;
1432         int cr;
1433         int reg;
1434
1435         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1436         cr = exit_qualification & 15;
1437         reg = (exit_qualification >> 8) & 15;
1438         switch ((exit_qualification >> 4) & 3) {
1439         case 0: /* mov to cr */
1440                 switch (cr) {
1441                 case 0:
1442                         vcpu_load_rsp_rip(vcpu);
1443                         set_cr0(vcpu, vcpu->regs[reg]);
1444                         skip_emulated_instruction(vcpu);
1445                         return 1;
1446                 case 3:
1447                         vcpu_load_rsp_rip(vcpu);
1448                         set_cr3(vcpu, vcpu->regs[reg]);
1449                         skip_emulated_instruction(vcpu);
1450                         return 1;
1451                 case 4:
1452                         vcpu_load_rsp_rip(vcpu);
1453                         set_cr4(vcpu, vcpu->regs[reg]);
1454                         skip_emulated_instruction(vcpu);
1455                         return 1;
1456                 case 8:
1457                         vcpu_load_rsp_rip(vcpu);
1458                         set_cr8(vcpu, vcpu->regs[reg]);
1459                         skip_emulated_instruction(vcpu);
1460                         return 1;
1461                 };
1462                 break;
1463         case 1: /*mov from cr*/
1464                 switch (cr) {
1465                 case 3:
1466                         vcpu_load_rsp_rip(vcpu);
1467                         vcpu->regs[reg] = vcpu->cr3;
1468                         vcpu_put_rsp_rip(vcpu);
1469                         skip_emulated_instruction(vcpu);
1470                         return 1;
1471                 case 8:
1472                         printk(KERN_DEBUG "handle_cr: read CR8 "
1473                                "cpu erratum AA15\n");
1474                         vcpu_load_rsp_rip(vcpu);
1475                         vcpu->regs[reg] = vcpu->cr8;
1476                         vcpu_put_rsp_rip(vcpu);
1477                         skip_emulated_instruction(vcpu);
1478                         return 1;
1479                 }
1480                 break;
1481         case 3: /* lmsw */
1482                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1483
1484                 skip_emulated_instruction(vcpu);
1485                 return 1;
1486         default:
1487                 break;
1488         }
1489         kvm_run->exit_reason = 0;
1490         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1491                (int)(exit_qualification >> 4) & 3, cr);
1492         return 0;
1493 }
1494
1495 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1496 {
1497         u64 exit_qualification;
1498         unsigned long val;
1499         int dr, reg;
1500
1501         /*
1502          * FIXME: this code assumes the host is debugging the guest.
1503          *        need to deal with guest debugging itself too.
1504          */
1505         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1506         dr = exit_qualification & 7;
1507         reg = (exit_qualification >> 8) & 15;
1508         vcpu_load_rsp_rip(vcpu);
1509         if (exit_qualification & 16) {
1510                 /* mov from dr */
1511                 switch (dr) {
1512                 case 6:
1513                         val = 0xffff0ff0;
1514                         break;
1515                 case 7:
1516                         val = 0x400;
1517                         break;
1518                 default:
1519                         val = 0;
1520                 }
1521                 vcpu->regs[reg] = val;
1522         } else {
1523                 /* mov to dr */
1524         }
1525         vcpu_put_rsp_rip(vcpu);
1526         skip_emulated_instruction(vcpu);
1527         return 1;
1528 }
1529
1530 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1531 {
1532         kvm_run->exit_reason = KVM_EXIT_CPUID;
1533         return 0;
1534 }
1535
1536 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1537 {
1538         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1539         u64 data;
1540
1541         if (vmx_get_msr(vcpu, ecx, &data)) {
1542                 vmx_inject_gp(vcpu, 0);
1543                 return 1;
1544         }
1545
1546         /* FIXME: handling of bits 32:63 of rax, rdx */
1547         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1548         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1549         skip_emulated_instruction(vcpu);
1550         return 1;
1551 }
1552
1553 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1554 {
1555         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1556         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1557                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1558
1559         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1560                 vmx_inject_gp(vcpu, 0);
1561                 return 1;
1562         }
1563
1564         skip_emulated_instruction(vcpu);
1565         return 1;
1566 }
1567
1568 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1569                                    struct kvm_run *kvm_run)
1570 {
1571         /* Turn off interrupt window reporting. */
1572         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1573                      vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1574                      & ~CPU_BASED_VIRTUAL_INTR_PENDING);
1575         return 1;
1576 }
1577
1578 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1579 {
1580         skip_emulated_instruction(vcpu);
1581         if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
1582                 return 1;
1583
1584         kvm_run->exit_reason = KVM_EXIT_HLT;
1585         return 0;
1586 }
1587
1588 /*
1589  * The exit handlers return 1 if the exit was handled fully and guest execution
1590  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1591  * to be done to userspace and return 0.
