[SCSI] megaraid_sas: do not process cmds if hw_crit_error is set
[powerpc.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Logic Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.03.05
14  *
15  * Authors:
16  *      Sreenivas Bagalkote     <Sreenivas.Bagalkote@lsi.com>
17  *      Sumant Patro            <Sumant.Patro@lsi.com>
18  *
19  * List of supported controllers
20  *
21  * OEM  Product Name                    VID     DID     SSVID   SSID
22  * ---  ------------                    ---     ---     ----    ----
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/list.h>
29 #include <linux/moduleparam.h>
30 #include <linux/module.h>
31 #include <linux/spinlock.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/uio.h>
35 #include <asm/uaccess.h>
36 #include <linux/fs.h>
37 #include <linux/compat.h>
38 #include <linux/mutex.h>
39
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_host.h>
44 #include "megaraid_sas.h"
45
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(MEGASAS_VERSION);
48 MODULE_AUTHOR("megaraidlinux@lsi.com");
49 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
50
51 /*
52  * PCI ID table for all supported controllers
53  */
54 static struct pci_device_id megasas_pci_table[] = {
55
56         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
57         /* xscale IOP */
58         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
59         /* ppc IOP */
60         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
61         /* xscale IOP, vega */
62         {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
63         /* xscale IOP */
64         {}
65 };
66
67 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
68
69 static int megasas_mgmt_majorno;
70 static struct megasas_mgmt_info megasas_mgmt_info;
71 static struct fasync_struct *megasas_async_queue;
72 static DEFINE_MUTEX(megasas_async_queue_mutex);
73
74 static u32 megasas_dbg_lvl;
75
76 /**
77  * megasas_get_cmd -    Get a command from the free pool
78  * @instance:           Adapter soft state
79  *
80  * Returns a free command from the pool
81  */
82 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
83                                                   *instance)
84 {
85         unsigned long flags;
86         struct megasas_cmd *cmd = NULL;
87
88         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
89
90         if (!list_empty(&instance->cmd_pool)) {
91                 cmd = list_entry((&instance->cmd_pool)->next,
92                                  struct megasas_cmd, list);
93                 list_del_init(&cmd->list);
94         } else {
95                 printk(KERN_ERR "megasas: Command pool empty!\n");
96         }
97
98         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
99         return cmd;
100 }
101
102 /**
103  * megasas_return_cmd - Return a cmd to free command pool
104  * @instance:           Adapter soft state
105  * @cmd:                Command packet to be returned to free command pool
106  */
107 static inline void
108 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
109 {
110         unsigned long flags;
111
112         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
113
114         cmd->scmd = NULL;
115         list_add_tail(&cmd->list, &instance->cmd_pool);
116
117         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
118 }
119
120
121 /**
122 *       The following functions are defined for xscale 
123 *       (deviceid : 1064R, PERC5) controllers
124 */
125
126 /**
127  * megasas_enable_intr_xscale - Enables interrupts
128  * @regs:                       MFI register set
129  */
130 static inline void
131 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
132 {
133         writel(1, &(regs)->outbound_intr_mask);
134
135         /* Dummy readl to force pci flush */
136         readl(&regs->outbound_intr_mask);
137 }
138
139 /**
140  * megasas_disable_intr_xscale -Disables interrupt
141  * @regs:                       MFI register set
142  */
143 static inline void
144 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
145 {
146         u32 mask = 0x1f;
147         writel(mask, &regs->outbound_intr_mask);
148         /* Dummy readl to force pci flush */
149         readl(&regs->outbound_intr_mask);
150 }
151
152 /**
153  * megasas_read_fw_status_reg_xscale - returns the current FW status value
154  * @regs:                       MFI register set
155  */
156 static u32
157 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
158 {
159         return readl(&(regs)->outbound_msg_0);
160 }
161 /**
162  * megasas_clear_interrupt_xscale -     Check & clear interrupt
163  * @regs:                               MFI register set
164  */
165 static int 
166 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
167 {
168         u32 status;
169         /*
170          * Check if it is our interrupt
171          */
172         status = readl(&regs->outbound_intr_status);
173
174         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
175                 return 1;
176         }
177
178         /*
179          * Clear the interrupt by writing back the same value
180          */
181         writel(status, &regs->outbound_intr_status);
182
183         return 0;
184 }
185
186 /**
187  * megasas_fire_cmd_xscale -    Sends command to the FW
188  * @frame_phys_addr :           Physical address of cmd
189  * @frame_count :               Number of frames for the command
190  * @regs :                      MFI register set
191  */
192 static inline void 
193 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
194 {
195         writel((frame_phys_addr >> 3)|(frame_count),
196                &(regs)->inbound_queue_port);
197 }
198
199 static struct megasas_instance_template megasas_instance_template_xscale = {
200
201         .fire_cmd = megasas_fire_cmd_xscale,
202         .enable_intr = megasas_enable_intr_xscale,
203         .disable_intr = megasas_disable_intr_xscale,
204         .clear_intr = megasas_clear_intr_xscale,
205         .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
206 };
207
208 /**
209 *       This is the end of set of functions & definitions specific 
210 *       to xscale (deviceid : 1064R, PERC5) controllers
211 */
212
213 /**
214 *       The following functions are defined for ppc (deviceid : 0x60) 
215 *       controllers
216 */
217
218 /**
219  * megasas_enable_intr_ppc -    Enables interrupts
220  * @regs:                       MFI register set
221  */
222 static inline void
223 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
224 {
225         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
226     
227         writel(~0x80000004, &(regs)->outbound_intr_mask);
228
229         /* Dummy readl to force pci flush */
230         readl(&regs->outbound_intr_mask);
231 }
232
233 /**
234  * megasas_disable_intr_ppc -   Disable interrupt
235  * @regs:                       MFI register set
236  */
237 static inline void
238 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
239 {
240         u32 mask = 0xFFFFFFFF;
241         writel(mask, &regs->outbound_intr_mask);
242         /* Dummy readl to force pci flush */
243         readl(&regs->outbound_intr_mask);
244 }
245
246 /**
247  * megasas_read_fw_status_reg_ppc - returns the current FW status value
248  * @regs:                       MFI register set
249  */
250 static u32
251 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
252 {
253         return readl(&(regs)->outbound_scratch_pad);
254 }
255
256 /**
257  * megasas_clear_interrupt_ppc -        Check & clear interrupt
258  * @regs:                               MFI register set
259  */
260 static int 
261 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
262 {
263         u32 status;
264         /*
265          * Check if it is our interrupt
266          */
267         status = readl(&regs->outbound_intr_status);
268
269         if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
270                 return 1;
271         }
272
273         /*
274          * Clear the interrupt by writing back the same value
275          */
276         writel(status, &regs->outbound_doorbell_clear);
277
278         return 0;
279 }
280 /**
281  * megasas_fire_cmd_ppc -       Sends command to the FW
282  * @frame_phys_addr :           Physical address of cmd
283  * @frame_count :               Number of frames for the command
284  * @regs :                      MFI register set
285  */
286 static inline void 
287 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
288 {
289         writel((frame_phys_addr | (frame_count<<1))|1, 
290                         &(regs)->inbound_queue_port);
291 }
292
293 static struct megasas_instance_template megasas_instance_template_ppc = {
294         
295         .fire_cmd = megasas_fire_cmd_ppc,
296         .enable_intr = megasas_enable_intr_ppc,
297         .disable_intr = megasas_disable_intr_ppc,
298         .clear_intr = megasas_clear_intr_ppc,
299         .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
300 };
301
302 /**
303 *       This is the end of set of functions & definitions
304 *       specific to ppc (deviceid : 0x60) controllers
305 */
306
307 /**
308  * megasas_issue_polled -       Issues a polling command
309  * @instance:                   Adapter soft state
310  * @cmd:                        Command packet to be issued 
311  *
312  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
313  */
314 static int
315 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
316 {
317         int i;
318         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
319
320         struct megasas_header *frame_hdr = &cmd->frame->hdr;
321
322         frame_hdr->cmd_status = 0xFF;
323         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
324
325         /*
326          * Issue the frame using inbound queue port
327          */
328         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
329
330         /*
331          * Wait for cmd_status to change
332          */
333         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
334                 rmb();
335                 msleep(1);
336         }
337
338         if (frame_hdr->cmd_status == 0xff)
339                 return -ETIME;
340
341         return 0;
342 }
343
344 /**
345  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
346  * @instance:                   Adapter soft state
347  * @cmd:                        Command to be issued
348  *
349  * This function waits on an event for the command to be returned from ISR.
350  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
351  * Used to issue ioctl commands.
352  */
353 static int
354 megasas_issue_blocked_cmd(struct megasas_instance *instance,
355                           struct megasas_cmd *cmd)
356 {
357         cmd->cmd_status = ENODATA;
358
359         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
360
361         wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
362                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
363
364         return 0;
365 }
366
367 /**
368  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
369  * @instance:                           Adapter soft state
370  * @cmd_to_abort:                       Previously issued cmd to be aborted
371  *
372  * MFI firmware can abort previously issued AEN comamnd (automatic event
373  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
374  * cmd and waits for return status.
375  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
376  */
377 static int
378 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
379                                 struct megasas_cmd *cmd_to_abort)
380 {
381         struct megasas_cmd *cmd;
382         struct megasas_abort_frame *abort_fr;
383
384         cmd = megasas_get_cmd(instance);
385
386         if (!cmd)
387                 return -1;
388
389         abort_fr = &cmd->frame->abort;
390
391         /*
392          * Prepare and issue the abort frame
393          */
394         abort_fr->cmd = MFI_CMD_ABORT;
395         abort_fr->cmd_status = 0xFF;
396         abort_fr->flags = 0;
397         abort_fr->abort_context = cmd_to_abort->index;
398         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
399         abort_fr->abort_mfi_phys_addr_hi = 0;
400
401         cmd->sync_cmd = 1;
402         cmd->cmd_status = 0xFF;
403
404         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
405
406         /*
407          * Wait for this cmd to complete
408          */
409         wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
410                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
411
412         megasas_return_cmd(instance, cmd);
413         return 0;
414 }
415
416 /**
417  * megasas_make_sgl32 - Prepares 32-bit SGL
418  * @instance:           Adapter soft state
419  * @scp:                SCSI command from the mid-layer
420  * @mfi_sgl:            SGL to be filled in
421  *
422  * If successful, this function returns the number of SG elements. Otherwise,
423  * it returnes -1.
