Merge /spare/repo/linux-2.6/
[powerpc.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Logic Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.02.00-rc4
14  *
15  * Authors:
16  *      Sreenivas Bagalkote     <Sreenivas.Bagalkote@lsil.com>
17  *      Sumant Patro            <Sumant.Patro@lsil.com>
18  *
19  * List of supported controllers
20  *
21  * OEM  Product Name                    VID     DID     SSVID   SSID
22  * ---  ------------                    ---     ---     ----    ----
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/list.h>
29 #include <linux/version.h>
30 #include <linux/moduleparam.h>
31 #include <linux/module.h>
32 #include <linux/spinlock.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/uio.h>
36 #include <asm/uaccess.h>
37 #include <linux/compat.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include "megaraid_sas.h"
44
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(MEGASAS_VERSION);
47 MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
48 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
49
50 /*
51  * PCI ID table for all supported controllers
52  */
53 static struct pci_device_id megasas_pci_table[] = {
54
55         {
56          PCI_VENDOR_ID_LSI_LOGIC,
57          PCI_DEVICE_ID_LSI_SAS1064R,
58          PCI_ANY_ID,
59          PCI_ANY_ID,
60          },
61         {
62          PCI_VENDOR_ID_DELL,
63          PCI_DEVICE_ID_DELL_PERC5,
64          PCI_ANY_ID,
65          PCI_ANY_ID,
66          },
67         {0}                     /* Terminating entry */
68 };
69
70 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72 static int megasas_mgmt_majorno;
73 static struct megasas_mgmt_info megasas_mgmt_info;
74 static struct fasync_struct *megasas_async_queue;
75 static DECLARE_MUTEX(megasas_async_queue_mutex);
76
77 /**
78  * megasas_get_cmd -    Get a command from the free pool
79  * @instance:           Adapter soft state
80  *
81  * Returns a free command from the pool
82  */
83 static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
84                                                   *instance)
85 {
86         unsigned long flags;
87         struct megasas_cmd *cmd = NULL;
88
89         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
90
91         if (!list_empty(&instance->cmd_pool)) {
92                 cmd = list_entry((&instance->cmd_pool)->next,
93                                  struct megasas_cmd, list);
94                 list_del_init(&cmd->list);
95         } else {
96                 printk(KERN_ERR "megasas: Command pool empty!\n");
97         }
98
99         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
100         return cmd;
101 }
102
103 /**
104  * megasas_return_cmd - Return a cmd to free command pool
105  * @instance:           Adapter soft state
106  * @cmd:                Command packet to be returned to free command pool
107  */
108 static inline void
109 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
110 {
111         unsigned long flags;
112
113         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
114
115         cmd->scmd = NULL;
116         list_add_tail(&cmd->list, &instance->cmd_pool);
117
118         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
119 }
120
121 /**
122  * megasas_enable_intr -        Enables interrupts
123  * @regs:                       MFI register set
124  */
125 static inline void
126 megasas_enable_intr(struct megasas_register_set __iomem * regs)
127 {
128         writel(1, &(regs)->outbound_intr_mask);
129
130         /* Dummy readl to force pci flush */
131         readl(&regs->outbound_intr_mask);
132 }
133
134 /**
135  * megasas_disable_intr -       Disables interrupts
136  * @regs:                       MFI register set
137  */
138 static inline void
139 megasas_disable_intr(struct megasas_register_set __iomem * regs)
140 {
141         u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
142         writel(mask, &regs->outbound_intr_mask);
143
144         /* Dummy readl to force pci flush */
145         readl(&regs->outbound_intr_mask);
146 }
147
148 /**
149  * megasas_issue_polled -       Issues a polling command
150  * @instance:                   Adapter soft state
151  * @cmd:                        Command packet to be issued 
152  *
153  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
154  */
155 static int
156 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
157 {
158         int i;
159         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
160
161         struct megasas_header *frame_hdr = &cmd->frame->hdr;
162
163         frame_hdr->cmd_status = 0xFF;
164         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
165
166         /*
167          * Issue the frame using inbound queue port
168          */
169         writel(cmd->frame_phys_addr >> 3,
170                &instance->reg_set->inbound_queue_port);
171
172         /*
173          * Wait for cmd_status to change
174          */
175         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
176                 rmb();
177                 msleep(1);
178         }
179
180         if (frame_hdr->cmd_status == 0xff)
181                 return -ETIME;
182
183         return 0;
184 }
185
186 /**
187  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
188  * @instance:                   Adapter soft state
189  * @cmd:                        Command to be issued
190  *
191  * This function waits on an event for the command to be returned from ISR.
192  * Used to issue ioctl commands.
193  */
194 static int
195 megasas_issue_blocked_cmd(struct megasas_instance *instance,
196                           struct megasas_cmd *cmd)
197 {
198         cmd->cmd_status = ENODATA;
199
200         writel(cmd->frame_phys_addr >> 3,
201                &instance->reg_set->inbound_queue_port);
202
203         wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
204
205         return 0;
206 }
207
208 /**
209  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
210  * @instance:                           Adapter soft state
211  * @cmd_to_abort:                       Previously issued cmd to be aborted
212  *
213  * MFI firmware can abort previously issued AEN comamnd (automatic event
214  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
215  * cmd and blocks till it is completed.
216  */
217 static int
218 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
219                                 struct megasas_cmd *cmd_to_abort)
220 {
221         struct megasas_cmd *cmd;
222         struct megasas_abort_frame *abort_fr;
223
224         cmd = megasas_get_cmd(instance);
225
226         if (!cmd)
227                 return -1;
228
229         abort_fr = &cmd->frame->abort;
230
231         /*
232          * Prepare and issue the abort frame
233          */
234         abort_fr->cmd = MFI_CMD_ABORT;
235         abort_fr->cmd_status = 0xFF;
236         abort_fr->flags = 0;
237         abort_fr->abort_context = cmd_to_abort->index;
238         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
239         abort_fr->abort_mfi_phys_addr_hi = 0;
240
241         cmd->sync_cmd = 1;
242         cmd->cmd_status = 0xFF;
243
244         writel(cmd->frame_phys_addr >> 3,
245                &instance->reg_set->inbound_queue_port);
246
247         /*
248          * Wait for this cmd to complete
249          */
250         wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
251
252         megasas_return_cmd(instance, cmd);
253         return 0;
254 }
255
256 /**
257  * megasas_make_sgl32 - Prepares 32-bit SGL
258  * @instance:           Adapter soft state
259  * @scp:                SCSI command from the mid-layer
260  * @mfi_sgl:            SGL to be filled in
261  *
262  * If successful, this function returns the number of SG elements. Otherwise,
263  * it returnes -1.
264  */
265 static inline int
266 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
267                    union megasas_sgl *mfi_sgl)
268 {
269         int i;
270         int sge_count;
271         struct scatterlist *os_sgl;
272
273         /*
274          * Return 0 if there is no data transfer
275          */
276         if (!scp->request_buffer || !scp->request_bufflen)
277                 return 0;
278
279         if (!scp->use_sg) {
280                 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
281                                                              scp->
282                                                              request_buffer,
283                                                              scp->
284                                                              request_bufflen,
285                                                              scp->
286                                                              sc_data_direction);
287                 mfi_sgl->sge32[0].length = scp->request_bufflen;
288
289                 return 1;
290         }
291
292         os_sgl = (struct scatterlist *)scp->request_buffer;
293         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
294                                scp->sc_data_direction);
295
296         for (i = 0; i < sge_count; i++, os_sgl++) {
297                 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
298                 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
299         }
300
301         return sge_count;
302 }
303
304 /**
305  * megasas_make_sgl64 - Prepares 64-bit SGL
306  * @instance:           Adapter soft state
307  * @scp:                SCSI command from the mid-layer
308  * @mfi_sgl:            SGL to be filled in
309  *
310  * If successful, this function returns the number of SG elements. Otherwise,
311  * it returnes -1.
312  */
313 static inline int
314 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
315                    union megasas_sgl *mfi_sgl)
316 {
317         int i;
318         int sge_count;
319         struct scatterlist *os_sgl;
320
321         /*
322          * Return 0 if there is no data transfer
323          */
324         if (!scp->request_buffer || !scp->request_bufflen)
325                 return 0;
326
327         if (!scp->use_sg) {
328                 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
329                                                              scp->
330                                                              request_buffer,
331                                                              scp->
332                                                              request_bufflen,
333                                                              scp->
334                                                              sc_data_direction);
335
336                 mfi_sgl->sge64[0].length = scp->request_bufflen;
337
338                 return 1;
339         }
340
341         os_sgl = (struct scatterlist *)scp->request_buffer;
342         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
343                                scp->sc_data_direction);
344
345         for (i = 0; i < sge_count; i++, os_sgl++) {
346                 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
347                 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
348         }
349
350         return sge_count;
351 }
352
353 /**
354  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
355  * @instance:           Adapter soft state
356  * @scp:                SCSI command
357  * @cmd:                Command to be prepared in
358  *
359  * This function prepares CDB commands. These are typcially pass-through
360  * commands to the devices.
