8da8862d054832c3104d105455ec25e63ee18d25
[powerpc.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/tech/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *
28  * This program is free software; you can redistribute it and/or modify
29  * it under the terms of the GNU General Public License version 2 as
30  * published by the Free Software Foundation.
31  *
32  */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56         .eccbytes = 3,
57         .eccpos = {0, 1, 2},
58         .oobfree = {
59                 {.offset = 3,
60                  .length = 2},
61                 {.offset = 6,
62                  .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66         .eccbytes = 6,
67         .eccpos = {0, 1, 2, 3, 6, 7},
68         .oobfree = {
69                 {.offset = 8,
70                  . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74         .eccbytes = 24,
75         .eccpos = {
76                    40, 41, 42, 43, 44, 45, 46, 47,
77                    48, 49, 50, 51, 52, 53, 54, 55,
78                    56, 57, 58, 59, 60, 61, 62, 63},
79         .oobfree = {
80                 {.offset = 2,
81                  .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85                            int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88                              struct mtd_oob_ops *ops);
89
90 /*
91  * For devices which display every fart in the system on a seperate LED. Is
92  * compiled away when LED support is disabled.
93  */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97  * nand_release_device - [GENERIC] release chip
98  * @mtd:        MTD device structure
99  *
100  * Deselect, release chip lock and wake up anyone waiting on the device
101  */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104         struct nand_chip *chip = mtd->priv;
105
106         /* De-select the NAND device */
107         chip->select_chip(mtd, -1);
108
109         /* Release the controller and the chip */
110         spin_lock(&chip->controller->lock);
111         chip->controller->active = NULL;
112         chip->state = FL_READY;
113         wake_up(&chip->controller->wq);
114         spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118  * nand_read_byte - [DEFAULT] read one byte from the chip
119  * @mtd:        MTD device structure
120  *
121  * Default read function for 8bit buswith
122  */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125         struct nand_chip *chip = mtd->priv;
126         return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131  * @mtd:        MTD device structure
132  *
133  * Default read function for 16bit buswith with
134  * endianess conversion
135  */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138         struct nand_chip *chip = mtd->priv;
139         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143  * nand_read_word - [DEFAULT] read one word from the chip
144  * @mtd:        MTD device structure
145  *
146  * Default read function for 16bit buswith without
147  * endianess conversion
148  */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156  * nand_select_chip - [DEFAULT] control CE line
157  * @mtd:        MTD device structure
158  * @chipnr:     chipnumber to select, -1 for deselect
159  *
160  * Default select function for 1 chip devices.
161  */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164         struct nand_chip *chip = mtd->priv;
165
166         switch (chipnr) {
167         case -1:
168                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169                 break;
170         case 0:
171                 break;
172
173         default:
174                 BUG();
175         }
176 }
177
178 /**
179  * nand_write_buf - [DEFAULT] write buffer to chip
180  * @mtd:        MTD device structure
181  * @buf:        data buffer
182  * @len:        number of bytes to write
183  *
184  * Default write function for 8bit buswith
185  */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188         int i;
189         struct nand_chip *chip = mtd->priv;
190
191         for (i = 0; i < len; i++)
192                 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196  * nand_read_buf - [DEFAULT] read chip data into buffer
197  * @mtd:        MTD device structure
198  * @buf:        buffer to store date
199  * @len:        number of bytes to read
200  *
201  * Default read function for 8bit buswith
202  */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205         int i;
206         struct nand_chip *chip = mtd->priv;
207
208         for (i = 0; i < len; i++)
209                 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214  * @mtd:        MTD device structure
215  * @buf:        buffer containing the data to compare
216  * @len:        number of bytes to compare
217  *
218  * Default verify function for 8bit buswith
219  */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222         int i;
223         struct nand_chip *chip = mtd->priv;
224
225         for (i = 0; i < len; i++)
226                 if (buf[i] != readb(chip->IO_ADDR_R))
227                         return -EFAULT;
228         return 0;
229 }
230
231 /**
232  * nand_write_buf16 - [DEFAULT] write buffer to chip
233  * @mtd:        MTD device structure
234  * @buf:        data buffer
235  * @len:        number of bytes to write
236  *
237  * Default write function for 16bit buswith
238  */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241         int i;
242         struct nand_chip *chip = mtd->priv;
243         u16 *p = (u16 *) buf;
244         len >>= 1;
245
246         for (i = 0; i < len; i++)
247                 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252  * nand_read_buf16 - [DEFAULT] read chip data into buffer
253  * @mtd:        MTD device structure
254  * @buf:        buffer to store date
255  * @len:        number of bytes to read
256  *
257  * Default read function for 16bit buswith
258  */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261         int i;
262         struct nand_chip *chip = mtd->priv;
263         u16 *p = (u16 *) buf;
264         len >>= 1;
265
266         for (i = 0; i < len; i++)
267                 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272  * @mtd:        MTD device structure
273  * @buf:        buffer containing the data to compare
274  * @len:        number of bytes to compare
275  *
276  * Default verify function for 16bit buswith
277  */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280         int i;
281         struct nand_chip *chip = mtd->priv;
282         u16 *p = (u16 *) buf;
283         len >>= 1;
284
285         for (i = 0; i < len; i++)
286                 if (p[i] != readw(chip->IO_ADDR_R))
287                         return -EFAULT;
288
289         return 0;
290 }
291
292 /**
293  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294  * @mtd:        MTD device structure
295  * @ofs:        offset from device start
296  * @getchip:    0, if the chip is already selected
297  *
298  * Check, if the block is bad.
299  */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302         int page, chipnr, res = 0;
303         struct nand_chip *chip = mtd->priv;
304         u16 bad;
305
306         if (getchip) {
307                 page = (int)(ofs >> chip->page_shift);
308                 chipnr = (int)(ofs >> chip->chip_shift);
309
310                 nand_get_device(chip, mtd, FL_READING);
311
312                 /* Select the NAND device */
313                 chip->select_chip(mtd, chipnr);
314         } else
315                 page = (int)ofs;
316
317         if (chip->options & NAND_BUSWIDTH_16) {
318                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319                               page & chip->pagemask);
320                 bad = cpu_to_le16(chip->read_word(mtd));
321                 if (chip->badblockpos & 0x1)
322                         bad >>= 8;
323                 if ((bad & 0xFF) != 0xff)
324                         res = 1;
325         } else {
326                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327                               page & chip->pagemask);
328                 if (chip->read_byte(mtd) != 0xff)
329                         res = 1;
330         }
331
332         if (getchip)
333                 nand_release_device(mtd);
334
335         return res;
336 }
337
338 /**
339  * nand_default_block_markbad - [DEFAULT] mark a block bad
340  * @mtd:        MTD device structure
341  * @ofs:        offset from device start
342  *
343  * This is the default implementation, which can be overridden by
344  * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348         struct nand_chip *chip = mtd->priv;
349         uint8_t buf[2] = { 0, 0 };
350         int block, ret;
351
352         /* Get block number */
353         block = ((int)ofs) >> chip->bbt_erase_shift;
354         if (chip->bbt)
355                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357         /* Do we have a flash based bad block table ? */
358         if (chip->options & NAND_USE_FLASH_BBT)
359                 ret = nand_update_bbt(mtd, ofs);
360         else {
361                 /* We write two bytes, so we dont have to mess with 16 bit
362                  * access
363                  */
364                 ofs += mtd->oobsize;
365                 chip->ops.len = 2;
366                 chip->ops.datbuf = NULL;
367                 chip->ops.oobbuf = buf;
368                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371         }
372         if (!ret)
373                 mtd->ecc_stats.badblocks++;
374         return ret;
375 }
376
377 /**
378  * nand_check_wp - [GENERIC] check if the chip is write protected
379  * @mtd:        MTD device structure
380  * Check, if the device is write protected
381  *
382  * The function expects, that the device is already selected
383  */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386         struct nand_chip *chip = mtd->priv;
387         /* Check the WP bit */
388         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394  * @mtd:        MTD device structure
395  * @ofs:        offset from device start
396  * @getchip:    0, if the chip is already selected
397  * @allowbbt:   1, if its allowed to access the bbt area
398  *
399  * Check, if the block is bad. Either by reading the bad block table or
400  * calling of the scan function.
401  */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403                                int allowbbt)
404 {
405         struct nand_chip *chip = mtd->priv;
406
407         if (!chip->bbt)
408                 return chip->block_bad(mtd, ofs, getchip);
409
410         /* Return info from the table */
411         return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415  * Wait for the ready pin, after a command
416  * The timeout is catched later.
417  */
418 void nand_wait_ready(struct mtd_info *mtd)
419 {
420         struct nand_chip *chip = mtd->priv;
421         unsigned long timeo = jiffies + 2;
422
423         led_trigger_event(nand_led_trigger, LED_FULL);
424         /* wait until command is processed or timeout occures */
425         do {
426                 if (chip->dev_ready(mtd))
427                         break;
428                 touch_softlockup_watchdog();
429         } while (time_before(jiffies, timeo));
430         led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432 EXPORT_SYMBOL_GPL(nand_wait_ready);
433
434 /**
435  * nand_command - [DEFAULT] Send command to NAND device
436  * @mtd:        MTD device structure
437  * @command:    the command to be sent
438  * @column:     the column address for this command, -1 if none
439  * @page_addr:  the page address for this command, -1 if none
440  *
441  * Send command to NAND device. This function is used for small page
442  * devices (256/512 Bytes per page)
443  */
444 static void nand_command(struct mtd_info *mtd, unsigned int command,
445                          int column, int page_addr)
446 {
447         register struct nand_chip *chip = mtd->priv;
448         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
449
450         /*
451          * Write out the command to the device.