424  */
425 static int
426 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
427                    union megasas_sgl *mfi_sgl)
428 {
429         int i;
430         int sge_count;
431         struct scatterlist *os_sgl;
432
433         /*
434          * Return 0 if there is no data transfer
435          */
436         if (!scp->request_buffer || !scp->request_bufflen)
437                 return 0;
438
439         if (!scp->use_sg) {
440                 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
441                                                              scp->
442                                                              request_buffer,
443                                                              scp->
444                                                              request_bufflen,
445                                                              scp->
446                                                              sc_data_direction);
447                 mfi_sgl->sge32[0].length = scp->request_bufflen;
448
449                 return 1;
450         }
451
452         os_sgl = (struct scatterlist *)scp->request_buffer;
453         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
454                                scp->sc_data_direction);
455
456         for (i = 0; i < sge_count; i++, os_sgl++) {
457                 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
458                 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
459         }
460
461         return sge_count;
462 }
463
464 /**
465  * megasas_make_sgl64 - Prepares 64-bit SGL
466  * @instance:           Adapter soft state
467  * @scp:                SCSI command from the mid-layer
468  * @mfi_sgl:            SGL to be filled in
469  *
470  * If successful, this function returns the number of SG elements. Otherwise,
471  * it returnes -1.
472  */
473 static int
474 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
475                    union megasas_sgl *mfi_sgl)
476 {
477         int i;
478         int sge_count;
479         struct scatterlist *os_sgl;
480
481         /*
482          * Return 0 if there is no data transfer
483          */
484         if (!scp->request_buffer || !scp->request_bufflen)
485                 return 0;
486
487         if (!scp->use_sg) {
488                 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
489                                                              scp->
490                                                              request_buffer,
491                                                              scp->
492                                                              request_bufflen,
493                                                              scp->
494                                                              sc_data_direction);
495
496                 mfi_sgl->sge64[0].length = scp->request_bufflen;
497
498                 return 1;
499         }
500
501         os_sgl = (struct scatterlist *)scp->request_buffer;
502         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
503                                scp->sc_data_direction);
504
505         for (i = 0; i < sge_count; i++, os_sgl++) {
506                 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
507                 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
508         }
509
510         return sge_count;
511 }
512
513  /**
514  * megasas_get_frame_count - Computes the number of frames
515  * @sge_count           : number of sg elements
516  *
517  * Returns the number of frames required for numnber of sge's (sge_count)
518  */
519
520 static u32 megasas_get_frame_count(u8 sge_count)
521 {
522         int num_cnt;
523         int sge_bytes;
524         u32 sge_sz;
525         u32 frame_count=0;
526
527         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
528             sizeof(struct megasas_sge32);
529
530         /*
531         * Main frame can contain 2 SGEs for 64-bit SGLs and
532         * 3 SGEs for 32-bit SGLs
533         */
534         if (IS_DMA64)
535                 num_cnt = sge_count - 2;
536         else
537                 num_cnt = sge_count - 3;
538
539         if(num_cnt>0){
540                 sge_bytes = sge_sz * num_cnt;
541
542                 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
543                     ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
544         }
545         /* Main frame */
546         frame_count +=1;
547
548         if (frame_count > 7)
549                 frame_count = 8;
550         return frame_count;
551 }
552
553 /**
554  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
555  * @instance:           Adapter soft state
556  * @scp:                SCSI command
557  * @cmd:                Command to be prepared in
558  *
559  * This function prepares CDB commands. These are typcially pass-through
560  * commands to the devices.
561  */
562 static int
563 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
564                    struct megasas_cmd *cmd)
565 {
566         u32 is_logical;
567         u32 device_id;
568         u16 flags = 0;
569         struct megasas_pthru_frame *pthru;
570
571         is_logical = MEGASAS_IS_LOGICAL(scp);
572         device_id = MEGASAS_DEV_INDEX(instance, scp);
573         pthru = (struct megasas_pthru_frame *)cmd->frame;
574
575         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
576                 flags = MFI_FRAME_DIR_WRITE;
577         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
578                 flags = MFI_FRAME_DIR_READ;
579         else if (scp->sc_data_direction == PCI_DMA_NONE)
580                 flags = MFI_FRAME_DIR_NONE;
581
582         /*
583          * Prepare the DCDB frame
584          */
585         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
586         pthru->cmd_status = 0x0;
587         pthru->scsi_status = 0x0;
588         pthru->target_id = device_id;
589         pthru->lun = scp->device->lun;
590         pthru->cdb_len = scp->cmd_len;
591         pthru->timeout = 0;
592         pthru->flags = flags;
593         pthru->data_xfer_len = scp->request_bufflen;
594
595         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
596
597         /*
598          * Construct SGL
599          */
600         if (IS_DMA64) {
601                 pthru->flags |= MFI_FRAME_SGL64;
602                 pthru->sge_count = megasas_make_sgl64(instance, scp,
603                                                       &pthru->sgl);
604         } else
605                 pthru->sge_count = megasas_make_sgl32(instance, scp,
606                                                       &pthru->sgl);
607
608         /*
609          * Sense info specific
610          */
611         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
612         pthru->sense_buf_phys_addr_hi = 0;
613         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
614
615         /*
616          * Compute the total number of frames this command consumes. FW uses
617          * this number to pull sufficient number of frames from host memory.
618          */
619         cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
620
621         return cmd->frame_count;
622 }
623
624 /**
625  * megasas_build_ldio - Prepares IOs to logical devices
626  * @instance:           Adapter soft state
627  * @scp:                SCSI command
628  * @cmd:                Command to to be prepared
629  *
630  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
631  */
632 static int
633 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
634                    struct megasas_cmd *cmd)
635 {
636         u32 device_id;
637         u8 sc = scp->cmnd[0];
638         u16 flags = 0;
639         struct megasas_io_frame *ldio;
640
641         device_id = MEGASAS_DEV_INDEX(instance, scp);
642         ldio = (struct megasas_io_frame *)cmd->frame;
643
644         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
645                 flags = MFI_FRAME_DIR_WRITE;
646         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
647                 flags = MFI_FRAME_DIR_READ;
648
649         /*
650          * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
651          */
652         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
653         ldio->cmd_status = 0x0;
654         ldio->scsi_status = 0x0;
655         ldio->target_id = device_id;
656         ldio->timeout = 0;
657         ldio->reserved_0 = 0;
658         ldio->pad_0 = 0;
659         ldio->flags = flags;
660         ldio->start_lba_hi = 0;
661         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
662
663         /*
664          * 6-byte READ(0x08) or WRITE(0x0A) cdb
665          */
666         if (scp->cmd_len == 6) {
667                 ldio->lba_count = (u32) scp->cmnd[4];
668                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
669                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
670
671                 ldio->start_lba_lo &= 0x1FFFFF;
672         }
673
674         /*
675          * 10-byte READ(0x28) or WRITE(0x2A) cdb
676          */
677         else if (scp->cmd_len == 10) {
678                 ldio->lba_count = (u32) scp->cmnd[8] |
679                     ((u32) scp->cmnd[7] << 8);
680                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
681                     ((u32) scp->cmnd[3] << 16) |
682                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
683         }
684
685         /*
686          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
687          */
688         else if (scp->cmd_len == 12) {
689                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
690                     ((u32) scp->cmnd[7] << 16) |
691                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
692
693                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
694                     ((u32) scp->cmnd[3] << 16) |
695                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
696         }
697
698         /*
699          * 16-byte READ(0x88) or WRITE(0x8A) cdb
700          */
701         else if (scp->cmd_len == 16) {
702                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
703                     ((u32) scp->cmnd[11] << 16) |
704                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
705
706                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
707                     ((u32) scp->cmnd[7] << 16) |
708                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
709
710                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
711                     ((u32) scp->cmnd[3] << 16) |
712                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
713
714         }
715
716         /*
717          * Construct SGL
718          */
719         if (IS_DMA64) {
720                 ldio->flags |= MFI_FRAME_SGL64;
721                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
722         } else
723                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
724
725         /*
726          * Sense info specific
727          */
728         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
729         ldio->sense_buf_phys_addr_hi = 0;
730         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
731
732         /*
733          * Compute the total number of frames this command consumes. FW uses
734          * this number to pull sufficient number of frames from host memory.
735          */
736         cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
737
738         return cmd->frame_count;
739 }
740
741 /**
742  * megasas_is_ldio -            Checks if the cmd is for logical drive
743  * @scmd:                       SCSI command
744  *      
745  * Called by megasas_queue_command to find out if the command to be queued
746  * is a logical drive command   
747  */
748 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
749 {
750         if (!MEGASAS_IS_LOGICAL(cmd))
751                 return 0;
752         switch (cmd->cmnd[0]) {
753         case READ_10:
754         case WRITE_10:
755         case READ_12:
756         case WRITE_12:
757         case READ_6:
758         case WRITE_6:
759         case READ_16:
760         case WRITE_16:
761                 return 1;
762         default:
763                 return 0;
764         }
765 }
766
767  /**
768  * megasas_dump_pending_frames -        Dumps the frame address of all pending cmds
769  *                                      in FW
770  * @instance:                           Adapter soft state
771  */
772 static inline void
773 megasas_dump_pending_frames(struct megasas_instance *instance)
774 {
775         struct megasas_cmd *cmd;
776         int i,n;
777         union megasas_sgl *mfi_sgl;
778         struct megasas_io_frame *ldio;
779         struct megasas_pthru_frame *pthru;
780         u32 sgcount;
781         u32 max_cmd = instance->max_fw_cmds;
782
783         printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
784         printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
785         if (IS_DMA64)
786                 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
787         else
788                 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
789
790         printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
791         for (i = 0; i < max_cmd; i++) {
792                 cmd = instance->cmd_list[i];
793                 if(!cmd->scmd)
794                         continue;
795                 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
796                 if (megasas_is_ldio(cmd->scmd)){
797                         ldio = (struct megasas_io_frame *)cmd->frame;
798                         mfi_sgl = &ldio->sgl;
799                         sgcount = ldio->sge_count;
800                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
801                 }
802                 else {
803                         pthru = (struct megasas_pthru_frame *) cmd->frame;
804                         mfi_sgl = &pthru->sgl;
805                         sgcount = pthru->sge_count;
806                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
807                 }
808         if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
809                 for (n = 0; n < sgcount; n++){
810                         if (IS_DMA64)
811                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
812                         else
813                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
814                         }
815                 }
816                 printk(KERN_ERR "\n");
817         } /*for max_cmd*/
818         printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
819         for (i = 0; i < max_cmd; i++) {
820
821                 cmd = instance->cmd_list[i];
822
823                 if(cmd->sync_cmd == 1){
824                         printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
825                 }
826         }
827         printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
828 }
829
830 /**
831  * megasas_queue_command -      Queue entry point
832  * @scmd:                       SCSI command to be queued
833  * @done:                       Callback entry point
834  */
835 static int
836 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
837 {
838         u32 frame_count;
839         struct megasas_cmd *cmd;
840         struct megasas_instance *instance;
841
842         instance = (struct megasas_instance *)
843             scmd->device->host->hostdata;
844
845         /* Don't process if we have already declared adapter dead */
846         if (instance->hw_crit_error)
847                 return SCSI_MLQUEUE_HOST_BUSY;
848
849         scmd->scsi_done = done;
850         scmd->result = 0;
851
852         if (MEGASAS_IS_LOGICAL(scmd) &&
853             (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
854                 scmd->result = DID_BAD_TARGET << 16;
855                 goto out_done;
856         }
857
858         cmd = megasas_get_cmd(instance);
859         if (!cmd)
860                 return SCSI_MLQUEUE_HOST_BUSY;
861
862         /*
863          * Logical drive command
864          */
865         if (megasas_is_ldio(scmd))
866                 frame_count = megasas_build_ldio(instance, scmd, cmd);
867         else
868                 frame_count = megasas_build_dcdb(instance, scmd, cmd);
869
870         if (!frame_count)
871                 goto out_return_cmd;
872
873         cmd->scmd = scmd;
874
875         /*
876          * Issue the command to the FW
877          */
878         atomic_inc(&instance->fw_outstanding);
879
880         instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
881
882         return 0;
883
884  out_return_cmd:
885         megasas_return_cmd(instance, cmd);
886  out_done:
887         done(scmd);
888         return 0;
889 }
890
891 static int megasas_slave_configure(struct scsi_device *sdev)
892 {
893         /*
894          * Don't export physical disk devices to the disk driver.