361  */
362 static inline int
363 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
364                    struct megasas_cmd *cmd)
365 {
366         u32 sge_sz;
367         int sge_bytes;
368         u32 is_logical;
369         u32 device_id;
370         u16 flags = 0;
371         struct megasas_pthru_frame *pthru;
372
373         is_logical = MEGASAS_IS_LOGICAL(scp);
374         device_id = MEGASAS_DEV_INDEX(instance, scp);
375         pthru = (struct megasas_pthru_frame *)cmd->frame;
376
377         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
378                 flags = MFI_FRAME_DIR_WRITE;
379         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
380                 flags = MFI_FRAME_DIR_READ;
381         else if (scp->sc_data_direction == PCI_DMA_NONE)
382                 flags = MFI_FRAME_DIR_NONE;
383
384         /*
385          * Prepare the DCDB frame
386          */
387         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
388         pthru->cmd_status = 0x0;
389         pthru->scsi_status = 0x0;
390         pthru->target_id = device_id;
391         pthru->lun = scp->device->lun;
392         pthru->cdb_len = scp->cmd_len;
393         pthru->timeout = 0;
394         pthru->flags = flags;
395         pthru->data_xfer_len = scp->request_bufflen;
396
397         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
398
399         /*
400          * Construct SGL
401          */
402         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
403             sizeof(struct megasas_sge32);
404
405         if (IS_DMA64) {
406                 pthru->flags |= MFI_FRAME_SGL64;
407                 pthru->sge_count = megasas_make_sgl64(instance, scp,
408                                                       &pthru->sgl);
409         } else
410                 pthru->sge_count = megasas_make_sgl32(instance, scp,
411                                                       &pthru->sgl);
412
413         /*
414          * Sense info specific
415          */
416         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
417         pthru->sense_buf_phys_addr_hi = 0;
418         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
419
420         sge_bytes = sge_sz * pthru->sge_count;
421
422         /*
423          * Compute the total number of frames this command consumes. FW uses
424          * this number to pull sufficient number of frames from host memory.
425          */
426         cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
427             ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
428
429         if (cmd->frame_count > 7)
430                 cmd->frame_count = 8;
431
432         return cmd->frame_count;
433 }
434
435 /**
436  * megasas_build_ldio - Prepares IOs to logical devices
437  * @instance:           Adapter soft state
438  * @scp:                SCSI command
439  * @cmd:                Command to to be prepared
440  *
441  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
442  */
443 static inline int
444 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
445                    struct megasas_cmd *cmd)
446 {
447         u32 sge_sz;
448         int sge_bytes;
449         u32 device_id;
450         u8 sc = scp->cmnd[0];
451         u16 flags = 0;
452         struct megasas_io_frame *ldio;
453
454         device_id = MEGASAS_DEV_INDEX(instance, scp);
455         ldio = (struct megasas_io_frame *)cmd->frame;
456
457         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
458                 flags = MFI_FRAME_DIR_WRITE;
459         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
460                 flags = MFI_FRAME_DIR_READ;
461
462         /*
463          * Preare the Logical IO frame: 2nd bit is zero for all read cmds
464          */
465         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
466         ldio->cmd_status = 0x0;
467         ldio->scsi_status = 0x0;
468         ldio->target_id = device_id;
469         ldio->timeout = 0;
470         ldio->reserved_0 = 0;
471         ldio->pad_0 = 0;
472         ldio->flags = flags;
473         ldio->start_lba_hi = 0;
474         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
475
476         /*
477          * 6-byte READ(0x08) or WRITE(0x0A) cdb
478          */
479         if (scp->cmd_len == 6) {
480                 ldio->lba_count = (u32) scp->cmnd[4];
481                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
482                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
483
484                 ldio->start_lba_lo &= 0x1FFFFF;
485         }
486
487         /*
488          * 10-byte READ(0x28) or WRITE(0x2A) cdb
489          */
490         else if (scp->cmd_len == 10) {
491                 ldio->lba_count = (u32) scp->cmnd[8] |
492                     ((u32) scp->cmnd[7] << 8);
493                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
494                     ((u32) scp->cmnd[3] << 16) |
495                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
496         }
497
498         /*
499          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
500          */
501         else if (scp->cmd_len == 12) {
502                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
503                     ((u32) scp->cmnd[7] << 16) |
504                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
505
506                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
507                     ((u32) scp->cmnd[3] << 16) |
508                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
509         }
510
511         /*
512          * 16-byte READ(0x88) or WRITE(0x8A) cdb
513          */
514         else if (scp->cmd_len == 16) {
515                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
516                     ((u32) scp->cmnd[11] << 16) |
517                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
518
519                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
520                     ((u32) scp->cmnd[7] << 16) |
521                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
522
523                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
524                     ((u32) scp->cmnd[3] << 16) |
525                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
526
527         }
528
529         /*
530          * Construct SGL
531          */
532         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
533             sizeof(struct megasas_sge32);
534
535         if (IS_DMA64) {
536                 ldio->flags |= MFI_FRAME_SGL64;
537                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
538         } else
539                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
540
541         /*
542          * Sense info specific
543          */
544         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
545         ldio->sense_buf_phys_addr_hi = 0;
546         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
547
548         sge_bytes = sge_sz * ldio->sge_count;
549
550         cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
551             ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
552
553         if (cmd->frame_count > 7)
554                 cmd->frame_count = 8;
555
556         return cmd->frame_count;
557 }
558
559 /**
560  * megasas_build_cmd -  Prepares a command packet
561  * @instance:           Adapter soft state
562  * @scp:                SCSI command
563  * @frame_count:        [OUT] Number of frames used to prepare this command
564  */
565 static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
566                                                     *instance,
567                                                     struct scsi_cmnd *scp,
568                                                     int *frame_count)
569 {
570         u32 logical_cmd;
571         struct megasas_cmd *cmd;
572
573         /*
574          * Find out if this is logical or physical drive command.
575          */
576         logical_cmd = MEGASAS_IS_LOGICAL(scp);
577
578         /*
579          * Logical drive command
580          */
581         if (logical_cmd) {
582
583                 if (scp->device->id >= MEGASAS_MAX_LD) {
584                         scp->result = DID_BAD_TARGET << 16;
585                         return NULL;
586                 }
587
588                 switch (scp->cmnd[0]) {
589
590                 case READ_10:
591                 case WRITE_10:
592                 case READ_12:
593                 case WRITE_12:
594                 case READ_6:
595                 case WRITE_6:
596                 case READ_16:
597                 case WRITE_16:
598                         /*
599                          * Fail for LUN > 0
600                          */
601                         if (scp->device->lun) {
602                                 scp->result = DID_BAD_TARGET << 16;
603                                 return NULL;
604                         }
605
606                         cmd = megasas_get_cmd(instance);
607
608                         if (!cmd) {
609                                 scp->result = DID_IMM_RETRY << 16;
610                                 return NULL;
611                         }
612
613                         *frame_count = megasas_build_ldio(instance, scp, cmd);
614
615                         if (!(*frame_count)) {
616                                 megasas_return_cmd(instance, cmd);
617                                 return NULL;
618                         }
619
620                         return cmd;
621
622                 default:
623                         /*
624                          * Fail for LUN > 0
625                          */
626                         if (scp->device->lun) {
627                                 scp->result = DID_BAD_TARGET << 16;
628                                 return NULL;
629                         }
630
631                         cmd = megasas_get_cmd(instance);
632
633                         if (!cmd) {
634                                 scp->result = DID_IMM_RETRY << 16;
635                                 return NULL;
636                         }
637
638                         *frame_count = megasas_build_dcdb(instance, scp, cmd);
639
640                         if (!(*frame_count)) {
641                                 megasas_return_cmd(instance, cmd);
642                                 return NULL;
643                         }
644
645                         return cmd;
646                 }
647         } else {
648                 cmd = megasas_get_cmd(instance);
649
650                 if (!cmd) {
651                         scp->result = DID_IMM_RETRY << 16;
652                         return NULL;
653                 }
654
655                 *frame_count = megasas_build_dcdb(instance, scp, cmd);
656
657                 if (!(*frame_count)) {
658                         megasas_return_cmd(instance, cmd);
659                         return NULL;
660                 }
661
662                 return cmd;
663         }
664
665         return NULL;
666 }
667
668 /**
669  * megasas_queue_command -      Queue entry point
670  * @scmd:                       SCSI command to be queued
671  * @done:                       Callback entry point
672  */
673 static int
674 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
675 {
676         u32 frame_count;
677         unsigned long flags;
678         struct megasas_cmd *cmd;
679         struct megasas_instance *instance;
680
681         instance = (struct megasas_instance *)
682             scmd->device->host->hostdata;
683         scmd->scsi_done = done;
684         scmd->result = 0;
685
686         cmd = megasas_build_cmd(instance, scmd, &frame_count);
687
688         if (!cmd) {
689                 done(scmd);
690                 return 0;
691         }
692
693         cmd->scmd = scmd;
694         scmd->SCp.ptr = (char *)cmd;
695         scmd->SCp.sent_command = jiffies;
696
697         /*
698          * Issue the command to the FW
699          */
700         spin_lock_irqsave(&instance->instance_lock, flags);
701         instance->fw_outstanding++;
702         spin_unlock_irqrestore(&instance->instance_lock, flags);
703
704         writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
705                &instance->reg_set->inbound_queue_port);
706
707         return 0;
708 }
709
710 /**
711  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
712  * @instance:                           Adapter soft state
713  *
714  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
715  * complete all its outstanding commands. Returns error if one or more IOs
716  * are pending after this time period. It also marks the controller dead.
717  */
718 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
719 {
720         int i;
721         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
722
723         for (i = 0; i < wait_time; i++) {
724
725                 if (!instance->fw_outstanding)
726                         break;
727
728                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
729                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
730                                "commands to complete\n", i,
731                                instance->fw_outstanding);
732                 }
733
734                 msleep(1000);
735         }
736
737         if (instance->fw_outstanding) {
738                 instance->hw_crit_error = 1;
739                 return FAILED;
740         }
741
742         return SUCCESS;
743 }
744
745 /**
746  * megasas_generic_reset -      Generic reset routine
747  * @scmd:                       Mid-layer SCSI command
748  *
749  * This routine implements a generic reset handler for device, bus and host
750  * reset requests. Device, bus and host specific reset handlers can use this
751  * function after they do their specific tasks.
