Merge tag 'rtc-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2014 Samsung Electronics
5  *  Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
6  *  Lukasz Majewski <l.majewski@samsung.com>
7  *
8  *  Copyright (C) 2011 Samsung Electronics
9  *  Donggeun Kim <dg77.kim@samsung.com>
10  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 #include <linux/clk.h>
29 #include <linux/io.h>
30 #include <linux/interrupt.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/regulator/consumer.h>
37
38 #include "exynos_tmu.h"
39 #include "../thermal_core.h"
40
41 /* Exynos generic registers */
42 #define EXYNOS_TMU_REG_TRIMINFO         0x0
43 #define EXYNOS_TMU_REG_CONTROL          0x20
44 #define EXYNOS_TMU_REG_STATUS           0x28
45 #define EXYNOS_TMU_REG_CURRENT_TEMP     0x40
46 #define EXYNOS_TMU_REG_INTEN            0x70
47 #define EXYNOS_TMU_REG_INTSTAT          0x74
48 #define EXYNOS_TMU_REG_INTCLEAR         0x78
49
50 #define EXYNOS_TMU_TEMP_MASK            0xff
51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT    24
52 #define EXYNOS_TMU_REF_VOLTAGE_MASK     0x1f
53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK   0xf
54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT  8
55 #define EXYNOS_TMU_CORE_EN_SHIFT        0
56
57 /* Exynos3250 specific registers */
58 #define EXYNOS_TMU_TRIMINFO_CON1        0x10
59
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP       0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0  0x50
63
64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */
65 #define EXYNOS_TMU_TRIMINFO_CON2        0x14
66 #define EXYNOS_THD_TEMP_RISE            0x50
67 #define EXYNOS_THD_TEMP_FALL            0x54
68 #define EXYNOS_EMUL_CON         0x80
69
70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE   1
71 #define EXYNOS_TRIMINFO_25_SHIFT        0
72 #define EXYNOS_TRIMINFO_85_SHIFT        8
73 #define EXYNOS_TMU_TRIP_MODE_SHIFT      13
74 #define EXYNOS_TMU_TRIP_MODE_MASK       0x7
75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT  12
76
77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT    0
78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT    4
79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT    8
80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT    12
81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT    16
82
83 #define EXYNOS_EMUL_TIME        0x57F0
84 #define EXYNOS_EMUL_TIME_MASK   0xffff
85 #define EXYNOS_EMUL_TIME_SHIFT  16
86 #define EXYNOS_EMUL_DATA_SHIFT  8
87 #define EXYNOS_EMUL_DATA_MASK   0xFF
88 #define EXYNOS_EMUL_ENABLE      0x1
89
90 /* Exynos5260 specific */
91 #define EXYNOS5260_TMU_REG_INTEN                0xC0
92 #define EXYNOS5260_TMU_REG_INTSTAT              0xC4
93 #define EXYNOS5260_TMU_REG_INTCLEAR             0xC8
94 #define EXYNOS5260_EMUL_CON                     0x100
95
96 /* Exynos4412 specific */
97 #define EXYNOS4412_MUX_ADDR_VALUE          6
98 #define EXYNOS4412_MUX_ADDR_SHIFT          20
99
100 /* Exynos5433 specific registers */
101 #define EXYNOS5433_TMU_REG_CONTROL1             0x024
102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL        0x02c
103 #define EXYNOS5433_TMU_COUNTER_VALUE0           0x030
104 #define EXYNOS5433_TMU_COUNTER_VALUE1           0x034
105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1        0x044
106 #define EXYNOS5433_THD_TEMP_RISE3_0             0x050
107 #define EXYNOS5433_THD_TEMP_RISE7_4             0x054
108 #define EXYNOS5433_THD_TEMP_FALL3_0             0x060
109 #define EXYNOS5433_THD_TEMP_FALL7_4             0x064
110 #define EXYNOS5433_TMU_REG_INTEN                0x0c0
111 #define EXYNOS5433_TMU_REG_INTPEND              0x0c8
112 #define EXYNOS5433_TMU_EMUL_CON                 0x110
113 #define EXYNOS5433_TMU_PD_DET_EN                0x130
114
115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT     16
116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT     23
117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK      \
118                         (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT)
119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK      BIT(23)
120
121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING  0
122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING  1
123
124 #define EXYNOS5433_PD_DET_EN                    1
125
126 /*exynos5440 specific registers*/
127 #define EXYNOS5440_TMU_S0_7_TRIM                0x000
128 #define EXYNOS5440_TMU_S0_7_CTRL                0x020
129 #define EXYNOS5440_TMU_S0_7_DEBUG               0x040
130 #define EXYNOS5440_TMU_S0_7_TEMP                0x0f0
131 #define EXYNOS5440_TMU_S0_7_TH0                 0x110
132 #define EXYNOS5440_TMU_S0_7_TH1                 0x130
133 #define EXYNOS5440_TMU_S0_7_TH2                 0x150
134 #define EXYNOS5440_TMU_S0_7_IRQEN               0x210
135 #define EXYNOS5440_TMU_S0_7_IRQ                 0x230
136 /* exynos5440 common registers */
137 #define EXYNOS5440_TMU_IRQ_STATUS               0x000
138 #define EXYNOS5440_TMU_PMIN                     0x004
139
140 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT        0
141 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT        1
142 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT        2
143 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT        3
144 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT        4
145 #define EXYNOS5440_TMU_TH_RISE4_SHIFT           24
146 #define EXYNOS5440_EFUSE_SWAP_OFFSET            8
147
148 /* Exynos7 specific registers */
149 #define EXYNOS7_THD_TEMP_RISE7_6                0x50
150 #define EXYNOS7_THD_TEMP_FALL7_6                0x60
151 #define EXYNOS7_TMU_REG_INTEN                   0x110
152 #define EXYNOS7_TMU_REG_INTPEND                 0x118
153 #define EXYNOS7_TMU_REG_EMUL_CON                0x160
154
155 #define EXYNOS7_TMU_TEMP_MASK                   0x1ff
156 #define EXYNOS7_PD_DET_EN_SHIFT                 23
157 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT           0
158 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT           1
159 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT           2
160 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT           3
161 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT           4
162 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT           5
163 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT           6
164 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT           7
165 #define EXYNOS7_EMUL_DATA_SHIFT                 7
166 #define EXYNOS7_EMUL_DATA_MASK                  0x1ff
167
168 #define MCELSIUS        1000
169 /**
170  * struct exynos_tmu_data : A structure to hold the private data of the TMU
171         driver
172  * @id: identifier of the one instance of the TMU controller.