895          *
896          * FIXME: Currently we don't export them to the midlayer at all.
897          *        That will be fixed once LSI engineers have audited the
898          *        firmware for possible issues.
899          */
900         if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
901                 return -ENXIO;
902
903         /*
904          * The RAID firmware may require extended timeouts.
905          */
906         if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
907                 sdev->timeout = 90 * HZ;
908         return 0;
909 }
910
911 /**
912  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
913  * @instance:                           Adapter soft state
914  *
915  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
916  * complete all its outstanding commands. Returns error if one or more IOs
917  * are pending after this time period. It also marks the controller dead.
918  */
919 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
920 {
921         int i;
922         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
923
924         for (i = 0; i < wait_time; i++) {
925
926                 int outstanding = atomic_read(&instance->fw_outstanding);
927
928                 if (!outstanding)
929                         break;
930
931                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
932                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
933                                "commands to complete\n",i,outstanding);
934                 }
935
936                 msleep(1000);
937         }
938
939         if (atomic_read(&instance->fw_outstanding)) {
940                 /*
941                 * Send signal to FW to stop processing any pending cmds.
942                 * The controller will be taken offline by the OS now.
943                 */
944                 writel(MFI_STOP_ADP,
945                                 &instance->reg_set->inbound_doorbell);
946                 megasas_dump_pending_frames(instance);
947                 instance->hw_crit_error = 1;
948                 return FAILED;
949         }
950
951         return SUCCESS;
952 }
953
954 /**
955  * megasas_generic_reset -      Generic reset routine
956  * @scmd:                       Mid-layer SCSI command
957  *
958  * This routine implements a generic reset handler for device, bus and host
959  * reset requests. Device, bus and host specific reset handlers can use this
960  * function after they do their specific tasks.
961  */
962 static int megasas_generic_reset(struct scsi_cmnd *scmd)
963 {
964         int ret_val;
965         struct megasas_instance *instance;
966
967         instance = (struct megasas_instance *)scmd->device->host->hostdata;
968
969         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
970                scmd->serial_number, scmd->cmnd[0]);
971
972         if (instance->hw_crit_error) {
973                 printk(KERN_ERR "megasas: cannot recover from previous reset "
974                        "failures\n");
975                 return FAILED;
976         }
977
978         ret_val = megasas_wait_for_outstanding(instance);
979         if (ret_val == SUCCESS)
980                 printk(KERN_NOTICE "megasas: reset successful \n");
981         else
982                 printk(KERN_ERR "megasas: failed to do reset\n");
983
984         return ret_val;
985 }
986
987 /**
988  * megasas_reset_device -       Device reset handler entry point
989  */
990 static int megasas_reset_device(struct scsi_cmnd *scmd)
991 {
992         int ret;
993
994         /*
995          * First wait for all commands to complete
996          */
997         ret = megasas_generic_reset(scmd);
998
999         return ret;
1000 }
1001
1002 /**
1003  * megasas_reset_bus_host -     Bus & host reset handler entry point
1004  */
1005 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1006 {
1007         int ret;
1008
1009         /*
1010          * First wait for all commands to complete
1011          */
1012         ret = megasas_generic_reset(scmd);
1013
1014         return ret;
1015 }
1016
1017 /**
1018  * megasas_service_aen -        Processes an event notification
1019  * @instance:                   Adapter soft state
1020  * @cmd:                        AEN command completed by the ISR
1021  *
1022  * For AEN, driver sends a command down to FW that is held by the FW till an
1023  * event occurs. When an event of interest occurs, FW completes the command
1024  * that it was previously holding.
1025  *
1026  * This routines sends SIGIO signal to processes that have registered with the
1027  * driver for AEN.
1028  */
1029 static void
1030 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1031 {
1032         /*
1033          * Don't signal app if it is just an aborted previously registered aen
1034          */
1035         if (!cmd->abort_aen)
1036                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1037         else
1038                 cmd->abort_aen = 0;
1039
1040         instance->aen_cmd = NULL;
1041         megasas_return_cmd(instance, cmd);
1042 }
1043
1044 /*
1045  * Scsi host template for megaraid_sas driver
1046  */
1047 static struct scsi_host_template megasas_template = {
1048
1049         .module = THIS_MODULE,
1050         .name = "LSI Logic SAS based MegaRAID driver",
1051         .proc_name = "megaraid_sas",
1052         .slave_configure = megasas_slave_configure,
1053         .queuecommand = megasas_queue_command,
1054         .eh_device_reset_handler = megasas_reset_device,
1055         .eh_bus_reset_handler = megasas_reset_bus_host,
1056         .eh_host_reset_handler = megasas_reset_bus_host,
1057         .use_clustering = ENABLE_CLUSTERING,
1058 };
1059
1060 /**
1061  * megasas_complete_int_cmd -   Completes an internal command
1062  * @instance:                   Adapter soft state
1063  * @cmd:                        Command to be completed
1064  *
1065  * The megasas_issue_blocked_cmd() function waits for a command to complete
1066  * after it issues a command. This function wakes up that waiting routine by
1067  * calling wake_up() on the wait queue.
1068  */
1069 static void
1070 megasas_complete_int_cmd(struct megasas_instance *instance,
1071                          struct megasas_cmd *cmd)
1072 {
1073         cmd->cmd_status = cmd->frame->io.cmd_status;
1074
1075         if (cmd->cmd_status == ENODATA) {
1076                 cmd->cmd_status = 0;
1077         }
1078         wake_up(&instance->int_cmd_wait_q);
1079 }
1080
1081 /**
1082  * megasas_complete_abort -     Completes aborting a command
1083  * @instance:                   Adapter soft state
1084  * @cmd:                        Cmd that was issued to abort another cmd
1085  *
1086  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
1087  * after it issues an abort on a previously issued command. This function 
1088  * wakes up all functions waiting on the same wait queue.
1089  */
1090 static void
1091 megasas_complete_abort(struct megasas_instance *instance,
1092                        struct megasas_cmd *cmd)
1093 {
1094         if (cmd->sync_cmd) {
1095                 cmd->sync_cmd = 0;
1096                 cmd->cmd_status = 0;
1097                 wake_up(&instance->abort_cmd_wait_q);
1098         }
1099
1100         return;
1101 }
1102
1103 /**
1104  * megasas_unmap_sgbuf -        Unmap SG buffers
1105  * @instance:                   Adapter soft state
1106  * @cmd:                        Completed command
1107  */
1108 static void
1109 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
1110 {
1111         dma_addr_t buf_h;
1112         u8 opcode;
1113
1114         if (cmd->scmd->use_sg) {
1115                 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
1116                              cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
1117                 return;
1118         }
1119
1120         if (!cmd->scmd->request_bufflen)
1121                 return;
1122
1123         opcode = cmd->frame->hdr.cmd;
1124
1125         if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
1126                 if (IS_DMA64)
1127                         buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
1128                 else
1129                         buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
1130         } else {
1131                 if (IS_DMA64)
1132                         buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
1133                 else
1134                         buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
1135         }
1136
1137         pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
1138                          cmd->scmd->sc_data_direction);
1139         return;
1140 }
1141
1142 /**
1143  * megasas_complete_cmd -       Completes a command
1144  * @instance:                   Adapter soft state
1145  * @cmd:                        Command to be completed
1146  * @alt_status:                 If non-zero, use this value as status to 
1147  *                              SCSI mid-layer instead of the value returned
1148  *                              by the FW. This should be used if caller wants
1149  *                              an alternate status (as in the case of aborted
1150  *                              commands)
1151  */
1152 static void
1153 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1154                      u8 alt_status)
1155 {
1156         int exception = 0;
1157         struct megasas_header *hdr = &cmd->frame->hdr;
1158
1159         if (cmd->scmd) {
1160                 cmd->scmd->SCp.ptr = (char *)0;
1161         }
1162
1163         switch (hdr->cmd) {
1164
1165         case MFI_CMD_PD_SCSI_IO:
1166         case MFI_CMD_LD_SCSI_IO:
1167
1168                 /*
1169                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1170                  * issued either through an IO path or an IOCTL path. If it
1171                  * was via IOCTL, we will send it to internal completion.
