[PATCH] 1/5 powerpc: Rework PowerMac i2c part 1
[powerpc.git] / drivers / macintosh / smu.c
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrutps off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21
22 #include <linux/config.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>
26 #include <linux/dmapool.h>
27 #include <linux/bootmem.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/jiffies.h>
31 #include <linux/interrupt.h>
32 #include <linux/rtc.h>
33 #include <linux/completion.h>
34 #include <linux/miscdevice.h>
35 #include <linux/delay.h>
36 #include <linux/sysdev.h>
37 #include <linux/poll.h>
38
39 #include <asm/byteorder.h>
40 #include <asm/io.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/smu.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/uaccess.h>
48 #include <asm/of_device.h>
49
50 #define VERSION "0.7"
51 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
52
53 #undef DEBUG_SMU
54
55 #ifdef DEBUG_SMU
56 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
57 #else
58 #define DPRINTK(fmt, args...) do { } while (0)
59 #endif
60
61 /*
62  * This is the command buffer passed to the SMU hardware
63  */
64 #define SMU_MAX_DATA    254
65
66 struct smu_cmd_buf {
67         u8 cmd;
68         u8 length;
69         u8 data[SMU_MAX_DATA];
70 };
71
72 struct smu_device {
73         spinlock_t              lock;
74         struct device_node      *of_node;
75         struct of_device        *of_dev;
76         int                     doorbell;       /* doorbell gpio */
77         u32 __iomem             *db_buf;        /* doorbell buffer */
78         int                     db_irq;
79         int                     msg;
80         int                     msg_irq;
81         struct smu_cmd_buf      *cmd_buf;       /* command buffer virtual */
82         u32                     cmd_buf_abs;    /* command buffer absolute */
83         struct list_head        cmd_list;
84         struct smu_cmd          *cmd_cur;       /* pending command */
85         struct list_head        cmd_i2c_list;
86         struct smu_i2c_cmd      *cmd_i2c_cur;   /* pending i2c command */
87         struct timer_list       i2c_timer;
88 };
89
90 /*
91  * I don't think there will ever be more than one SMU, so
92  * for now, just hard code that
93  */
94 static struct smu_device        *smu;
95 static DECLARE_MUTEX(smu_part_access);
96
97 static void smu_i2c_retry(unsigned long data);
98
99 /*
100  * SMU driver low level stuff
101  */
102
103 static void smu_start_cmd(void)
104 {
105         unsigned long faddr, fend;
106         struct smu_cmd *cmd;
107
108         if (list_empty(&smu->cmd_list))
109                 return;
110
111         /* Fetch first command in queue */
112         cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
113         smu->cmd_cur = cmd;
114         list_del(&cmd->link);
115
116         DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
117                 cmd->data_len);
118         DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
119                 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
120                 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
121                 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
122                 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
123
124         /* Fill the SMU command buffer */
125         smu->cmd_buf->cmd = cmd->cmd;
126         smu->cmd_buf->length = cmd->data_len;
127         memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
128
129         /* Flush command and data to RAM */
130         faddr = (unsigned long)smu->cmd_buf;
131         fend = faddr + smu->cmd_buf->length + 2;
132         flush_inval_dcache_range(faddr, fend);
133
134         /* This isn't exactly a DMA mapping here, I suspect
135          * the SMU is actually communicating with us via i2c to the
136          * northbridge or the CPU to access RAM.
137          */
138         writel(smu->cmd_buf_abs, smu->db_buf);
139
140         /* Ring the SMU doorbell */
141         pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
142 }
143
144
145 static irqreturn_t smu_db_intr(int irq, void *arg, struct pt_regs *regs)
146 {
147         unsigned long flags;
148         struct smu_cmd *cmd;
149         void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
150         void *misc = NULL;
151         u8 gpio;
152         int rc = 0;
153
154         /* SMU completed the command, well, we hope, let's make sure
155          * of it
156          */
157         spin_lock_irqsave(&smu->lock, flags);
158
159         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
160         if ((gpio & 7) != 7) {
161                 spin_unlock_irqrestore(&smu->lock, flags);
162                 return IRQ_HANDLED;
163         }
164
165         cmd = smu->cmd_cur;
166         smu->cmd_cur = NULL;
167         if (cmd == NULL)
168                 goto bail;
169
170         if (rc == 0) {
171                 unsigned long faddr;
172                 int reply_len;
173                 u8 ack;
174
175                 /* CPU might have brought back the cache line, so we need
176                  * to flush again before peeking at the SMU response. We
177                  * flush the entire buffer for now as we haven't read the
178                  * reply lenght (it's only 2 cache lines anyway)
179                  */
180                 faddr = (unsigned long)smu->cmd_buf;
181                 flush_inval_dcache_range(faddr, faddr + 256);
182
