Merge tag 'for-4.20-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20
21 /*
22  * This is only the first step towards a full-features scrub. It reads all
23  * extent and super block and verifies the checksums. In case a bad checksum
24  * is found or the extent cannot be read, good data will be written back if
25  * any can be found.
26  *
27  * Future enhancements:
28  *  - In case an unrepairable extent is encountered, track which files are
29  *    affected and report them
30  *  - track and record media errors, throw out bad devices
31  *  - add a mode to also read unallocated space
32  */
33
34 struct scrub_block;
35 struct scrub_ctx;
36
37 /*
38  * the following three values only influence the performance.
39  * The last one configures the number of parallel and outstanding I/O
40  * operations. The first two values configure an upper limit for the number
41  * of (dynamically allocated) pages that are added to a bio.
42  */
43 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
46
47 /*
48  * the following value times PAGE_SIZE needs to be large enough to match the
49  * largest node/leaf/sector size that shall be supported.
50  * Values larger than BTRFS_STRIPE_LEN are not supported.
51  */
52 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
53
54 struct scrub_recover {
55         refcount_t              refs;
56         struct btrfs_bio        *bbio;
57         u64                     map_length;
58 };
59
60 struct scrub_page {
61         struct scrub_block      *sblock;
62         struct page             *page;
63         struct btrfs_device     *dev;
64         struct list_head        list;
65         u64                     flags;  /* extent flags */
66         u64                     generation;
67         u64                     logical;
68         u64                     physical;
69         u64                     physical_for_dev_replace;
70         atomic_t                refs;
71         struct {
72                 unsigned int    mirror_num:8;
73                 unsigned int    have_csum:1;
74                 unsigned int    io_error:1;
75         };
76         u8                      csum[BTRFS_CSUM_SIZE];
77
78         struct scrub_recover    *recover;
79 };
80
81 struct scrub_bio {
82         int                     index;
83         struct scrub_ctx        *sctx;
84         struct btrfs_device     *dev;
85         struct bio              *bio;
86         blk_status_t            status;
87         u64                     logical;
88         u64                     physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94         int                     page_count;
95         int                     next_free;
96         struct btrfs_work       work;
97 };
98
99 struct scrub_block {
100         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101         int                     page_count;
102         atomic_t                outstanding_pages;
103         refcount_t              refs; /* free mem on transition to zero */
104         struct scrub_ctx        *sctx;
105         struct scrub_parity     *sparity;
106         struct {
107                 unsigned int    header_error:1;
108                 unsigned int    checksum_error:1;
109                 unsigned int    no_io_error_seen:1;
110                 unsigned int    generation_error:1; /* also sets header_error */
111
112                 /* The following is for the data used to check parity */
113                 /* It is for the data with checksum */
114                 unsigned int    data_corrected:1;
115         };
116         struct btrfs_work       work;
117 };
118
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121         struct scrub_ctx        *sctx;
122
123         struct btrfs_device     *scrub_dev;
124
125         u64                     logic_start;
126
127         u64                     logic_end;
128
129         int                     nsectors;
130
131         u64                     stripe_len;
132
133         refcount_t              refs;
134
135         struct list_head        spages;
136
137         /* Work of parity check and repair */
138         struct btrfs_work       work;
139
140         /* Mark the parity blocks which have data */
141         unsigned long           *dbitmap;
142
143         /*
144          * Mark the parity blocks which have data, but errors happen when
145          * read data or check data
146          */
147         unsigned long           *ebitmap;
148
149         unsigned long           bitmap[0];
150 };
151
152 struct scrub_ctx {
153         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
154         struct btrfs_fs_info    *fs_info;
155         int                     first_free;
156         int                     curr;
157         atomic_t                bios_in_flight;
158         atomic_t                workers_pending;
159         spinlock_t              list_lock;
160         wait_queue_head_t       list_wait;
161         u16                     csum_size;
162         struct list_head        csum_list;
163         atomic_t                cancel_req;
164         int                     readonly;
165         int                     pages_per_rd_bio;
166
167         int                     is_dev_replace;
168
169         struct scrub_bio        *wr_curr_bio;
170         struct mutex            wr_lock;
171         int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172         struct btrfs_device     *wr_tgtdev;
173         bool                    flush_all_writes;
174
175         /*
176          * statistics
177          */
178         struct btrfs_scrub_progress stat;
179         spinlock_t              stat_lock;
180
181         /*
182          * Use a ref counter to avoid use-after-free issues. Scrub workers
183          * decrement bios_in_flight and workers_pending and then do a wakeup
184          * on the list_wait wait queue. We must ensure the main scrub task
185          * doesn't free the scrub context before or while the workers are
186          * doing the wakeup() call.