752  */
753 static int megasas_generic_reset(struct scsi_cmnd *scmd)
754 {
755         int ret_val;
756         struct megasas_instance *instance;
757
758         instance = (struct megasas_instance *)scmd->device->host->hostdata;
759
760         printk(KERN_NOTICE "megasas: RESET -%ld cmd=%x <c=%d t=%d l=%d>\n",
761                scmd->serial_number, scmd->cmnd[0], scmd->device->channel,
762                scmd->device->id, scmd->device->lun);
763
764         if (instance->hw_crit_error) {
765                 printk(KERN_ERR "megasas: cannot recover from previous reset "
766                        "failures\n");
767                 return FAILED;
768         }
769
770         spin_unlock(scmd->device->host->host_lock);
771
772         ret_val = megasas_wait_for_outstanding(instance);
773
774         if (ret_val == SUCCESS)
775                 printk(KERN_NOTICE "megasas: reset successful \n");
776         else
777                 printk(KERN_ERR "megasas: failed to do reset\n");
778
779         spin_lock(scmd->device->host->host_lock);
780
781         return ret_val;
782 }
783
784 static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
785 {
786         unsigned long seconds;
787
788         if (scmd->SCp.ptr) {
789                 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
790
791                 if (seconds < 90) {
792                         return EH_RESET_TIMER;
793                 } else {
794                         return EH_NOT_HANDLED;
795                 }
796         }
797
798         return EH_HANDLED;
799 }
800
801 /**
802  * megasas_reset_device -       Device reset handler entry point
803  */
804 static int megasas_reset_device(struct scsi_cmnd *scmd)
805 {
806         int ret;
807
808         /*
809          * First wait for all commands to complete
810          */
811         ret = megasas_generic_reset(scmd);
812
813         return ret;
814 }
815
816 /**
817  * megasas_reset_bus_host -     Bus & host reset handler entry point
818  */
819 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
820 {
821         int ret;
822
823         /*
824          * Frist wait for all commands to complete
825          */
826         ret = megasas_generic_reset(scmd);
827
828         return ret;
829 }
830
831 /**
832  * megasas_service_aen -        Processes an event notification
833  * @instance:                   Adapter soft state
834  * @cmd:                        AEN command completed by the ISR
835  *
836  * For AEN, driver sends a command down to FW that is held by the FW till an
837  * event occurs. When an event of interest occurs, FW completes the command
838  * that it was previously holding.
839  *
840  * This routines sends SIGIO signal to processes that have registered with the
841  * driver for AEN.
842  */
843 static void
844 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
845 {
846         /*
847          * Don't signal app if it is just an aborted previously registered aen
848          */
849         if (!cmd->abort_aen)
850                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
851         else
852                 cmd->abort_aen = 0;
853
854         instance->aen_cmd = NULL;
855         megasas_return_cmd(instance, cmd);
856 }
857
858 /*
859  * Scsi host template for megaraid_sas driver
860  */
861 static struct scsi_host_template megasas_template = {
862
863         .module = THIS_MODULE,
864         .name = "LSI Logic SAS based MegaRAID driver",
865         .proc_name = "megaraid_sas",
866         .queuecommand = megasas_queue_command,
867         .eh_device_reset_handler = megasas_reset_device,
868         .eh_bus_reset_handler = megasas_reset_bus_host,
869         .eh_host_reset_handler = megasas_reset_bus_host,
870         .eh_timed_out = megasas_reset_timer,
871         .use_clustering = ENABLE_CLUSTERING,
872 };
873
874 /**
875  * megasas_complete_int_cmd -   Completes an internal command
876  * @instance:                   Adapter soft state
877  * @cmd:                        Command to be completed
878  *
879  * The megasas_issue_blocked_cmd() function waits for a command to complete
880  * after it issues a command. This function wakes up that waiting routine by
881  * calling wake_up() on the wait queue.
882  */
883 static void
884 megasas_complete_int_cmd(struct megasas_instance *instance,
885                          struct megasas_cmd *cmd)
886 {
887         cmd->cmd_status = cmd->frame->io.cmd_status;
888
889         if (cmd->cmd_status == ENODATA) {
890                 cmd->cmd_status = 0;
891         }
892         wake_up(&instance->int_cmd_wait_q);
893 }
894
895 /**
896  * megasas_complete_abort -     Completes aborting a command
897  * @instance:                   Adapter soft state
898  * @cmd:                        Cmd that was issued to abort another cmd
899  *
900  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
901  * after it issues an abort on a previously issued command. This function 
902  * wakes up all functions waiting on the same wait queue.
903  */
904 static void
905 megasas_complete_abort(struct megasas_instance *instance,
906                        struct megasas_cmd *cmd)
907 {
908         if (cmd->sync_cmd) {
909                 cmd->sync_cmd = 0;
910                 cmd->cmd_status = 0;
911                 wake_up(&instance->abort_cmd_wait_q);
912         }
913
914         return;
915 }
916
917 /**
918  * megasas_unmap_sgbuf -        Unmap SG buffers
919  * @instance:                   Adapter soft state
920  * @cmd:                        Completed command
921  */
922 static inline void
923 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
924 {
925         dma_addr_t buf_h;
926         u8 opcode;
927
928         if (cmd->scmd->use_sg) {
929                 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
930                              cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
931                 return;
932         }
933
934         if (!cmd->scmd->request_bufflen)
935                 return;
936
937         opcode = cmd->frame->hdr.cmd;
938
939         if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
940                 if (IS_DMA64)
941                         buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
942                 else
943                         buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
944         } else {
945                 if (IS_DMA64)
946                         buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
947                 else
948                         buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
949         }
950
951         pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
952                          cmd->scmd->sc_data_direction);
953         return;
954 }
955
956 /**
957  * megasas_complete_cmd -       Completes a command
958  * @instance:                   Adapter soft state
959  * @cmd:                        Command to be completed
960  * @alt_status:                 If non-zero, use this value as status to 
961  *                              SCSI mid-layer instead of the value returned
962  *                              by the FW. This should be used if caller wants
963  *                              an alternate status (as in the case of aborted
964  *                              commands)
965  */
966 static inline void
967 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
968                      u8 alt_status)
969 {
970         int exception = 0;
971         struct megasas_header *hdr = &cmd->frame->hdr;
972         unsigned long flags;
973
974         if (cmd->scmd) {
975                 cmd->scmd->SCp.ptr = (char *)0;
976         }
977
978         switch (hdr->cmd) {
979
980         case MFI_CMD_PD_SCSI_IO:
981         case MFI_CMD_LD_SCSI_IO:
982
983                 /*
984                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
985                  * issued either through an IO path or an IOCTL path. If it
986                  * was via IOCTL, we will send it to internal completion.
987                  */
988                 if (cmd->sync_cmd) {
989                         cmd->sync_cmd = 0;
990                         megasas_complete_int_cmd(instance, cmd);
991                         break;
992                 }
993
994                 /*
995                  * Don't export physical disk devices to mid-layer.
996                  */
997                 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
998                     (hdr->cmd_status == MFI_STAT_OK) &&
999                     (cmd->scmd->cmnd[0] == INQUIRY)) {
1000
1001                         if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
1002                             TYPE_DISK) {
1003                                 cmd->scmd->result = DID_BAD_TARGET << 16;
1004                                 exception = 1;
1005                         }
1006                 }
1007
1008         case MFI_CMD_LD_READ:
1009         case MFI_CMD_LD_WRITE:
1010
1011                 if (alt_status) {
1012                         cmd->scmd->result = alt_status << 16;
1013                         exception = 1;
1014                 }
1015
1016                 if (exception) {
1017
1018                         spin_lock_irqsave(&instance->instance_lock, flags);
1019                         instance->fw_outstanding--;
1020                         spin_unlock_irqrestore(&instance->instance_lock, flags);
1021
1022                         megasas_unmap_sgbuf(instance, cmd);
1023                         cmd->scmd->scsi_done(cmd->scmd);
1024                         megasas_return_cmd(instance, cmd);
1025
1026                         break;
1027                 }
1028
1029                 switch (hdr->cmd_status) {
1030
1031                 case MFI_STAT_OK:
1032                         cmd->scmd->result = DID_OK << 16;
1033                         break;
1034
1035                 case MFI_STAT_SCSI_IO_FAILED:
1036                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1037                         cmd->scmd->result =
1038                             (DID_ERROR << 16) | hdr->scsi_status;
1039                         break;
1040
1041                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1042
1043                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1044
1045                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1046                                 memset(cmd->scmd->sense_buffer, 0,
1047                                        SCSI_SENSE_BUFFERSIZE);
1048                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1049                                        hdr->sense_len);
1050
1051                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1052                         }
1053
1054                         break;
1055
1056                 case MFI_STAT_LD_OFFLINE:
1057                 case MFI_STAT_DEVICE_NOT_FOUND:
1058                         cmd->scmd->result = DID_BAD_TARGET << 16;
1059                         break;
1060
1061                 default:
1062                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1063                                hdr->cmd_status);
1064                         cmd->scmd->result = DID_ERROR << 16;
1065                         break;
1066                 }
1067
1068                 spin_lock_irqsave(&instance->instance_lock, flags);
1069                 instance->fw_outstanding--;
1070                 spin_unlock_irqrestore(&instance->instance_lock, flags);
1071
1072                 megasas_unmap_sgbuf(instance, cmd);
1073                 cmd->scmd->scsi_done(cmd->scmd);
1074                 megasas_return_cmd(instance, cmd);
1075
1076                 break;
1077
1078         case MFI_CMD_SMP:
1079         case MFI_CMD_STP:
1080         case MFI_CMD_DCMD:
1081
1082                 /*
1083                  * See if got an event notification
1084                  */
1085                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1086                         megasas_service_aen(instance, cmd);
1087                 else
1088                         megasas_complete_int_cmd(instance, cmd);
1089
1090                 break;
1091
1092         case MFI_CMD_ABORT:
1093                 /*
1094                  * Cmd issued to abort another cmd returned
1095                  */
1096                 megasas_complete_abort(instance, cmd);
1097                 break;
1098
1099         default:
1100                 printk("megasas: Unknown command completed! [0x%X]\n",
1101                        hdr->cmd);
1102                 break;
1103         }
1104 }
1105
1106 /**
1107  * megasas_deplete_reply_queue -        Processes all completed commands
1108  * @instance:                           Adapter soft state
1109  * @alt_status:                         Alternate status to be returned to
1110  *                                      SCSI mid-layer instead of the status
1111  *                                      returned by the FW
1112  */
1113 static inline int
1114 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1115 {
1116         u32 status;
1117         u32 producer;
1118         u32 consumer;
1119         u32 context;
1120         struct megasas_cmd *cmd;
1121
1122         /*
1123          * Check if it is our interrupt
1124          */
1125         status = readl(&instance->reg_set->outbound_intr_status);
1126
1127         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1128                 return IRQ_NONE;
1129         }
1130
1131         /*
1132          * Clear the interrupt by writing back the same value
1133          */
1134         writel(status, &instance->reg_set->outbound_intr_status);
1135
1136         producer = *instance->producer;
1137         consumer = *instance->consumer;
1138
1139         while (consumer != producer) {
1140                 context = instance->reply_queue[consumer];
1141
1142                 cmd = instance->cmd_list[context];
1143
1144                 megasas_complete_cmd(instance, cmd, alt_status);
1145
1146                 consumer++;
1147                 if (consumer == (instance->max_fw_cmds + 1)) {
1148                         consumer = 0;
1149                 }
1150         }
1151
1152         *instance->consumer = producer;
1153
1154         return IRQ_HANDLED;
1155 }
1156
1157 /**
1158  * megasas_isr - isr entry point
1159  */
1160 static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1161 {
1162         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1163                                            DID_OK);
1164 }
1165
1166 /**
1167  * megasas_transition_to_ready -        Move the FW to READY state
1168  * @reg_set:                            MFI register set
1169  *
1170  * During the initialization, FW passes can potentially be in any one of
1171  * several possible states. If the FW in operational, waiting-for-handshake
1172  * states, driver must take steps to bring it to ready state. Otherwise, it
1173  * has to wait for the ready state.