1172                  */
1173                 if (cmd->sync_cmd) {
1174                         cmd->sync_cmd = 0;
1175                         megasas_complete_int_cmd(instance, cmd);
1176                         break;
1177                 }
1178
1179         case MFI_CMD_LD_READ:
1180         case MFI_CMD_LD_WRITE:
1181
1182                 if (alt_status) {
1183                         cmd->scmd->result = alt_status << 16;
1184                         exception = 1;
1185                 }
1186
1187                 if (exception) {
1188
1189                         atomic_dec(&instance->fw_outstanding);
1190
1191                         megasas_unmap_sgbuf(instance, cmd);
1192                         cmd->scmd->scsi_done(cmd->scmd);
1193                         megasas_return_cmd(instance, cmd);
1194
1195                         break;
1196                 }
1197
1198                 switch (hdr->cmd_status) {
1199
1200                 case MFI_STAT_OK:
1201                         cmd->scmd->result = DID_OK << 16;
1202                         break;
1203
1204                 case MFI_STAT_SCSI_IO_FAILED:
1205                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1206                         cmd->scmd->result =
1207                             (DID_ERROR << 16) | hdr->scsi_status;
1208                         break;
1209
1210                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1211
1212                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1213
1214                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1215                                 memset(cmd->scmd->sense_buffer, 0,
1216                                        SCSI_SENSE_BUFFERSIZE);
1217                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1218                                        hdr->sense_len);
1219
1220                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1221                         }
1222
1223                         break;
1224
1225                 case MFI_STAT_LD_OFFLINE:
1226                 case MFI_STAT_DEVICE_NOT_FOUND:
1227                         cmd->scmd->result = DID_BAD_TARGET << 16;
1228                         break;
1229
1230                 default:
1231                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1232                                hdr->cmd_status);
1233                         cmd->scmd->result = DID_ERROR << 16;
1234                         break;
1235                 }
1236
1237                 atomic_dec(&instance->fw_outstanding);
1238
1239                 megasas_unmap_sgbuf(instance, cmd);
1240                 cmd->scmd->scsi_done(cmd->scmd);
1241                 megasas_return_cmd(instance, cmd);
1242
1243                 break;
1244
1245         case MFI_CMD_SMP:
1246         case MFI_CMD_STP:
1247         case MFI_CMD_DCMD:
1248
1249                 /*
1250                  * See if got an event notification
1251                  */
1252                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1253                         megasas_service_aen(instance, cmd);
1254                 else
1255                         megasas_complete_int_cmd(instance, cmd);
1256
1257                 break;
1258
1259         case MFI_CMD_ABORT:
1260                 /*
1261                  * Cmd issued to abort another cmd returned
1262                  */
1263                 megasas_complete_abort(instance, cmd);
1264                 break;
1265
1266         default:
1267                 printk("megasas: Unknown command completed! [0x%X]\n",
1268                        hdr->cmd);
1269                 break;
1270         }
1271 }
1272
1273 /**
1274  * megasas_deplete_reply_queue -        Processes all completed commands
1275  * @instance:                           Adapter soft state
1276  * @alt_status:                         Alternate status to be returned to
1277  *                                      SCSI mid-layer instead of the status
1278  *                                      returned by the FW
1279  */
1280 static int
1281 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1282 {
1283         /*
1284          * Check if it is our interrupt
1285          * Clear the interrupt 
1286          */
1287         if(instance->instancet->clear_intr(instance->reg_set))
1288                 return IRQ_NONE;
1289
1290         if (instance->hw_crit_error)
1291                 goto out_done;
1292         /*
1293          * Schedule the tasklet for cmd completion
1294          */
1295         tasklet_schedule(&instance->isr_tasklet);
1296 out_done:
1297         return IRQ_HANDLED;
1298 }
1299
1300 /**
1301  * megasas_isr - isr entry point
1302  */
1303 static irqreturn_t megasas_isr(int irq, void *devp)
1304 {
1305         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1306                                            DID_OK);
1307 }
1308
1309 /**
1310  * megasas_transition_to_ready -        Move the FW to READY state
1311  * @instance:                           Adapter soft state
1312  *
1313  * During the initialization, FW passes can potentially be in any one of
1314  * several possible states. If the FW in operational, waiting-for-handshake
1315  * states, driver must take steps to bring it to ready state. Otherwise, it
1316  * has to wait for the ready state.
1317  */
1318 static int
1319 megasas_transition_to_ready(struct megasas_instance* instance)
1320 {
1321         int i;
1322         u8 max_wait;
1323         u32 fw_state;
1324         u32 cur_state;
1325
1326         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1327
1328         if (fw_state != MFI_STATE_READY)
1329                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1330                        " state\n");
1331
1332         while (fw_state != MFI_STATE_READY) {
1333
1334                 switch (fw_state) {
1335
1336                 case MFI_STATE_FAULT:
1337
1338                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1339                         return -ENODEV;
1340
1341                 case MFI_STATE_WAIT_HANDSHAKE:
1342                         /*
1343                          * Set the CLR bit in inbound doorbell
1344                          */
1345                         writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1346                                 &instance->reg_set->inbound_doorbell);
1347
1348                         max_wait = 2;
1349                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1350                         break;
1351
1352                 case MFI_STATE_BOOT_MESSAGE_PENDING:
1353                         writel(MFI_INIT_HOTPLUG,
1354                                 &instance->reg_set->inbound_doorbell);
1355
1356                         max_wait = 10;
1357                         cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1358                         break;
1359
1360                 case MFI_STATE_OPERATIONAL:
1361                         /*
1362                          * Bring it to READY state; assuming max wait 10 secs
1363                          */
1364                         instance->instancet->disable_intr(instance->reg_set);
1365                         writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1366
1367                         max_wait = 10;
1368                         cur_state = MFI_STATE_OPERATIONAL;
1369                         break;
1370
1371                 case MFI_STATE_UNDEFINED:
1372                         /*
1373                          * This state should not last for more than 2 seconds
1374                          */
1375                         max_wait = 2;
1376                         cur_state = MFI_STATE_UNDEFINED;
1377                         break;
1378
1379                 case MFI_STATE_BB_INIT:
1380                         max_wait = 2;
1381                         cur_state = MFI_STATE_BB_INIT;
1382                         break;
1383
1384                 case MFI_STATE_FW_INIT:
1385                         max_wait = 20;
1386                         cur_state = MFI_STATE_FW_INIT;
1387                         break;
1388
1389                 case MFI_STATE_FW_INIT_2:
1390                         max_wait = 20;
1391                         cur_state = MFI_STATE_FW_INIT_2;
1392                         break;
1393
1394                 case MFI_STATE_DEVICE_SCAN:
1395                         max_wait = 20;
1396                         cur_state = MFI_STATE_DEVICE_SCAN;
1397                         break;
1398
1399                 case MFI_STATE_FLUSH_CACHE:
1400                         max_wait = 20;
1401                         cur_state = MFI_STATE_FLUSH_CACHE;
1402                         break;
1403
1404                 default:
1405                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1406                                fw_state);
1407                         return -ENODEV;
1408                 }
1409
1410                 /*
1411                  * The cur_state should not last for more than max_wait secs
1412                  */
1413                 for (i = 0; i < (max_wait * 1000); i++) {
1414                         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &  
1415                                         MFI_STATE_MASK ;
1416
1417                         if (fw_state == cur_state) {
1418                                 msleep(1);
1419                         } else
1420                                 break;
1421                 }
1422
1423                 /*
1424                  * Return error if fw_state hasn't changed after max_wait
1425                  */
1426                 if (fw_state == cur_state) {
1427                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1428                                "in %d secs\n", fw_state, max_wait);
1429                         return -ENODEV;
1430                 }
1431         };
1432         printk(KERN_INFO "megasas: FW now in Ready state\n");
1433
1434         return 0;
1435 }
1436
1437 /**
1438  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1439  * @instance:                           Adapter soft state
1440  */
1441 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1442 {
1443         int i;
1444         u32 max_cmd = instance->max_fw_cmds;
1445         struct megasas_cmd *cmd;
1446
1447         if (!instance->frame_dma_pool)
1448                 return;
1449
1450         /*
1451          * Return all frames to pool
1452          */
1453         for (i = 0; i < max_cmd; i++) {
1454
1455                 cmd = instance->cmd_list[i];
1456
1457                 if (cmd->frame)
1458                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1459                                       cmd->frame_phys_addr);
1460
1461                 if (cmd->sense)
1462                         pci_pool_free(instance->sense_dma_pool, cmd->sense,
1463                                       cmd->sense_phys_addr);
1464         }
1465
1466         /*
1467          * Now destroy the pool itself
1468          */
1469         pci_pool_destroy(instance->frame_dma_pool);
1470         pci_pool_destroy(instance->sense_dma_pool);
1471
1472         instance->frame_dma_pool = NULL;
1473         instance->sense_dma_pool = NULL;
1474 }
1475
1476 /**
1477  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1478  * @instance:                   Adapter soft state
1479  *
1480  * Each command packet has an embedded DMA memory buffer that is used for
1481  * filling MFI frame and the SG list that immediately follows the frame. This
1482  * function creates those DMA memory buffers for each command packet by using
1483  * PCI pool facility.
1484  */
1485 static int megasas_create_frame_pool(struct megasas_instance *instance)
1486 {
1487         int i;
1488         u32 max_cmd;
1489         u32 sge_sz;
1490         u32 sgl_sz;
1491         u32 total_sz;
1492         u32 frame_count;
1493         struct megasas_cmd *cmd;
1494
1495         max_cmd = instance->max_fw_cmds;
1496
1497         /*
1498          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1499          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1500          */
1501         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1502             sizeof(struct megasas_sge32);
1503
1504         /*
1505          * Calculated the number of 64byte frames required for SGL
1506          */
1507         sgl_sz = sge_sz * instance->max_num_sge;
1508         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1509
1510         /*
1511          * We need one extra frame for the MFI command
1512          */
1513         frame_count++;
1514
1515         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1516         /*
1517          * Use DMA pool facility provided by PCI layer
1518          */
1519         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1520                                                    instance->pdev, total_sz, 64,
1521                                                    0);
1522
1523         if (!instance->frame_dma_pool) {
1524                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1525                 return -ENOMEM;
1526         }
1527
1528         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1529                                                    instance->pdev, 128, 4, 0);
1530
1531         if (!instance->sense_dma_pool) {
1532                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1533
1534                 pci_pool_destroy(instance->frame_dma_pool);
1535                 instance->frame_dma_pool = NULL;
1536
1537                 return -ENOMEM;
1538         }
1539
1540         /*
1541          * Allocate and attach a frame to each of the commands in cmd_list.
1542          * By making cmd->index as the context instead of the &cmd, we can
1543          * always use 32bit context regardless of the architecture
1544          */
1545         for (i = 0; i < max_cmd; i++) {
1546
1547                 cmd = instance->cmd_list[i];
1548
1549                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1550                                             GFP_KERNEL, &cmd->frame_phys_addr);
1551
1552                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1553                                             GFP_KERNEL, &cmd->sense_phys_addr);
1554
1555                 /*
1556                  * megasas_teardown_frame_pool() takes care of freeing
1557                  * whatever has been allocated
1558                  */
1559                 if (!cmd->frame || !cmd->sense) {
1560                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1561                         megasas_teardown_frame_pool(instance);
1562                         return -ENOMEM;
1563                 }
1564
1565                 cmd->frame->io.context = cmd->index;
1566         }
1567
1568         return 0;
1569 }
1570
1571 /**
1572  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1573  * @instance:           Adapter soft state
1574  */
1575 static void megasas_free_cmds(struct megasas_instance *instance)
1576 {
1577         int i;
1578         /* First free the MFI frame pool */
1579         megasas_teardown_frame_pool(instance);
1580
1581         /* Free all the commands in the cmd_list */
1582         for (i = 0; i < instance->max_fw_cmds; i++)
1583                 kfree(instance->cmd_list[i]);
1584
1585         /* Free the cmd_list buffer itself */
1586         kfree(instance->cmd_list);
1587         instance->cmd_list = NULL;
1588
1589         INIT_LIST_HEAD(&instance->cmd_pool);
1590 }
1591
1592 /**
1593  * megasas_alloc_cmds - Allocates the command packets
1594  * @instance:           Adapter soft state
1595  *
1596  * Each command that is issued to the FW, whether IO commands from the OS or
1597  * internal commands like IOCTLs, are wrapped in local data structure called
1598  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1599  * the FW.