452          */
453         if (command == NAND_CMD_SEQIN) {
454                 int readcmd;
455
456                 if (column >= mtd->writesize) {
457                         /* OOB area */
458                         column -= mtd->writesize;
459                         readcmd = NAND_CMD_READOOB;
460                 } else if (column < 256) {
461                         /* First 256 bytes --> READ0 */
462                         readcmd = NAND_CMD_READ0;
463                 } else {
464                         column -= 256;
465                         readcmd = NAND_CMD_READ1;
466                 }
467                 chip->cmd_ctrl(mtd, readcmd, ctrl);
468                 ctrl &= ~NAND_CTRL_CHANGE;
469         }
470         chip->cmd_ctrl(mtd, command, ctrl);
471
472         /*
473          * Address cycle, when necessary
474          */
475         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
476         /* Serially input address */
477         if (column != -1) {
478                 /* Adjust columns for 16 bit buswidth */
479                 if (chip->options & NAND_BUSWIDTH_16)
480                         column >>= 1;
481                 chip->cmd_ctrl(mtd, column, ctrl);
482                 ctrl &= ~NAND_CTRL_CHANGE;
483         }
484         if (page_addr != -1) {
485                 chip->cmd_ctrl(mtd, page_addr, ctrl);
486                 ctrl &= ~NAND_CTRL_CHANGE;
487                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
488                 /* One more address cycle for devices > 32MiB */
489                 if (chip->chipsize > (32 << 20))
490                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
491         }
492         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
493
494         /*
495          * program and erase have their own busy handlers
496          * status and sequential in needs no delay
497          */
498         switch (command) {
499
500         case NAND_CMD_PAGEPROG:
501         case NAND_CMD_ERASE1:
502         case NAND_CMD_ERASE2:
503         case NAND_CMD_SEQIN:
504         case NAND_CMD_STATUS:
505                 return;
506
507         case NAND_CMD_RESET:
508                 if (chip->dev_ready)
509                         break;
510                 udelay(chip->chip_delay);
511                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513                 chip->cmd_ctrl(mtd,
514                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516                 return;
517
518                 /* This applies to read commands */
519         default:
520                 /*
521                  * If we don't have access to the busy pin, we apply the given
522                  * command delay
523                  */
524                 if (!chip->dev_ready) {
525                         udelay(chip->chip_delay);
526                         return;
527                 }
528         }
529         /* Apply this short delay always to ensure that we do wait tWB in
530          * any case on any machine. */
531         ndelay(100);
532
533         nand_wait_ready(mtd);
534 }
535
536 /**
537  * nand_command_lp - [DEFAULT] Send command to NAND large page device
538  * @mtd:        MTD device structure
539  * @command:    the command to be sent
540  * @column:     the column address for this command, -1 if none
541  * @page_addr:  the page address for this command, -1 if none
542  *
543  * Send command to NAND device. This is the version for the new large page
544  * devices We dont have the separate regions as we have in the small page
545  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
546  */
547 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
548                             int column, int page_addr)
549 {
550         register struct nand_chip *chip = mtd->priv;
551
552         /* Emulate NAND_CMD_READOOB */
553         if (command == NAND_CMD_READOOB) {
554                 column += mtd->writesize;
555                 command = NAND_CMD_READ0;
556         }
557
558         /* Command latch cycle */
559         chip->cmd_ctrl(mtd, command & 0xff,
560                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
561
562         if (column != -1 || page_addr != -1) {
563                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
564
565                 /* Serially input address */
566                 if (column != -1) {
567                         /* Adjust columns for 16 bit buswidth */
568                         if (chip->options & NAND_BUSWIDTH_16)
569                                 column >>= 1;
570                         chip->cmd_ctrl(mtd, column, ctrl);
571                         ctrl &= ~NAND_CTRL_CHANGE;
572                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
573                 }
574                 if (page_addr != -1) {
575                         chip->cmd_ctrl(mtd, page_addr, ctrl);
576                         chip->cmd_ctrl(mtd, page_addr >> 8,
577                                        NAND_NCE | NAND_ALE);
578                         /* One more address cycle for devices > 128MiB */
579                         if (chip->chipsize > (128 << 20))
580                                 chip->cmd_ctrl(mtd, page_addr >> 16,
581                                                NAND_NCE | NAND_ALE);
582                 }
583         }
584         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
585
586         /*
587          * program and erase have their own busy handlers
588          * status, sequential in, and deplete1 need no delay
589          */
590         switch (command) {
591
592         case NAND_CMD_CACHEDPROG:
593         case NAND_CMD_PAGEPROG:
594         case NAND_CMD_ERASE1:
595         case NAND_CMD_ERASE2:
596         case NAND_CMD_SEQIN:
597         case NAND_CMD_RNDIN:
598         case NAND_CMD_STATUS:
599         case NAND_CMD_DEPLETE1:
600                 return;
601
602                 /*
603                  * read error status commands require only a short delay
604                  */
605         case NAND_CMD_STATUS_ERROR:
606         case NAND_CMD_STATUS_ERROR0:
607         case NAND_CMD_STATUS_ERROR1:
608         case NAND_CMD_STATUS_ERROR2:
609         case NAND_CMD_STATUS_ERROR3:
610                 udelay(chip->chip_delay);
611                 return;
612
613         case NAND_CMD_RESET:
614                 if (chip->dev_ready)
615                         break;
616                 udelay(chip->chip_delay);
617                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620                                NAND_NCE | NAND_CTRL_CHANGE);
621                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622                 return;
623
624         case NAND_CMD_RNDOUT:
625                 /* No ready / busy check necessary */
626                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
627                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
628                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
629                                NAND_NCE | NAND_CTRL_CHANGE);
630                 return;
631
632         case NAND_CMD_READ0:
633                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
634                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
636                                NAND_NCE | NAND_CTRL_CHANGE);
637
638                 /* This applies to read commands */
639         default:
640                 /*
641                  * If we don't have access to the busy pin, we apply the given
642                  * command delay
643                  */
644                 if (!chip->dev_ready) {
645                         udelay(chip->chip_delay);
646                         return;
647                 }
648         }
649
650         /* Apply this short delay always to ensure that we do wait tWB in
651          * any case on any machine. */
652         ndelay(100);
653
654         nand_wait_ready(mtd);
655 }
656
657 /**
658  * nand_get_device - [GENERIC] Get chip for selected access
659  * @chip:       the nand chip descriptor
660  * @mtd:        MTD device structure
661  * @new_state:  the state which is requested
662  *
663  * Get the device and lock it for exclusive access
664  */
665 static int
666 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
667 {
668         spinlock_t *lock = &chip->controller->lock;
669         wait_queue_head_t *wq = &chip->controller->wq;
670         DECLARE_WAITQUEUE(wait, current);
671  retry:
672         spin_lock(lock);
673
674         /* Hardware controller shared among independend devices */
675         /* Hardware controller shared among independend devices */
676         if (!chip->controller->active)
677                 chip->controller->active = chip;
678
679         if (chip->controller->active == chip && chip->state == FL_READY) {
680                 chip->state = new_state;
681                 spin_unlock(lock);
682                 return 0;
683         }
684         if (new_state == FL_PM_SUSPENDED) {
685                 spin_unlock(lock);
686                 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
687         }
688         set_current_state(TASK_UNINTERRUPTIBLE);
689         add_wait_queue(wq, &wait);
690         spin_unlock(lock);
691         schedule();
692         remove_wait_queue(wq, &wait);
693         goto retry;
694 }
695
696 /**
697  * nand_wait - [DEFAULT]  wait until the command is done
698  * @mtd:        MTD device structure
699  * @chip:       NAND chip structure
700  *
701  * Wait for command done. This applies to erase and program only
702  * Erase can take up to 400ms and program up to 20ms according to
703  * general NAND and SmartMedia specs
704  */
705 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
706 {
707
708         unsigned long timeo = jiffies;
709         int status, state = chip->state;
710
711         if (state == FL_ERASING)
712                 timeo += (HZ * 400) / 1000;
713         else
714                 timeo += (HZ * 20) / 1000;
715
716         led_trigger_event(nand_led_trigger, LED_FULL);
717
718         /* Apply this short delay always to ensure that we do wait tWB in
719          * any case on any machine. */
720         ndelay(100);
721
722         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
723                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724         else
725                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
726
727         while (time_before(jiffies, timeo)) {
728                 if (chip->dev_ready) {
729                         if (chip->dev_ready(mtd))
730                                 break;
731                 } else {
732                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
733                                 break;
734                 }
735                 cond_resched();
736         }
737         led_trigger_event(nand_led_trigger, LED_OFF);
738
739         status = (int)chip->read_byte(mtd);
740         return status;
741 }
742
743 /**
744  * nand_read_page_raw - [Intern] read raw page data without ecc
745  * @mtd:        mtd info structure
746  * @chip:       nand chip info structure
747  * @buf:        buffer to store read data
748  */
749 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
750                               uint8_t *buf)
751 {
752         chip->read_buf(mtd, buf, mtd->writesize);