1174  */
1175 static int
1176 megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1177 {
1178         int i;
1179         u8 max_wait;
1180         u32 fw_state;
1181         u32 cur_state;
1182
1183         fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1184
1185         while (fw_state != MFI_STATE_READY) {
1186
1187                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1188                        " state\n");
1189                 switch (fw_state) {
1190
1191                 case MFI_STATE_FAULT:
1192
1193                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1194                         return -ENODEV;
1195
1196                 case MFI_STATE_WAIT_HANDSHAKE:
1197                         /*
1198                          * Set the CLR bit in inbound doorbell
1199                          */
1200                         writel(MFI_INIT_CLEAR_HANDSHAKE,
1201                                &reg_set->inbound_doorbell);
1202
1203                         max_wait = 2;
1204                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1205                         break;
1206
1207                 case MFI_STATE_OPERATIONAL:
1208                         /*
1209                          * Bring it to READY state; assuming max wait 2 secs
1210                          */
1211                         megasas_disable_intr(reg_set);
1212                         writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1213
1214                         max_wait = 10;
1215                         cur_state = MFI_STATE_OPERATIONAL;
1216                         break;
1217
1218                 case MFI_STATE_UNDEFINED:
1219                         /*
1220                          * This state should not last for more than 2 seconds
1221                          */
1222                         max_wait = 2;
1223                         cur_state = MFI_STATE_UNDEFINED;
1224                         break;
1225
1226                 case MFI_STATE_BB_INIT:
1227                         max_wait = 2;
1228                         cur_state = MFI_STATE_BB_INIT;
1229                         break;
1230
1231                 case MFI_STATE_FW_INIT:
1232                         max_wait = 20;
1233                         cur_state = MFI_STATE_FW_INIT;
1234                         break;
1235
1236                 case MFI_STATE_FW_INIT_2:
1237                         max_wait = 20;
1238                         cur_state = MFI_STATE_FW_INIT_2;
1239                         break;
1240
1241                 case MFI_STATE_DEVICE_SCAN:
1242                         max_wait = 20;
1243                         cur_state = MFI_STATE_DEVICE_SCAN;
1244                         break;
1245
1246                 case MFI_STATE_FLUSH_CACHE:
1247                         max_wait = 20;
1248                         cur_state = MFI_STATE_FLUSH_CACHE;
1249                         break;
1250
1251                 default:
1252                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1253                                fw_state);
1254                         return -ENODEV;
1255                 }
1256
1257                 /*
1258                  * The cur_state should not last for more than max_wait secs
1259                  */
1260                 for (i = 0; i < (max_wait * 1000); i++) {
1261                         fw_state = MFI_STATE_MASK &
1262                             readl(&reg_set->outbound_msg_0);
1263
1264                         if (fw_state == cur_state) {
1265                                 msleep(1);
1266                         } else
1267                                 break;
1268                 }
1269
1270                 /*
1271                  * Return error if fw_state hasn't changed after max_wait
1272                  */
1273                 if (fw_state == cur_state) {
1274                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1275                                "in %d secs\n", fw_state, max_wait);
1276                         return -ENODEV;
1277                 }
1278         };
1279
1280         return 0;
1281 }
1282
1283 /**
1284  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1285  * @instance:                           Adapter soft state
1286  */
1287 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1288 {
1289         int i;
1290         u32 max_cmd = instance->max_fw_cmds;
1291         struct megasas_cmd *cmd;
1292
1293         if (!instance->frame_dma_pool)
1294                 return;
1295
1296         /*
1297          * Return all frames to pool
1298          */
1299         for (i = 0; i < max_cmd; i++) {
1300
1301                 cmd = instance->cmd_list[i];
1302
1303                 if (cmd->frame)
1304                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1305                                       cmd->frame_phys_addr);
1306
1307                 if (cmd->sense)
1308                         pci_pool_free(instance->sense_dma_pool, cmd->frame,
1309                                       cmd->sense_phys_addr);
1310         }
1311
1312         /*
1313          * Now destroy the pool itself
1314          */
1315         pci_pool_destroy(instance->frame_dma_pool);
1316         pci_pool_destroy(instance->sense_dma_pool);
1317
1318         instance->frame_dma_pool = NULL;
1319         instance->sense_dma_pool = NULL;
1320 }
1321
1322 /**
1323  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1324  * @instance:                   Adapter soft state
1325  *
1326  * Each command packet has an embedded DMA memory buffer that is used for
1327  * filling MFI frame and the SG list that immediately follows the frame. This
1328  * function creates those DMA memory buffers for each command packet by using
1329  * PCI pool facility.
1330  */
1331 static int megasas_create_frame_pool(struct megasas_instance *instance)
1332 {
1333         int i;
1334         u32 max_cmd;
1335         u32 sge_sz;
1336         u32 sgl_sz;
1337         u32 total_sz;
1338         u32 frame_count;
1339         struct megasas_cmd *cmd;
1340
1341         max_cmd = instance->max_fw_cmds;
1342
1343         /*
1344          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1345          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1346          */
1347         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1348             sizeof(struct megasas_sge32);
1349
1350         /*
1351          * Calculated the number of 64byte frames required for SGL
1352          */
1353         sgl_sz = sge_sz * instance->max_num_sge;
1354         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1355
1356         /*
1357          * We need one extra frame for the MFI command
1358          */
1359         frame_count++;
1360
1361         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1362         /*
1363          * Use DMA pool facility provided by PCI layer
1364          */
1365         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1366                                                    instance->pdev, total_sz, 64,
1367                                                    0);
1368
1369         if (!instance->frame_dma_pool) {
1370                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1371                 return -ENOMEM;
1372         }
1373
1374         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1375                                                    instance->pdev, 128, 4, 0);
1376
1377         if (!instance->sense_dma_pool) {
1378                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1379
1380                 pci_pool_destroy(instance->frame_dma_pool);
1381                 instance->frame_dma_pool = NULL;
1382
1383                 return -ENOMEM;
1384         }
1385
1386         /*
1387          * Allocate and attach a frame to each of the commands in cmd_list.
1388          * By making cmd->index as the context instead of the &cmd, we can
1389          * always use 32bit context regardless of the architecture
1390          */
1391         for (i = 0; i < max_cmd; i++) {
1392
1393                 cmd = instance->cmd_list[i];
1394
1395                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1396                                             GFP_KERNEL, &cmd->frame_phys_addr);
1397
1398                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1399                                             GFP_KERNEL, &cmd->sense_phys_addr);
1400
1401                 /*
1402                  * megasas_teardown_frame_pool() takes care of freeing
1403                  * whatever has been allocated
1404                  */
1405                 if (!cmd->frame || !cmd->sense) {
1406                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1407                         megasas_teardown_frame_pool(instance);
1408                         return -ENOMEM;
1409                 }
1410
1411                 cmd->frame->io.context = cmd->index;
1412         }
1413
1414         return 0;
1415 }
1416
1417 /**
1418  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1419  * @instance:           Adapter soft state
1420  */
1421 static void megasas_free_cmds(struct megasas_instance *instance)
1422 {
1423         int i;
1424         /* First free the MFI frame pool */
1425         megasas_teardown_frame_pool(instance);
1426
1427         /* Free all the commands in the cmd_list */
1428         for (i = 0; i < instance->max_fw_cmds; i++)
1429                 kfree(instance->cmd_list[i]);
1430
1431         /* Free the cmd_list buffer itself */
1432         kfree(instance->cmd_list);
1433         instance->cmd_list = NULL;
1434
1435         INIT_LIST_HEAD(&instance->cmd_pool);
1436 }
1437
1438 /**
1439  * megasas_alloc_cmds - Allocates the command packets
1440  * @instance:           Adapter soft state
1441  *
1442  * Each command that is issued to the FW, whether IO commands from the OS or
1443  * internal commands like IOCTLs, are wrapped in local data structure called
1444  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1445  * the FW.