1600  *
1601  * Each frame has a 32-bit field called context (tag). This context is used
1602  * to get back the megasas_cmd from the frame when a frame gets completed in
1603  * the ISR. Typically the address of the megasas_cmd itself would be used as
1604  * the context. But we wanted to keep the differences between 32 and 64 bit
1605  * systems to the mininum. We always use 32 bit integers for the context. In
1606  * this driver, the 32 bit values are the indices into an array cmd_list.
1607  * This array is used only to look up the megasas_cmd given the context. The
1608  * free commands themselves are maintained in a linked list called cmd_pool.
1609  */
1610 static int megasas_alloc_cmds(struct megasas_instance *instance)
1611 {
1612         int i;
1613         int j;
1614         u32 max_cmd;
1615         struct megasas_cmd *cmd;
1616
1617         max_cmd = instance->max_fw_cmds;
1618
1619         /*
1620          * instance->cmd_list is an array of struct megasas_cmd pointers.
1621          * Allocate the dynamic array first and then allocate individual
1622          * commands.
1623          */
1624         instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1625                                      GFP_KERNEL);
1626
1627         if (!instance->cmd_list) {
1628                 printk(KERN_DEBUG "megasas: out of memory\n");
1629                 return -ENOMEM;
1630         }
1631
1632         memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1633
1634         for (i = 0; i < max_cmd; i++) {
1635                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1636                                                 GFP_KERNEL);
1637
1638                 if (!instance->cmd_list[i]) {
1639
1640                         for (j = 0; j < i; j++)
1641                                 kfree(instance->cmd_list[j]);
1642
1643                         kfree(instance->cmd_list);
1644                         instance->cmd_list = NULL;
1645
1646                         return -ENOMEM;
1647                 }
1648         }
1649
1650         /*
1651          * Add all the commands to command pool (instance->cmd_pool)
1652          */
1653         for (i = 0; i < max_cmd; i++) {
1654                 cmd = instance->cmd_list[i];
1655                 memset(cmd, 0, sizeof(struct megasas_cmd));
1656                 cmd->index = i;
1657                 cmd->instance = instance;
1658
1659                 list_add_tail(&cmd->list, &instance->cmd_pool);
1660         }
1661
1662         /*
1663          * Create a frame pool and assign one frame to each cmd
1664          */
1665         if (megasas_create_frame_pool(instance)) {
1666                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1667                 megasas_free_cmds(instance);
1668         }
1669
1670         return 0;
1671 }
1672
1673 /**
1674  * megasas_get_controller_info -        Returns FW's controller structure
1675  * @instance:                           Adapter soft state
1676  * @ctrl_info:                          Controller information structure
1677  *
1678  * Issues an internal command (DCMD) to get the FW's controller structure.
1679  * This information is mainly used to find out the maximum IO transfer per
1680  * command supported by the FW.
1681  */
1682 static int
1683 megasas_get_ctrl_info(struct megasas_instance *instance,
1684                       struct megasas_ctrl_info *ctrl_info)
1685 {
1686         int ret = 0;
1687         struct megasas_cmd *cmd;
1688         struct megasas_dcmd_frame *dcmd;
1689         struct megasas_ctrl_info *ci;
1690         dma_addr_t ci_h = 0;
1691
1692         cmd = megasas_get_cmd(instance);
1693
1694         if (!cmd) {
1695                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1696                 return -ENOMEM;
1697         }
1698
1699         dcmd = &cmd->frame->dcmd;
1700
1701         ci = pci_alloc_consistent(instance->pdev,
1702                                   sizeof(struct megasas_ctrl_info), &ci_h);
1703
1704         if (!ci) {
1705                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1706                 megasas_return_cmd(instance, cmd);
1707                 return -ENOMEM;
1708         }
1709
1710         memset(ci, 0, sizeof(*ci));
1711         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1712
1713         dcmd->cmd = MFI_CMD_DCMD;
1714         dcmd->cmd_status = 0xFF;
1715         dcmd->sge_count = 1;
1716         dcmd->flags = MFI_FRAME_DIR_READ;
1717         dcmd->timeout = 0;
1718         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1719         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1720         dcmd->sgl.sge32[0].phys_addr = ci_h;
1721         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1722
1723         if (!megasas_issue_polled(instance, cmd)) {
1724                 ret = 0;
1725                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1726         } else {
1727                 ret = -1;
1728         }
1729
1730         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1731                             ci, ci_h);
1732
1733         megasas_return_cmd(instance, cmd);
1734         return ret;
1735 }
1736
1737 /**
1738  * megasas_complete_cmd_dpc      -      Returns FW's controller structure
1739  * @instance_addr:                      Address of adapter soft state
1740  *
1741  * Tasklet to complete cmds
1742  */
1743 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1744 {
1745         u32 producer;
1746         u32 consumer;
1747         u32 context;
1748         struct megasas_cmd *cmd;
1749         struct megasas_instance *instance = (struct megasas_instance *)instance_addr;
1750
1751         /* If we have already declared adapter dead, donot complete cmds */
1752         if (instance->hw_crit_error)
1753                 return;
1754
1755         producer = *instance->producer;
1756         consumer = *instance->consumer;
1757
1758         while (consumer != producer) {
1759                 context = instance->reply_queue[consumer];
1760
1761                 cmd = instance->cmd_list[context];
1762
1763                 megasas_complete_cmd(instance, cmd, DID_OK);
1764
1765                 consumer++;
1766                 if (consumer == (instance->max_fw_cmds + 1)) {
1767                         consumer = 0;
1768                 }
1769         }
1770
1771         *instance->consumer = producer;
1772 }
1773
1774 /**
1775  * megasas_init_mfi -   Initializes the FW
1776  * @instance:           Adapter soft state
1777  *
1778  * This is the main function for initializing MFI firmware.
1779  */
1780 static int megasas_init_mfi(struct megasas_instance *instance)
1781 {
1782         u32 context_sz;
1783         u32 reply_q_sz;
1784         u32 max_sectors_1;
1785         u32 max_sectors_2;
1786         struct megasas_register_set __iomem *reg_set;
1787
1788         struct megasas_cmd *cmd;
1789         struct megasas_ctrl_info *ctrl_info;
1790
1791         struct megasas_init_frame *init_frame;
1792         struct megasas_init_queue_info *initq_info;
1793         dma_addr_t init_frame_h;
1794         dma_addr_t initq_info_h;
1795
1796         /*
1797          * Map the message registers
1798          */
1799         instance->base_addr = pci_resource_start(instance->pdev, 0);
1800
1801         if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1802                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1803                 return -EBUSY;
1804         }
1805
1806         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1807
1808         if (!instance->reg_set) {
1809                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1810                 goto fail_ioremap;
1811         }
1812
1813         reg_set = instance->reg_set;
1814
1815         switch(instance->pdev->device)
1816         {
1817                 case PCI_DEVICE_ID_LSI_SAS1078R:        
1818                         instance->instancet = &megasas_instance_template_ppc;
1819                         break;
1820                 case PCI_DEVICE_ID_LSI_SAS1064R:
1821                 case PCI_DEVICE_ID_DELL_PERC5:
1822                 default:
1823                         instance->instancet = &megasas_instance_template_xscale;
1824                         break;
1825         }
1826
1827         /*
1828          * We expect the FW state to be READY
1829          */
1830         if (megasas_transition_to_ready(instance))
1831                 goto fail_ready_state;
1832
1833         /*
1834          * Get various operational parameters from status register
1835          */
1836         instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1837         /*
1838          * Reduce the max supported cmds by 1. This is to ensure that the
1839          * reply_q_sz (1 more than the max cmd that driver may send)
1840          * does not exceed max cmds that the FW can support
1841          */
1842         instance->max_fw_cmds = instance->max_fw_cmds-1;
1843         instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 
1844                                         0x10;
1845         /*
1846          * Create a pool of commands
1847          */
1848         if (megasas_alloc_cmds(instance))
1849                 goto fail_alloc_cmds;
1850
1851         /*
1852          * Allocate memory for reply queue. Length of reply queue should
1853          * be _one_ more than the maximum commands handled by the firmware.
1854          *
1855          * Note: When FW completes commands, it places corresponding contex
1856          * values in this circular reply queue. This circular queue is a fairly
1857          * typical producer-consumer queue. FW is the producer (of completed
1858          * commands) and the driver is the consumer.
1859          */
1860         context_sz = sizeof(u32);
1861         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1862
1863         instance->reply_queue = pci_alloc_consistent(instance->pdev,
1864                                                      reply_q_sz,
1865                                                      &instance->reply_queue_h);
1866
1867         if (!instance->reply_queue) {
1868                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1869                 goto fail_reply_queue;
1870         }
1871
1872         /*
1873          * Prepare a init frame. Note the init frame points to queue info
1874          * structure. Each frame has SGL allocated after first 64 bytes. For
1875          * this frame - since we don't need any SGL - we use SGL's space as
1876          * queue info structure
1877          *
1878          * We will not get a NULL command below. We just created the pool.
1879          */
1880         cmd = megasas_get_cmd(instance);
1881
1882         init_frame = (struct megasas_init_frame *)cmd->frame;
1883         initq_info = (struct megasas_init_queue_info *)
1884             ((unsigned long)init_frame + 64);
1885
1886         init_frame_h = cmd->frame_phys_addr;
1887         initq_info_h = init_frame_h + 64;
1888
1889         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1890         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1891
1892         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1893         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1894
1895         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1896         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1897
1898         init_frame->cmd = MFI_CMD_INIT;
1899         init_frame->cmd_status = 0xFF;
1900         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1901
1902         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1903
1904         /*
1905          * disable the intr before firing the init frame to FW
1906          */
1907         instance->instancet->disable_intr(instance->reg_set);
1908
1909         /*
1910          * Issue the init frame in polled mode
1911          */
1912         if (megasas_issue_polled(instance, cmd)) {
1913                 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1914                 goto fail_fw_init;
1915         }
1916
1917         megasas_return_cmd(instance, cmd);
1918
1919         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1920
1921         /*
1922          * Compute the max allowed sectors per IO: The controller info has two
1923          * limits on max sectors. Driver should use the minimum of these two.
1924          *
1925          * 1 << stripe_sz_ops.min = max sectors per strip
1926          *
1927          * Note that older firmwares ( < FW ver 30) didn't report information
1928          * to calculate max_sectors_1. So the number ended up as zero always.