753         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
754         return 0;
755 }
756
757 /**
758  * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
759  * @mtd:        mtd info structure
760  * @chip:       nand chip info structure
761  * @buf:        buffer to store read data
762  */
763 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
764                                 uint8_t *buf)
765 {
766         int i, eccsize = chip->ecc.size;
767         int eccbytes = chip->ecc.bytes;
768         int eccsteps = chip->ecc.steps;
769         uint8_t *p = buf;
770         uint8_t *ecc_calc = chip->buffers.ecccalc;
771         uint8_t *ecc_code = chip->buffers.ecccode;
772         int *eccpos = chip->ecc.layout->eccpos;
773
774         nand_read_page_raw(mtd, chip, buf);
775
776         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
777                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
778
779         for (i = 0; i < chip->ecc.total; i++)
780                 ecc_code[i] = chip->oob_poi[eccpos[i]];
781
782         eccsteps = chip->ecc.steps;
783         p = buf;
784
785         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
786                 int stat;
787
788                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789                 if (stat == -1)
790                         mtd->ecc_stats.failed++;
791                 else
792                         mtd->ecc_stats.corrected += stat;
793         }
794         return 0;
795 }
796
797 /**
798  * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
799  * @mtd:        mtd info structure
800  * @chip:       nand chip info structure
801  * @buf:        buffer to store read data
802  *
803  * Not for syndrome calculating ecc controllers which need a special oob layout
804  */
805 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
806                                 uint8_t *buf)
807 {
808         int i, eccsize = chip->ecc.size;
809         int eccbytes = chip->ecc.bytes;
810         int eccsteps = chip->ecc.steps;
811         uint8_t *p = buf;
812         uint8_t *ecc_calc = chip->buffers.ecccalc;
813         uint8_t *ecc_code = chip->buffers.ecccode;
814         int *eccpos = chip->ecc.layout->eccpos;
815
816         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
817                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
818                 chip->read_buf(mtd, p, eccsize);
819                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
820         }
821         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
822
823         for (i = 0; i < chip->ecc.total; i++)
824                 ecc_code[i] = chip->oob_poi[eccpos[i]];
825
826         eccsteps = chip->ecc.steps;
827         p = buf;
828
829         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
830                 int stat;
831
832                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833                 if (stat == -1)
834                         mtd->ecc_stats.failed++;
835                 else
836                         mtd->ecc_stats.corrected += stat;
837         }
838         return 0;
839 }
840
841 /**
842  * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
843  * @mtd:        mtd info structure
844  * @chip:       nand chip info structure
845  * @buf:        buffer to store read data
846  *
847  * The hw generator calculates the error syndrome automatically. Therefor
848  * we need a special oob layout and handling.
849  */
850 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
851                                    uint8_t *buf)
852 {
853         int i, eccsize = chip->ecc.size;
854         int eccbytes = chip->ecc.bytes;
855         int eccsteps = chip->ecc.steps;
856         uint8_t *p = buf;
857         uint8_t *oob = chip->oob_poi;
858
859         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
860                 int stat;
861
862                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
863                 chip->read_buf(mtd, p, eccsize);
864
865                 if (chip->ecc.prepad) {
866                         chip->read_buf(mtd, oob, chip->ecc.prepad);
867                         oob += chip->ecc.prepad;
868                 }
869
870                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
871                 chip->read_buf(mtd, oob, eccbytes);
872                 stat = chip->ecc.correct(mtd, p, oob, NULL);
873
874                 if (stat == -1)
875                         mtd->ecc_stats.failed++;
876                 else
877                         mtd->ecc_stats.corrected += stat;
878
879                 oob += eccbytes;
880
881                 if (chip->ecc.postpad) {
882                         chip->read_buf(mtd, oob, chip->ecc.postpad);
883                         oob += chip->ecc.postpad;
884                 }
885         }
886
887         /* Calculate remaining oob bytes */
888         i = mtd->oobsize - (oob - chip->oob_poi);
889         if (i)
890                 chip->read_buf(mtd, oob, i);
891
892         return 0;
893 }
894
895 /**
896  * nand_transfer_oob - [Internal] Transfer oob to client buffer
897  * @chip:       nand chip structure
898  * @oob:        oob destination address
899  * @ops:        oob ops structure
900  */
901 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
902                                   struct mtd_oob_ops *ops)
903 {
904         size_t len = ops->ooblen;
905
906         switch(ops->mode) {
907
908         case MTD_OOB_PLACE:
909         case MTD_OOB_RAW:
910                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
911                 return oob + len;
912
913         case MTD_OOB_AUTO: {
914                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
915                 uint32_t boffs = 0, roffs = ops->ooboffs;
916                 size_t bytes = 0;
917
918                 for(; free->length && len; free++, len -= bytes) {
919                         /* Read request not from offset 0 ? */
920                         if (unlikely(roffs)) {
921                                 if (roffs >= free->length) {
922                                         roffs -= free->length;
923                                         continue;
924                                 }
925                                 boffs = free->offset + roffs;
926                                 bytes = min_t(size_t, len,
927                                               (free->length - roffs));
928                                 roffs = 0;
929                         } else {
930                                 bytes = min_t(size_t, len, free->length);
931                                 boffs = free->offset;
932                         }
933                         memcpy(oob, chip->oob_poi + boffs, bytes);
934                         oob += bytes;
935                 }
936                 return oob;
937         }
938         default:
939                 BUG();
940         }
941         return NULL;
942 }
943
944 /**
945  * nand_do_read_ops - [Internal] Read data with ECC
946  *
947  * @mtd:        MTD device structure
948  * @from:       offset to read from
949  * @ops:        oob ops structure
950  *
951  * Internal function. Called with chip held.
952  */
953 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
954                             struct mtd_oob_ops *ops)
955 {
956         int chipnr, page, realpage, col, bytes, aligned;
957         struct nand_chip *chip = mtd->priv;
958         struct mtd_ecc_stats stats;
959         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
960         int sndcmd = 1;
961         int ret = 0;
962         uint32_t readlen = ops->len;
963         uint8_t *bufpoi, *oob, *buf;
964
965         stats = mtd->ecc_stats;
966
967         chipnr = (int)(from >> chip->chip_shift);
968         chip->select_chip(mtd, chipnr);
969
970         realpage = (int)(from >> chip->page_shift);
971         page = realpage & chip->pagemask;
972
973         col = (int)(from & (mtd->writesize - 1));
974         chip->oob_poi = chip->buffers.oobrbuf;
975
976         buf = ops->datbuf;
977         oob = ops->oobbuf;
978
979         while(1) {
980                 bytes = min(mtd->writesize - col, readlen);
981                 aligned = (bytes == mtd->writesize);
982
983                 /* Is the current page in the buffer ? */
984                 if (realpage != chip->pagebuf || oob) {
985                         bufpoi = aligned ? buf : chip->buffers.databuf;
986
987                         if (likely(sndcmd)) {
988                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
989                                 sndcmd = 0;
990                         }
991
992                         /* Now read the page into the buffer */
993                         ret = chip->ecc.read_page(mtd, chip, bufpoi);
994                         if (ret < 0)
995                                 break;
996
997                         /* Transfer not aligned data */
998                         if (!aligned) {
999                                 chip->pagebuf = realpage;
1000                                 memcpy(buf, chip->buffers.databuf + col, bytes);
1001                         }
1002
1003                         buf += bytes;
1004
1005                         if (unlikely(oob)) {
1006                                 /* Raw mode does data:oob:data:oob */
1007                                 if (ops->mode != MTD_OOB_RAW)
1008                                         oob = nand_transfer_oob(chip, oob, ops);
1009                                 else
1010                                         buf = nand_transfer_oob(chip, buf, ops);
1011                         }
1012
1013                         if (!(chip->options & NAND_NO_READRDY)) {
1014                                 /*
1015                                  * Apply delay or wait for ready/busy pin. Do
1016                                  * this before the AUTOINCR check, so no
1017                                  * problems arise if a chip which does auto
1018                                  * increment is marked as NOAUTOINCR by the
1019                                  * board driver.
1020                                  */
1021                                 if (!chip->dev_ready)
1022                                         udelay(chip->chip_delay);
1023                                 else
1024                                         nand_wait_ready(mtd);
1025                         }
1026                 } else {
1027                         memcpy(buf, chip->buffers.databuf + col, bytes);
1028                         buf += bytes;
1029                 }
1030
1031                 readlen -= bytes;
1032
1033                 if (!readlen)
1034                         break;
1035
1036                 /* For subsequent reads align to page boundary. */
1037                 col = 0;
1038                 /* Increment page address */
1039                 realpage++;
1040
1041                 page = realpage & chip->pagemask;
1042                 /* Check, if we cross a chip boundary */
1043                 if (!page) {
1044                         chipnr++;
1045                         chip->select_chip(mtd, -1);
1046                         chip->select_chip(mtd, chipnr);
1047                 }
1048
1049                 /* Check, if the chip supports auto page increment
1050                  * or if we have hit a block boundary.