173  * @pdata: pointer to the tmu platform/configuration data
174  * @base: base address of the single instance of the TMU controller.
175  * @base_second: base address of the common registers of the TMU controller.
176  * @irq: irq number of the TMU controller.
177  * @soc: id of the SOC type.
178  * @irq_work: pointer to the irq work structure.
179  * @lock: lock to implement synchronization.
180  * @clk: pointer to the clock structure.
181  * @clk_sec: pointer to the clock structure for accessing the base_second.
182  * @sclk: pointer to the clock structure for accessing the tmu special clk.
183  * @temp_error1: fused value of the first point trim.
184  * @temp_error2: fused value of the second point trim.
185  * @regulator: pointer to the TMU regulator structure.
186  * @reg_conf: pointer to structure to register with core thermal.
187  * @ntrip: number of supported trip points.
188  * @enabled: current status of TMU device
189  * @tmu_initialize: SoC specific TMU initialization method
190  * @tmu_control: SoC specific TMU control method
191  * @tmu_read: SoC specific TMU temperature read method
192  * @tmu_set_emulation: SoC specific TMU emulation setting method
193  * @tmu_clear_irqs: SoC specific TMU interrupts clearing method
194  */
195 struct exynos_tmu_data {
196         int id;
197         struct exynos_tmu_platform_data *pdata;
198         void __iomem *base;
199         void __iomem *base_second;
200         int irq;
201         enum soc_type soc;
202         struct work_struct irq_work;
203         struct mutex lock;
204         struct clk *clk, *clk_sec, *sclk;
205         u16 temp_error1, temp_error2;
206         struct regulator *regulator;
207         struct thermal_zone_device *tzd;
208         unsigned int ntrip;
209         bool enabled;
210
211         int (*tmu_initialize)(struct platform_device *pdev);
212         void (*tmu_control)(struct platform_device *pdev, bool on);
213         int (*tmu_read)(struct exynos_tmu_data *data);
214         void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp);
215         void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
216 };
217
218 static void exynos_report_trigger(struct exynos_tmu_data *p)
219 {
220         char data[10], *envp[] = { data, NULL };
221         struct thermal_zone_device *tz = p->tzd;
222         int temp;
223         unsigned int i;
224
225         if (!tz) {
226                 pr_err("No thermal zone device defined\n");
227                 return;
228         }
229
230         thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
231
232         mutex_lock(&tz->lock);
233         /* Find the level for which trip happened */
234         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
235                 tz->ops->get_trip_temp(tz, i, &temp);
236                 if (tz->last_temperature < temp)
237                         break;
238         }
239
240         snprintf(data, sizeof(data), "%u", i);
241         kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
242         mutex_unlock(&tz->lock);
243 }
244
245 /*
246  * TMU treats temperature as a mapped temperature code.
247  * The temperature is converted differently depending on the calibration type.
248  */
249 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
250 {
251         struct exynos_tmu_platform_data *pdata = data->pdata;
252         int temp_code;
253
254         switch (pdata->cal_type) {
255         case TYPE_TWO_POINT_TRIMMING:
256                 temp_code = (temp - pdata->first_point_trim) *
257                         (data->temp_error2 - data->temp_error1) /
258                         (pdata->second_point_trim - pdata->first_point_trim) +
259                         data->temp_error1;
260                 break;
261         case TYPE_ONE_POINT_TRIMMING:
262                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
263                 break;
264         default:
265                 temp_code = temp + pdata->default_temp_offset;
266                 break;
267         }
268
269         return temp_code;
270 }
271
272 /*
273  * Calculate a temperature value from a temperature code.
274  * The unit of the temperature is degree Celsius.
275  */
276 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
277 {
278         struct exynos_tmu_platform_data *pdata = data->pdata;
279         int temp;
280
281         switch (pdata->cal_type) {
282         case TYPE_TWO_POINT_TRIMMING:
283                 temp = (temp_code - data->temp_error1) *
284                         (pdata->second_point_trim - pdata->first_point_trim) /
285                         (data->temp_error2 - data->temp_error1) +
286                         pdata->first_point_trim;
287                 break;
288         case TYPE_ONE_POINT_TRIMMING:
289                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
290                 break;
291         default:
292                 temp = temp_code - pdata->default_temp_offset;
293                 break;
294         }
295
296         return temp;
297 }
298
299 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
300 {
301         struct exynos_tmu_platform_data *pdata = data->pdata;
302
303         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
304         data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
305                                 EXYNOS_TMU_TEMP_MASK);
306
307         if (!data->temp_error1 ||
308                 (pdata->min_efuse_value > data->temp_error1) ||
309                 (data->temp_error1 > pdata->max_efuse_value))
310                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
311
312         if (!data->temp_error2)
313                 data->temp_error2 =
314                         (pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
315                         EXYNOS_TMU_TEMP_MASK;
316 }
317
318 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
319 {
320         struct thermal_zone_device *tz = data->tzd;
321         const struct thermal_trip * const trips =
322                 of_thermal_get_trip_points(tz);
323         unsigned long temp;
324         int i;
325
326         if (!trips) {
327                 pr_err("%s: Cannot get trip points from of-thermal.c!\n",
328                        __func__);
329                 return 0;
330         }
331
332         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
333                 if (trips[i].type == THERMAL_TRIP_CRITICAL)
334                         continue;
335
336                 temp = trips[i].temperature / MCELSIUS;
337                 if (falling)
338                         temp -= (trips[i].hysteresis / MCELSIUS);
339                 else
340                         threshold &= ~(0xff << 8 * i);
341
342                 threshold |= temp_to_code(data, temp) << 8 * i;
343         }
344
345         return threshold;
346 }
347
348 static int exynos_tmu_initialize(struct platform_device *pdev)
349 {
350         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
351         int ret;
352
353         if (of_thermal_get_ntrips(data->tzd) > data->ntrip) {
354                 dev_info(&pdev->dev,
355                          "More trip points than supported by this TMU.\n");
356                 dev_info(&pdev->dev,
357                          "%d trip points should be configured in polling mode.\n",
358                          (of_thermal_get_ntrips(data->tzd) - data->ntrip));
359         }
360
361         mutex_lock(&data->lock);
362         clk_enable(data->clk);
363         if (!IS_ERR(data->clk_sec))
364                 clk_enable(data->clk_sec);
365         ret = data->tmu_initialize(pdev);
366         clk_disable(data->clk);
367         mutex_unlock(&data->lock);
368         if (!IS_ERR(data->clk_sec))
369                 clk_disable(data->clk_sec);
370
371         return ret;
372 }
373
374 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
375 {
376         struct exynos_tmu_platform_data *pdata = data->pdata;
377
378         if (data->soc == SOC_ARCH_EXYNOS4412 ||
379             data->soc == SOC_ARCH_EXYNOS3250)
380                 con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
381
382         con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
383         con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
384
385         con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
386         con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
387
388         if (pdata->noise_cancel_mode) {
389                 con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
390                 con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT);
391         }
392
393         return con;
394 }
395
396 static void exynos_tmu_control(struct platform_device *pdev, bool on)
397 {
398         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
399
400         mutex_lock(&data->lock);
401         clk_enable(data->clk);
402         data->tmu_control(pdev, on);
403         data->enabled = on;
404         clk_disable(data->clk);
405         mutex_unlock(&data->lock);
406 }
407
408 static int exynos4210_tmu_initialize(struct platform_device *pdev)
409 {
410         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
411         struct thermal_zone_device *tz = data->tzd;