187          */
188         refcount_t              refs;
189 };
190
191 struct scrub_warning {
192         struct btrfs_path       *path;
193         u64                     extent_item_size;
194         const char              *errstr;
195         u64                     physical;
196         u64                     logical;
197         struct btrfs_device     *dev;
198 };
199
200 struct full_stripe_lock {
201         struct rb_node node;
202         u64 logical;
203         u64 refs;
204         struct mutex mutex;
205 };
206
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211                                      struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213                                 struct scrub_block *sblock,
214                                 int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217                                              struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219                                             struct scrub_block *sblock_good,
220                                             int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
223                                            int page_num);
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234                                     struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236                        u64 physical, struct btrfs_device *dev, u64 flags,
237                        u64 gen, int mirror_num, u8 *csum, int force,
238                        u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243                                u64 extent_logical, u64 extent_len,
244                                u64 *extent_physical,
245                                struct btrfs_device **extent_dev,
246                                int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248                                     struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
255
256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
257 {
258         return page->recover &&
259                (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
260 }
261
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264         refcount_inc(&sctx->refs);
265         atomic_inc(&sctx->bios_in_flight);
266 }
267
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270         atomic_dec(&sctx->bios_in_flight);
271         wake_up(&sctx->list_wait);
272         scrub_put_ctx(sctx);
273 }
274
275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 {
277         while (atomic_read(&fs_info->scrub_pause_req)) {
278                 mutex_unlock(&fs_info->scrub_lock);
279                 wait_event(fs_info->scrub_pause_wait,
280                    atomic_read(&fs_info->scrub_pause_req) == 0);
281                 mutex_lock(&fs_info->scrub_lock);
282         }
283 }
284
285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
286 {
287         atomic_inc(&fs_info->scrubs_paused);
288         wake_up(&fs_info->scrub_pause_wait);
289 }
290
291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
292 {
293         mutex_lock(&fs_info->scrub_lock);
294         __scrub_blocked_if_needed(fs_info);
295         atomic_dec(&fs_info->scrubs_paused);
296         mutex_unlock(&fs_info->scrub_lock);
297
298         wake_up(&fs_info->scrub_pause_wait);
299 }
300
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
302 {
303         scrub_pause_on(fs_info);
304         scrub_pause_off(fs_info);
305 }
306
307 /*
308  * Insert new full stripe lock into full stripe locks tree
309  *
310  * Return pointer to existing or newly inserted full_stripe_lock structure if
311  * everything works well.