183                 /* Now check ack */
184                 ack = (~cmd->cmd) & 0xff;
185                 if (ack != smu->cmd_buf->cmd) {
186                         DPRINTK("SMU: incorrect ack, want %x got %x\n",
187                                 ack, smu->cmd_buf->cmd);
188                         rc = -EIO;
189                 }
190                 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
191                 DPRINTK("SMU: reply len: %d\n", reply_len);
192                 if (reply_len > cmd->reply_len) {
193                         printk(KERN_WARNING "SMU: reply buffer too small,"
194                                "got %d bytes for a %d bytes buffer\n",
195                                reply_len, cmd->reply_len);
196                         reply_len = cmd->reply_len;
197                 }
198                 cmd->reply_len = reply_len;
199                 if (cmd->reply_buf && reply_len)
200                         memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
201         }
202
203         /* Now complete the command. Write status last in order as we lost
204          * ownership of the command structure as soon as it's no longer -1
205          */
206         done = cmd->done;
207         misc = cmd->misc;
208         mb();
209         cmd->status = rc;
210  bail:
211         /* Start next command if any */
212         smu_start_cmd();
213         spin_unlock_irqrestore(&smu->lock, flags);
214
215         /* Call command completion handler if any */
216         if (done)
217                 done(cmd, misc);
218
219         /* It's an edge interrupt, nothing to do */
220         return IRQ_HANDLED;
221 }
222
223
224 static irqreturn_t smu_msg_intr(int irq, void *arg, struct pt_regs *regs)
225 {
226         /* I don't quite know what to do with this one, we seem to never
227          * receive it, so I suspect we have to arm it someway in the SMU
228          * to start getting events that way.
229          */
230
231         printk(KERN_INFO "SMU: message interrupt !\n");
232
233         /* It's an edge interrupt, nothing to do */
234         return IRQ_HANDLED;
235 }
236
237
238 /*
239  * Queued command management.
240  *
241  */
242
243 int smu_queue_cmd(struct smu_cmd *cmd)
244 {
245         unsigned long flags;
246
247         if (smu == NULL)
248                 return -ENODEV;
249         if (cmd->data_len > SMU_MAX_DATA ||
250             cmd->reply_len > SMU_MAX_DATA)
251                 return -EINVAL;
252
253         cmd->status = 1;
254         spin_lock_irqsave(&smu->lock, flags);
255         list_add_tail(&cmd->link, &smu->cmd_list);
256         if (smu->cmd_cur == NULL)
257                 smu_start_cmd();
258         spin_unlock_irqrestore(&smu->lock, flags);
259
260         return 0;
261 }
262 EXPORT_SYMBOL(smu_queue_cmd);
263
264
265 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
266                      unsigned int data_len,
267                      void (*done)(struct smu_cmd *cmd, void *misc),
268                      void *misc, ...)
269 {
270         struct smu_cmd *cmd = &scmd->cmd;
271         va_list list;
272         int i;
273
274         if (data_len > sizeof(scmd->buffer))
275                 return -EINVAL;
276
277         memset(scmd, 0, sizeof(*scmd));
278         cmd->cmd = command;
279         cmd->data_len = data_len;
280         cmd->data_buf = scmd->buffer;
281         cmd->reply_len = sizeof(scmd->buffer);
282         cmd->reply_buf = scmd->buffer;
283         cmd->done = done;
284         cmd->misc = misc;
285
286         va_start(list, misc);
287         for (i = 0; i < data_len; ++i)
288                 scmd->buffer[i] = (u8)va_arg(list, int);
289         va_end(list);
290
291         return smu_queue_cmd(cmd);
292 }
293 EXPORT_SYMBOL(smu_queue_simple);
294
295
296 void smu_poll(void)
297 {
298         u8 gpio;
299
300         if (smu == NULL)
301                 return;
302
303         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
304         if ((gpio & 7) == 7)
305                 smu_db_intr(smu->db_irq, smu, NULL);
306 }
307 EXPORT_SYMBOL(smu_poll);
308
309
310 void smu_done_complete(struct smu_cmd *cmd, void *misc)
311 {
312         struct completion *comp = misc;
313
314         complete(comp);
315 }
316 EXPORT_SYMBOL(smu_done_complete);
317
318
319 void smu_spinwait_cmd(struct smu_cmd *cmd)
320 {
321         while(cmd->status == 1)
322                 smu_poll();
323 }
324 EXPORT_SYMBOL(smu_spinwait_cmd);
325
326
327 /* RTC low level commands */
328 static inline int bcd2hex (int n)
329 {
330         return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
331 }
332
333
334 static inline int hex2bcd (int n)
335 {
336         return ((n / 10) << 4) + (n % 10);
337 }
338
339
340 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
341                                         struct rtc_time *time)
342 {
343         cmd_buf->cmd = 0x8e;
344         cmd_buf->length = 8;
345         cmd_buf->data[0] = 0x80;
346         cmd_buf->data[1] = hex2bcd(time->tm_sec);
347         cmd_buf->data[2] = hex2bcd(time->tm_min);
348         cmd_buf->data[3] = hex2bcd(time->tm_hour);
349         cmd_buf->data[4] = time->tm_wday;
350         cmd_buf->data[5] = hex2bcd(time->tm_mday);
351         cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
352         cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
353 }
354
355
356 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
357 {
358         struct smu_simple_cmd cmd;
359         int rc;
360
361         if (smu == NULL)