1592  */
1593 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1594                                       struct kvm_run *kvm_run) = {
1595         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1596         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1597         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1598         [EXIT_REASON_INVLPG]                  = handle_invlpg,
1599         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1600         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1601         [EXIT_REASON_CPUID]                   = handle_cpuid,
1602         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1603         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1604         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1605         [EXIT_REASON_HLT]                     = handle_halt,
1606 };
1607
1608 static const int kvm_vmx_max_exit_handlers =
1609         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1610
1611 /*
1612  * The guest has exited.  See if we can fix it or if we need userspace
1613  * assistance.
1614  */
1615 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1616 {
1617         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1618         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1619
1620         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1621                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1622                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1623                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1624         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1625         if (exit_reason < kvm_vmx_max_exit_handlers
1626             && kvm_vmx_exit_handlers[exit_reason])
1627                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1628         else {
1629                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1630                 kvm_run->hw.hardware_exit_reason = exit_reason;
1631         }
1632         return 0;
1633 }
1634
1635 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1636 {
1637         u8 fail;
1638         u16 fs_sel, gs_sel, ldt_sel;
1639         int fs_gs_ldt_reload_needed;
1640
1641 again:
1642         /*
1643          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1644          * allow segment selectors with cpl > 0 or ti == 1.
1645          */
1646         fs_sel = read_fs();
1647         gs_sel = read_gs();
1648         ldt_sel = read_ldt();
1649         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1650         if (!fs_gs_ldt_reload_needed) {
1651                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1652                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1653         } else {
1654                 vmcs_write16(HOST_FS_SELECTOR, 0);
1655                 vmcs_write16(HOST_GS_SELECTOR, 0);
1656         }
1657
1658 #ifdef CONFIG_X86_64
1659         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1660         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1661 #else
1662         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1663         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1664 #endif
1665
1666         if (vcpu->irq_summary &&
1667             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1668                 kvm_try_inject_irq(vcpu);
1669
1670         if (vcpu->guest_debug.enabled)
1671                 kvm_guest_debug_pre(vcpu);
1672
1673         fx_save(vcpu->host_fx_image);
1674         fx_restore(vcpu->guest_fx_image);
1675
1676         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1677         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1678
1679         asm (
1680                 /* Store host registers */
1681                 "pushf \n\t"
1682 #ifdef CONFIG_X86_64
1683                 "push %%rax; push %%rbx; push %%rdx;"
1684                 "push %%rsi; push %%rdi; push %%rbp;"
1685                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1686                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1687                 "push %%rcx \n\t"
1688                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1689 #else
1690                 "pusha; push %%ecx \n\t"
1691                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1692 #endif
1693                 /* Check if vmlaunch of vmresume is needed */
1694                 "cmp $0, %1 \n\t"
1695                 /* Load guest registers.  Don't clobber flags. */
1696 #ifdef CONFIG_X86_64
1697                 "mov %c[cr2](%3), %%rax \n\t"
1698                 "mov %%rax, %%cr2 \n\t"
1699                 "mov %c[rax](%3), %%rax \n\t"
1700                 "mov %c[rbx](%3), %%rbx \n\t"
1701                 "mov %c[rdx](%3), %%rdx \n\t"
1702                 "mov %c[rsi](%3), %%rsi \n\t"
1703                 "mov %c[rdi](%3), %%rdi \n\t"
1704                 "mov %c[rbp](%3), %%rbp \n\t"
1705                 "mov %c[r8](%3),  %%r8  \n\t"
1706                 "mov %c[r9](%3),  %%r9  \n\t"
1707                 "mov %c[r10](%3), %%r10 \n\t"
1708                 "mov %c[r11](%3), %%r11 \n\t"
1709                 "mov %c[r12](%3), %%r12 \n\t"
1710                 "mov %c[r13](%3), %%r13 \n\t"
1711                 "mov %c[r14](%3), %%r14 \n\t"