412         const struct thermal_trip * const trips =
413                 of_thermal_get_trip_points(tz);
414         int ret = 0, threshold_code, i;
415         unsigned long reference, temp;
416         unsigned int status;
417
418         if (!trips) {
419                 pr_err("%s: Cannot get trip points from of-thermal.c!\n",
420                        __func__);
421                 ret = -ENODEV;
422                 goto out;
423         }
424
425         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
426         if (!status) {
427                 ret = -EBUSY;
428                 goto out;
429         }
430
431         sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
432
433         /* Write temperature code for threshold */
434         reference = trips[0].temperature / MCELSIUS;
435         threshold_code = temp_to_code(data, reference);
436         if (threshold_code < 0) {
437                 ret = threshold_code;
438                 goto out;
439         }
440         writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
441
442         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
443                 temp = trips[i].temperature / MCELSIUS;
444                 writeb(temp - reference, data->base +
445                        EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
446         }
447
448         data->tmu_clear_irqs(data);
449 out:
450         return ret;
451 }
452
453 static int exynos4412_tmu_initialize(struct platform_device *pdev)
454 {
455         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
456         const struct thermal_trip * const trips =
457                 of_thermal_get_trip_points(data->tzd);
458         unsigned int status, trim_info, con, ctrl, rising_threshold;
459         int ret = 0, threshold_code, i;
460         unsigned long crit_temp = 0;
461
462         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
463         if (!status) {
464                 ret = -EBUSY;
465                 goto out;
466         }
467
468         if (data->soc == SOC_ARCH_EXYNOS3250 ||
469             data->soc == SOC_ARCH_EXYNOS4412 ||
470             data->soc == SOC_ARCH_EXYNOS5250) {
471                 if (data->soc == SOC_ARCH_EXYNOS3250) {
472                         ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
473                         ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
474                         writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
475                 }
476                 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
477                 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
478                 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
479         }
480
481         /* On exynos5420 the triminfo register is in the shared space */
482         if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
483                 trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
484         else
485                 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
486
487         sanitize_temp_error(data, trim_info);
488
489         /* Write temperature code for rising and falling threshold */
490         rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
491         rising_threshold = get_th_reg(data, rising_threshold, false);
492         writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
493         writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
494
495         data->tmu_clear_irqs(data);
496
497         /* if last threshold limit is also present */
498         for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
499                 if (trips[i].type == THERMAL_TRIP_CRITICAL) {
500                         crit_temp = trips[i].temperature;
501                         break;
502                 }
503         }
504
505         if (i == of_thermal_get_ntrips(data->tzd)) {
506                 pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
507                        __func__);
508                 ret = -EINVAL;
509                 goto out;
510         }
511
512         threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
513         /* 1-4 level to be assigned in th0 reg */
514         rising_threshold &= ~(0xff << 8 * i);
515         rising_threshold |= threshold_code << 8 * i;
516         writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
517         con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
518         con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
519         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
520
521 out:
522         return ret;
523 }
524
525 static int exynos5433_tmu_initialize(struct platform_device *pdev)
526 {
527         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
528         struct exynos_tmu_platform_data *pdata = data->pdata;
529         struct thermal_zone_device *tz = data->tzd;
530         unsigned int status, trim_info;
531         unsigned int rising_threshold = 0, falling_threshold = 0;
532         int temp, temp_hist;
533         int ret = 0, threshold_code, i, sensor_id, cal_type;
534
535         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
536         if (!status) {
537                 ret = -EBUSY;
538                 goto out;
539         }
540
541         trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
542         sanitize_temp_error(data, trim_info);
543
544         /* Read the temperature sensor id */
545         sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK)
546                                 >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT;
547         dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id);
548
549         /* Read the calibration mode */
550         writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO);
551         cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK)
552                                 >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT;
553
554         switch (cal_type) {
555         case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING:
556                 pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
557                 break;
558         case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING:
559                 pdata->cal_type = TYPE_TWO_POINT_TRIMMING;
560                 break;
561         default:
562                 pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
563                 break;
564         }
565
566         dev_info(&pdev->dev, "Calibration type is %d-point calibration\n",
567                         cal_type ?  2 : 1);
568
569         /* Write temperature code for rising and falling threshold */
570         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
571                 int rising_reg_offset, falling_reg_offset;
572                 int j = 0;
573
574                 switch (i) {
575                 case 0:
576                 case 1:
577                 case 2:
578                 case 3:
579                         rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0;
580                         falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0;
581                         j = i;
582                         break;
583                 case 4:
584                 case 5:
585                 case 6:
586                 case 7:
587                         rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4;
588                         falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4;
589                         j = i - 4;
590                         break;
591                 default:
592                         continue;
593                 }
594
595                 /* Write temperature code for rising threshold */
596                 tz->ops->get_trip_temp(tz, i, &temp);
597                 temp /= MCELSIUS;
598                 threshold_code = temp_to_code(data, temp);
599
600                 rising_threshold = readl(data->base + rising_reg_offset);
601                 rising_threshold |= (threshold_code << j * 8);
602                 writel(rising_threshold, data->base + rising_reg_offset);
603
604                 /* Write temperature code for falling threshold */
605                 tz->ops->get_trip_hyst(tz, i, &temp_hist);
606                 temp_hist = temp - (temp_hist / MCELSIUS);
607                 threshold_code = temp_to_code(data, temp_hist);
608
609                 falling_threshold = readl(data->base + falling_reg_offset);
610                 falling_threshold &= ~(0xff << j * 8);
611                 falling_threshold |= (threshold_code << j * 8);
612                 writel(falling_threshold, data->base + falling_reg_offset);
613         }
614
615         data->tmu_clear_irqs(data);
616 out:
617         return ret;
618 }
619
620 static int exynos5440_tmu_initialize(struct platform_device *pdev)
621 {
622         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
623         unsigned int trim_info = 0, con, rising_threshold;
624         int threshold_code;
625         int crit_temp = 0;
626
627         /*
628          * For exynos5440 soc triminfo value is swapped between TMU0 and
629          * TMU2, so the below logic is needed.