362                 return -ENODEV;
363
364         memset(time, 0, sizeof(struct rtc_time));
365         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
366                               SMU_CMD_RTC_GET_DATETIME);
367         if (rc)
368                 return rc;
369         smu_spinwait_simple(&cmd);
370
371         time->tm_sec = bcd2hex(cmd.buffer[0]);
372         time->tm_min = bcd2hex(cmd.buffer[1]);
373         time->tm_hour = bcd2hex(cmd.buffer[2]);
374         time->tm_wday = bcd2hex(cmd.buffer[3]);
375         time->tm_mday = bcd2hex(cmd.buffer[4]);
376         time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
377         time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
378
379         return 0;
380 }
381
382
383 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
384 {
385         struct smu_simple_cmd cmd;
386         int rc;
387
388         if (smu == NULL)
389                 return -ENODEV;
390
391         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
392                               SMU_CMD_RTC_SET_DATETIME,
393                               hex2bcd(time->tm_sec),
394                               hex2bcd(time->tm_min),
395                               hex2bcd(time->tm_hour),
396                               time->tm_wday,
397                               hex2bcd(time->tm_mday),
398                               hex2bcd(time->tm_mon) + 1,
399                               hex2bcd(time->tm_year - 100));
400         if (rc)
401                 return rc;
402         smu_spinwait_simple(&cmd);
403
404         return 0;
405 }
406
407
408 void smu_shutdown(void)
409 {
410         struct smu_simple_cmd cmd;
411
412         if (smu == NULL)
413                 return;
414
415         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
416                              'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
417                 return;
418         smu_spinwait_simple(&cmd);
419         for (;;)
420                 ;
421 }
422
423
424 void smu_restart(void)
425 {
426         struct smu_simple_cmd cmd;
427
428         if (smu == NULL)
429                 return;
430
431         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
432                              'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
433                 return;
434         smu_spinwait_simple(&cmd);
435         for (;;)
436                 ;
437 }
438
439
440 int smu_present(void)
441 {
442         return smu != NULL;
443 }
444 EXPORT_SYMBOL(smu_present);
445
446
447 int __init smu_init (void)
448 {
449         struct device_node *np;
450         u32 *data;
451
452         np = of_find_node_by_type(NULL, "smu");
453         if (np == NULL)
454                 return -ENODEV;
455
456         printk(KERN_INFO "SMU driver %s %s\n", VERSION, AUTHOR);
457
458         if (smu_cmdbuf_abs == 0) {
459                 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
460                 return -EINVAL;
461         }
462
463         smu = alloc_bootmem(sizeof(struct smu_device));
464         if (smu == NULL)
465                 return -ENOMEM;
466         memset(smu, 0, sizeof(*smu));
467
468         spin_lock_init(&smu->lock);
469         INIT_LIST_HEAD(&smu->cmd_list);
470         INIT_LIST_HEAD(&smu->cmd_i2c_list);
471         smu->of_node = np;
472         smu->db_irq = NO_IRQ;
473         smu->msg_irq = NO_IRQ;
474
475         /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
476          * 32 bits value safely
477          */
478         smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
479         smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
480
481         np = of_find_node_by_name(NULL, "smu-doorbell");
482         if (np == NULL) {
483                 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
484                 goto fail;
485         }
486         data = (u32 *)get_property(np, "reg", NULL);
487         if (data == NULL) {
488                 of_node_put(np);
489                 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
490                 goto fail;
491         }
492
493         /* Current setup has one doorbell GPIO that does both doorbell
494          * and ack. GPIOs are at 0x50, best would be to find that out
495          * in the device-tree though.
496          */
497         smu->doorbell = *data;
498         if (smu->doorbell < 0x50)
499                 smu->doorbell += 0x50;
500         if (np->n_intrs > 0)
501                 smu->db_irq = np->intrs[0].line;
502
503         of_node_put(np);
504
505         /* Now look for the smu-interrupt GPIO */
506         do {
507                 np = of_find_node_by_name(NULL, "smu-interrupt");
508                 if (np == NULL)
509                         break;
510                 data = (u32 *)get_property(np, "reg", NULL);
511                 if (data == NULL) {
512                         of_node_put(np);
513                         break;
514                 }
515                 smu->msg = *data;
516                 if (smu->msg < 0x50)
517                         smu->msg += 0x50;
518                 if (np->n_intrs > 0)
519                         smu->msg_irq = np->intrs[0].line;
520                 of_node_put(np);
521         } while(0);
522
523         /* Doorbell buffer is currently hard-coded, I didn't find a proper
524          * device-tree entry giving the address. Best would probably to use
525          * an offset for K2 base though, but let's do it that way for now.