1929          */
1930         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1931
1932                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1933                     ctrl_info->max_strips_per_io;
1934                 max_sectors_2 = ctrl_info->max_request_size;
1935
1936                 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1937                     ? max_sectors_1 : max_sectors_2;
1938         } else
1939                 instance->max_sectors_per_req = instance->max_num_sge *
1940                     PAGE_SIZE / 512;
1941
1942         kfree(ctrl_info);
1943
1944         /*
1945         * Setup tasklet for cmd completion
1946         */
1947
1948         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
1949                         (unsigned long)instance);
1950         return 0;
1951
1952       fail_fw_init:
1953         megasas_return_cmd(instance, cmd);
1954
1955         pci_free_consistent(instance->pdev, reply_q_sz,
1956                             instance->reply_queue, instance->reply_queue_h);
1957       fail_reply_queue:
1958         megasas_free_cmds(instance);
1959
1960       fail_alloc_cmds:
1961       fail_ready_state:
1962         iounmap(instance->reg_set);
1963
1964       fail_ioremap:
1965         pci_release_regions(instance->pdev);
1966
1967         return -EINVAL;
1968 }
1969
1970 /**
1971  * megasas_release_mfi -        Reverses the FW initialization
1972  * @intance:                    Adapter soft state
1973  */
1974 static void megasas_release_mfi(struct megasas_instance *instance)
1975 {
1976         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1977
1978         pci_free_consistent(instance->pdev, reply_q_sz,
1979                             instance->reply_queue, instance->reply_queue_h);
1980
1981         megasas_free_cmds(instance);
1982
1983         iounmap(instance->reg_set);
1984
1985         pci_release_regions(instance->pdev);
1986 }
1987
1988 /**
1989  * megasas_get_seq_num -        Gets latest event sequence numbers
1990  * @instance:                   Adapter soft state
1991  * @eli:                        FW event log sequence numbers information
1992  *
1993  * FW maintains a log of all events in a non-volatile area. Upper layers would
1994  * usually find out the latest sequence number of the events, the seq number at
1995  * the boot etc. They would "read" all the events below the latest seq number
1996  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1997  * number), they would subsribe to AEN (asynchronous event notification) and
1998  * wait for the events to happen.
1999  */
2000 static int
2001 megasas_get_seq_num(struct megasas_instance *instance,
2002                     struct megasas_evt_log_info *eli)
2003 {
2004         struct megasas_cmd *cmd;
2005         struct megasas_dcmd_frame *dcmd;
2006         struct megasas_evt_log_info *el_info;
2007         dma_addr_t el_info_h = 0;
2008
2009         cmd = megasas_get_cmd(instance);
2010
2011         if (!cmd) {
2012                 return -ENOMEM;
2013         }
2014
2015         dcmd = &cmd->frame->dcmd;
2016         el_info = pci_alloc_consistent(instance->pdev,
2017                                        sizeof(struct megasas_evt_log_info),
2018                                        &el_info_h);
2019
2020         if (!el_info) {
2021                 megasas_return_cmd(instance, cmd);
2022                 return -ENOMEM;
2023         }
2024
2025         memset(el_info, 0, sizeof(*el_info));
2026         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2027
2028         dcmd->cmd = MFI_CMD_DCMD;
2029         dcmd->cmd_status = 0x0;
2030         dcmd->sge_count = 1;
2031         dcmd->flags = MFI_FRAME_DIR_READ;
2032         dcmd->timeout = 0;
2033         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2034         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2035         dcmd->sgl.sge32[0].phys_addr = el_info_h;
2036         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2037
2038         megasas_issue_blocked_cmd(instance, cmd);
2039
2040         /*
2041          * Copy the data back into callers buffer
2042          */
2043         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2044
2045         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2046                             el_info, el_info_h);
2047
2048         megasas_return_cmd(instance, cmd);
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * megasas_register_aen -       Registers for asynchronous event notification
2055  * @instance:                   Adapter soft state
2056  * @seq_num:                    The starting sequence number
2057  * @class_locale:               Class of the event
2058  *
2059  * This function subscribes for AEN for events beyond the @seq_num. It requests
2060  * to be notified if and only if the event is of type @class_locale
2061  */
2062 static int
2063 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2064                      u32 class_locale_word)
2065 {
2066         int ret_val;
2067         struct megasas_cmd *cmd;
2068         struct megasas_dcmd_frame *dcmd;
2069         union megasas_evt_class_locale curr_aen;
2070         union megasas_evt_class_locale prev_aen;
2071
2072         /*
2073          * If there an AEN pending already (aen_cmd), check if the
2074          * class_locale of that pending AEN is inclusive of the new
2075          * AEN request we currently have. If it is, then we don't have
2076          * to do anything. In other words, whichever events the current
2077          * AEN request is subscribing to, have already been subscribed
2078          * to.
2079          *
2080          * If the old_cmd is _not_ inclusive, then we have to abort
2081          * that command, form a class_locale that is superset of both
2082          * old and current and re-issue to the FW
2083          */
2084
2085         curr_aen.word = class_locale_word;
2086
2087         if (instance->aen_cmd) {
2088
2089                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2090
2091                 /*
2092                  * A class whose enum value is smaller is inclusive of all
2093                  * higher values. If a PROGRESS (= -1) was previously
2094                  * registered, then a new registration requests for higher
2095                  * classes need not be sent to FW. They are automatically
2096                  * included.
2097                  *
2098                  * Locale numbers don't have such hierarchy. They are bitmap
2099                  * values
2100                  */
2101                 if ((prev_aen.members.class <= curr_aen.members.class) &&
2102                     !((prev_aen.members.locale & curr_aen.members.locale) ^
2103                       curr_aen.members.locale)) {
2104                         /*
2105                          * Previously issued event registration includes
2106                          * current request. Nothing to do.
2107                          */
2108                         return 0;
2109                 } else {
2110                         curr_aen.members.locale |= prev_aen.members.locale;
2111
2112                         if (prev_aen.members.class < curr_aen.members.class)
2113                                 curr_aen.members.class = prev_aen.members.class;
2114
2115                         instance->aen_cmd->abort_aen = 1;
2116                         ret_val = megasas_issue_blocked_abort_cmd(instance,
2117                                                                   instance->
2118                                                                   aen_cmd);
2119
2120                         if (ret_val) {
2121                                 printk(KERN_DEBUG "megasas: Failed to abort "
2122                                        "previous AEN command\n");
2123                                 return ret_val;
2124                         }
2125                 }
2126         }
2127
2128         cmd = megasas_get_cmd(instance);
2129
2130         if (!cmd)
2131                 return -ENOMEM;
2132
2133         dcmd = &cmd->frame->dcmd;
2134
2135         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2136
2137         /*
2138          * Prepare DCMD for aen registration
2139          */
2140         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2141
2142         dcmd->cmd = MFI_CMD_DCMD;
2143         dcmd->cmd_status = 0x0;
2144         dcmd->sge_count = 1;
2145         dcmd->flags = MFI_FRAME_DIR_READ;
2146         dcmd->timeout = 0;
2147         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2148         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2149         dcmd->mbox.w[0] = seq_num;
2150         dcmd->mbox.w[1] = curr_aen.word;
2151         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2152         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2153
2154         /*
2155          * Store reference to the cmd used to register for AEN. When an
2156          * application wants us to register for AEN, we have to abort this
2157          * cmd and re-register with a new EVENT LOCALE supplied by that app
2158          */
2159         instance->aen_cmd = cmd;
2160
2161         /*
2162          * Issue the aen registration frame
2163          */
2164         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2165
2166         return 0;
2167 }
2168
2169 /**
2170  * megasas_start_aen -  Subscribes to AEN during driver load time
2171  * @instance:           Adapter soft state
2172  */
2173 static int megasas_start_aen(struct megasas_instance *instance)
2174 {
2175         struct megasas_evt_log_info eli;
2176         union megasas_evt_class_locale class_locale;
2177
2178         /*
2179          * Get the latest sequence number from FW
2180          */
2181         memset(&eli, 0, sizeof(eli));
2182
2183         if (megasas_get_seq_num(instance, &eli))
2184                 return -1;
2185
2186         /*
2187          * Register AEN with FW for latest sequence number plus 1
2188          */
2189         class_locale.members.reserved = 0;
2190         class_locale.members.locale = MR_EVT_LOCALE_ALL;
2191         class_locale.members.class = MR_EVT_CLASS_DEBUG;
2192
2193         return megasas_register_aen(instance, eli.newest_seq_num + 1,
2194                                     class_locale.word);
2195 }
2196
2197 /**
2198  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
2199  * @instance:           Adapter soft state
2200  */
2201 static int megasas_io_attach(struct megasas_instance *instance)
2202 {
2203         struct Scsi_Host *host = instance->host;
2204
2205         /*
2206          * Export parameters required by SCSI mid-layer
2207          */
2208         host->irq = instance->pdev->irq;
2209         host->unique_id = instance->unique_id;
2210         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2211         host->this_id = instance->init_id;
2212         host->sg_tablesize = instance->max_num_sge;
2213         host->max_sectors = instance->max_sectors_per_req;
2214         host->cmd_per_lun = 128;
2215         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2216         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2217         host->max_lun = MEGASAS_MAX_LUN;
2218         host->max_cmd_len = 16;
2219
2220         /*
2221          * Notify the mid-layer about the new controller
2222          */
2223         if (scsi_add_host(host, &instance->pdev->dev)) {
2224                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2225                 return -ENODEV;
2226         }
2227
2228         /*
2229          * Trigger SCSI to scan our drives
2230          */
2231         scsi_scan_host(host);
2232         return 0;
2233 }
2234
2235 /**
2236  * megasas_probe_one -  PCI hotplug entry point
2237  * @pdev:               PCI device structure
2238  * @id:                 PCI ids of supported hotplugged adapter 
2239  */
2240 static int __devinit
2241 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2242 {
2243         int rval;
2244         struct Scsi_Host *host;
2245         struct megasas_instance *instance;
2246
2247         /*
2248          * Announce PCI information
2249          */
2250         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2251                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2252                pdev->subsystem_device);
2253
2254         printk("bus %d:slot %d:func %d\n",
2255                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2256
2257         /*
2258          * PCI prepping: enable device set bus mastering and dma mask
2259          */
2260         rval = pci_enable_device(pdev);
2261
2262         if (rval) {
2263                 return rval;
2264         }
2265
2266         pci_set_master(pdev);
2267
2268         /*
2269          * All our contollers are capable of performing 64-bit DMA
2270          */
2271         if (IS_DMA64) {
2272                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2273
2274                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2275                                 goto fail_set_dma_mask;
2276                 }
2277         } else {