630          */
631         switch (data->id) {
632         case 0:
633                 trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
634                                  EXYNOS5440_TMU_S0_7_TRIM);
635                 break;
636         case 1:
637                 trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
638                 break;
639         case 2:
640                 trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
641                                   EXYNOS5440_TMU_S0_7_TRIM);
642         }
643         sanitize_temp_error(data, trim_info);
644
645         /* Write temperature code for rising and falling threshold */
646         rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
647         rising_threshold = get_th_reg(data, rising_threshold, false);
648         writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
649         writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
650
651         data->tmu_clear_irqs(data);
652
653         /* if last threshold limit is also present */
654         if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
655                 threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
656                 /* 5th level to be assigned in th2 reg */
657                 rising_threshold =
658                         threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
659                 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
660                 con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
661                 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
662                 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
663         }
664         /* Clear the PMIN in the common TMU register */
665         if (!data->id)
666                 writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
667
668         return 0;
669 }
670
671 static int exynos7_tmu_initialize(struct platform_device *pdev)
672 {
673         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
674         struct thermal_zone_device *tz = data->tzd;
675         struct exynos_tmu_platform_data *pdata = data->pdata;
676         unsigned int status, trim_info;
677         unsigned int rising_threshold = 0, falling_threshold = 0;
678         int ret = 0, threshold_code, i;
679         int temp, temp_hist;
680         unsigned int reg_off, bit_off;
681
682         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
683         if (!status) {
684                 ret = -EBUSY;
685                 goto out;
686         }
687
688         trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
689
690         data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
691         if (!data->temp_error1 ||
692             (pdata->min_efuse_value > data->temp_error1) ||
693             (data->temp_error1 > pdata->max_efuse_value))
694                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
695
696         /* Write temperature code for rising and falling threshold */
697         for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
698                 /*
699                  * On exynos7 there are 4 rising and 4 falling threshold
700                  * registers (0x50-0x5c and 0x60-0x6c respectively). Each
701                  * register holds the value of two threshold levels (at bit
702                  * offsets 0 and 16). Based on the fact that there are atmost
703                  * eight possible trigger levels, calculate the register and
704                  * bit offsets where the threshold levels are to be written.
705                  *
706                  * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
707                  * [24:16] - Threshold level 7
708                  * [8:0] - Threshold level 6
709                  * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
710                  * [24:16] - Threshold level 5
711                  * [8:0] - Threshold level 4
712                  *
713                  * and similarly for falling thresholds.
714                  *
715                  * Based on the above, calculate the register and bit offsets
716                  * for rising/falling threshold levels and populate them.
717                  */
718                 reg_off = ((7 - i) / 2) * 4;
719                 bit_off = ((8 - i) % 2);
720
721                 tz->ops->get_trip_temp(tz, i, &temp);
722                 temp /= MCELSIUS;
723
724                 tz->ops->get_trip_hyst(tz, i, &temp_hist);
725                 temp_hist = temp - (temp_hist / MCELSIUS);
726
727                 /* Set 9-bit temperature code for rising threshold levels */
728                 threshold_code = temp_to_code(data, temp);
729                 rising_threshold = readl(data->base +
730                         EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
731                 rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
732                 rising_threshold |= threshold_code << (16 * bit_off);
733                 writel(rising_threshold,
734                        data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
735
736                 /* Set 9-bit temperature code for falling threshold levels */
737                 threshold_code = temp_to_code(data, temp_hist);
738                 falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
739                 falling_threshold |= threshold_code << (16 * bit_off);
740                 writel(falling_threshold,
741                        data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
742         }
743
744         data->tmu_clear_irqs(data);
745 out:
746         return ret;
747 }
748
749 static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
750 {
751         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
752         struct thermal_zone_device *tz = data->tzd;
753         unsigned int con, interrupt_en;
754
755         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
756
757         if (on) {
758                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
759                 interrupt_en =
760                         (of_thermal_is_trip_valid(tz, 3)
761                          << EXYNOS_TMU_INTEN_RISE3_SHIFT) |
762                         (of_thermal_is_trip_valid(tz, 2)
763                          << EXYNOS_TMU_INTEN_RISE2_SHIFT) |
764                         (of_thermal_is_trip_valid(tz, 1)
765                          << EXYNOS_TMU_INTEN_RISE1_SHIFT) |
766                         (of_thermal_is_trip_valid(tz, 0)
767                          << EXYNOS_TMU_INTEN_RISE0_SHIFT);
768
769                 if (data->soc != SOC_ARCH_EXYNOS4210)
770                         interrupt_en |=
771                                 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
772         } else {
773                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
774                 interrupt_en = 0; /* Disable all interrupts */
775         }
776         writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
777         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
778 }
779
780 static void exynos5433_tmu_control(struct platform_device *pdev, bool on)
781 {
782         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
783         struct thermal_zone_device *tz = data->tzd;
784         unsigned int con, interrupt_en, pd_det_en;
785
786         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
787
788         if (on) {
789                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