526          */
527         smu->db_buf = ioremap(0x8000860c, 0x1000);
528         if (smu->db_buf == NULL) {
529                 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
530                 goto fail;
531         }
532
533         sys_ctrler = SYS_CTRLER_SMU;
534         return 0;
535
536  fail:
537         smu = NULL;
538         return -ENXIO;
539
540 }
541
542
543 static int smu_late_init(void)
544 {
545         if (!smu)
546                 return 0;
547
548         init_timer(&smu->i2c_timer);
549         smu->i2c_timer.function = smu_i2c_retry;
550         smu->i2c_timer.data = (unsigned long)smu;
551
552         /*
553          * Try to request the interrupts
554          */
555
556         if (smu->db_irq != NO_IRQ) {
557                 if (request_irq(smu->db_irq, smu_db_intr,
558                                 SA_SHIRQ, "SMU doorbell", smu) < 0) {
559                         printk(KERN_WARNING "SMU: can't "
560                                "request interrupt %d\n",
561                                smu->db_irq);
562                         smu->db_irq = NO_IRQ;
563                 }
564         }
565
566         if (smu->msg_irq != NO_IRQ) {
567                 if (request_irq(smu->msg_irq, smu_msg_intr,
568                                 SA_SHIRQ, "SMU message", smu) < 0) {
569                         printk(KERN_WARNING "SMU: can't "
570                                "request interrupt %d\n",
571                                smu->msg_irq);
572                         smu->msg_irq = NO_IRQ;
573                 }
574         }
575
576         return 0;
577 }
578 /* This has to be before arch_initcall as the low i2c stuff relies on the
579  * above having been done before we reach arch_initcalls
580  */
581 core_initcall(smu_late_init);
582
583 /*
584  * sysfs visibility
585  */
586
587 static void smu_create_i2c(struct device_node *np)
588 {
589         char name[32];
590         u32 *reg = (u32 *)get_property(np, "reg", NULL);
591
592         if (reg != NULL) {
593                 sprintf(name, "smu-i2c-%02x", *reg);
594                 of_platform_device_create(np, name, &smu->of_dev->dev);
595         }
596 }
597
598 static void smu_expose_childs(void *unused)
599 {
600         struct device_node *np, *gp;
601
602         for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;) {
603                 if (device_is_compatible(np, "smu-i2c-control")) {
604                         gp = NULL;
605                         while ((gp = of_get_next_child(np, gp)) != NULL)
606                                 if (device_is_compatible(gp, "i2c-bus"))
607                                         smu_create_i2c(gp);
608                 } else if (device_is_compatible(np, "smu-i2c"))
609                         smu_create_i2c(np);
610                 if (device_is_compatible(np, "smu-sensors"))
611                         of_platform_device_create(np, "smu-sensors",
612                                                   &smu->of_dev->dev);
613         }
614
615 }
616
617 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs, NULL);
618
619 static int smu_platform_probe(struct of_device* dev,
620                               const struct of_device_id *match)
621 {
622         if (!smu)
623                 return -ENODEV;
624         smu->of_dev = dev;
625
626         /*
627          * Ok, we are matched, now expose all i2c busses. We have to defer
628          * that unfortunately or it would deadlock inside the device model
629          */
630         schedule_work(&smu_expose_childs_work);
631
632         return 0;
633 }
634
635 static struct of_device_id smu_platform_match[] =
636 {
637         {
638                 .type           = "smu",
639         },
640         {},
641 };
642
643 static struct of_platform_driver smu_of_platform_driver =
644 {
645         .name           = "smu",
646         .match_table    = smu_platform_match,
647         .probe          = smu_platform_probe,
648 };
649
650 static int __init smu_init_sysfs(void)
651 {
652         int rc;
653
654         /*
655          * Due to sysfs bogosity, a sysdev is not a real device, so
656          * we should in fact create both if we want sysdev semantics
657          * for power management.