1051                  */
1052                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1053                         sndcmd = 1;
1054         }
1055
1056         ops->retlen = ops->len - (size_t) readlen;
1057
1058         if (ret)
1059                 return ret;
1060
1061         if (mtd->ecc_stats.failed - stats.failed)
1062                 return -EBADMSG;
1063
1064         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1065 }
1066
1067 /**
1068  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1069  * @mtd:        MTD device structure
1070  * @from:       offset to read from
1071  * @len:        number of bytes to read
1072  * @retlen:     pointer to variable to store the number of read bytes
1073  * @buf:        the databuffer to put data
1074  *
1075  * Get hold of the chip and call nand_do_read
1076  */
1077 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1078                      size_t *retlen, uint8_t *buf)
1079 {
1080         struct nand_chip *chip = mtd->priv;
1081         int ret;
1082
1083         /* Do not allow reads past end of device */
1084         if ((from + len) > mtd->size)
1085                 return -EINVAL;
1086         if (!len)
1087                 return 0;
1088
1089         nand_get_device(chip, mtd, FL_READING);
1090
1091         chip->ops.len = len;
1092         chip->ops.datbuf = buf;
1093         chip->ops.oobbuf = NULL;
1094
1095         ret = nand_do_read_ops(mtd, from, &chip->ops);
1096
1097         *retlen = chip->ops.retlen;
1098
1099         nand_release_device(mtd);
1100
1101         return ret;
1102 }
1103
1104 /**
1105  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1106  * @mtd:        mtd info structure
1107  * @chip:       nand chip info structure
1108  * @page:       page number to read
1109  * @sndcmd:     flag whether to issue read command or not
1110  */
1111 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1112                              int page, int sndcmd)
1113 {
1114         if (sndcmd) {
1115                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1116                 sndcmd = 0;
1117         }
1118         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1119         return sndcmd;
1120 }
1121
1122 /**
1123  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1124  *                          with syndromes
1125  * @mtd:        mtd info structure
1126  * @chip:       nand chip info structure
1127  * @page:       page number to read
1128  * @sndcmd:     flag whether to issue read command or not
1129  */
1130 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1131                                   int page, int sndcmd)
1132 {
1133         uint8_t *buf = chip->oob_poi;
1134         int length = mtd->oobsize;
1135         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1136         int eccsize = chip->ecc.size;
1137         uint8_t *bufpoi = buf;
1138         int i, toread, sndrnd = 0, pos;
1139
1140         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1141         for (i = 0; i < chip->ecc.steps; i++) {
1142                 if (sndrnd) {
1143                         pos = eccsize + i * (eccsize + chunk);
1144                         if (mtd->writesize > 512)
1145                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1146                         else
1147                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1148                 } else
1149                         sndrnd = 1;
1150                 toread = min_t(int, length, chunk);
1151                 chip->read_buf(mtd, bufpoi, toread);
1152                 bufpoi += toread;
1153                 length -= toread;
1154         }
1155         if (length > 0)
1156                 chip->read_buf(mtd, bufpoi, length);
1157
1158         return 1;
1159 }
1160
1161 /**
1162  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1163  * @mtd:        mtd info structure
1164  * @chip:       nand chip info structure
1165  * @page:       page number to write
1166  */
1167 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1168                               int page)
1169 {
1170         int status = 0;
1171         const uint8_t *buf = chip->oob_poi;
1172         int length = mtd->oobsize;
1173
1174         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1175         chip->write_buf(mtd, buf, length);
1176         /* Send command to program the OOB data */
1177         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1178
1179         status = chip->waitfunc(mtd, chip);
1180
1181         return status & NAND_STATUS_FAIL ? -EIO : 0;
1182 }
1183
1184 /**
1185  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1186  *                           with syndrome - only for large page flash !
1187  * @mtd:        mtd info structure
1188  * @chip:       nand chip info structure
1189  * @page:       page number to write
1190  */
1191 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1192                                    struct nand_chip *chip, int page)
1193 {
1194         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1195         int eccsize = chip->ecc.size, length = mtd->oobsize;
1196         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1197         const uint8_t *bufpoi = chip->oob_poi;
1198
1199         /*
1200          * data-ecc-data-ecc ... ecc-oob
1201          * or
1202          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1203          */
1204         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1205                 pos = steps * (eccsize + chunk);
1206                 steps = 0;
1207         } else
1208                 pos = eccsize;
1209
1210         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1211         for (i = 0; i < steps; i++) {
1212                 if (sndcmd) {
1213                         if (mtd->writesize <= 512) {
1214                                 uint32_t fill = 0xFFFFFFFF;
1215
1216                                 len = eccsize;
1217                                 while (len > 0) {
1218                                         int num = min_t(int, len, 4);
1219                                         chip->write_buf(mtd, (uint8_t *)&fill,
1220                                                         num);
1221                                         len -= num;
1222                                 }
1223                         } else {
1224                                 pos = eccsize + i * (eccsize + chunk);
1225                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1226                         }
1227                 } else
1228                         sndcmd = 1;
1229                 len = min_t(int, length, chunk);
1230                 chip->write_buf(mtd, bufpoi, len);
1231                 bufpoi += len;
1232                 length -= len;
1233         }
1234         if (length > 0)
1235                 chip->write_buf(mtd, bufpoi, length);
1236
1237         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1238         status = chip->waitfunc(mtd, chip);
1239
1240         return status & NAND_STATUS_FAIL ? -EIO : 0;
1241 }
1242
1243 /**
1244  * nand_do_read_oob - [Intern] NAND read out-of-band
1245  * @mtd:        MTD device structure
1246  * @from:       offset to read from
1247  * @ops:        oob operations description structure
1248  *
1249  * NAND read out-of-band data from the spare area
1250  */
1251 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1252                             struct mtd_oob_ops *ops)
1253 {
1254         int page, realpage, chipnr, sndcmd = 1;
1255         struct nand_chip *chip = mtd->priv;
1256         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1257         int readlen = ops->len;
1258         uint8_t *buf = ops->oobbuf;
1259
1260         DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1261               (unsigned long long)from, readlen);
1262
1263         chipnr = (int)(from >> chip->chip_shift);
1264         chip->select_chip(mtd, chipnr);
1265
1266         /* Shift to get page */
1267         realpage = (int)(from >> chip->page_shift);
1268         page = realpage & chip->pagemask;
1269
1270         chip->oob_poi = chip->buffers.oobrbuf;
1271
1272         while(1) {
1273                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1274                 buf = nand_transfer_oob(chip, buf, ops);
1275
1276                 if (!(chip->options & NAND_NO_READRDY)) {
1277                         /*
1278                          * Apply delay or wait for ready/busy pin. Do this
1279                          * before the AUTOINCR check, so no problems arise if a
1280                          * chip which does auto increment is marked as
1281                          * NOAUTOINCR by the board driver.
1282                          */
1283                         if (!chip->dev_ready)
1284                                 udelay(chip->chip_delay);
1285                         else
1286                                 nand_wait_ready(mtd);
1287                 }
1288
1289                 readlen -= ops->ooblen;
1290                 if (!readlen)
1291                         break;
1292
1293                 /* Increment page address */
1294                 realpage++;
1295
1296                 page = realpage & chip->pagemask;
1297                 /* Check, if we cross a chip boundary */
1298                 if (!page) {
1299                         chipnr++;
1300                         chip->select_chip(mtd, -1);
1301                         chip->select_chip(mtd, chipnr);
1302                 }
1303
1304                 /* Check, if the chip supports auto page increment
1305                  * or if we have hit a block boundary.