1446  *
1447  * Each frame has a 32-bit field called context (tag). This context is used
1448  * to get back the megasas_cmd from the frame when a frame gets completed in
1449  * the ISR. Typically the address of the megasas_cmd itself would be used as
1450  * the context. But we wanted to keep the differences between 32 and 64 bit
1451  * systems to the mininum. We always use 32 bit integers for the context. In
1452  * this driver, the 32 bit values are the indices into an array cmd_list.
1453  * This array is used only to look up the megasas_cmd given the context. The
1454  * free commands themselves are maintained in a linked list called cmd_pool.
1455  */
1456 static int megasas_alloc_cmds(struct megasas_instance *instance)
1457 {
1458         int i;
1459         int j;
1460         u32 max_cmd;
1461         struct megasas_cmd *cmd;
1462
1463         max_cmd = instance->max_fw_cmds;
1464
1465         /*
1466          * instance->cmd_list is an array of struct megasas_cmd pointers.
1467          * Allocate the dynamic array first and then allocate individual
1468          * commands.
1469          */
1470         instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1471                                      GFP_KERNEL);
1472
1473         if (!instance->cmd_list) {
1474                 printk(KERN_DEBUG "megasas: out of memory\n");
1475                 return -ENOMEM;
1476         }
1477
1478         memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1479
1480         for (i = 0; i < max_cmd; i++) {
1481                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1482                                                 GFP_KERNEL);
1483
1484                 if (!instance->cmd_list[i]) {
1485
1486                         for (j = 0; j < i; j++)
1487                                 kfree(instance->cmd_list[j]);
1488
1489                         kfree(instance->cmd_list);
1490                         instance->cmd_list = NULL;
1491
1492                         return -ENOMEM;
1493                 }
1494         }
1495
1496         /*
1497          * Add all the commands to command pool (instance->cmd_pool)
1498          */
1499         for (i = 0; i < max_cmd; i++) {
1500                 cmd = instance->cmd_list[i];
1501                 memset(cmd, 0, sizeof(struct megasas_cmd));
1502                 cmd->index = i;
1503                 cmd->instance = instance;
1504
1505                 list_add_tail(&cmd->list, &instance->cmd_pool);
1506         }
1507
1508         /*
1509          * Create a frame pool and assign one frame to each cmd
1510          */
1511         if (megasas_create_frame_pool(instance)) {
1512                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1513                 megasas_free_cmds(instance);
1514         }
1515
1516         return 0;
1517 }
1518
1519 /**
1520  * megasas_get_controller_info -        Returns FW's controller structure
1521  * @instance:                           Adapter soft state
1522  * @ctrl_info:                          Controller information structure
1523  *
1524  * Issues an internal command (DCMD) to get the FW's controller structure.
1525  * This information is mainly used to find out the maximum IO transfer per
1526  * command supported by the FW.
1527  */
1528 static int
1529 megasas_get_ctrl_info(struct megasas_instance *instance,
1530                       struct megasas_ctrl_info *ctrl_info)
1531 {
1532         int ret = 0;
1533         struct megasas_cmd *cmd;
1534         struct megasas_dcmd_frame *dcmd;
1535         struct megasas_ctrl_info *ci;
1536         dma_addr_t ci_h = 0;
1537
1538         cmd = megasas_get_cmd(instance);
1539
1540         if (!cmd) {
1541                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1542                 return -ENOMEM;
1543         }
1544
1545         dcmd = &cmd->frame->dcmd;
1546
1547         ci = pci_alloc_consistent(instance->pdev,
1548                                   sizeof(struct megasas_ctrl_info), &ci_h);
1549
1550         if (!ci) {
1551                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1552                 megasas_return_cmd(instance, cmd);
1553                 return -ENOMEM;
1554         }
1555
1556         memset(ci, 0, sizeof(*ci));
1557         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1558
1559         dcmd->cmd = MFI_CMD_DCMD;
1560         dcmd->cmd_status = 0xFF;
1561         dcmd->sge_count = 1;
1562         dcmd->flags = MFI_FRAME_DIR_READ;
1563         dcmd->timeout = 0;
1564         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1565         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1566         dcmd->sgl.sge32[0].phys_addr = ci_h;
1567         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1568
1569         if (!megasas_issue_polled(instance, cmd)) {
1570                 ret = 0;
1571                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1572         } else {
1573                 ret = -1;
1574         }
1575
1576         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1577                             ci, ci_h);
1578
1579         megasas_return_cmd(instance, cmd);
1580         return ret;
1581 }
1582
1583 /**
1584  * megasas_init_mfi -   Initializes the FW
1585  * @instance:           Adapter soft state
1586  *
1587  * This is the main function for initializing MFI firmware.
1588  */
1589 static int megasas_init_mfi(struct megasas_instance *instance)
1590 {
1591         u32 context_sz;
1592         u32 reply_q_sz;
1593         u32 max_sectors_1;
1594         u32 max_sectors_2;
1595         struct megasas_register_set __iomem *reg_set;
1596
1597         struct megasas_cmd *cmd;
1598         struct megasas_ctrl_info *ctrl_info;
1599
1600         struct megasas_init_frame *init_frame;
1601         struct megasas_init_queue_info *initq_info;
1602         dma_addr_t init_frame_h;
1603         dma_addr_t initq_info_h;
1604
1605         /*
1606          * Map the message registers
1607          */
1608         instance->base_addr = pci_resource_start(instance->pdev, 0);
1609
1610         if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1611                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1612                 return -EBUSY;
1613         }
1614
1615         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1616
1617         if (!instance->reg_set) {
1618                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1619                 goto fail_ioremap;
1620         }
1621
1622         reg_set = instance->reg_set;
1623
1624         /*
1625          * We expect the FW state to be READY
1626          */
1627         if (megasas_transition_to_ready(instance->reg_set))
1628                 goto fail_ready_state;
1629
1630         /*
1631          * Get various operational parameters from status register
1632          */
1633         instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1634         instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1635             0x10;
1636         /*
1637          * Create a pool of commands
1638          */
1639         if (megasas_alloc_cmds(instance))
1640                 goto fail_alloc_cmds;
1641
1642         /*
1643          * Allocate memory for reply queue. Length of reply queue should
1644          * be _one_ more than the maximum commands handled by the firmware.
1645          *
1646          * Note: When FW completes commands, it places corresponding contex
1647          * values in this circular reply queue. This circular queue is a fairly
1648          * typical producer-consumer queue. FW is the producer (of completed
1649          * commands) and the driver is the consumer.
1650          */
1651         context_sz = sizeof(u32);
1652         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1653
1654         instance->reply_queue = pci_alloc_consistent(instance->pdev,
1655                                                      reply_q_sz,
1656                                                      &instance->reply_queue_h);
1657
1658         if (!instance->reply_queue) {
1659                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1660                 goto fail_reply_queue;
1661         }
1662
1663         /*
1664          * Prepare a init frame. Note the init frame points to queue info
1665          * structure. Each frame has SGL allocated after first 64 bytes. For
1666          * this frame - since we don't need any SGL - we use SGL's space as
1667          * queue info structure
1668          *
1669          * We will not get a NULL command below. We just created the pool.
1670          */
1671         cmd = megasas_get_cmd(instance);
1672
1673         init_frame = (struct megasas_init_frame *)cmd->frame;
1674         initq_info = (struct megasas_init_queue_info *)
1675             ((unsigned long)init_frame + 64);
1676
1677         init_frame_h = cmd->frame_phys_addr;
1678         initq_info_h = init_frame_h + 64;
1679
1680         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1681         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1682
1683         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1684         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1685
1686         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1687         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1688
1689         init_frame->cmd = MFI_CMD_INIT;
1690         init_frame->cmd_status = 0xFF;
1691         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1692
1693         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1694
1695         /*
1696          * Issue the init frame in polled mode
1697          */
1698         if (megasas_issue_polled(instance, cmd)) {
1699                 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1700                 goto fail_fw_init;
1701         }
1702
1703         megasas_return_cmd(instance, cmd);
1704
1705         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1706
1707         /*
1708          * Compute the max allowed sectors per IO: The controller info has two
1709          * limits on max sectors. Driver should use the minimum of these two.
1710          *
1711          * 1 << stripe_sz_ops.min = max sectors per strip
1712          *
1713          * Note that older firmwares ( < FW ver 30) didn't report information
1714          * to calculate max_sectors_1. So the number ended up as zero always.
1715          */
1716         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1717
1718                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1719                     ctrl_info->max_strips_per_io;
1720                 max_sectors_2 = ctrl_info->max_request_size;
1721
1722                 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1723                     ? max_sectors_1 : max_sectors_2;
1724         } else
1725                 instance->max_sectors_per_req = instance->max_num_sge *
1726                     PAGE_SIZE / 512;
1727
1728         kfree(ctrl_info);
1729
1730         return 0;
1731
1732       fail_fw_init:
1733         megasas_return_cmd(instance, cmd);
1734
1735         pci_free_consistent(instance->pdev, reply_q_sz,
1736                             instance->reply_queue, instance->reply_queue_h);
1737       fail_reply_queue:
1738         megasas_free_cmds(instance);
1739
1740       fail_alloc_cmds:
1741       fail_ready_state:
1742         iounmap(instance->reg_set);
1743
1744       fail_ioremap:
1745         pci_release_regions(instance->pdev);
1746
1747         return -EINVAL;
1748 }
1749
1750 /**
1751  * megasas_release_mfi -        Reverses the FW initialization
1752  * @intance:                    Adapter soft state
1753  */
1754 static void megasas_release_mfi(struct megasas_instance *instance)
1755 {
1756         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1757
1758         pci_free_consistent(instance->pdev, reply_q_sz,
1759                             instance->reply_queue, instance->reply_queue_h);
1760
1761         megasas_free_cmds(instance);
1762
1763         iounmap(instance->reg_set);
1764
1765         pci_release_regions(instance->pdev);
1766 }
1767
1768 /**
1769  * megasas_get_seq_num -        Gets latest event sequence numbers
1770  * @instance:                   Adapter soft state
1771  * @eli:                        FW event log sequence numbers information
1772  *
1773  * FW maintains a log of all events in a non-volatile area. Upper layers would
1774  * usually find out the latest sequence number of the events, the seq number at
1775  * the boot etc. They would "read" all the events below the latest seq number
1776  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1777  * number), they would subsribe to AEN (asynchronous event notification) and
1778  * wait for the events to happen.