658          * For now, we don't power manage machines with an SMU chip,
659          * I'm a bit too far from figuring out how that works with those
660          * new chipsets, but that will come back and bite us
661          */
662         rc = of_register_driver(&smu_of_platform_driver);
663         return 0;
664 }
665
666 device_initcall(smu_init_sysfs);
667
668 struct of_device *smu_get_ofdev(void)
669 {
670         if (!smu)
671                 return NULL;
672         return smu->of_dev;
673 }
674
675 EXPORT_SYMBOL_GPL(smu_get_ofdev);
676
677 /*
678  * i2c interface
679  */
680
681 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
682 {
683         void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
684         void *misc = cmd->misc;
685         unsigned long flags;
686
687         /* Check for read case */
688         if (!fail && cmd->read) {
689                 if (cmd->pdata[0] < 1)
690                         fail = 1;
691                 else
692                         memcpy(cmd->info.data, &cmd->pdata[1],
693                                cmd->info.datalen);
694         }
695
696         DPRINTK("SMU: completing, success: %d\n", !fail);
697
698         /* Update status and mark no pending i2c command with lock
699          * held so nobody comes in while we dequeue an eventual
700          * pending next i2c command
701          */
702         spin_lock_irqsave(&smu->lock, flags);
703         smu->cmd_i2c_cur = NULL;
704         wmb();
705         cmd->status = fail ? -EIO : 0;
706
707         /* Is there another i2c command waiting ? */
708         if (!list_empty(&smu->cmd_i2c_list)) {
709                 struct smu_i2c_cmd *newcmd;
710
711                 /* Fetch it, new current, remove from list */
712                 newcmd = list_entry(smu->cmd_i2c_list.next,
713                                     struct smu_i2c_cmd, link);
714                 smu->cmd_i2c_cur = newcmd;
715                 list_del(&cmd->link);
716
717                 /* Queue with low level smu */
718                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
719                 if (smu->cmd_cur == NULL)
720                         smu_start_cmd();
721         }
722         spin_unlock_irqrestore(&smu->lock, flags);
723
724         /* Call command completion handler if any */
725         if (done)
726                 done(cmd, misc);
727
728 }
729
730
731 static void smu_i2c_retry(unsigned long data)
732 {
733         struct smu_i2c_cmd      *cmd = smu->cmd_i2c_cur;
734
735         DPRINTK("SMU: i2c failure, requeuing...\n");
736
737         /* requeue command simply by resetting reply_len */
738         cmd->pdata[0] = 0xff;
739         cmd->scmd.reply_len = sizeof(cmd->pdata);
740         smu_queue_cmd(&cmd->scmd);
741 }
742
743
744 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
745 {
746         struct smu_i2c_cmd      *cmd = misc;
747         int                     fail = 0;
748
749         DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
750                 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
751
752         /* Check for possible status */
753         if (scmd->status < 0)
754                 fail = 1;
755         else if (cmd->read) {
756                 if (cmd->stage == 0)
757                         fail = cmd->pdata[0] != 0;
758                 else
759                         fail = cmd->pdata[0] >= 0x80;
760         } else {
761                 fail = cmd->pdata[0] != 0;
762         }
763
764         /* Handle failures by requeuing command, after 5ms interval
765          */
766         if (fail && --cmd->retries > 0) {
767                 DPRINTK("SMU: i2c failure, starting timer...\n");
768                 BUG_ON(cmd != smu->cmd_i2c_cur);
769                 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
770                 return;
771         }
772
773         /* If failure or stage 1, command is complete */
774         if (fail || cmd->stage != 0) {
775                 smu_i2c_complete_command(cmd, fail);
776                 return;
777         }
778
779         DPRINTK("SMU: going to stage 1\n");
780
781         /* Ok, initial command complete, now poll status */
782         scmd->reply_buf = cmd->pdata;
783         scmd->reply_len = sizeof(cmd->pdata);
784         scmd->data_buf = cmd->pdata;
785         scmd->data_len = 1;
786         cmd->pdata[0] = 0;
787         cmd->stage = 1;
788         cmd->retries = 20;
789         smu_queue_cmd(scmd);
790 }
791
792
793 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
794 {
795         unsigned long flags;
796
797         if (smu == NULL)
798                 return -ENODEV;
799
800         /* Fill most fields of scmd */
801         cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
802         cmd->scmd.done = smu_i2c_low_completion;
803         cmd->scmd.misc = cmd;
804         cmd->scmd.reply_buf = cmd->pdata;
805         cmd->scmd.reply_len = sizeof(cmd->pdata);
806         cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
807         cmd->scmd.status = 1;
808         cmd->stage = 0;
809         cmd->pdata[0] = 0xff;
810         cmd->retries = 20;
811         cmd->status = 1;
812
813         /* Check transfer type, sanitize some "info" fields
814          * based on transfer type and do more checking
815          */
816         cmd->info.caddr = cmd->info.devaddr;
817         cmd->read = cmd->info.devaddr & 0x01;
818         switch(cmd->info.type) {
819         case SMU_I2C_TRANSFER_SIMPLE:
820                 memset(&cmd->info.sublen, 0, 4);
821                 break;
822         case SMU_I2C_TRANSFER_COMBINED:
823                 cmd->info.devaddr &= 0xfe;