2278                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2279                         goto fail_set_dma_mask;
2280         }
2281
2282         host = scsi_host_alloc(&megasas_template,
2283                                sizeof(struct megasas_instance));
2284
2285         if (!host) {
2286                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2287                 goto fail_alloc_instance;
2288         }
2289
2290         instance = (struct megasas_instance *)host->hostdata;
2291         memset(instance, 0, sizeof(*instance));
2292
2293         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2294                                                   &instance->producer_h);
2295         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2296                                                   &instance->consumer_h);
2297
2298         if (!instance->producer || !instance->consumer) {
2299                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2300                        "producer, consumer\n");
2301                 goto fail_alloc_dma_buf;
2302         }
2303
2304         *instance->producer = 0;
2305         *instance->consumer = 0;
2306
2307         instance->evt_detail = pci_alloc_consistent(pdev,
2308                                                     sizeof(struct
2309                                                            megasas_evt_detail),
2310                                                     &instance->evt_detail_h);
2311
2312         if (!instance->evt_detail) {
2313                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2314                        "event detail structure\n");
2315                 goto fail_alloc_dma_buf;
2316         }
2317
2318         /*
2319          * Initialize locks and queues
2320          */
2321         INIT_LIST_HEAD(&instance->cmd_pool);
2322
2323         atomic_set(&instance->fw_outstanding,0);
2324
2325         init_waitqueue_head(&instance->int_cmd_wait_q);
2326         init_waitqueue_head(&instance->abort_cmd_wait_q);
2327
2328         spin_lock_init(&instance->cmd_pool_lock);
2329
2330         sema_init(&instance->aen_mutex, 1);
2331         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2332
2333         /*
2334          * Initialize PCI related and misc parameters
2335          */
2336         instance->pdev = pdev;
2337         instance->host = host;
2338         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2339         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2340
2341         megasas_dbg_lvl = 0;
2342
2343         /*
2344          * Initialize MFI Firmware
2345          */
2346         if (megasas_init_mfi(instance))
2347                 goto fail_init_mfi;
2348
2349         /*
2350          * Register IRQ
2351          */
2352         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2353                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2354                 goto fail_irq;
2355         }
2356
2357         instance->instancet->enable_intr(instance->reg_set);
2358
2359         /*
2360          * Store instance in PCI softstate
2361          */
2362         pci_set_drvdata(pdev, instance);
2363
2364         /*
2365          * Add this controller to megasas_mgmt_info structure so that it
2366          * can be exported to management applications
2367          */
2368         megasas_mgmt_info.count++;
2369         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2370         megasas_mgmt_info.max_index++;
2371
2372         /*
2373          * Initiate AEN (Asynchronous Event Notification)
2374          */
2375         if (megasas_start_aen(instance)) {
2376                 printk(KERN_DEBUG "megasas: start aen failed\n");
2377                 goto fail_start_aen;
2378         }
2379
2380         /*
2381          * Register with SCSI mid-layer
2382          */
2383         if (megasas_io_attach(instance))
2384                 goto fail_io_attach;
2385
2386         return 0;
2387
2388       fail_start_aen:
2389       fail_io_attach:
2390         megasas_mgmt_info.count--;
2391         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2392         megasas_mgmt_info.max_index--;
2393
2394         pci_set_drvdata(pdev, NULL);
2395         instance->instancet->disable_intr(instance->reg_set);
2396         free_irq(instance->pdev->irq, instance);
2397
2398         megasas_release_mfi(instance);
2399
2400       fail_irq:
2401       fail_init_mfi:
2402       fail_alloc_dma_buf:
2403         if (instance->evt_detail)
2404                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2405                                     instance->evt_detail,
2406                                     instance->evt_detail_h);
2407
2408         if (instance->producer)
2409                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2410                                     instance->producer_h);
2411         if (instance->consumer)
2412                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2413                                     instance->consumer_h);
2414         scsi_host_put(host);
2415
2416       fail_alloc_instance:
2417       fail_set_dma_mask:
2418         pci_disable_device(pdev);
2419
2420         return -ENODEV;
2421 }
2422
2423 /**
2424  * megasas_flush_cache -        Requests FW to flush all its caches
2425  * @instance:                   Adapter soft state
2426  */
2427 static void megasas_flush_cache(struct megasas_instance *instance)
2428 {
2429         struct megasas_cmd *cmd;
2430         struct megasas_dcmd_frame *dcmd;
2431
2432         cmd = megasas_get_cmd(instance);
2433
2434         if (!cmd)
2435                 return;
2436
2437         dcmd = &cmd->frame->dcmd;
2438
2439         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2440
2441         dcmd->cmd = MFI_CMD_DCMD;
2442         dcmd->cmd_status = 0x0;
2443         dcmd->sge_count = 0;
2444         dcmd->flags = MFI_FRAME_DIR_NONE;
2445         dcmd->timeout = 0;
2446         dcmd->data_xfer_len = 0;
2447         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2448         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2449
2450         megasas_issue_blocked_cmd(instance, cmd);
2451
2452         megasas_return_cmd(instance, cmd);
2453
2454         return;
2455 }
2456
2457 /**
2458  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2459  * @instance:                           Adapter soft state
2460  */
2461 static void megasas_shutdown_controller(struct megasas_instance *instance)
2462 {
2463         struct megasas_cmd *cmd;
2464         struct megasas_dcmd_frame *dcmd;
2465
2466         cmd = megasas_get_cmd(instance);
2467
2468         if (!cmd)
2469                 return;
2470
2471         if (instance->aen_cmd)
2472                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2473
2474         dcmd = &cmd->frame->dcmd;
2475
2476         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2477
2478         dcmd->cmd = MFI_CMD_DCMD;
2479         dcmd->cmd_status = 0x0;
2480         dcmd->sge_count = 0;
2481         dcmd->flags = MFI_FRAME_DIR_NONE;
2482         dcmd->timeout = 0;
2483         dcmd->data_xfer_len = 0;
2484         dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2485
2486         megasas_issue_blocked_cmd(instance, cmd);
2487
2488         megasas_return_cmd(instance, cmd);
2489
2490         return;
2491 }
2492
2493 /**
2494  * megasas_detach_one - PCI hot"un"plug entry point
2495  * @pdev:               PCI device structure
2496  */
2497 static void megasas_detach_one(struct pci_dev *pdev)
2498 {
2499         int i;
2500         struct Scsi_Host *host;
2501         struct megasas_instance *instance;
2502
2503         instance = pci_get_drvdata(pdev);
2504         host = instance->host;
2505
2506         scsi_remove_host(instance->host);
2507         megasas_flush_cache(instance);
2508         megasas_shutdown_controller(instance);
2509         tasklet_kill(&instance->isr_tasklet);
2510
2511         /*
2512          * Take the instance off the instance array. Note that we will not
2513          * decrement the max_index. We let this array be sparse array
2514          */
2515         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2516                 if (megasas_mgmt_info.instance[i] == instance) {
2517                         megasas_mgmt_info.count--;
2518                         megasas_mgmt_info.instance[i] = NULL;
2519
2520                         break;
2521                 }
2522         }
2523
2524         pci_set_drvdata(instance->pdev, NULL);
2525
2526         instance->instancet->disable_intr(instance->reg_set);
2527
2528         free_irq(instance->pdev->irq, instance);
2529
2530         megasas_release_mfi(instance);
2531
2532         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2533                             instance->evt_detail, instance->evt_detail_h);
2534
2535         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2536                             instance->producer_h);
2537
2538         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2539                             instance->consumer_h);
2540
2541         scsi_host_put(host);
2542
2543         pci_set_drvdata(pdev, NULL);
2544
2545         pci_disable_device(pdev);
2546
2547         return;
2548 }
2549
2550 /**
2551  * megasas_shutdown -   Shutdown entry point
2552  * @device:             Generic device structure
2553  */
2554 static void megasas_shutdown(struct pci_dev *pdev)
2555 {
2556         struct megasas_instance *instance = pci_get_drvdata(pdev);
2557         megasas_flush_cache(instance);
2558 }
2559
2560 /**
2561  * megasas_mgmt_open -  char node "open" entry point
2562  */
2563 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2564 {
2565         /*
2566          * Allow only those users with admin rights
2567          */
2568         if (!capable(CAP_SYS_ADMIN))
2569                 return -EACCES;
2570
2571         return 0;
2572 }
2573
2574 /**
2575  * megasas_mgmt_release - char node "release" entry point
2576  */
2577 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2578 {
2579         filep->private_data = NULL;
2580         fasync_helper(-1, filep, 0, &megasas_async_queue);
2581
2582         return 0;
2583 }
2584
2585 /**
2586  * megasas_mgmt_fasync -        Async notifier registration from applications
2587  *
2588  * This function adds the calling process to a driver global queue. When an
2589  * event occurs, SIGIO will be sent to all processes in this queue.
2590  */
2591 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2592 {
2593         int rc;
2594
2595         mutex_lock(&megasas_async_queue_mutex);
2596
2597         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2598
2599         mutex_unlock(&megasas_async_queue_mutex);
2600
2601         if (rc >= 0) {
2602                 /* For sanity check when we get ioctl */
2603                 filep->private_data = filep;
2604                 return 0;
2605         }
2606
2607         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2608
2609         return rc;
2610 }
2611
2612 /**
2613  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2614  * @instance:                   Adapter soft state
2615  * @argp:                       User's ioctl packet
2616  */
2617 static int
2618 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2619                       struct megasas_iocpacket __user * user_ioc,
2620                       struct megasas_iocpacket *ioc)
2621 {
2622         struct megasas_sge32 *kern_sge32;
2623         struct megasas_cmd *cmd;
2624         void *kbuff_arr[MAX_IOCTL_SGE];
2625         dma_addr_t buf_handle = 0;
2626         int error = 0, i;
2627         void *sense = NULL;
2628         dma_addr_t sense_handle;
2629         u32 *sense_ptr;
2630
2631         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2632
2633         if (ioc->sge_count > MAX_IOCTL_SGE) {
2634                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2635                        ioc->sge_count, MAX_IOCTL_SGE);
2636                 return -EINVAL;
2637         }
2638
2639         cmd = megasas_get_cmd(instance);
2640         if (!cmd) {
2641                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2642                 return -ENOMEM;
2643         }
2644
2645         /*
2646          * User's IOCTL packet has 2 frames (maximum). Copy those two
2647          * frames into our cmd's frames. cmd->frame's context will get
2648          * overwritten when we copy from user's frames. So set that value
2649          * alone separately
2650          */
2651         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2652         cmd->frame->hdr.context = cmd->index;
2653
2654         /*
2655          * The management interface between applications and the fw uses
2656          * MFI frames. E.g, RAID configuration changes, LD property changes
2657          * etc are accomplishes through different kinds of MFI frames. The
2658          * driver needs to care only about substituting user buffers with
2659          * kernel buffers in SGLs. The location of SGL is embedded in the
2660          * struct iocpacket itself.