1779  */
1780 static int
1781 megasas_get_seq_num(struct megasas_instance *instance,
1782                     struct megasas_evt_log_info *eli)
1783 {
1784         struct megasas_cmd *cmd;
1785         struct megasas_dcmd_frame *dcmd;
1786         struct megasas_evt_log_info *el_info;
1787         dma_addr_t el_info_h = 0;
1788
1789         cmd = megasas_get_cmd(instance);
1790
1791         if (!cmd) {
1792                 return -ENOMEM;
1793         }
1794
1795         dcmd = &cmd->frame->dcmd;
1796         el_info = pci_alloc_consistent(instance->pdev,
1797                                        sizeof(struct megasas_evt_log_info),
1798                                        &el_info_h);
1799
1800         if (!el_info) {
1801                 megasas_return_cmd(instance, cmd);
1802                 return -ENOMEM;
1803         }
1804
1805         memset(el_info, 0, sizeof(*el_info));
1806         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1807
1808         dcmd->cmd = MFI_CMD_DCMD;
1809         dcmd->cmd_status = 0x0;
1810         dcmd->sge_count = 1;
1811         dcmd->flags = MFI_FRAME_DIR_READ;
1812         dcmd->timeout = 0;
1813         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1814         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1815         dcmd->sgl.sge32[0].phys_addr = el_info_h;
1816         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1817
1818         megasas_issue_blocked_cmd(instance, cmd);
1819
1820         /*
1821          * Copy the data back into callers buffer
1822          */
1823         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1824
1825         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1826                             el_info, el_info_h);
1827
1828         megasas_return_cmd(instance, cmd);
1829
1830         return 0;
1831 }
1832
1833 /**
1834  * megasas_register_aen -       Registers for asynchronous event notification
1835  * @instance:                   Adapter soft state
1836  * @seq_num:                    The starting sequence number
1837  * @class_locale:               Class of the event
1838  *
1839  * This function subscribes for AEN for events beyond the @seq_num. It requests
1840  * to be notified if and only if the event is of type @class_locale
1841  */
1842 static int
1843 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1844                      u32 class_locale_word)
1845 {
1846         int ret_val;
1847         struct megasas_cmd *cmd;
1848         struct megasas_dcmd_frame *dcmd;
1849         union megasas_evt_class_locale curr_aen;
1850         union megasas_evt_class_locale prev_aen;
1851
1852         /*
1853          * If there an AEN pending already (aen_cmd), check if the
1854          * class_locale of that pending AEN is inclusive of the new
1855          * AEN request we currently have. If it is, then we don't have
1856          * to do anything. In other words, whichever events the current
1857          * AEN request is subscribing to, have already been subscribed
1858          * to.
1859          *
1860          * If the old_cmd is _not_ inclusive, then we have to abort
1861          * that command, form a class_locale that is superset of both
1862          * old and current and re-issue to the FW
1863          */
1864
1865         curr_aen.word = class_locale_word;
1866
1867         if (instance->aen_cmd) {
1868
1869                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1870
1871                 /*
1872                  * A class whose enum value is smaller is inclusive of all
1873                  * higher values. If a PROGRESS (= -1) was previously
1874                  * registered, then a new registration requests for higher
1875                  * classes need not be sent to FW. They are automatically
1876                  * included.
1877                  *
1878                  * Locale numbers don't have such hierarchy. They are bitmap
1879                  * values
1880                  */
1881                 if ((prev_aen.members.class <= curr_aen.members.class) &&
1882                     !((prev_aen.members.locale & curr_aen.members.locale) ^
1883                       curr_aen.members.locale)) {
1884                         /*
1885                          * Previously issued event registration includes
1886                          * current request. Nothing to do.
1887                          */
1888                         return 0;
1889                 } else {
1890                         curr_aen.members.locale |= prev_aen.members.locale;
1891
1892                         if (prev_aen.members.class < curr_aen.members.class)
1893                                 curr_aen.members.class = prev_aen.members.class;
1894
1895                         instance->aen_cmd->abort_aen = 1;
1896                         ret_val = megasas_issue_blocked_abort_cmd(instance,
1897                                                                   instance->
1898                                                                   aen_cmd);
1899
1900                         if (ret_val) {
1901                                 printk(KERN_DEBUG "megasas: Failed to abort "
1902                                        "previous AEN command\n");
1903                                 return ret_val;
1904                         }
1905                 }
1906         }
1907
1908         cmd = megasas_get_cmd(instance);
1909
1910         if (!cmd)
1911                 return -ENOMEM;
1912
1913         dcmd = &cmd->frame->dcmd;
1914
1915         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1916
1917         /*
1918          * Prepare DCMD for aen registration
1919          */
1920         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1921
1922         dcmd->cmd = MFI_CMD_DCMD;
1923         dcmd->cmd_status = 0x0;
1924         dcmd->sge_count = 1;
1925         dcmd->flags = MFI_FRAME_DIR_READ;
1926         dcmd->timeout = 0;
1927         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1928         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1929         dcmd->mbox.w[0] = seq_num;
1930         dcmd->mbox.w[1] = curr_aen.word;
1931         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1932         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1933
1934         /*
1935          * Store reference to the cmd used to register for AEN. When an
1936          * application wants us to register for AEN, we have to abort this
1937          * cmd and re-register with a new EVENT LOCALE supplied by that app
1938          */
1939         instance->aen_cmd = cmd;
1940
1941         /*
1942          * Issue the aen registration frame
1943          */
1944         writel(cmd->frame_phys_addr >> 3,
1945                &instance->reg_set->inbound_queue_port);
1946
1947         return 0;
1948 }
1949
1950 /**
1951  * megasas_start_aen -  Subscribes to AEN during driver load time
1952  * @instance:           Adapter soft state
1953  */
1954 static int megasas_start_aen(struct megasas_instance *instance)
1955 {
1956         struct megasas_evt_log_info eli;
1957         union megasas_evt_class_locale class_locale;
1958
1959         /*
1960          * Get the latest sequence number from FW
1961          */
1962         memset(&eli, 0, sizeof(eli));
1963
1964         if (megasas_get_seq_num(instance, &eli))
1965                 return -1;
1966
1967         /*
1968          * Register AEN with FW for latest sequence number plus 1
1969          */
1970         class_locale.members.reserved = 0;
1971         class_locale.members.locale = MR_EVT_LOCALE_ALL;
1972         class_locale.members.class = MR_EVT_CLASS_DEBUG;
1973
1974         return megasas_register_aen(instance, eli.newest_seq_num + 1,
1975                                     class_locale.word);
1976 }
1977
1978 /**
1979  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
1980  * @instance:           Adapter soft state
1981  */
1982 static int megasas_io_attach(struct megasas_instance *instance)
1983 {
1984         struct Scsi_Host *host = instance->host;
1985
1986         /*
1987          * Export parameters required by SCSI mid-layer
1988          */
1989         host->irq = instance->pdev->irq;
1990         host->unique_id = instance->unique_id;
1991         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1992         host->this_id = instance->init_id;
1993         host->sg_tablesize = instance->max_num_sge;
1994         host->max_sectors = instance->max_sectors_per_req;
1995         host->cmd_per_lun = 128;
1996         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1997         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1998         host->max_lun = MEGASAS_MAX_LUN;
1999
2000         /*
2001          * Notify the mid-layer about the new controller
2002          */
2003         if (scsi_add_host(host, &instance->pdev->dev)) {
2004                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2005                 return -ENODEV;
2006         }
2007
2008         /*
2009          * Trigger SCSI to scan our drives
2010          */
2011         scsi_scan_host(host);
2012         return 0;
2013 }
2014
2015 /**
2016  * megasas_probe_one -  PCI hotplug entry point
2017  * @pdev:               PCI device structure
2018  * @id:                 PCI ids of supported hotplugged adapter 
2019  */
2020 static int __devinit
2021 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2022 {
2023         int rval;
2024         struct Scsi_Host *host;
2025         struct megasas_instance *instance;
2026
2027         /*
2028          * Announce PCI information
2029          */
2030         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2031                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2032                pdev->subsystem_device);
2033
2034         printk("bus %d:slot %d:func %d\n",
2035                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2036
2037         /*
2038          * PCI prepping: enable device set bus mastering and dma mask
2039          */
2040         rval = pci_enable_device(pdev);
2041
2042         if (rval) {
2043                 return rval;
2044         }
2045
2046         pci_set_master(pdev);
2047
2048         /*
2049          * All our contollers are capable of performing 64-bit DMA
2050          */
2051         if (IS_DMA64) {
2052                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2053
2054                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2055                                 goto fail_set_dma_mask;
2056                 }
2057         } else {
2058                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2059                         goto fail_set_dma_mask;
2060         }
2061
2062         host = scsi_host_alloc(&megasas_template,
2063                                sizeof(struct megasas_instance));
2064
2065         if (!host) {
2066                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2067                 goto fail_alloc_instance;
2068         }
2069
2070         instance = (struct megasas_instance *)host->hostdata;
2071         memset(instance, 0, sizeof(*instance));
2072
2073         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2074                                                   &instance->producer_h);
2075         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2076                                                   &instance->consumer_h);
2077
2078         if (!instance->producer || !instance->consumer) {
2079                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2080                        "producer, consumer\n");
2081                 goto fail_alloc_dma_buf;
2082         }
2083
2084         *instance->producer = 0;
2085         *instance->consumer = 0;
2086