824         case SMU_I2C_TRANSFER_STDSUB:
825                 if (cmd->info.sublen > 3)
826                         return -EINVAL;
827                 break;
828         default:
829                 return -EINVAL;
830         }
831
832         /* Finish setting up command based on transfer direction
833          */
834         if (cmd->read) {
835                 if (cmd->info.datalen > SMU_I2C_READ_MAX)
836                         return -EINVAL;
837                 memset(cmd->info.data, 0xff, cmd->info.datalen);
838                 cmd->scmd.data_len = 9;
839         } else {
840                 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
841                         return -EINVAL;
842                 cmd->scmd.data_len = 9 + cmd->info.datalen;
843         }
844
845         DPRINTK("SMU: i2c enqueuing command\n");
846         DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
847                 cmd->read ? "read" : "write", cmd->info.datalen,
848                 cmd->info.bus, cmd->info.caddr,
849                 cmd->info.subaddr[0], cmd->info.type);
850
851
852         /* Enqueue command in i2c list, and if empty, enqueue also in
853          * main command list
854          */
855         spin_lock_irqsave(&smu->lock, flags);
856         if (smu->cmd_i2c_cur == NULL) {
857                 smu->cmd_i2c_cur = cmd;
858                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
859                 if (smu->cmd_cur == NULL)
860                         smu_start_cmd();
861         } else
862                 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
863         spin_unlock_irqrestore(&smu->lock, flags);
864
865         return 0;
866 }
867
868 /*
869  * Handling of "partitions"
870  */
871
872 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
873 {
874         DECLARE_COMPLETION(comp);
875         unsigned int chunk;
876         struct smu_cmd cmd;
877         int rc;
878         u8 params[8];
879
880         /* We currently use a chunk size of 0xe. We could check the
881          * SMU firmware version and use bigger sizes though
882          */
883         chunk = 0xe;
884
885         while (len) {
886                 unsigned int clen = min(len, chunk);
887
888                 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
889                 cmd.data_len = 7;
890                 cmd.data_buf = params;
891                 cmd.reply_len = chunk;
892                 cmd.reply_buf = dest;
893                 cmd.done = smu_done_complete;
894                 cmd.misc = &comp;
895                 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
896                 params[1] = 0x4;
897                 *((u32 *)&params[2]) = addr;
898                 params[6] = clen;
899
900                 rc = smu_queue_cmd(&cmd);
901                 if (rc)
902                         return rc;
903                 wait_for_completion(&comp);
904                 if (cmd.status != 0)
905                         return rc;
906                 if (cmd.reply_len != clen) {
907                         printk(KERN_DEBUG "SMU: short read in "
908                                "smu_read_datablock, got: %d, want: %d\n",
909                                cmd.reply_len, clen);
910                         return -EIO;
911                 }
912                 len -= clen;
913                 addr += clen;
914                 dest += clen;
915         }
916         return 0;
917 }
918
919 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
920 {
921         DECLARE_COMPLETION(comp);
922         struct smu_simple_cmd cmd;
923         unsigned int addr, len, tlen;
924         struct smu_sdbp_header *hdr;
925         struct property *prop;
926
927         /* First query the partition info */
928         DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
929         smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
930                          smu_done_complete, &comp,
931                          SMU_CMD_PARTITION_LATEST, id);
932         wait_for_completion(&comp);
933         DPRINTK("SMU: done, status: %d, reply_len: %d\n",
934                 cmd.cmd.status, cmd.cmd.reply_len);
935
936         /* Partition doesn't exist (or other error) */
937         if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
938                 return NULL;
939
940         /* Fetch address and length from reply */
941         addr = *((u16 *)cmd.buffer);
942         len = cmd.buffer[3] << 2;
943         /* Calucluate total length to allocate, including the 17 bytes
944          * for "sdb-partition-XX" that we append at the end of the buffer
945          */
946         tlen = sizeof(struct property) + len + 18;
947
948         prop = kcalloc(tlen, 1, GFP_KERNEL);
949         if (prop == NULL)
950                 return NULL;
951         hdr = (struct smu_sdbp_header *)(prop + 1);
952         prop->name = ((char *)prop) + tlen - 18;
953         sprintf(prop->name, "sdb-partition-%02x", id);
954         prop->length = len;
955         prop->value = (unsigned char *)hdr;
956         prop->next = NULL;
957
958         /* Read the datablock */
959         if (smu_read_datablock((u8 *)hdr, addr, len)) {
960                 printk(KERN_DEBUG "SMU: datablock read failed while reading "
961                        "partition %02x !\n", id);
962                 goto failure;
963         }
964
965         /* Got it, check a few things and create the property */
966         if (hdr->id != id) {
967                 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
968                        "%02x !\n", id, hdr->id);
969                 goto failure;
970         }