790                 interrupt_en =
791                         (of_thermal_is_trip_valid(tz, 7)
792                         << EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
793                         (of_thermal_is_trip_valid(tz, 6)
794                         << EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
795                         (of_thermal_is_trip_valid(tz, 5)
796                         << EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
797                         (of_thermal_is_trip_valid(tz, 4)
798                         << EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
799                         (of_thermal_is_trip_valid(tz, 3)
800                         << EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
801                         (of_thermal_is_trip_valid(tz, 2)
802                         << EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
803                         (of_thermal_is_trip_valid(tz, 1)
804                         << EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
805                         (of_thermal_is_trip_valid(tz, 0)
806                         << EXYNOS7_TMU_INTEN_RISE0_SHIFT);
807
808                 interrupt_en |=
809                         interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
810         } else {
811                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
812                 interrupt_en = 0; /* Disable all interrupts */
813         }
814
815         pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0;
816
817         writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN);
818         writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN);
819         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
820 }
821
822 static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
823 {
824         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
825         struct thermal_zone_device *tz = data->tzd;
826         unsigned int con, interrupt_en;
827
828         con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
829
830         if (on) {
831                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
832                 interrupt_en =
833                         (of_thermal_is_trip_valid(tz, 3)
834                          << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
835                         (of_thermal_is_trip_valid(tz, 2)
836                          << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
837                         (of_thermal_is_trip_valid(tz, 1)
838                          << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
839                         (of_thermal_is_trip_valid(tz, 0)
840                          << EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
841                 interrupt_en |=
842                         interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
843         } else {
844                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
845                 interrupt_en = 0; /* Disable all interrupts */
846         }
847         writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
848         writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
849 }
850
851 static void exynos7_tmu_control(struct platform_device *pdev, bool on)
852 {
853         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
854         struct thermal_zone_device *tz = data->tzd;
855         unsigned int con, interrupt_en;
856
857         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
858
859         if (on) {
860                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
861                 con |= (1 << EXYNOS7_PD_DET_EN_SHIFT);
862                 interrupt_en =
863                         (of_thermal_is_trip_valid(tz, 7)
864                         << EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
865                         (of_thermal_is_trip_valid(tz, 6)
866                         << EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
867                         (of_thermal_is_trip_valid(tz, 5)
868                         << EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
869                         (of_thermal_is_trip_valid(tz, 4)
870                         << EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
871                         (of_thermal_is_trip_valid(tz, 3)
872                         << EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
873                         (of_thermal_is_trip_valid(tz, 2)
874                         << EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
875                         (of_thermal_is_trip_valid(tz, 1)
876                         << EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
877                         (of_thermal_is_trip_valid(tz, 0)
878                         << EXYNOS7_TMU_INTEN_RISE0_SHIFT);
879
880                 interrupt_en |=
881                         interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
882         } else {
883                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
884                 con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT);
885                 interrupt_en = 0; /* Disable all interrupts */
886         }
887
888         writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
889         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
890 }
891
892 static int exynos_get_temp(void *p, int *temp)
893 {
894         struct exynos_tmu_data *data = p;
895         int value, ret = 0;
896
897         if (!data || !data->tmu_read || !data->enabled)
898                 return -EINVAL;
899
900         mutex_lock(&data->lock);
901         clk_enable(data->clk);
902
903         value = data->tmu_read(data);
904         if (value < 0)
905                 ret = value;
906         else
907                 *temp = code_to_temp(data, value) * MCELSIUS;
908
909         clk_disable(data->clk);
910         mutex_unlock(&data->lock);
911
912         return ret;
913 }
914
915 #ifdef CONFIG_THERMAL_EMULATION
916 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
917                             int temp)
918 {
919         if (temp) {
920                 temp /= MCELSIUS;
921
922                 if (data->soc != SOC_ARCH_EXYNOS5440) {
923                         val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
924                         val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
925                 }
926                 if (data->soc == SOC_ARCH_EXYNOS7) {
927                         val &= ~(EXYNOS7_EMUL_DATA_MASK <<
928                                 EXYNOS7_EMUL_DATA_SHIFT);
929                         val |= (temp_to_code(data, temp) <<
930                                 EXYNOS7_EMUL_DATA_SHIFT) |
931                                 EXYNOS_EMUL_ENABLE;
932                 } else {
933                         val &= ~(EXYNOS_EMUL_DATA_MASK <<
934                                 EXYNOS_EMUL_DATA_SHIFT);
935                         val |= (temp_to_code(data, temp) <<
936                                 EXYNOS_EMUL_DATA_SHIFT) |
937                                 EXYNOS_EMUL_ENABLE;
938                 }
939         } else {
940                 val &= ~EXYNOS_EMUL_ENABLE;
941         }
942
943         return val;
944 }
945
946 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
947                                          int temp)
948 {
949         unsigned int val;
950         u32 emul_con;