2087         instance->evt_detail = pci_alloc_consistent(pdev,
2088                                                     sizeof(struct
2089                                                            megasas_evt_detail),
2090                                                     &instance->evt_detail_h);
2091
2092         if (!instance->evt_detail) {
2093                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2094                        "event detail structure\n");
2095                 goto fail_alloc_dma_buf;
2096         }
2097
2098         /*
2099          * Initialize locks and queues
2100          */
2101         INIT_LIST_HEAD(&instance->cmd_pool);
2102
2103         init_waitqueue_head(&instance->int_cmd_wait_q);
2104         init_waitqueue_head(&instance->abort_cmd_wait_q);
2105
2106         spin_lock_init(&instance->cmd_pool_lock);
2107         spin_lock_init(&instance->instance_lock);
2108
2109         sema_init(&instance->aen_mutex, 1);
2110         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2111
2112         /*
2113          * Initialize PCI related and misc parameters
2114          */
2115         instance->pdev = pdev;
2116         instance->host = host;
2117         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2118         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2119
2120         /*
2121          * Initialize MFI Firmware
2122          */
2123         if (megasas_init_mfi(instance))
2124                 goto fail_init_mfi;
2125
2126         /*
2127          * Register IRQ
2128          */
2129         if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2130                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2131                 goto fail_irq;
2132         }
2133
2134         megasas_enable_intr(instance->reg_set);
2135
2136         /*
2137          * Store instance in PCI softstate
2138          */
2139         pci_set_drvdata(pdev, instance);
2140
2141         /*
2142          * Add this controller to megasas_mgmt_info structure so that it
2143          * can be exported to management applications
2144          */
2145         megasas_mgmt_info.count++;
2146         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2147         megasas_mgmt_info.max_index++;
2148
2149         /*
2150          * Initiate AEN (Asynchronous Event Notification)
2151          */
2152         if (megasas_start_aen(instance)) {
2153                 printk(KERN_DEBUG "megasas: start aen failed\n");
2154                 goto fail_start_aen;
2155         }
2156
2157         /*
2158          * Register with SCSI mid-layer
2159          */
2160         if (megasas_io_attach(instance))
2161                 goto fail_io_attach;
2162
2163         return 0;
2164
2165       fail_start_aen:
2166       fail_io_attach:
2167         megasas_mgmt_info.count--;
2168         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2169         megasas_mgmt_info.max_index--;
2170
2171         pci_set_drvdata(pdev, NULL);
2172         megasas_disable_intr(instance->reg_set);
2173         free_irq(instance->pdev->irq, instance);
2174
2175         megasas_release_mfi(instance);
2176
2177       fail_irq:
2178       fail_init_mfi:
2179       fail_alloc_dma_buf:
2180         if (instance->evt_detail)
2181                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2182                                     instance->evt_detail,
2183                                     instance->evt_detail_h);
2184
2185         if (instance->producer)
2186                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2187                                     instance->producer_h);
2188         if (instance->consumer)
2189                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2190                                     instance->consumer_h);
2191         scsi_host_put(host);
2192
2193       fail_alloc_instance:
2194       fail_set_dma_mask:
2195         pci_disable_device(pdev);
2196
2197         return -ENODEV;
2198 }
2199
2200 /**
2201  * megasas_flush_cache -        Requests FW to flush all its caches
2202  * @instance:                   Adapter soft state
2203  */
2204 static void megasas_flush_cache(struct megasas_instance *instance)
2205 {
2206         struct megasas_cmd *cmd;
2207         struct megasas_dcmd_frame *dcmd;
2208
2209         cmd = megasas_get_cmd(instance);
2210
2211         if (!cmd)
2212                 return;
2213
2214         dcmd = &cmd->frame->dcmd;
2215
2216         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2217
2218         dcmd->cmd = MFI_CMD_DCMD;
2219         dcmd->cmd_status = 0x0;
2220         dcmd->sge_count = 0;
2221         dcmd->flags = MFI_FRAME_DIR_NONE;
2222         dcmd->timeout = 0;
2223         dcmd->data_xfer_len = 0;
2224         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2225         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2226
2227         megasas_issue_blocked_cmd(instance, cmd);
2228
2229         megasas_return_cmd(instance, cmd);
2230
2231         return;
2232 }
2233
2234 /**
2235  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2236  * @instance:                           Adapter soft state
2237  */
2238 static void megasas_shutdown_controller(struct megasas_instance *instance)
2239 {
2240         struct megasas_cmd *cmd;
2241         struct megasas_dcmd_frame *dcmd;
2242
2243         cmd = megasas_get_cmd(instance);
2244
2245         if (!cmd)
2246                 return;
2247
2248         if (instance->aen_cmd)
2249                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2250
2251         dcmd = &cmd->frame->dcmd;
2252
2253         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2254
2255         dcmd->cmd = MFI_CMD_DCMD;
2256         dcmd->cmd_status = 0x0;
2257         dcmd->sge_count = 0;
2258         dcmd->flags = MFI_FRAME_DIR_NONE;
2259         dcmd->timeout = 0;
2260         dcmd->data_xfer_len = 0;
2261         dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2262
2263         megasas_issue_blocked_cmd(instance, cmd);
2264
2265         megasas_return_cmd(instance, cmd);
2266
2267         return;
2268 }
2269
2270 /**
2271  * megasas_detach_one - PCI hot"un"plug entry point
2272  * @pdev:               PCI device structure
2273  */
2274 static void megasas_detach_one(struct pci_dev *pdev)
2275 {
2276         int i;
2277         struct Scsi_Host *host;
2278         struct megasas_instance *instance;
2279
2280         instance = pci_get_drvdata(pdev);
2281         host = instance->host;
2282
2283         scsi_remove_host(instance->host);
2284         megasas_flush_cache(instance);
2285         megasas_shutdown_controller(instance);
2286
2287         /*
2288          * Take the instance off the instance array. Note that we will not
2289          * decrement the max_index. We let this array be sparse array
2290          */
2291         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2292                 if (megasas_mgmt_info.instance[i] == instance) {
2293                         megasas_mgmt_info.count--;
2294                         megasas_mgmt_info.instance[i] = NULL;
2295
2296                         break;
2297                 }
2298         }
2299
2300         pci_set_drvdata(instance->pdev, NULL);
2301
2302         megasas_disable_intr(instance->reg_set);
2303
2304         free_irq(instance->pdev->irq, instance);
2305
2306         megasas_release_mfi(instance);
2307
2308         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2309                             instance->evt_detail, instance->evt_detail_h);
2310
2311         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2312                             instance->producer_h);
2313
2314         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2315                             instance->consumer_h);
2316
2317         scsi_host_put(host);
2318
2319         pci_set_drvdata(pdev, NULL);
2320
2321         pci_disable_device(pdev);
2322
2323         return;
2324 }
2325
2326 /**
2327  * megasas_shutdown -   Shutdown entry point
2328  * @device:             Generic device structure
2329  */
2330 static void megasas_shutdown(struct pci_dev *pdev)
2331 {
2332         struct megasas_instance *instance = pci_get_drvdata(pdev);
2333         megasas_flush_cache(instance);
2334 }
2335
2336 /**
2337  * megasas_mgmt_open -  char node "open" entry point
2338  */
2339 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2340 {
2341         /*
2342          * Allow only those users with admin rights
2343          */
2344         if (!capable(CAP_SYS_ADMIN))
2345                 return -EACCES;
2346
2347         return 0;
2348 }
2349
2350 /**
2351  * megasas_mgmt_release - char node "release" entry point
2352  */
2353 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2354 {
2355         filep->private_data = NULL;
2356         fasync_helper(-1, filep, 0, &megasas_async_queue);
2357
2358         return 0;
2359 }
2360
2361 /**
2362  * megasas_mgmt_fasync -        Async notifier registration from applications
2363  *
2364  * This function adds the calling process to a driver global queue. When an
2365  * event occurs, SIGIO will be sent to all processes in this queue.
2366  */
2367 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2368 {
2369         int rc;
2370
2371         down(&megasas_async_queue_mutex);
2372
2373         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2374
2375         up(&megasas_async_queue_mutex);
2376
2377         if (rc >= 0) {
2378                 /* For sanity check when we get ioctl */
2379                 filep->private_data = filep;
2380                 return 0;
2381         }
2382
2383         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2384
2385         return rc;
2386 }
2387
2388 /**
2389  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2390  * @instance:                   Adapter soft state
2391  * @argp:                       User's ioctl packet
2392  */
2393 static int
2394 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2395                       struct megasas_iocpacket __user * user_ioc,
2396                       struct megasas_iocpacket *ioc)
2397 {
2398         struct megasas_sge32 *kern_sge32;
2399         struct megasas_cmd *cmd;
2400         void *kbuff_arr[MAX_IOCTL_SGE];
2401         dma_addr_t buf_handle = 0;
2402         int error = 0, i;
2403         void *sense = NULL;
2404         dma_addr_t sense_handle;
2405         u32 *sense_ptr;
2406
2407         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2408
2409         if (ioc->sge_count > MAX_IOCTL_SGE) {
2410                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2411                        ioc->sge_count, MAX_IOCTL_SGE);
2412                 return -EINVAL;
2413         }
2414
2415         cmd = megasas_get_cmd(instance);
2416         if (!cmd) {
2417                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2418                 return -ENOMEM;
2419         }
2420
2421         /*
2422          * User's IOCTL packet has 2 frames (maximum). Copy those two
2423          * frames into our cmd's frames. cmd->frame's context will get
2424          * overwritten when we copy from user's frames. So set that value
2425          * alone separately
2426          */
2427         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2428         cmd->frame->hdr.context = cmd->index;
2429
2430         /*
2431          * The management interface between applications and the fw uses
2432          * MFI frames. E.g, RAID configuration changes, LD property changes
2433          * etc are accomplishes through different kinds of MFI frames. The
2434          * driver needs to care only about substituting user buffers with
2435          * kernel buffers in SGLs. The location of SGL is embedded in the
2436          * struct iocpacket itself.