2661          */
2662         kern_sge32 = (struct megasas_sge32 *)
2663             ((unsigned long)cmd->frame + ioc->sgl_off);
2664
2665         /*
2666          * For each user buffer, create a mirror buffer and copy in
2667          */
2668         for (i = 0; i < ioc->sge_count; i++) {
2669                 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2670                                                     ioc->sgl[i].iov_len,
2671                                                     &buf_handle);
2672                 if (!kbuff_arr[i]) {
2673                         printk(KERN_DEBUG "megasas: Failed to alloc "
2674                                "kernel SGL buffer for IOCTL \n");
2675                         error = -ENOMEM;
2676                         goto out;
2677                 }
2678
2679                 /*
2680                  * We don't change the dma_coherent_mask, so
2681                  * pci_alloc_consistent only returns 32bit addresses
2682                  */
2683                 kern_sge32[i].phys_addr = (u32) buf_handle;
2684                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2685
2686                 /*
2687                  * We created a kernel buffer corresponding to the
2688                  * user buffer. Now copy in from the user buffer
2689                  */
2690                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2691                                    (u32) (ioc->sgl[i].iov_len))) {
2692                         error = -EFAULT;
2693                         goto out;
2694                 }
2695         }
2696
2697         if (ioc->sense_len) {
2698                 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2699                                              &sense_handle);
2700                 if (!sense) {
2701                         error = -ENOMEM;
2702                         goto out;
2703                 }
2704
2705                 sense_ptr =
2706                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2707                 *sense_ptr = sense_handle;
2708         }
2709
2710         /*
2711          * Set the sync_cmd flag so that the ISR knows not to complete this
2712          * cmd to the SCSI mid-layer
2713          */
2714         cmd->sync_cmd = 1;
2715         megasas_issue_blocked_cmd(instance, cmd);
2716         cmd->sync_cmd = 0;
2717
2718         /*
2719          * copy out the kernel buffers to user buffers
2720          */
2721         for (i = 0; i < ioc->sge_count; i++) {
2722                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2723                                  ioc->sgl[i].iov_len)) {
2724                         error = -EFAULT;
2725                         goto out;
2726                 }
2727         }
2728
2729         /*
2730          * copy out the sense
2731          */
2732         if (ioc->sense_len) {
2733                 /*
2734                  * sense_ptr points to the location that has the user
2735                  * sense buffer address
2736                  */
2737                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2738                                      ioc->sense_off);
2739
2740                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2741                                  sense, ioc->sense_len)) {
2742                         error = -EFAULT;
2743                         goto out;
2744                 }
2745         }
2746
2747         /*
2748          * copy the status codes returned by the fw
2749          */
2750         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2751                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2752                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2753                 error = -EFAULT;
2754         }
2755
2756       out:
2757         if (sense) {
2758                 pci_free_consistent(instance->pdev, ioc->sense_len,
2759                                     sense, sense_handle);
2760         }
2761
2762         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2763                 pci_free_consistent(instance->pdev,
2764                                     kern_sge32[i].length,
2765                                     kbuff_arr[i], kern_sge32[i].phys_addr);
2766         }
2767
2768         megasas_return_cmd(instance, cmd);
2769         return error;
2770 }
2771
2772 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2773 {
2774         int i;
2775
2776         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2777
2778                 if ((megasas_mgmt_info.instance[i]) &&
2779                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2780                         return megasas_mgmt_info.instance[i];
2781         }
2782
2783         return NULL;
2784 }
2785
2786 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2787 {
2788         struct megasas_iocpacket __user *user_ioc =
2789             (struct megasas_iocpacket __user *)arg;
2790         struct megasas_iocpacket *ioc;
2791         struct megasas_instance *instance;
2792         int error;
2793
2794         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2795         if (!ioc)
2796                 return -ENOMEM;
2797
2798         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2799                 error = -EFAULT;
2800                 goto out_kfree_ioc;
2801         }
2802
2803         instance = megasas_lookup_instance(ioc->host_no);
2804         if (!instance) {
2805                 error = -ENODEV;
2806                 goto out_kfree_ioc;
2807         }
2808
2809         /*
2810          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2811          */
2812         if (down_interruptible(&instance->ioctl_sem)) {
2813                 error = -ERESTARTSYS;
2814                 goto out_kfree_ioc;
2815         }
2816         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2817         up(&instance->ioctl_sem);
2818
2819       out_kfree_ioc:
2820         kfree(ioc);
2821         return error;
2822 }
2823
2824 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2825 {
2826         struct megasas_instance *instance;
2827         struct megasas_aen aen;
2828         int error;
2829
2830         if (file->private_data != file) {
2831                 printk(KERN_DEBUG "megasas: fasync_helper was not "
2832                        "called first\n");
2833                 return -EINVAL;
2834         }
2835
2836         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2837                 return -EFAULT;
2838
2839         instance = megasas_lookup_instance(aen.host_no);
2840
2841         if (!instance)
2842                 return -ENODEV;
2843
2844         down(&instance->aen_mutex);
2845         error = megasas_register_aen(instance, aen.seq_num,
2846                                      aen.class_locale_word);
2847         up(&instance->aen_mutex);
2848         return error;
2849 }
2850
2851 /**
2852  * megasas_mgmt_ioctl - char node ioctl entry point
2853  */
2854 static long
2855 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856 {
2857         switch (cmd) {
2858         case MEGASAS_IOC_FIRMWARE:
2859                 return megasas_mgmt_ioctl_fw(file, arg);
2860
2861         case MEGASAS_IOC_GET_AEN:
2862                 return megasas_mgmt_ioctl_aen(file, arg);
2863         }
2864
2865         return -ENOTTY;
2866 }
2867
2868 #ifdef CONFIG_COMPAT
2869 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2870 {
2871         struct compat_megasas_iocpacket __user *cioc =
2872             (struct compat_megasas_iocpacket __user *)arg;
2873         struct megasas_iocpacket __user *ioc =
2874             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2875         int i;
2876         int error = 0;
2877
2878         if (clear_user(ioc, sizeof(*ioc)))
2879                 return -EFAULT;
2880
2881         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2882             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2883             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2884             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2885             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2886             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2887                 return -EFAULT;
2888
2889         for (i = 0; i < MAX_IOCTL_SGE; i++) {
2890                 compat_uptr_t ptr;
2891
2892                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2893                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2894                     copy_in_user(&ioc->sgl[i].iov_len,
2895                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2896                         return -EFAULT;
2897         }
2898
2899         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2900
2901         if (copy_in_user(&cioc->frame.hdr.cmd_status,
2902                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2903                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2904                 return -EFAULT;
2905         }
2906         return error;
2907 }
2908
2909 static long
2910 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2911                           unsigned long arg)
2912 {
2913         switch (cmd) {
2914         case MEGASAS_IOC_FIRMWARE32:
2915                 return megasas_mgmt_compat_ioctl_fw(file, arg);
2916         case MEGASAS_IOC_GET_AEN:
2917                 return megasas_mgmt_ioctl_aen(file, arg);
2918         }
2919
2920         return -ENOTTY;
2921 }
2922 #endif
2923
2924 /*
2925  * File operations structure for management interface
2926  */
2927 static const struct file_operations megasas_mgmt_fops = {
2928         .owner = THIS_MODULE,
2929         .open = megasas_mgmt_open,
2930         .release = megasas_mgmt_release,
2931         .fasync = megasas_mgmt_fasync,
2932         .unlocked_ioctl = megasas_mgmt_ioctl,
2933 #ifdef CONFIG_COMPAT
2934         .compat_ioctl = megasas_mgmt_compat_ioctl,
2935 #endif
2936 };
2937
2938 /*
2939  * PCI hotplug support registration structure
2940  */
2941 static struct pci_driver megasas_pci_driver = {
2942
2943         .name = "megaraid_sas",
2944         .id_table = megasas_pci_table,
2945         .probe = megasas_probe_one,
2946         .remove = __devexit_p(megasas_detach_one),
2947         .shutdown = megasas_shutdown,
2948 };
2949
2950 /*
2951  * Sysfs driver attributes
2952  */
2953 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2954 {
2955         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2956                         MEGASAS_VERSION);
2957 }
2958
2959 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2960
2961 static ssize_t
2962 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2963 {
2964         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2965                         MEGASAS_RELDATE);
2966 }
2967
2968 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2969                    NULL);
2970
2971 static ssize_t
2972 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
2973 {
2974         return sprintf(buf,"%u",megasas_dbg_lvl);
2975 }
2976
2977 static ssize_t
2978 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
2979 {
2980         int retval = count;
2981         if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
2982                 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
2983                 retval = -EINVAL;
2984         }
2985         return retval;
2986 }
2987
2988 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
2989                    megasas_sysfs_set_dbg_lvl);
2990
2991 /**
2992  * megasas_init - Driver load entry point
2993  */
2994 static int __init megasas_init(void)
2995 {
2996         int rval;
2997
2998         /*
2999          * Announce driver version and other information
3000          */
3001         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3002                MEGASAS_EXT_VERSION);
3003
3004         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3005
3006         /*
3007          * Register character device node
3008          */
3009         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3010
3011         if (rval < 0) {
3012                 printk(KERN_DEBUG "megasas: failed to open device node\n");
3013                 return rval;
3014         }
3015
3016         megasas_mgmt_majorno = rval;
3017
3018         /*
3019          * Register ourselves as PCI hotplug module
3020          */
3021         rval = pci_register_driver(&megasas_pci_driver);
3022
3023         if (rval) {
3024                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3025                 goto err_pcidrv;
3026         }
3027
3028         rval = driver_create_file(&megasas_pci_driver.driver,
3029                                   &driver_attr_version);
3030         if (rval)
3031                 goto err_dcf_attr_ver;
3032         rval = driver_create_file(&megasas_pci_driver.driver,
3033                                   &driver_attr_release_date);
3034         if (rval)
3035                 goto err_dcf_rel_date;
3036         rval = driver_create_file(&megasas_pci_driver.driver,
3037                                   &driver_attr_dbg_lvl);
3038         if (rval)
3039                 goto err_dcf_dbg_lvl;
3040
3041         return rval;
3042 err_dcf_dbg_lvl:
3043         driver_remove_file(&megasas_pci_driver.driver,
3044                            &driver_attr_release_date);
3045 err_dcf_rel_date:
3046         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3047 err_dcf_attr_ver:
3048         pci_unregister_driver(&megasas_pci_driver);
3049 err_pcidrv:
3050         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3051         return rval;
3052 }
3053
3054 /**
3055  * megasas_exit - Driver unload entry point
3056  */
3057 static void __exit megasas_exit(void)
3058 {
3059         driver_remove_file(&megasas_pci_driver.driver,
3060                            &driver_attr_dbg_lvl);
3061         driver_remove_file(&megasas_pci_driver.driver,
3062                            &driver_attr_release_date);
3063         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3064
3065         pci_unregister_driver(&megasas_pci_driver);
3066         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3067 }
3068
3069 module_init(megasas_init);
3070 module_exit(megasas_exit);