951
952         if (data->soc == SOC_ARCH_EXYNOS5260)
953                 emul_con = EXYNOS5260_EMUL_CON;
954         else if (data->soc == SOC_ARCH_EXYNOS5433)
955                 emul_con = EXYNOS5433_TMU_EMUL_CON;
956         else if (data->soc == SOC_ARCH_EXYNOS7)
957                 emul_con = EXYNOS7_TMU_REG_EMUL_CON;
958         else
959                 emul_con = EXYNOS_EMUL_CON;
960
961         val = readl(data->base + emul_con);
962         val = get_emul_con_reg(data, val, temp);
963         writel(val, data->base + emul_con);
964 }
965
966 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
967                                          int temp)
968 {
969         unsigned int val;
970
971         val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
972         val = get_emul_con_reg(data, val, temp);
973         writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
974 }
975
976 static int exynos_tmu_set_emulation(void *drv_data, int temp)
977 {
978         struct exynos_tmu_data *data = drv_data;
979         int ret = -EINVAL;
980
981         if (data->soc == SOC_ARCH_EXYNOS4210)
982                 goto out;
983
984         if (temp && temp < MCELSIUS)
985                 goto out;
986
987         mutex_lock(&data->lock);
988         clk_enable(data->clk);
989         data->tmu_set_emulation(data, temp);
990         clk_disable(data->clk);
991         mutex_unlock(&data->lock);
992         return 0;
993 out:
994         return ret;
995 }
996 #else
997 #define exynos4412_tmu_set_emulation NULL
998 #define exynos5440_tmu_set_emulation NULL
999 static int exynos_tmu_set_emulation(void *drv_data, int temp)
1000         { return -EINVAL; }
1001 #endif /* CONFIG_THERMAL_EMULATION */
1002
1003 static int exynos4210_tmu_read(struct exynos_tmu_data *data)
1004 {
1005         int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
1006
1007         /* "temp_code" should range between 75 and 175 */
1008         return (ret < 75 || ret > 175) ? -ENODATA : ret;
1009 }
1010
1011 static int exynos4412_tmu_read(struct exynos_tmu_data *data)
1012 {
1013         return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
1014 }
1015
1016 static int exynos5440_tmu_read(struct exynos_tmu_data *data)
1017 {
1018         return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
1019 }
1020
1021 static int exynos7_tmu_read(struct exynos_tmu_data *data)
1022 {
1023         return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
1024                 EXYNOS7_TMU_TEMP_MASK;
1025 }
1026
1027 static void exynos_tmu_work(struct work_struct *work)
1028 {
1029         struct exynos_tmu_data *data = container_of(work,
1030                         struct exynos_tmu_data, irq_work);
1031         unsigned int val_type;
1032
1033         if (!IS_ERR(data->clk_sec))
1034                 clk_enable(data->clk_sec);
1035         /* Find which sensor generated this interrupt */
1036         if (data->soc == SOC_ARCH_EXYNOS5440) {
1037                 val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
1038                 if (!((val_type >> data->id) & 0x1))
1039                         goto out;
1040         }
1041         if (!IS_ERR(data->clk_sec))
1042                 clk_disable(data->clk_sec);
1043
1044         exynos_report_trigger(data);
1045         mutex_lock(&data->lock);
1046         clk_enable(data->clk);
1047
1048         /* TODO: take action based on particular interrupt */
1049         data->tmu_clear_irqs(data);
1050
1051         clk_disable(data->clk);
1052         mutex_unlock(&data->lock);
1053 out:
1054         enable_irq(data->irq);
1055 }
1056
1057 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
1058 {
1059         unsigned int val_irq;
1060         u32 tmu_intstat, tmu_intclear;
1061
1062         if (data->soc == SOC_ARCH_EXYNOS5260) {
1063                 tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
1064                 tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
1065         } else if (data->soc == SOC_ARCH_EXYNOS7) {
1066                 tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
1067                 tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
1068         } else if (data->soc == SOC_ARCH_EXYNOS5433) {
1069                 tmu_intstat = EXYNOS5433_TMU_REG_INTPEND;
1070                 tmu_intclear = EXYNOS5433_TMU_REG_INTPEND;
1071         } else {
1072                 tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
1073                 tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
1074         }
1075
1076         val_irq = readl(data->base + tmu_intstat);
1077         /*
1078          * Clear the interrupts.  Please note that the documentation for
1079          * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
1080          * states that INTCLEAR register has a different placing of bits
1081          * responsible for FALL IRQs than INTSTAT register.  Exynos5420
1082          * and Exynos5440 documentation is correct (Exynos4210 doesn't
1083          * support FALL IRQs at all).
1084          */
1085         writel(val_irq, data->base + tmu_intclear);
1086 }
1087
1088 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
1089 {
1090         unsigned int val_irq;
1091
1092         val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
1093         /* clear the interrupts */
1094         writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
1095 }
1096
1097 static irqreturn_t exynos_tmu_irq(int irq, void *id)
1098 {
1099         struct exynos_tmu_data *data = id;
1100
1101         disable_irq_nosync(irq);
1102         schedule_work(&data->irq_work);
1103
1104         return IRQ_HANDLED;
1105 }
1106
1107 static const struct of_device_id exynos_tmu_match[] = {
1108         { .compatible = "samsung,exynos3250-tmu", },
1109         { .compatible = "samsung,exynos4210-tmu", },
1110         { .compatible = "samsung,exynos4412-tmu", },
1111         { .compatible = "samsung,exynos5250-tmu", },
1112         { .compatible = "samsung,exynos5260-tmu", },
1113         { .compatible = "samsung,exynos5420-tmu", },
1114         { .compatible = "samsung,exynos5420-tmu-ext-triminfo", },
1115         { .compatible = "samsung,exynos5433-tmu", },
1116         { .compatible = "samsung,exynos5440-tmu", },
1117         { .compatible = "samsung,exynos7-tmu", },
1118         { /* sentinel */ },
1119 };
1120 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
1121
1122 static int exynos_of_get_soc_type(struct device_node *np)
1123 {
1124         if (of_device_is_compatible(np, "samsung,exynos3250-tmu"))
1125                 return SOC_ARCH_EXYNOS3250;
1126         else if (of_device_is_compatible(np, "samsung,exynos4210-tmu"))
1127                 return SOC_ARCH_EXYNOS4210;
1128         else if (of_device_is_compatible(np, "samsung,exynos4412-tmu"))
1129                 return SOC_ARCH_EXYNOS4412;
1130         else if (of_device_is_compatible(np, "samsung,exynos5250-tmu"))
1131                 return SOC_ARCH_EXYNOS5250;
1132         else if (of_device_is_compatible(np, "samsung,exynos5260-tmu"))
1133                 return SOC_ARCH_EXYNOS5260;
1134         else if (of_device_is_compatible(np, "samsung,exynos5420-tmu"))
1135                 return SOC_ARCH_EXYNOS5420;
1136         else if (of_device_is_compatible(np,
1137                                          "samsung,exynos5420-tmu-ext-triminfo"))
1138                 return SOC_ARCH_EXYNOS5420_TRIMINFO;
1139         else if (of_device_is_compatible(np, "samsung,exynos5433-tmu"))