312  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
313  *
314  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
315  * function
316  */
317 static struct full_stripe_lock *insert_full_stripe_lock(
318                 struct btrfs_full_stripe_locks_tree *locks_root,
319                 u64 fstripe_logical)
320 {
321         struct rb_node **p;
322         struct rb_node *parent = NULL;
323         struct full_stripe_lock *entry;
324         struct full_stripe_lock *ret;
325
326         lockdep_assert_held(&locks_root->lock);
327
328         p = &locks_root->root.rb_node;
329         while (*p) {
330                 parent = *p;
331                 entry = rb_entry(parent, struct full_stripe_lock, node);
332                 if (fstripe_logical < entry->logical) {
333                         p = &(*p)->rb_left;
334                 } else if (fstripe_logical > entry->logical) {
335                         p = &(*p)->rb_right;
336                 } else {
337                         entry->refs++;
338                         return entry;
339                 }
340         }
341
342         /* Insert new lock */
343         ret = kmalloc(sizeof(*ret), GFP_KERNEL);
344         if (!ret)
345                 return ERR_PTR(-ENOMEM);
346         ret->logical = fstripe_logical;
347         ret->refs = 1;
348         mutex_init(&ret->mutex);
349
350         rb_link_node(&ret->node, parent, p);
351         rb_insert_color(&ret->node, &locks_root->root);
352         return ret;
353 }
354
355 /*
356  * Search for a full stripe lock of a block group
357  *
358  * Return pointer to existing full stripe lock if found
359  * Return NULL if not found
360  */
361 static struct full_stripe_lock *search_full_stripe_lock(
362                 struct btrfs_full_stripe_locks_tree *locks_root,
363                 u64 fstripe_logical)
364 {
365         struct rb_node *node;
366         struct full_stripe_lock *entry;
367
368         lockdep_assert_held(&locks_root->lock);
369
370         node = locks_root->root.rb_node;
371         while (node) {
372                 entry = rb_entry(node, struct full_stripe_lock, node);
373                 if (fstripe_logical < entry->logical)
374                         node = node->rb_left;
375                 else if (fstripe_logical > entry->logical)
376                         node = node->rb_right;
377                 else
378                         return entry;
379         }
380         return NULL;
381 }
382
383 /*
384  * Helper to get full stripe logical from a normal bytenr.
385  *
386  * Caller must ensure @cache is a RAID56 block group.
387  */
388 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
389                                    u64 bytenr)
390 {
391         u64 ret;
392
393         /*
394          * Due to chunk item size limit, full stripe length should not be
395          * larger than U32_MAX. Just a sanity check here.
396          */
397         WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
398
399         /*
400          * round_down() can only handle power of 2, while RAID56 full
401          * stripe length can be 64KiB * n, so we need to manually round down.
402          */
403         ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
404                 cache->full_stripe_len + cache->key.objectid;
405         return ret;
406 }
407
408 /*
409  * Lock a full stripe to avoid concurrency of recovery and read
410  *
411  * It's only used for profiles with parities (RAID5/6), for other profiles it
412  * does nothing.
413  *
414  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
415  * So caller must call unlock_full_stripe() at the same context.
416  *
417  * Return <0 if encounters error.
418  */
419 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
420                             bool *locked_ret)
421 {
422         struct btrfs_block_group_cache *bg_cache;
423         struct btrfs_full_stripe_locks_tree *locks_root;
424         struct full_stripe_lock *existing;
425         u64 fstripe_start;
426         int ret = 0;
427
428         *locked_ret = false;
429         bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
430         if (!bg_cache) {
431                 ASSERT(0);
432                 return -ENOENT;
433         }
434
435         /* Profiles not based on parity don't need full stripe lock */
436         if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
437                 goto out;
438         locks_root = &bg_cache->full_stripe_locks_root;
439
440         fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
441
442         /* Now insert the full stripe lock */
443         mutex_lock(&locks_root->lock);
444         existing = insert_full_stripe_lock(locks_root, fstripe_start);
445         mutex_unlock(&locks_root->lock);
446         if (IS_ERR(existing)) {
447                 ret = PTR_ERR(existing);
448                 goto out;
449         }
450         mutex_lock(&existing->mutex);
451         *locked_ret = true;
452 out:
453         btrfs_put_block_group(bg_cache);
454         return ret;
455 }
456
457 /*
458  * Unlock a full stripe.
459  *
460  * NOTE: Caller must ensure it's the same context calling corresponding
461  * lock_full_stripe().
462  *
463  * Return 0 if we unlock full stripe without problem.