1712                 "mov %c[r15](%3), %%r15 \n\t"
1713                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1714 #else
1715                 "mov %c[cr2](%3), %%eax \n\t"
1716                 "mov %%eax,   %%cr2 \n\t"
1717                 "mov %c[rax](%3), %%eax \n\t"
1718                 "mov %c[rbx](%3), %%ebx \n\t"
1719                 "mov %c[rdx](%3), %%edx \n\t"
1720                 "mov %c[rsi](%3), %%esi \n\t"
1721                 "mov %c[rdi](%3), %%edi \n\t"
1722                 "mov %c[rbp](%3), %%ebp \n\t"
1723                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1724 #endif
1725                 /* Enter guest mode */
1726                 "jne launched \n\t"
1727                 ASM_VMX_VMLAUNCH "\n\t"
1728                 "jmp kvm_vmx_return \n\t"
1729                 "launched: " ASM_VMX_VMRESUME "\n\t"
1730                 ".globl kvm_vmx_return \n\t"
1731                 "kvm_vmx_return: "
1732                 /* Save guest registers, load host registers, keep flags */
1733 #ifdef CONFIG_X86_64
1734                 "xchg %3,     0(%%rsp) \n\t"
1735                 "mov %%rax, %c[rax](%3) \n\t"
1736                 "mov %%rbx, %c[rbx](%3) \n\t"
1737                 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1738                 "mov %%rdx, %c[rdx](%3) \n\t"
1739                 "mov %%rsi, %c[rsi](%3) \n\t"
1740                 "mov %%rdi, %c[rdi](%3) \n\t"
1741                 "mov %%rbp, %c[rbp](%3) \n\t"
1742                 "mov %%r8,  %c[r8](%3) \n\t"
1743                 "mov %%r9,  %c[r9](%3) \n\t"
1744                 "mov %%r10, %c[r10](%3) \n\t"
1745                 "mov %%r11, %c[r11](%3) \n\t"
1746                 "mov %%r12, %c[r12](%3) \n\t"
1747                 "mov %%r13, %c[r13](%3) \n\t"
1748                 "mov %%r14, %c[r14](%3) \n\t"
1749                 "mov %%r15, %c[r15](%3) \n\t"
1750                 "mov %%cr2, %%rax   \n\t"
1751                 "mov %%rax, %c[cr2](%3) \n\t"
1752                 "mov 0(%%rsp), %3 \n\t"
1753
1754                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1755                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1756                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1757                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1758 #else
1759                 "xchg %3, 0(%%esp) \n\t"
1760                 "mov %%eax, %c[rax](%3) \n\t"
1761                 "mov %%ebx, %c[rbx](%3) \n\t"
1762                 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1763                 "mov %%edx, %c[rdx](%3) \n\t"
1764                 "mov %%esi, %c[rsi](%3) \n\t"
1765                 "mov %%edi, %c[rdi](%3) \n\t"
1766                 "mov %%ebp, %c[rbp](%3) \n\t"
1767                 "mov %%cr2, %%eax  \n\t"
1768                 "mov %%eax, %c[cr2](%3) \n\t"
1769                 "mov 0(%%esp), %3 \n\t"
1770
1771                 "pop %%ecx; popa \n\t"
1772 #endif
1773                 "setbe %0 \n\t"
1774                 "popf \n\t"
1775               : "=g" (fail)
1776               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1777                 "c"(vcpu),
1778                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1779                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1780                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1781                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1782                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1783                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1784                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1785 #ifdef CONFIG_X86_64
1786                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1787                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1788                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1789                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1790                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1791                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1792                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1793                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1794 #endif
1795                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1796               : "cc", "memory" );
1797
1798         ++kvm_stat.exits;
1799
1800         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1801         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1802
1803         fx_save(vcpu->guest_fx_image);
1804         fx_restore(vcpu->host_fx_image);
1805
1806 #ifndef CONFIG_X86_64
1807         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1808 #endif
1809
1810         kvm_run->exit_type = 0;
1811         if (fail) {
1812                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1813                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1814         } else {
1815                 if (fs_gs_ldt_reload_needed) {
1816                         load_ldt(ldt_sel);
1817                         load_fs(fs_sel);
1818                         /*
1819                          * If we have to reload gs, we must take care to
1820                          * preserve our gs base.