1140                 return SOC_ARCH_EXYNOS5433;
1141         else if (of_device_is_compatible(np, "samsung,exynos5440-tmu"))
1142                 return SOC_ARCH_EXYNOS5440;
1143         else if (of_device_is_compatible(np, "samsung,exynos7-tmu"))
1144                 return SOC_ARCH_EXYNOS7;
1145
1146         return -EINVAL;
1147 }
1148
1149 static int exynos_of_sensor_conf(struct device_node *np,
1150                                  struct exynos_tmu_platform_data *pdata)
1151 {
1152         u32 value;
1153         int ret;
1154
1155         of_node_get(np);
1156
1157         ret = of_property_read_u32(np, "samsung,tmu_gain", &value);
1158         pdata->gain = (u8)value;
1159         of_property_read_u32(np, "samsung,tmu_reference_voltage", &value);
1160         pdata->reference_voltage = (u8)value;
1161         of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value);
1162         pdata->noise_cancel_mode = (u8)value;
1163
1164         of_property_read_u32(np, "samsung,tmu_efuse_value",
1165                              &pdata->efuse_value);
1166         of_property_read_u32(np, "samsung,tmu_min_efuse_value",
1167                              &pdata->min_efuse_value);
1168         of_property_read_u32(np, "samsung,tmu_max_efuse_value",
1169                              &pdata->max_efuse_value);
1170
1171         of_property_read_u32(np, "samsung,tmu_first_point_trim", &value);
1172         pdata->first_point_trim = (u8)value;
1173         of_property_read_u32(np, "samsung,tmu_second_point_trim", &value);
1174         pdata->second_point_trim = (u8)value;
1175         of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value);
1176         pdata->default_temp_offset = (u8)value;
1177
1178         of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
1179
1180         of_node_put(np);
1181         return 0;
1182 }
1183
1184 static int exynos_map_dt_data(struct platform_device *pdev)
1185 {
1186         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1187         struct exynos_tmu_platform_data *pdata;
1188         struct resource res;
1189
1190         if (!data || !pdev->dev.of_node)
1191                 return -ENODEV;
1192
1193         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
1194         if (data->id < 0)
1195                 data->id = 0;
1196
1197         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1198         if (data->irq <= 0) {
1199                 dev_err(&pdev->dev, "failed to get IRQ\n");
1200                 return -ENODEV;
1201         }
1202
1203         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
1204                 dev_err(&pdev->dev, "failed to get Resource 0\n");
1205                 return -ENODEV;
1206         }
1207
1208         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1209         if (!data->base) {
1210                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
1211                 return -EADDRNOTAVAIL;
1212         }
1213
1214         pdata = devm_kzalloc(&pdev->dev,
1215                              sizeof(struct exynos_tmu_platform_data),
1216                              GFP_KERNEL);
1217         if (!pdata)
1218                 return -ENOMEM;
1219
1220         exynos_of_sensor_conf(pdev->dev.of_node, pdata);
1221         data->pdata = pdata;
1222         data->soc = exynos_of_get_soc_type(pdev->dev.of_node);
1223
1224         switch (data->soc) {
1225         case SOC_ARCH_EXYNOS4210:
1226                 data->tmu_initialize = exynos4210_tmu_initialize;
1227                 data->tmu_control = exynos4210_tmu_control;
1228                 data->tmu_read = exynos4210_tmu_read;
1229                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1230                 data->ntrip = 4;
1231                 break;
1232         case SOC_ARCH_EXYNOS3250:
1233         case SOC_ARCH_EXYNOS4412:
1234         case SOC_ARCH_EXYNOS5250:
1235         case SOC_ARCH_EXYNOS5260:
1236         case SOC_ARCH_EXYNOS5420:
1237         case SOC_ARCH_EXYNOS5420_TRIMINFO:
1238                 data->tmu_initialize = exynos4412_tmu_initialize;
1239                 data->tmu_control = exynos4210_tmu_control;
1240                 data->tmu_read = exynos4412_tmu_read;
1241                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1242                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1243                 data->ntrip = 4;
1244                 break;
1245         case SOC_ARCH_EXYNOS5433:
1246                 data->tmu_initialize = exynos5433_tmu_initialize;
1247                 data->tmu_control = exynos5433_tmu_control;
1248                 data->tmu_read = exynos4412_tmu_read;
1249                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1250                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1251                 data->ntrip = 8;
1252                 break;
1253         case SOC_ARCH_EXYNOS5440:
1254                 data->tmu_initialize = exynos5440_tmu_initialize;
1255                 data->tmu_control = exynos5440_tmu_control;
1256                 data->tmu_read = exynos5440_tmu_read;
1257                 data->tmu_set_emulation = exynos5440_tmu_set_emulation;
1258                 data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
1259                 data->ntrip = 4;
1260                 break;
1261         case SOC_ARCH_EXYNOS7:
1262                 data->tmu_initialize = exynos7_tmu_initialize;
1263                 data->tmu_control = exynos7_tmu_control;
1264                 data->tmu_read = exynos7_tmu_read;
1265                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1266                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1267                 data->ntrip = 8;
1268                 break;
1269         default:
1270                 dev_err(&pdev->dev, "Platform not supported\n");
1271                 return -EINVAL;
1272         }
1273
1274         /*
1275          * Check if the TMU shares some registers and then try to map the
1276          * memory of common registers.
1277          */
1278         if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
1279             data->soc != SOC_ARCH_EXYNOS5440)
1280                 return 0;
1281
1282         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
1283                 dev_err(&pdev->dev, "failed to get Resource 1\n");
1284                 return -ENODEV;
1285         }
1286
1287         data->base_second = devm_ioremap(&pdev->dev, res.start,
1288                                         resource_size(&res));
1289         if (!data->base_second) {
1290                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
1291                 return -ENOMEM;
1292         }
1293
1294         return 0;
1295 }
1296
1297 static const struct thermal_zone_of_device_ops exynos_sensor_ops = {
1298         .get_temp = exynos_get_temp,
1299         .set_emul_temp = exynos_tmu_set_emulation,
1300 };
1301
1302 static int exynos_tmu_probe(struct platform_device *pdev)
1303 {
1304         struct exynos_tmu_data *data;
1305         int ret;
1306
1307         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
1308                                         GFP_KERNEL);
1309         if (!data)
1310                 return -ENOMEM;
1311
1312         platform_set_drvdata(pdev, data);
1313         mutex_init(&data->lock);
1314
1315         /*
1316          * Try enabling the regulator if found
1317          * TODO: Add regulator as an SOC feature, so that regulator enable
1318          * is a compulsory call.