971         if (prom_add_property(smu->of_node, prop)) {
972                 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
973                        "property !\n", id);
974                 goto failure;
975         }
976
977         return hdr;
978  failure:
979         kfree(prop);
980         return NULL;
981 }
982
983 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
984  * when interruptible is 1
985  */
986 struct smu_sdbp_header *__smu_get_sdb_partition(int id, unsigned int *size,
987                                                 int interruptible)
988 {
989         char pname[32];
990         struct smu_sdbp_header *part;
991
992         if (!smu)
993                 return NULL;
994
995         sprintf(pname, "sdb-partition-%02x", id);
996
997         DPRINTK("smu_get_sdb_partition(%02x)\n", id);
998
999         if (interruptible) {
1000                 int rc;
1001                 rc = down_interruptible(&smu_part_access);
1002                 if (rc)
1003                         return ERR_PTR(rc);
1004         } else
1005                 down(&smu_part_access);
1006
1007         part = (struct smu_sdbp_header *)get_property(smu->of_node,
1008                                                       pname, size);
1009         if (part == NULL) {
1010                 DPRINTK("trying to extract from SMU ...\n");
1011                 part = smu_create_sdb_partition(id);
1012                 if (part != NULL && size)
1013                         *size = part->len << 2;
1014         }
1015         up(&smu_part_access);
1016         return part;
1017 }
1018
1019 struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1020 {
1021         return __smu_get_sdb_partition(id, size, 0);
1022 }
1023 EXPORT_SYMBOL(smu_get_sdb_partition);
1024
1025
1026 /*
1027  * Userland driver interface
1028  */
1029
1030
1031 static LIST_HEAD(smu_clist);
1032 static DEFINE_SPINLOCK(smu_clist_lock);
1033
1034 enum smu_file_mode {
1035         smu_file_commands,
1036         smu_file_events,
1037         smu_file_closing
1038 };
1039
1040 struct smu_private
1041 {
1042         struct list_head        list;
1043         enum smu_file_mode      mode;
1044         int                     busy;
1045         struct smu_cmd          cmd;
1046         spinlock_t              lock;
1047         wait_queue_head_t       wait;
1048         u8                      buffer[SMU_MAX_DATA];
1049 };
1050
1051
1052 static int smu_open(struct inode *inode, struct file *file)
1053 {
1054         struct smu_private *pp;
1055         unsigned long flags;
1056
1057         pp = kmalloc(sizeof(struct smu_private), GFP_KERNEL);
1058         if (pp == 0)
1059                 return -ENOMEM;
1060         memset(pp, 0, sizeof(struct smu_private));
1061         spin_lock_init(&pp->lock);
1062         pp->mode = smu_file_commands;
1063         init_waitqueue_head(&pp->wait);
1064
1065         spin_lock_irqsave(&smu_clist_lock, flags);
1066         list_add(&pp->list, &smu_clist);
1067         spin_unlock_irqrestore(&smu_clist_lock, flags);
1068         file->private_data = pp;
1069
1070         return 0;
1071 }
1072
1073
1074 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1075 {
1076         struct smu_private *pp = misc;
1077
1078         wake_up_all(&pp->wait);
1079 }
1080
1081
1082 static ssize_t smu_write(struct file *file, const char __user *buf,
1083                          size_t count, loff_t *ppos)
1084 {
1085         struct smu_private *pp = file->private_data;
1086         unsigned long flags;
1087         struct smu_user_cmd_hdr hdr;
1088         int rc = 0;
1089
1090         if (pp->busy)
1091                 return -EBUSY;
1092         else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1093                 return -EFAULT;
1094         else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1095                 pp->mode = smu_file_events;
1096                 return 0;
1097         } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1098                 struct smu_sdbp_header *part;
1099                 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1100                 if (part == NULL)
1101                         return -EINVAL;
1102                 else if (IS_ERR(part))
1103                         return PTR_ERR(part);
1104                 return 0;
1105         } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1106                 return -EINVAL;
1107         else if (pp->mode != smu_file_commands)
1108                 return -EBADFD;
1109         else if (hdr.data_len > SMU_MAX_DATA)
1110                 return -EINVAL;
1111
1112         spin_lock_irqsave(&pp->lock, flags);
1113         if (pp->busy) {
1114                 spin_unlock_irqrestore(&pp->lock, flags);
1115                 return -EBUSY;
1116         }
1117         pp->busy = 1;
1118         pp->cmd.status = 1;
1119         spin_unlock_irqrestore(&pp->lock, flags);
1120
1121         if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1122                 pp->busy = 0;
1123                 return -EFAULT;
1124         }
1125
1126         pp->cmd.cmd = hdr.cmd;
1127         pp->cmd.data_len = hdr.data_len;
1128         pp->cmd.reply_len = SMU_MAX_DATA;
1129         pp->cmd.data_buf = pp->buffer;
1130         pp->cmd.reply_buf = pp->buffer;
1131         pp->cmd.done = smu_user_cmd_done;
1132         pp->cmd.misc = pp;
1133         rc = smu_queue_cmd(&pp->cmd);
1134         if (rc < 0)
1135                 return rc;
1136         return count;
1137 }
1138
1139
1140 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1141                                 char __user *buf, size_t count)
1142 {
1143         DECLARE_WAITQUEUE(wait, current);