1821                          */
1822                         local_irq_disable();
1823                         load_gs(gs_sel);
1824 #ifdef CONFIG_X86_64
1825                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1826 #endif
1827                         local_irq_enable();
1828
1829                         reload_tss();
1830                 }
1831                 vcpu->launched = 1;
1832                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1833                 if (kvm_handle_exit(kvm_run, vcpu)) {
1834                         /* Give scheduler a change to reschedule. */
1835                         if (signal_pending(current)) {
1836                                 ++kvm_stat.signal_exits;
1837                                 return -EINTR;
1838                         }
1839                         kvm_resched(vcpu);
1840                         goto again;
1841                 }
1842         }
1843         return 0;
1844 }
1845
1846 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1847 {
1848         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1849 }
1850
1851 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1852                                   unsigned long addr,
1853                                   u32 err_code)
1854 {
1855         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1856
1857         ++kvm_stat.pf_guest;
1858
1859         if (is_page_fault(vect_info)) {
1860                 printk(KERN_DEBUG "inject_page_fault: "
1861                        "double fault 0x%lx @ 0x%lx\n",
1862                        addr, vmcs_readl(GUEST_RIP));
1863                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1864                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1865                              DF_VECTOR |
1866                              INTR_TYPE_EXCEPTION |
1867                              INTR_INFO_DELIEVER_CODE_MASK |
1868                              INTR_INFO_VALID_MASK);
1869                 return;
1870         }
1871         vcpu->cr2 = addr;
1872         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1873         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1874                      PF_VECTOR |
1875                      INTR_TYPE_EXCEPTION |
1876                      INTR_INFO_DELIEVER_CODE_MASK |
1877                      INTR_INFO_VALID_MASK);
1878
1879 }
1880
1881 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1882 {
1883         if (vcpu->vmcs) {
1884                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1885                 free_vmcs(vcpu->vmcs);
1886                 vcpu->vmcs = NULL;
1887         }
1888 }
1889
1890 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1891 {
1892         vmx_free_vmcs(vcpu);
1893 }
1894
1895 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1896 {
1897         struct vmcs *vmcs;
1898
1899         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1900         if (!vcpu->guest_msrs)
1901                 return -ENOMEM;
1902
1903         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1904         if (!vcpu->host_msrs)
1905                 goto out_free_guest_msrs;
1906
1907         vmcs = alloc_vmcs();
1908         if (!vmcs)
1909                 goto out_free_msrs;
1910
1911         vmcs_clear(vmcs);
1912         vcpu->vmcs = vmcs;
1913         vcpu->launched = 0;
1914
1915         return 0;
1916
1917 out_free_msrs:
1918         kfree(vcpu->host_msrs);
1919         vcpu->host_msrs = NULL;
1920
1921 out_free_guest_msrs:
1922         kfree(vcpu->guest_msrs);
1923         vcpu->guest_msrs = NULL;
1924
1925         return -ENOMEM;
1926 }
1927
1928 static struct kvm_arch_ops vmx_arch_ops = {
1929         .cpu_has_kvm_support = cpu_has_kvm_support,
1930         .disabled_by_bios = vmx_disabled_by_bios,
1931         .hardware_setup = hardware_setup,
1932         .hardware_unsetup = hardware_unsetup,
1933         .hardware_enable = hardware_enable,
1934         .hardware_disable = hardware_disable,
1935
1936         .vcpu_create = vmx_create_vcpu,
1937         .vcpu_free = vmx_free_vcpu,
1938
1939         .vcpu_load = vmx_vcpu_load,
1940         .vcpu_put = vmx_vcpu_put,
1941
1942         .set_guest_debug = set_guest_debug,
1943         .get_msr = vmx_get_msr,
1944         .set_msr = vmx_set_msr,
1945         .get_segment_base = vmx_get_segment_base,
1946         .get_segment = vmx_get_segment,
1947         .set_segment = vmx_set_segment,
1948         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
1949         .set_cr0 = vmx_set_cr0,
1950         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
1951         .set_cr3 = vmx_set_cr3,
1952         .set_cr4 = vmx_set_cr4,
1953 #ifdef CONFIG_X86_64
1954         .set_efer = vmx_set_efer,
1955 #endif
1956         .get_idt = vmx_get_idt,
1957         .set_idt = vmx_set_idt,
1958         .get_gdt = vmx_get_gdt,
1959         .set_gdt = vmx_set_gdt,
1960         .cache_regs = vcpu_load_rsp_rip,
1961         .decache_regs = vcpu_put_rsp_rip,
1962         .get_rflags = vmx_get_rflags,
1963         .set_rflags = vmx_set_rflags,
1964
1965         .tlb_flush = vmx_flush_tlb,
1966         .inject_page_fault = vmx_inject_page_fault,
1967
1968         .inject_gp = vmx_inject_gp,
1969
1970         .run = vmx_vcpu_run,
1971         .skip_emulated_instruction = skip_emulated_instruction,
1972         .vcpu_setup = vmx_vcpu_setup,
1973 };
1974
1975 static int __init vmx_init(void)
1976 {
1977         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
1978 }
1979
1980 static void __exit vmx_exit(void)
1981 {
1982         kvm_exit_arch();
1983 }
1984
1985 module_init(vmx_init)
1986 module_exit(vmx_exit)