1319          */
1320         data->regulator = devm_regulator_get_optional(&pdev->dev, "vtmu");
1321         if (!IS_ERR(data->regulator)) {
1322                 ret = regulator_enable(data->regulator);
1323                 if (ret) {
1324                         dev_err(&pdev->dev, "failed to enable vtmu\n");
1325                         return ret;
1326                 }
1327         } else {
1328                 if (PTR_ERR(data->regulator) == -EPROBE_DEFER)
1329                         return -EPROBE_DEFER;
1330                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
1331         }
1332
1333         ret = exynos_map_dt_data(pdev);
1334         if (ret)
1335                 goto err_sensor;
1336
1337         INIT_WORK(&data->irq_work, exynos_tmu_work);
1338
1339         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
1340         if (IS_ERR(data->clk)) {
1341                 dev_err(&pdev->dev, "Failed to get clock\n");
1342                 ret = PTR_ERR(data->clk);
1343                 goto err_sensor;
1344         }
1345
1346         data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
1347         if (IS_ERR(data->clk_sec)) {
1348                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
1349                         dev_err(&pdev->dev, "Failed to get triminfo clock\n");
1350                         ret = PTR_ERR(data->clk_sec);
1351                         goto err_sensor;
1352                 }
1353         } else {
1354                 ret = clk_prepare(data->clk_sec);
1355                 if (ret) {
1356                         dev_err(&pdev->dev, "Failed to get clock\n");
1357                         goto err_sensor;
1358                 }
1359         }
1360
1361         ret = clk_prepare(data->clk);
1362         if (ret) {
1363                 dev_err(&pdev->dev, "Failed to get clock\n");
1364                 goto err_clk_sec;
1365         }
1366
1367         switch (data->soc) {
1368         case SOC_ARCH_EXYNOS5433:
1369         case SOC_ARCH_EXYNOS7:
1370                 data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
1371                 if (IS_ERR(data->sclk)) {
1372                         dev_err(&pdev->dev, "Failed to get sclk\n");
1373                         goto err_clk;
1374                 } else {
1375                         ret = clk_prepare_enable(data->sclk);
1376                         if (ret) {
1377                                 dev_err(&pdev->dev, "Failed to enable sclk\n");
1378                                 goto err_clk;
1379                         }
1380                 }
1381                 break;
1382         default:
1383                 break;
1384         }
1385
1386         /*
1387          * data->tzd must be registered before calling exynos_tmu_initialize(),
1388          * requesting irq and calling exynos_tmu_control().
1389          */
1390         data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
1391                                                     &exynos_sensor_ops);
1392         if (IS_ERR(data->tzd)) {
1393                 ret = PTR_ERR(data->tzd);
1394                 dev_err(&pdev->dev, "Failed to register sensor: %d\n", ret);
1395                 goto err_sclk;
1396         }
1397
1398         ret = exynos_tmu_initialize(pdev);
1399         if (ret) {
1400                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
1401                 goto err_thermal;
1402         }
1403
1404         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
1405                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
1406         if (ret) {
1407                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
1408                 goto err_thermal;
1409         }
1410
1411         exynos_tmu_control(pdev, true);
1412         return 0;
1413
1414 err_thermal:
1415         thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
1416 err_sclk:
1417         clk_disable_unprepare(data->sclk);
1418 err_clk:
1419         clk_unprepare(data->clk);
1420 err_clk_sec:
1421         if (!IS_ERR(data->clk_sec))
1422                 clk_unprepare(data->clk_sec);
1423 err_sensor:
1424         if (!IS_ERR(data->regulator))
1425                 regulator_disable(data->regulator);
1426
1427         return ret;
1428 }
1429
1430 static int exynos_tmu_remove(struct platform_device *pdev)
1431 {
1432         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1433         struct thermal_zone_device *tzd = data->tzd;
1434
1435         thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
1436         exynos_tmu_control(pdev, false);
1437
1438         clk_disable_unprepare(data->sclk);
1439         clk_unprepare(data->clk);
1440         if (!IS_ERR(data->clk_sec))
1441                 clk_unprepare(data->clk_sec);
1442
1443         if (!IS_ERR(data->regulator))
1444                 regulator_disable(data->regulator);
1445
1446         return 0;
1447 }
1448
1449 #ifdef CONFIG_PM_SLEEP
1450 static int exynos_tmu_suspend(struct device *dev)
1451 {
1452         exynos_tmu_control(to_platform_device(dev), false);
1453
1454         return 0;
1455 }
1456
1457 static int exynos_tmu_resume(struct device *dev)
1458 {
1459         struct platform_device *pdev = to_platform_device(dev);
1460
1461         exynos_tmu_initialize(pdev);
1462         exynos_tmu_control(pdev, true);
1463
1464         return 0;
1465 }
1466
1467 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
1468                          exynos_tmu_suspend, exynos_tmu_resume);
1469 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
1470 #else
1471 #define EXYNOS_TMU_PM   NULL
1472 #endif
1473
1474 static struct platform_driver exynos_tmu_driver = {
1475         .driver = {
1476                 .name   = "exynos-tmu",
1477                 .pm     = EXYNOS_TMU_PM,
1478                 .of_match_table = exynos_tmu_match,
1479         },
1480         .probe = exynos_tmu_probe,
1481         .remove = exynos_tmu_remove,
1482 };
1483
1484 module_platform_driver(exynos_tmu_driver);
1485
1486 MODULE_DESCRIPTION("EXYNOS TMU Driver");
1487 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
1488 MODULE_LICENSE("GPL");
1489 MODULE_ALIAS("platform:exynos-tmu");