1144         struct smu_user_reply_hdr hdr;
1145         unsigned long flags;
1146         int size, rc = 0;
1147
1148         if (!pp->busy)
1149                 return 0;
1150         if (count < sizeof(struct smu_user_reply_hdr))
1151                 return -EOVERFLOW;
1152         spin_lock_irqsave(&pp->lock, flags);
1153         if (pp->cmd.status == 1) {
1154                 if (file->f_flags & O_NONBLOCK)
1155                         return -EAGAIN;
1156                 add_wait_queue(&pp->wait, &wait);
1157                 for (;;) {
1158                         set_current_state(TASK_INTERRUPTIBLE);
1159                         rc = 0;
1160                         if (pp->cmd.status != 1)
1161                                 break;
1162                         rc = -ERESTARTSYS;
1163                         if (signal_pending(current))
1164                                 break;
1165                         spin_unlock_irqrestore(&pp->lock, flags);
1166                         schedule();
1167                         spin_lock_irqsave(&pp->lock, flags);
1168                 }
1169                 set_current_state(TASK_RUNNING);
1170                 remove_wait_queue(&pp->wait, &wait);
1171         }
1172         spin_unlock_irqrestore(&pp->lock, flags);
1173         if (rc)
1174                 return rc;
1175         if (pp->cmd.status != 0)
1176                 pp->cmd.reply_len = 0;
1177         size = sizeof(hdr) + pp->cmd.reply_len;
1178         if (count < size)
1179                 size = count;
1180         rc = size;
1181         hdr.status = pp->cmd.status;
1182         hdr.reply_len = pp->cmd.reply_len;
1183         if (copy_to_user(buf, &hdr, sizeof(hdr)))
1184                 return -EFAULT;
1185         size -= sizeof(hdr);
1186         if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1187                 return -EFAULT;
1188         pp->busy = 0;
1189
1190         return rc;
1191 }
1192
1193
1194 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1195                                char __user *buf, size_t count)
1196 {
1197         /* Not implemented */
1198         msleep_interruptible(1000);
1199         return 0;
1200 }
1201
1202
1203 static ssize_t smu_read(struct file *file, char __user *buf,
1204                         size_t count, loff_t *ppos)
1205 {
1206         struct smu_private *pp = file->private_data;
1207
1208         if (pp->mode == smu_file_commands)
1209                 return smu_read_command(file, pp, buf, count);
1210         if (pp->mode == smu_file_events)
1211                 return smu_read_events(file, pp, buf, count);
1212
1213         return -EBADFD;
1214 }
1215
1216 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1217 {
1218         struct smu_private *pp = file->private_data;
1219         unsigned int mask = 0;
1220         unsigned long flags;
1221
1222         if (pp == 0)
1223                 return 0;
1224
1225         if (pp->mode == smu_file_commands) {
1226                 poll_wait(file, &pp->wait, wait);
1227
1228                 spin_lock_irqsave(&pp->lock, flags);
1229                 if (pp->busy && pp->cmd.status != 1)
1230                         mask |= POLLIN;
1231                 spin_unlock_irqrestore(&pp->lock, flags);
1232         } if (pp->mode == smu_file_events) {
1233                 /* Not yet implemented */
1234         }
1235         return mask;
1236 }
1237
1238 static int smu_release(struct inode *inode, struct file *file)
1239 {
1240         struct smu_private *pp = file->private_data;
1241         unsigned long flags;
1242         unsigned int busy;
1243
1244         if (pp == 0)
1245                 return 0;
1246
1247         file->private_data = NULL;
1248
1249         /* Mark file as closing to avoid races with new request */
1250         spin_lock_irqsave(&pp->lock, flags);
1251         pp->mode = smu_file_closing;
1252         busy = pp->busy;
1253
1254         /* Wait for any pending request to complete */
1255         if (busy && pp->cmd.status == 1) {
1256                 DECLARE_WAITQUEUE(wait, current);
1257
1258                 add_wait_queue(&pp->wait, &wait);
1259                 for (;;) {
1260                         set_current_state(TASK_UNINTERRUPTIBLE);
1261                         if (pp->cmd.status != 1)
1262                                 break;
1263                         spin_lock_irqsave(&pp->lock, flags);
1264                         schedule();
1265                         spin_unlock_irqrestore(&pp->lock, flags);
1266                 }
1267                 set_current_state(TASK_RUNNING);
1268                 remove_wait_queue(&pp->wait, &wait);
1269         }
1270         spin_unlock_irqrestore(&pp->lock, flags);
1271
1272         spin_lock_irqsave(&smu_clist_lock, flags);
1273         list_del(&pp->list);
1274         spin_unlock_irqrestore(&smu_clist_lock, flags);
1275         kfree(pp);
1276
1277         return 0;
1278 }
1279
1280
1281 static struct file_operations smu_device_fops = {
1282         .llseek         = no_llseek,
1283         .read           = smu_read,
1284         .write          = smu_write,
1285         .poll           = smu_fpoll,
1286         .open           = smu_open,
1287         .release        = smu_release,
1288 };
1289
1290 static struct miscdevice pmu_device = {
1291         MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1292 };
1293
1294 static int smu_device_init(void)
1295 {
1296         if (!smu)
1297                 return -ENODEV;
1298         if (misc_register(&pmu_device) < 0)
1299                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1300         return 0;
1301 }
1302 device_initcall(smu_device_init);