1306                  */
1307                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1308                         sndcmd = 1;
1309         }
1310
1311         ops->retlen = ops->len;
1312         return 0;
1313 }
1314
1315 /**
1316  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1317  * @mtd:        MTD device structure
1318  * @from:       offset to read from
1319  * @ops:        oob operation description structure
1320  *
1321  * NAND read data and/or out-of-band data
1322  */
1323 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1324                          struct mtd_oob_ops *ops)
1325 {
1326         int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1327                          uint8_t *buf) = NULL;
1328         struct nand_chip *chip = mtd->priv;
1329         int ret = -ENOTSUPP;
1330
1331         ops->retlen = 0;
1332
1333         /* Do not allow reads past end of device */
1334         if ((from + ops->len) > mtd->size) {
1335                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1336                       "Attempt read beyond end of device\n");
1337                 return -EINVAL;
1338         }
1339
1340         nand_get_device(chip, mtd, FL_READING);
1341
1342         switch(ops->mode) {
1343         case MTD_OOB_PLACE:
1344         case MTD_OOB_AUTO:
1345                 break;
1346
1347         case MTD_OOB_RAW:
1348                 /* Replace the read_page algorithm temporary */
1349                 read_page = chip->ecc.read_page;
1350                 chip->ecc.read_page = nand_read_page_raw;
1351                 break;
1352
1353         default:
1354                 goto out;
1355         }
1356
1357         if (!ops->datbuf)
1358                 ret = nand_do_read_oob(mtd, from, ops);
1359         else
1360                 ret = nand_do_read_ops(mtd, from, ops);
1361
1362         if (unlikely(ops->mode == MTD_OOB_RAW))
1363                 chip->ecc.read_page = read_page;
1364  out:
1365         nand_release_device(mtd);
1366         return ret;
1367 }
1368
1369
1370 /**
1371  * nand_write_page_raw - [Intern] raw page write function
1372  * @mtd:        mtd info structure
1373  * @chip:       nand chip info structure
1374  * @buf:        data buffer
1375  */
1376 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1377                                 const uint8_t *buf)
1378 {
1379         chip->write_buf(mtd, buf, mtd->writesize);
1380         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1381 }
1382
1383 /**
1384  * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1385  * @mtd:        mtd info structure
1386  * @chip:       nand chip info structure
1387  * @buf:        data buffer
1388  */
1389 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1390                                   const uint8_t *buf)
1391 {
1392         int i, eccsize = chip->ecc.size;
1393         int eccbytes = chip->ecc.bytes;
1394         int eccsteps = chip->ecc.steps;
1395         uint8_t *ecc_calc = chip->buffers.ecccalc;
1396         const uint8_t *p = buf;
1397         int *eccpos = chip->ecc.layout->eccpos;
1398
1399         /* Software ecc calculation */
1400         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1401                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1402
1403         for (i = 0; i < chip->ecc.total; i++)
1404                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1405
1406         nand_write_page_raw(mtd, chip, buf);
1407 }
1408
1409 /**
1410  * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1411  * @mtd:        mtd info structure
1412  * @chip:       nand chip info structure
1413  * @buf:        data buffer
1414  */
1415 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1416                                   const uint8_t *buf)
1417 {
1418         int i, eccsize = chip->ecc.size;
1419         int eccbytes = chip->ecc.bytes;
1420         int eccsteps = chip->ecc.steps;
1421         uint8_t *ecc_calc = chip->buffers.ecccalc;
1422         const uint8_t *p = buf;
1423         int *eccpos = chip->ecc.layout->eccpos;
1424
1425         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1426                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1427                 chip->write_buf(mtd, p, eccsize);
1428                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1429         }
1430
1431         for (i = 0; i < chip->ecc.total; i++)
1432                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1433
1434         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1435 }
1436
1437 /**
1438  * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1439  * @mtd:        mtd info structure
1440  * @chip:       nand chip info structure
1441  * @buf:        data buffer
1442  *
1443  * The hw generator calculates the error syndrome automatically. Therefor
1444  * we need a special oob layout and handling.
1445  */
1446 static void nand_write_page_syndrome(struct mtd_info *mtd,
1447                                     struct nand_chip *chip, const uint8_t *buf)
1448 {
1449         int i, eccsize = chip->ecc.size;
1450         int eccbytes = chip->ecc.bytes;
1451         int eccsteps = chip->ecc.steps;
1452         const uint8_t *p = buf;
1453         uint8_t *oob = chip->oob_poi;
1454
1455         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1456
1457                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1458                 chip->write_buf(mtd, p, eccsize);
1459
1460                 if (chip->ecc.prepad) {
1461                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1462                         oob += chip->ecc.prepad;
1463                 }
1464
1465                 chip->ecc.calculate(mtd, p, oob);
1466                 chip->write_buf(mtd, oob, eccbytes);
1467                 oob += eccbytes;
1468
1469                 if (chip->ecc.postpad) {
1470                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1471                         oob += chip->ecc.postpad;
1472                 }
1473         }
1474
1475         /* Calculate remaining oob bytes */
1476         i = mtd->oobsize - (oob - chip->oob_poi);
1477         if (i)
1478                 chip->write_buf(mtd, oob, i);
1479 }
1480
1481 /**
1482  * nand_write_page - [INTERNAL] write one page
1483  * @mtd:        MTD device structure
1484  * @chip:       NAND chip descriptor
1485  * @buf:        the data to write
1486  * @page:       page number to write
1487  * @cached:     cached programming
1488  */
1489 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1490                            const uint8_t *buf, int page, int cached)
1491 {
1492         int status;
1493
1494         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1495
1496         chip->ecc.write_page(mtd, chip, buf);
1497
1498         /*
1499          * Cached progamming disabled for now, Not sure if its worth the
1500          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1501          */
1502         cached = 0;
1503
1504         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1505
1506                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1507                 status = chip->waitfunc(mtd, chip);
1508                 /*
1509                  * See if operation failed and additional status checks are
1510                  * available
1511                  */
1512                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1513                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1514                                                page);
1515
1516                 if (status & NAND_STATUS_FAIL)
1517                         return -EIO;
1518         } else {
1519                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1520                 status = chip->waitfunc(mtd, chip);
1521         }
1522
1523 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1524         /* Send command to read back the data */
1525         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1526
1527         if (chip->verify_buf(mtd, buf, mtd->writesize))
1528                 return -EIO;
1529 #endif
1530         return 0;
1531 }
1532
1533 /**
1534  * nand_fill_oob - [Internal] Transfer client buffer to oob
1535  * @chip:       nand chip structure
1536  * @oob:        oob data buffer
1537  * @ops:        oob ops structure
1538  */
1539 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1540                                   struct mtd_oob_ops *ops)
1541 {
1542         size_t len = ops->ooblen;
1543
1544         switch(ops->mode) {
1545
1546         case MTD_OOB_PLACE:
1547         case MTD_OOB_RAW:
1548                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1549                 return oob + len;
1550
1551         case MTD_OOB_AUTO: {
1552                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1553                 uint32_t boffs = 0, woffs = ops->ooboffs;
1554                 size_t bytes = 0;
1555
1556                 for(; free->length && len; free++, len -= bytes) {
1557                         /* Write request not from offset 0 ? */
1558                         if (unlikely(woffs)) {
1559                                 if (woffs >= free->length) {
1560                                         woffs -= free->length;
1561                                         continue;
1562                                 }
1563                                 boffs = free->offset + woffs;
1564                                 bytes = min_t(size_t, len,
1565                                               (free->length - woffs));
1566                                 woffs = 0;
1567                         } else {
1568                                 bytes = min_t(size_t, len, free->length);
1569                                 boffs = free->offset;
1570                         }
1571                         memcpy(chip->oob_poi + boffs, oob, bytes);
1572                         oob += bytes;
1573                 }
1574                 return oob;
1575         }
1576         default:
1577                 BUG();
1578         }
1579         return NULL;
1580 }
1581
1582 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1583
1584 /**
1585  * nand_do_write_ops - [Internal] NAND write with ECC
1586  * @mtd:        MTD device structure
1587  * @to:         offset to write to
1588  * @ops:        oob operations description structure
1589  *
1590  * NAND write with ECC
1591  */
1592 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1593                              struct mtd_oob_ops *ops)
1594 {
1595         int chipnr, realpage, page, blockmask;
1596         struct nand_chip *chip = mtd->priv;
1597         uint32_t writelen = ops->len;
1598         uint8_t *oob = ops->oobbuf;
1599         uint8_t *buf = ops->datbuf;
1600         int bytes = mtd->writesize;
1601         int ret;
1602
1603         ops->retlen = 0;
1604
1605         /* reject writes, which are not page aligned */
1606         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1607                 printk(KERN_NOTICE "nand_write: "
1608                        "Attempt to write not page aligned data\n");
1609                 return -EINVAL;
1610         }
1611
1612         if (!writelen)
1613                 return 0;
1614
1615         chipnr = (int)(to >> chip->chip_shift);
1616         chip->select_chip(mtd, chipnr);
1617
1618         /* Check, if it is write protected */
1619         if (nand_check_wp(mtd))
1620                 return -EIO;
1621
1622         realpage = (int)(to >> chip->page_shift);
1623         page = realpage & chip->pagemask;
1624         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1625
1626         /* Invalidate the page cache, when we write to the cached page */
1627         if (to <= (chip->pagebuf << chip->page_shift) &&
1628             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1629                 chip->pagebuf = -1;
1630
1631         chip->oob_poi = chip->buffers.oobwbuf;
1632
1633         while(1) {
1634                 int cached = writelen > bytes && page != blockmask;
1635
1636                 if (unlikely(oob))
1637                         oob = nand_fill_oob(chip, oob, ops);
1638
1639                 ret = nand_write_page(mtd, chip, buf, page, cached);
1640                 if (ret)
1641                         break;
1642
1643                 writelen -= bytes;
1644                 if (!writelen)
1645                         break;
1646
1647                 buf += bytes;
1648                 realpage++;
1649
1650                 page = realpage & chip->pagemask;
1651                 /* Check, if we cross a chip boundary */
1652                 if (!page) {
1653                         chipnr++;
1654                         chip->select_chip(mtd, -1);
1655                         chip->select_chip(mtd, chipnr);
1656                 }
1657         }
1658
1659         if (unlikely(oob))
1660                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1661
1662         ops->retlen = ops->len - writelen;
1663         return ret;
1664 }
1665
1666 /**
1667  * nand_write - [MTD Interface] NAND write with ECC
1668  * @mtd:        MTD device structure
1669  * @to:         offset to write to
1670  * @len:        number of bytes to write
1671  * @retlen:     pointer to variable to store the number of written bytes
1672  * @buf:        the data to write
1673  *
1674  * NAND write with ECC
1675  */
1676 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1677                           size_t *retlen, const uint8_t *buf)
1678 {
1679         struct nand_chip *chip = mtd->priv;
1680         int ret;
1681
1682         /* Do not allow reads past end of device */
1683         if ((to + len) > mtd->size)
1684                 return -EINVAL;
1685         if (!len)
1686                 return 0;
1687
1688         nand_get_device(chip, mtd, FL_WRITING);
1689
1690         chip->ops.len = len;
1691         chip->ops.datbuf = (uint8_t *)buf;
1692         chip->ops.oobbuf = NULL;
1693
1694         ret = nand_do_write_ops(mtd, to, &chip->ops);
1695
1696         *retlen = chip->ops.retlen;
1697
1698         nand_release_device(mtd);
1699
1700         return ret;
1701 }
1702
1703 /**
1704  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1705  * @mtd:        MTD device structure
1706  * @to:         offset to write to
1707  * @ops:        oob operation description structure
1708  *
1709  * NAND write out-of-band
1710  */
1711 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1712                              struct mtd_oob_ops *ops)
1713 {
1714         int chipnr, page, status;
1715         struct nand_chip *chip = mtd->priv;
1716
1717         DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1718               (unsigned int)to, (int)ops->len);
1719
1720         /* Do not allow write past end of page */
1721         if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1722                 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1723                       "Attempt to write past end of page\n");
1724                 return -EINVAL;
1725         }
1726
1727         chipnr = (int)(to >> chip->chip_shift);
1728         chip->select_chip(mtd, chipnr);
1729
1730         /* Shift to get page */
1731         page = (int)(to >> chip->page_shift);
1732
1733         /*
1734          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1735          * of my DiskOnChip 2000 test units) will clear the whole data page too
1736          * if we don't do this. I have no clue why, but I seem to have 'fixed'
1737          * it in the doc2000 driver in August 1999.  dwmw2.