2437          */
2438         kern_sge32 = (struct megasas_sge32 *)
2439             ((unsigned long)cmd->frame + ioc->sgl_off);
2440
2441         /*
2442          * For each user buffer, create a mirror buffer and copy in
2443          */
2444         for (i = 0; i < ioc->sge_count; i++) {
2445                 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2446                                                     ioc->sgl[i].iov_len,
2447                                                     &buf_handle);
2448                 if (!kbuff_arr[i]) {
2449                         printk(KERN_DEBUG "megasas: Failed to alloc "
2450                                "kernel SGL buffer for IOCTL \n");
2451                         error = -ENOMEM;
2452                         goto out;
2453                 }
2454
2455                 /*
2456                  * We don't change the dma_coherent_mask, so
2457                  * pci_alloc_consistent only returns 32bit addresses
2458                  */
2459                 kern_sge32[i].phys_addr = (u32) buf_handle;
2460                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2461
2462                 /*
2463                  * We created a kernel buffer corresponding to the
2464                  * user buffer. Now copy in from the user buffer
2465                  */
2466                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2467                                    (u32) (ioc->sgl[i].iov_len))) {
2468                         error = -EFAULT;
2469                         goto out;
2470                 }
2471         }
2472
2473         if (ioc->sense_len) {
2474                 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2475                                              &sense_handle);
2476                 if (!sense) {
2477                         error = -ENOMEM;
2478                         goto out;
2479                 }
2480
2481                 sense_ptr =
2482                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2483                 *sense_ptr = sense_handle;
2484         }
2485
2486         /*
2487          * Set the sync_cmd flag so that the ISR knows not to complete this
2488          * cmd to the SCSI mid-layer
2489          */
2490         cmd->sync_cmd = 1;
2491         megasas_issue_blocked_cmd(instance, cmd);
2492         cmd->sync_cmd = 0;
2493
2494         /*
2495          * copy out the kernel buffers to user buffers
2496          */
2497         for (i = 0; i < ioc->sge_count; i++) {
2498                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2499                                  ioc->sgl[i].iov_len)) {
2500                         error = -EFAULT;
2501                         goto out;
2502                 }
2503         }
2504
2505         /*
2506          * copy out the sense
2507          */
2508         if (ioc->sense_len) {
2509                 /*
2510                  * sense_ptr points to the location that has the user
2511                  * sense buffer address
2512                  */
2513                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2514                                      ioc->sense_off);
2515
2516                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2517                                  sense, ioc->sense_len)) {
2518                         error = -EFAULT;
2519                         goto out;
2520                 }
2521         }
2522
2523         /*
2524          * copy the status codes returned by the fw
2525          */
2526         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2527                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2528                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2529                 error = -EFAULT;
2530         }
2531
2532       out:
2533         if (sense) {
2534                 pci_free_consistent(instance->pdev, ioc->sense_len,
2535                                     sense, sense_handle);
2536         }
2537
2538         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2539                 pci_free_consistent(instance->pdev,
2540                                     kern_sge32[i].length,
2541                                     kbuff_arr[i], kern_sge32[i].phys_addr);
2542         }
2543
2544         megasas_return_cmd(instance, cmd);
2545         return error;
2546 }
2547
2548 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2549 {
2550         int i;
2551
2552         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2553
2554                 if ((megasas_mgmt_info.instance[i]) &&
2555                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2556                         return megasas_mgmt_info.instance[i];
2557         }
2558
2559         return NULL;
2560 }
2561
2562 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2563 {
2564         struct megasas_iocpacket __user *user_ioc =
2565             (struct megasas_iocpacket __user *)arg;
2566         struct megasas_iocpacket *ioc;
2567         struct megasas_instance *instance;
2568         int error;
2569
2570         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2571         if (!ioc)
2572                 return -ENOMEM;
2573
2574         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2575                 error = -EFAULT;
2576                 goto out_kfree_ioc;
2577         }
2578
2579         instance = megasas_lookup_instance(ioc->host_no);
2580         if (!instance) {
2581                 error = -ENODEV;
2582                 goto out_kfree_ioc;
2583         }
2584
2585         /*
2586          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2587          */
2588         if (down_interruptible(&instance->ioctl_sem)) {
2589                 error = -ERESTARTSYS;
2590                 goto out_kfree_ioc;
2591         }
2592         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2593         up(&instance->ioctl_sem);
2594
2595       out_kfree_ioc:
2596         kfree(ioc);
2597         return error;
2598 }
2599
2600 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2601 {
2602         struct megasas_instance *instance;
2603         struct megasas_aen aen;
2604         int error;
2605
2606         if (file->private_data != file) {
2607                 printk(KERN_DEBUG "megasas: fasync_helper was not "
2608                        "called first\n");
2609                 return -EINVAL;
2610         }
2611
2612         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2613                 return -EFAULT;
2614
2615         instance = megasas_lookup_instance(aen.host_no);
2616
2617         if (!instance)
2618                 return -ENODEV;
2619
2620         down(&instance->aen_mutex);
2621         error = megasas_register_aen(instance, aen.seq_num,
2622                                      aen.class_locale_word);
2623         up(&instance->aen_mutex);
2624         return error;
2625 }
2626
2627 /**
2628  * megasas_mgmt_ioctl - char node ioctl entry point
2629  */
2630 static long
2631 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2632 {
2633         switch (cmd) {
2634         case MEGASAS_IOC_FIRMWARE:
2635                 return megasas_mgmt_ioctl_fw(file, arg);
2636
2637         case MEGASAS_IOC_GET_AEN:
2638                 return megasas_mgmt_ioctl_aen(file, arg);
2639         }
2640
2641         return -ENOTTY;
2642 }
2643
2644 #ifdef CONFIG_COMPAT
2645 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2646 {
2647         struct compat_megasas_iocpacket __user *cioc =
2648             (struct compat_megasas_iocpacket __user *)arg;
2649         struct megasas_iocpacket __user *ioc =
2650             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2651         int i;
2652         int error = 0;
2653
2654         clear_user(ioc, sizeof(*ioc));
2655
2656         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2657             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2658             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2659             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2660             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2661             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2662                 return -EFAULT;
2663
2664         for (i = 0; i < MAX_IOCTL_SGE; i++) {
2665                 compat_uptr_t ptr;
2666
2667                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2668                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2669                     copy_in_user(&ioc->sgl[i].iov_len,
2670                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2671                         return -EFAULT;
2672         }
2673
2674         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2675
2676         if (copy_in_user(&cioc->frame.hdr.cmd_status,
2677                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2678                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2679                 return -EFAULT;
2680         }
2681         return error;
2682 }
2683
2684 static long
2685 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2686                           unsigned long arg)
2687 {
2688         switch (cmd) {
2689         case MEGASAS_IOC_FIRMWARE:{
2690                         return megasas_mgmt_compat_ioctl_fw(file, arg);
2691                 }
2692         case MEGASAS_IOC_GET_AEN:
2693                 return megasas_mgmt_ioctl_aen(file, arg);
2694         }
2695
2696         return -ENOTTY;
2697 }
2698 #endif
2699
2700 /*
2701  * File operations structure for management interface
2702  */
2703 static struct file_operations megasas_mgmt_fops = {
2704         .owner = THIS_MODULE,
2705         .open = megasas_mgmt_open,
2706         .release = megasas_mgmt_release,
2707         .fasync = megasas_mgmt_fasync,
2708         .unlocked_ioctl = megasas_mgmt_ioctl,
2709 #ifdef CONFIG_COMPAT
2710         .compat_ioctl = megasas_mgmt_compat_ioctl,
2711 #endif
2712 };
2713
2714 /*
2715  * PCI hotplug support registration structure
2716  */
2717 static struct pci_driver megasas_pci_driver = {
2718
2719         .name = "megaraid_sas",
2720         .id_table = megasas_pci_table,
2721         .probe = megasas_probe_one,
2722         .remove = __devexit_p(megasas_detach_one),
2723         .shutdown = megasas_shutdown,
2724 };
2725
2726 /*
2727  * Sysfs driver attributes
2728  */
2729 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2730 {
2731         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2732                         MEGASAS_VERSION);
2733 }
2734
2735 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2736
2737 static ssize_t
2738 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2739 {
2740         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2741                         MEGASAS_RELDATE);
2742 }
2743
2744 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2745                    NULL);
2746
2747 /**
2748  * megasas_init - Driver load entry point
2749  */
2750 static int __init megasas_init(void)
2751 {
2752         int rval;
2753
2754         /*
2755          * Announce driver version and other information
2756          */
2757         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2758                MEGASAS_EXT_VERSION);
2759
2760         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2761
2762         /*
2763          * Register character device node
2764          */
2765         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2766
2767         if (rval < 0) {
2768                 printk(KERN_DEBUG "megasas: failed to open device node\n");
2769                 return rval;
2770         }
2771
2772         megasas_mgmt_majorno = rval;
2773
2774         /*
2775          * Register ourselves as PCI hotplug module
2776          */
2777         rval = pci_module_init(&megasas_pci_driver);
2778
2779         if (rval) {
2780                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2781                 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2782         }
2783
2784         driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2785         driver_create_file(&megasas_pci_driver.driver,
2786                            &driver_attr_release_date);
2787
2788         return rval;
2789 }
2790
2791 /**
2792  * megasas_exit - Driver unload entry point
2793  */
2794 static void __exit megasas_exit(void)
2795 {
2796         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2797         driver_remove_file(&megasas_pci_driver.driver,
2798                            &driver_attr_release_date);
2799
2800         pci_unregister_driver(&megasas_pci_driver);
2801         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2802 }
2803
2804 module_init(megasas_init);
2805 module_exit(megasas_exit);