1738          */
1739         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1740
1741         /* Check, if it is write protected */
1742         if (nand_check_wp(mtd))
1743                 return -EROFS;
1744
1745         /* Invalidate the page cache, if we write to the cached page */
1746         if (page == chip->pagebuf)
1747                 chip->pagebuf = -1;
1748
1749         chip->oob_poi = chip->buffers.oobwbuf;
1750         memset(chip->oob_poi, 0xff, mtd->oobsize);
1751         nand_fill_oob(chip, ops->oobbuf, ops);
1752         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1753         memset(chip->oob_poi, 0xff, mtd->oobsize);
1754
1755         if (status)
1756                 return status;
1757
1758         ops->retlen = ops->len;
1759
1760         return 0;
1761 }
1762
1763 /**
1764  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1765  * @mtd:        MTD device structure
1766  * @to:         offset to write to
1767  * @ops:        oob operation description structure
1768  */
1769 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1770                           struct mtd_oob_ops *ops)
1771 {
1772         void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1773                           const uint8_t *buf) = NULL;
1774         struct nand_chip *chip = mtd->priv;
1775         int ret = -ENOTSUPP;
1776
1777         ops->retlen = 0;
1778
1779         /* Do not allow writes past end of device */
1780         if ((to + ops->len) > mtd->size) {
1781                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1782                       "Attempt read beyond end of device\n");
1783                 return -EINVAL;
1784         }
1785
1786         nand_get_device(chip, mtd, FL_WRITING);
1787
1788         switch(ops->mode) {
1789         case MTD_OOB_PLACE:
1790         case MTD_OOB_AUTO:
1791                 break;
1792
1793         case MTD_OOB_RAW:
1794                 /* Replace the write_page algorithm temporary */
1795                 write_page = chip->ecc.write_page;
1796                 chip->ecc.write_page = nand_write_page_raw;
1797                 break;
1798
1799         default:
1800                 goto out;
1801         }
1802
1803         if (!ops->datbuf)
1804                 ret = nand_do_write_oob(mtd, to, ops);
1805         else
1806                 ret = nand_do_write_ops(mtd, to, ops);
1807
1808         if (unlikely(ops->mode == MTD_OOB_RAW))
1809                 chip->ecc.write_page = write_page;
1810  out:
1811         nand_release_device(mtd);
1812         return ret;
1813 }
1814
1815 /**
1816  * single_erease_cmd - [GENERIC] NAND standard block erase command function
1817  * @mtd:        MTD device structure
1818  * @page:       the page address of the block which will be erased
1819  *
1820  * Standard erase command for NAND chips
1821  */
1822 static void single_erase_cmd(struct mtd_info *mtd, int page)
1823 {
1824         struct nand_chip *chip = mtd->priv;
1825         /* Send commands to erase a block */
1826         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1827         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1828 }
1829
1830 /**
1831  * multi_erease_cmd - [GENERIC] AND specific block erase command function
1832  * @mtd:        MTD device structure
1833  * @page:       the page address of the block which will be erased
1834  *
1835  * AND multi block erase command function
1836  * Erase 4 consecutive blocks
1837  */
1838 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1839 {
1840         struct nand_chip *chip = mtd->priv;
1841         /* Send commands to erase a block */
1842         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1843         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1844         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1845         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1846         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1847 }
1848
1849 /**
1850  * nand_erase - [MTD Interface] erase block(s)
1851  * @mtd:        MTD device structure
1852  * @instr:      erase instruction
1853  *
1854  * Erase one ore more blocks
1855  */
1856 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1857 {
1858         return nand_erase_nand(mtd, instr, 0);
1859 }
1860
1861 #define BBT_PAGE_MASK   0xffffff3f
1862 /**
1863  * nand_erase_nand - [Internal] erase block(s)
1864  * @mtd:        MTD device structure
1865  * @instr:      erase instruction
1866  * @allowbbt:   allow erasing the bbt area
1867  *
1868  * Erase one ore more blocks
1869  */
1870 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1871                     int allowbbt)
1872 {
1873         int page, len, status, pages_per_block, ret, chipnr;
1874         struct nand_chip *chip = mtd->priv;
1875         int rewrite_bbt[NAND_MAX_CHIPS]={0};
1876         unsigned int bbt_masked_page = 0xffffffff;
1877
1878         DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1879               (unsigned int)instr->addr, (unsigned int)instr->len);
1880
1881         /* Start address must align on block boundary */
1882         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1883                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1884                 return -EINVAL;
1885         }
1886
1887         /* Length must align on block boundary */
1888         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1889                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1890                       "Length not block aligned\n");
1891                 return -EINVAL;
1892         }
1893
1894         /* Do not allow erase past end of device */
1895         if ((instr->len + instr->addr) > mtd->size) {
1896                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1897                       "Erase past end of device\n");
1898                 return -EINVAL;
1899         }
1900
1901         instr->fail_addr = 0xffffffff;
1902
1903         /* Grab the lock and see if the device is available */
1904         nand_get_device(chip, mtd, FL_ERASING);
1905
1906         /* Shift to get first page */
1907         page = (int)(instr->addr >> chip->page_shift);
1908         chipnr = (int)(instr->addr >> chip->chip_shift);
1909
1910         /* Calculate pages in each block */
1911         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1912
1913         /* Select the NAND device */
1914         chip->select_chip(mtd, chipnr);
1915
1916         /* Check, if it is write protected */
1917         if (nand_check_wp(mtd)) {
1918                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1919                       "Device is write protected!!!\n");
1920                 instr->state = MTD_ERASE_FAILED;
1921                 goto erase_exit;
1922         }
1923
1924         /*
1925          * If BBT requires refresh, set the BBT page mask to see if the BBT
1926          * should be rewritten. Otherwise the mask is set to 0xffffffff which
1927          * can not be matched. This is also done when the bbt is actually
1928          * erased to avoid recusrsive updates
1929          */
1930         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1931                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1932
1933         /* Loop through the pages */
1934         len = instr->len;
1935
1936         instr->state = MTD_ERASING;
1937
1938         while (len) {
1939                 /*
1940                  * heck if we have a bad block, we do not erase bad blocks !
1941                  */
1942                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1943                                         chip->page_shift, 0, allowbbt)) {
1944                         printk(KERN_WARNING "nand_erase: attempt to erase a "
1945                                "bad block at page 0x%08x\n", page);
1946                         instr->state = MTD_ERASE_FAILED;
1947                         goto erase_exit;
1948                 }
1949
1950                 /*
1951                  * Invalidate the page cache, if we erase the block which
1952                  * contains the current cached page
1953                  */
1954                 if (page <= chip->pagebuf && chip->pagebuf <
1955                     (page + pages_per_block))
1956                         chip->pagebuf = -1;
1957
1958                 chip->erase_cmd(mtd, page & chip->pagemask);
1959
1960                 status = chip->waitfunc(mtd, chip);
1961
1962                 /*
1963                  * See if operation failed and additional status checks are
1964                  * available
1965                  */
1966                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1967                         status = chip->errstat(mtd, chip, FL_ERASING,
1968                                                status, page);
1969
1970                 /* See if block erase succeeded */
1971                 if (status & NAND_STATUS_FAIL) {
1972                         DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1973                               "Failed erase, page 0x%08x\n", page);
1974                         instr->state = MTD_ERASE_FAILED;
1975                         instr->fail_addr = (page << chip->page_shift);
1976                         goto erase_exit;
1977                 }
1978
1979                 /*
1980                  * If BBT requires refresh, set the BBT rewrite flag to the
1981                  * page being erased
1982                  */
1983                 if (bbt_masked_page != 0xffffffff &&
1984                     (page & BBT_PAGE_MASK) == bbt_masked_page)
1985                             rewrite_bbt[chipnr] = (page << chip->page_shift);
1986
1987                 /* Increment page address and decrement length */
1988                 len -= (1 << chip->phys_erase_shift);
1989                 page += pages_per_block;
1990
1991                 /* Check, if we cross a chip boundary */
1992                 if (len && !(page & chip->pagemask)) {
1993                         chipnr++;
1994                         chip->select_chip(mtd, -1);
1995                         chip->select_chip(mtd, chipnr);
1996
1997                         /*
1998                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
1999                          * page mask to see if this BBT should be rewritten
2000                          */
2001                         if (bbt_masked_page != 0xffffffff &&
2002                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2003                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2004                                         BBT_PAGE_MASK;
2005                 }
2006         }
2007         instr->state = MTD_ERASE_DONE;
2008
2009  erase_exit:
2010
2011         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2012         /* Do call back function */
2013         if (!ret)
2014                 mtd_erase_callback(instr);
2015
2016         /* Deselect and wake up anyone waiting on the device */
2017         nand_release_device(mtd);
2018
2019         /*
2020          * If BBT requires refresh and erase was successful, rewrite any
2021          * selected bad block tables
2022          */
2023         if (bbt_masked_page == 0xffffffff || ret)
2024                 return ret;
2025
2026         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2027                 if (!rewrite_bbt[chipnr])
2028                         continue;
2029                 /* update the BBT for chip */
2030                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2031                       "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2032                       chip->bbt_td->pages[chipnr]);
2033                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2034         }
2035
2036         /* Return more or less happy */
2037         return ret;
2038 }
2039
2040 /**
2041  * nand_sync - [MTD Interface] sync
2042  * @mtd:        MTD device structure
2043  *
2044  * Sync is actually a wait for chip ready function
2045  */
2046 static void nand_sync(struct mtd_info *mtd)
2047 {
2048         struct nand_chip *chip = mtd->priv;
2049
2050         DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2051
2052         /* Grab the lock and see if the device is available */
2053         nand_get_device(chip, mtd, FL_SYNCING);
2054         /* Release it and go back */
2055         nand_release_device(mtd);
2056 }
2057
2058 /**
2059  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2060  * @mtd:        MTD device structure
2061  * @offs:       offset relative to mtd start
2062  */
2063 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2064 {
2065         /* Check for invalid offset */
2066         if (offs > mtd->size)
2067                 return -EINVAL;
2068
2069         return nand_block_checkbad(mtd, offs, 1, 0);
2070 }
2071
2072 /**
2073  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2074  * @mtd:        MTD device structure
2075  * @ofs:        offset relative to mtd start
2076  */
2077 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2078 {
2079         struct nand_chip *chip = mtd->priv;
2080         int ret;
2081
2082         if ((ret = nand_block_isbad(mtd, ofs))) {
2083                 /* If it was bad already, return success and do nothing. */
2084                 if (ret > 0)
2085                         return 0;
2086                 return ret;
2087         }
2088
2089         return chip->block_markbad(mtd, ofs);
2090 }
2091
2092 /**
2093  * nand_suspend - [MTD Interface] Suspend the NAND flash
2094  * @mtd:        MTD device structure
2095  */
2096 static int nand_suspend(struct mtd_info *mtd)
2097 {
2098         struct nand_chip *chip = mtd->priv;
2099
2100         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2101 }
2102
2103 /**
2104  * nand_resume - [MTD Interface] Resume the NAND flash
2105  * @mtd:        MTD device structure
2106  */
2107 static void nand_resume(struct mtd_info *mtd)
2108 {
2109         struct nand_chip *chip = mtd->priv;
2110
2111         if (chip->state == FL_PM_SUSPENDED)
2112                 nand_release_device(mtd);
2113         else
2114                 printk(KERN_ERR "nand_resume() called for a chip which is not "
2115                        "in suspended state\n");
2116 }
2117
2118 /*
2119  * Set default functions
2120  */
2121 static void nand_set_defaults(struct nand_chip *chip, int busw)
2122 {
2123         /* check for proper chip_delay setup, set 20us if not */
2124         if (!chip->chip_delay)
2125                 chip->chip_delay = 20;
2126
2127         /* check, if a user supplied command function given */
2128         if (chip->cmdfunc == NULL)
2129                 chip->cmdfunc = nand_command;
2130
2131         /* check, if a user supplied wait function given */
2132         if (chip->waitfunc == NULL)
2133                 chip->waitfunc = nand_wait;
2134
2135         if (!chip->select_chip)
2136                 chip->select_chip = nand_select_chip;
2137         if (!chip->read_byte)
2138                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2139         if (!chip->read_word)
2140                 chip->read_word = nand_read_word;
2141         if (!chip->block_bad)
2142                 chip->block_bad = nand_block_bad;
2143         if (!chip->block_markbad)
2144                 chip->block_markbad = nand_default_block_markbad;
2145         if (!chip->write_buf)
2146                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2147         if (!chip->read_buf)
2148                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2149         if (!chip->verify_buf)
2150                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2151         if (!chip->scan_bbt)
2152                 chip->scan_bbt = nand_default_bbt;
2153
2154         if (!chip->controller) {
2155                 chip->controller = &chip->hwcontrol;
2156                 spin_lock_init(&chip->controller->lock);
2157                 init_waitqueue_head(&chip->controller->wq);
2158         }
2159
2160 }
2161
2162 /*
2163  * Get the flash and manufacturer id and lookup if the type is supported
2164  */
2165 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2166                                                   struct nand_chip *chip,
2167                                                   int busw, int *maf_id)
2168 {
2169         struct nand_flash_dev *type = NULL;
2170         int i, dev_id, maf_idx;
2171
2172         /* Select the device */
2173         chip->select_chip(mtd, 0);
2174
2175         /* Send the command for reading device ID */
2176         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2177
2178         /* Read manufacturer and device IDs */
2179         *maf_id = chip->read_byte(mtd);
2180         dev_id = chip->read_byte(mtd);
2181
2182         /* Lookup the flash id */
2183         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2184                 if (dev_id == nand_flash_ids[i].id) {
2185                         type =  &nand_flash_ids[i];
2186                         break;
2187                 }
2188         }
2189
2190         if (!type)
2191                 return ERR_PTR(-ENODEV);
2192
2193         if (!mtd->name)
2194                 mtd->name = type->name;
2195
2196         chip->chipsize = type->chipsize << 20;
2197
2198         /* Newer devices have all the information in additional id bytes */
2199         if (!type->pagesize) {
2200                 int extid;
2201                 /* The 3rd id byte contains non relevant data ATM */
2202                 extid = chip->read_byte(mtd);
2203                 /* The 4th id byte is the important one */
2204                 extid = chip->read_byte(mtd);
2205                 /* Calc pagesize */
2206                 mtd->writesize = 1024 << (extid & 0x3);
2207                 extid >>= 2;
2208                 /* Calc oobsize */
2209                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2210                 extid >>= 2;
2211                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2212                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2213                 extid >>= 2;
2214                 /* Get buswidth information */
2215                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2216
2217         } else {
2218                 /*
2219                  * Old devices have chip data hardcoded in the device id table
2220                  */
2221                 mtd->erasesize = type->erasesize;
2222                 mtd->writesize = type->pagesize;
2223                 mtd->oobsize = mtd->writesize / 32;
2224                 busw = type->options & NAND_BUSWIDTH_16;
2225         }
2226
2227         /* Try to identify manufacturer */
2228         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2229                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2230                         break;
2231         }
2232
2233         /*
2234          * Check, if buswidth is correct. Hardware drivers should set
2235          * chip correct !
2236          */
2237         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2238                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2239                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2240                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2241                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2242                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2243                        busw ? 16 : 8);
2244                 return ERR_PTR(-EINVAL);
2245         }
2246
2247         /* Calculate the address shift from the page size */
2248         chip->page_shift = ffs(mtd->writesize) - 1;
2249         /* Convert chipsize to number of pages per chip -1. */
2250         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2251
2252         chip->bbt_erase_shift = chip->phys_erase_shift =
2253                 ffs(mtd->erasesize) - 1;
2254         chip->chip_shift = ffs(chip->chipsize) - 1;
2255
2256         /* Set the bad block position */
2257         chip->badblockpos = mtd->writesize > 512 ?
2258                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2259
2260         /* Get chip options, preserve non chip based options */
2261         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2262         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2263
2264         /*
2265          * Set chip as a default. Board drivers can override it, if necessary
2266          */
2267         chip->options |= NAND_NO_AUTOINCR;
2268
2269         /* Check if chip is a not a samsung device. Do not clear the
2270          * options for chips which are not having an extended id.
2271          */
2272         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2273                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2274
2275         /* Check for AND chips with 4 page planes */
2276         if (chip->options & NAND_4PAGE_ARRAY)
2277                 chip->erase_cmd = multi_erase_cmd;
2278         else
2279                 chip->erase_cmd = single_erase_cmd;
2280
2281         /* Do not replace user supplied command function ! */
2282         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2283                 chip->cmdfunc = nand_command_lp;
2284
2285         printk(KERN_INFO "NAND device: Manufacturer ID:"
2286                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2287                nand_manuf_ids[maf_idx].name, type->name);
2288
2289         return type;
2290 }
2291
2292 /* module_text_address() isn't exported, and it's mostly a pointless
2293    test if this is a module _anyway_ -- they'd have to try _really_ hard
2294    to call us from in-kernel code if the core NAND support is modular. */
2295 #ifdef MODULE
2296 #define caller_is_module() (1)
2297 #else
2298 #define caller_is_module() \
2299         module_text_address((unsigned long)__builtin_return_address(0))
2300 #endif
2301
2302 /**
2303  * nand_scan - [NAND Interface] Scan for the NAND device
2304  * @mtd:        MTD device structure
2305  * @maxchips:   Number of chips to scan for
2306  *
2307  * This fills out all the uninitialized function pointers
2308  * with the defaults.
2309  * The flash ID is read and the mtd/chip structures are
2310  * filled with the appropriate values.
2311  * The mtd->owner field must be set to the module of the caller
2312  *
2313  */
2314 int nand_scan(struct mtd_info *mtd, int maxchips)
2315 {
2316         int i, busw, nand_maf_id;
2317         struct nand_chip *chip = mtd->priv;
2318         struct nand_flash_dev *type;
2319
2320         /* Many callers got this wrong, so check for it for a while... */
2321         if (!mtd->owner && caller_is_module()) {
2322                 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2323                 BUG();
2324         }
2325
2326         /* Get buswidth to select the correct functions */
2327         busw = chip->options & NAND_BUSWIDTH_16;
2328         /* Set the default functions */
2329         nand_set_defaults(chip, busw);
2330
2331         /* Read the flash type */
2332         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2333
2334         if (IS_ERR(type)) {
2335                 printk(KERN_WARNING "No NAND device found!!!\n");
2336                 chip->select_chip(mtd, -1);
2337                 return PTR_ERR(type);
2338         }
2339
2340         /* Check for a chip array */
2341         for (i = 1; i < maxchips; i++) {
2342                 chip->select_chip(mtd, i);
2343                 /* Send the command for reading device ID */
2344                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2345                 /* Read manufacturer and device IDs */
2346                 if (nand_maf_id != chip->read_byte(mtd) ||
2347                     type->id != chip->read_byte(mtd))
2348                         break;
2349         }
2350         if (i > 1)
2351                 printk(KERN_INFO "%d NAND chips detected\n", i);
2352
2353         /* Store the number of chips and calc total size for mtd */
2354         chip->numchips = i;
2355         mtd->size = i * chip->chipsize;
2356
2357         /* Preset the internal oob write buffer */
2358         memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
2359
2360         /*
2361          * If no default placement scheme is given, select an appropriate one
2362          */
2363         if (!chip->ecc.layout) {
2364                 switch (mtd->oobsize) {
2365                 case 8:
2366                         chip->ecc.layout = &nand_oob_8;
2367                         break;
2368                 case 16:
2369                         chip->ecc.layout = &nand_oob_16;
2370                         break;
2371                 case 64:
2372                         chip->ecc.layout = &nand_oob_64;
2373                         break;
2374                 default:
2375                         printk(KERN_WARNING "No oob scheme defined for "
2376                                "oobsize %d\n", mtd->oobsize);
2377                         BUG();
2378                 }
2379         }
2380
2381         /*
2382          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2383          * selected and we have 256 byte pagesize fallback to software ECC
2384          */
2385         switch (chip->ecc.mode) {
2386         case NAND_ECC_HW:
2387                 /* Use standard hwecc read page function ? */
2388                 if (!chip->ecc.read_page)
2389                         chip->ecc.read_page = nand_read_page_hwecc;
2390                 if (!chip->ecc.write_page)
2391                         chip->ecc.write_page = nand_write_page_hwecc;
2392                 if (!chip->ecc.read_oob)
2393                         chip->ecc.read_oob = nand_read_oob_std;
2394                 if (!chip->ecc.write_oob)
2395                         chip->ecc.write_oob = nand_write_oob_std;
2396
2397         case NAND_ECC_HW_SYNDROME:
2398                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2399                     !chip->ecc.hwctl) {
2400                         printk(KERN_WARNING "No ECC functions supplied, "
2401                                "Hardware ECC not possible\n");
2402                         BUG();
2403                 }
2404                 /* Use standard syndrome read/write page function ? */
2405                 if (!chip->ecc.read_page)
2406                         chip->ecc.read_page = nand_read_page_syndrome;
2407                 if (!chip->ecc.write_page)
2408                         chip->ecc.write_page = nand_write_page_syndrome;
2409                 if (!chip->ecc.read_oob)
2410                         chip->ecc.read_oob = nand_read_oob_syndrome;
2411                 if (!chip->ecc.write_oob)
2412                         chip->ecc.write_oob = nand_write_oob_syndrome;
2413
2414                 if (mtd->writesize >= chip->ecc.size)
2415                         break;
2416                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2417                        "%d byte page size, fallback to SW ECC\n",
2418                        chip->ecc.size, mtd->writesize);
2419                 chip->ecc.mode = NAND_ECC_SOFT;
2420
2421         case NAND_ECC_SOFT:
2422                 chip->ecc.calculate = nand_calculate_ecc;
2423                 chip->ecc.correct = nand_correct_data;
2424                 chip->ecc.read_page = nand_read_page_swecc;
2425                 chip->ecc.write_page = nand_write_page_swecc;
2426                 chip->ecc.read_oob = nand_read_oob_std;
2427                 chip->ecc.write_oob = nand_write_oob_std;
2428                 chip->ecc.size = 256;
2429                 chip->ecc.bytes = 3;
2430                 break;
2431
2432         case NAND_ECC_NONE:
2433                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2434                        "This is not recommended !!\n");
2435                 chip->ecc.read_page = nand_read_page_raw;
2436                 chip->ecc.write_page = nand_write_page_raw;
2437                 chip->ecc.read_oob = nand_read_oob_std;
2438                 chip->ecc.write_oob = nand_write_oob_std;
2439                 chip->ecc.size = mtd->writesize;
2440                 chip->ecc.bytes = 0;
2441                 break;
2442         default:
2443                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2444                        chip->ecc.mode);
2445                 BUG();
2446         }
2447
2448         /*
2449          * The number of bytes available for a client to place data into
2450          * the out of band area
2451          */
2452         chip->ecc.layout->oobavail = 0;
2453         for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2454                 chip->ecc.layout->oobavail +=
2455                         chip->ecc.layout->oobfree[i].length;
2456
2457         /*
2458          * Set the number of read / write steps for one page depending on ECC
2459          * mode
2460          */
2461         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2462         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2463                 printk(KERN_WARNING "Invalid ecc parameters\n");
2464                 BUG();
2465         }
2466         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2467
2468         /* Initialize state */
2469         chip->state = FL_READY;
2470
2471         /* De-select the device */
2472         chip->select_chip(mtd, -1);
2473
2474         /* Invalidate the pagebuffer reference */
2475         chip->pagebuf = -1;
2476
2477         /* Fill in remaining MTD driver data */
2478         mtd->type = MTD_NANDFLASH;
2479         mtd->flags = MTD_CAP_NANDFLASH;
2480         mtd->ecctype = MTD_ECC_SW;
2481         mtd->erase = nand_erase;
2482         mtd->point = NULL;
2483         mtd->unpoint = NULL;
2484         mtd->read = nand_read;
2485         mtd->write = nand_write;
2486         mtd->read_oob = nand_read_oob;
2487         mtd->write_oob = nand_write_oob;
2488         mtd->sync = nand_sync;
2489         mtd->lock = NULL;
2490         mtd->unlock = NULL;
2491         mtd->suspend = nand_suspend;
2492         mtd->resume = nand_resume;
2493         mtd->block_isbad = nand_block_isbad;
2494         mtd->block_markbad = nand_block_markbad;
2495
2496         /* propagate ecc.layout to mtd_info */
2497         mtd->ecclayout = chip->ecc.layout;
2498
2499         /* Check, if we should skip the bad block table scan */
2500         if (chip->options & NAND_SKIP_BBTSCAN)
2501                 return 0;
2502
2503         /* Build bad block table */
2504         return chip->scan_bbt(mtd);
2505 }
2506
2507 /**
2508  * nand_release - [NAND Interface] Free resources held by the NAND device
2509  * @mtd:        MTD device structure
2510 */
2511 void nand_release(struct mtd_info *mtd)
2512 {
2513         struct nand_chip *chip = mtd->priv;
2514
2515 #ifdef CONFIG_MTD_PARTITIONS
2516         /* Deregister partitions */
2517         del_mtd_partitions(mtd);
2518 #endif
2519         /* Deregister the device */
2520         del_mtd_device(mtd);
2521
2522         /* Free bad block table memory */
2523         kfree(chip->bbt);
2524 }
2525
2526 EXPORT_SYMBOL_GPL(nand_scan);
2527 EXPORT_SYMBOL_GPL(nand_release);
2528
2529 static int __init nand_base_init(void)
2530 {
2531         led_trigger_register_simple("nand-disk", &nand_led_trigger);
2532         return 0;
2533 }
2534
2535 static void __exit nand_base_exit(void)
2536 {
2537         led_trigger_unregister_simple(nand_led_trigger);
2538 }
2539
2540 module_init(nand_base_init);
2541 module_exit(nand_base_exit);
2542
2543 MODULE_LICENSE("GPL");
2544 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2545 MODULE_DESCRIPTION("Generic NAND flash driver code");