464  * Return <0 for error
465  */
466 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
467                               bool locked)
468 {
469         struct btrfs_block_group_cache *bg_cache;
470         struct btrfs_full_stripe_locks_tree *locks_root;
471         struct full_stripe_lock *fstripe_lock;
472         u64 fstripe_start;
473         bool freeit = false;
474         int ret = 0;
475
476         /* If we didn't acquire full stripe lock, no need to continue */
477         if (!locked)
478                 return 0;
479
480         bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
481         if (!bg_cache) {
482                 ASSERT(0);
483                 return -ENOENT;
484         }
485         if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
486                 goto out;
487
488         locks_root = &bg_cache->full_stripe_locks_root;
489         fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
490
491         mutex_lock(&locks_root->lock);
492         fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
493         /* Unpaired unlock_full_stripe() detected */
494         if (!fstripe_lock) {
495                 WARN_ON(1);
496                 ret = -ENOENT;
497                 mutex_unlock(&locks_root->lock);
498                 goto out;
499         }
500
501         if (fstripe_lock->refs == 0) {
502                 WARN_ON(1);
503                 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
504                         fstripe_lock->logical);
505         } else {
506                 fstripe_lock->refs--;
507         }
508
509         if (fstripe_lock->refs == 0) {
510                 rb_erase(&fstripe_lock->node, &locks_root->root);
511                 freeit = true;
512         }
513         mutex_unlock(&locks_root->lock);
514
515         mutex_unlock(&fstripe_lock->mutex);
516         if (freeit)
517                 kfree(fstripe_lock);
518 out:
519         btrfs_put_block_group(bg_cache);
520         return ret;
521 }
522
523 static void scrub_free_csums(struct scrub_ctx *sctx)
524 {
525         while (!list_empty(&sctx->csum_list)) {
526                 struct btrfs_ordered_sum *sum;
527                 sum = list_first_entry(&sctx->csum_list,
528                                        struct btrfs_ordered_sum, list);
529                 list_del(&sum->list);
530                 kfree(sum);
531         }
532 }
533
534 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
535 {
536         int i;
537
538         if (!sctx)
539                 return;
540
541         /* this can happen when scrub is cancelled */
542         if (sctx->curr != -1) {
543                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
544
545                 for (i = 0; i < sbio->page_count; i++) {
546                         WARN_ON(!sbio->pagev[i]->page);
547                         scrub_block_put(sbio->pagev[i]->sblock);
548                 }
549                 bio_put(sbio->bio);
550         }
551
552         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
553                 struct scrub_bio *sbio = sctx->bios[i];
554
555                 if (!sbio)
556                         break;
557                 kfree(sbio);
558         }
559
560         kfree(sctx->wr_curr_bio);
561         scrub_free_csums(sctx);
562         kfree(sctx);
563 }
564
565 static void scrub_put_ctx(struct scrub_ctx *sctx)
566 {
567         if (refcount_dec_and_test(&sctx->refs))
568                 scrub_free_ctx(sctx);
569 }
570
571 static noinline_for_stack
572 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
573 {
574         struct scrub_ctx *sctx;
575         int             i;
576         struct btrfs_fs_info *fs_info = dev->fs_info;
577
578         sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
579         if (!sctx)
580                 goto nomem;
581         refcount_set(&sctx->refs, 1);
582         sctx->is_dev_replace = is_dev_replace;
583         sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
584         sctx->curr = -1;
585         sctx->fs_info = dev->fs_info;
586         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
587                 struct scrub_bio *sbio;
588
589                 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
590                 if (!sbio)
591                         goto nomem;
592                 sctx->bios[i] = sbio;
593
594                 sbio->index = i;
595                 sbio->sctx = sctx;
596                 sbio->page_count = 0;
597                 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
598                                 scrub_bio_end_io_worker, NULL, NULL);
599
600                 if (i != SCRUB_BIOS_PER_SCTX - 1)
601                         sctx->bios[i]->next_free = i + 1;
602                 else
603                         sctx->bios[i]->next_free = -1;
604         }
605         sctx->first_free = 0;
606         atomic_set(&sctx->bios_in_flight, 0);
607         atomic_set(&sctx->workers_pending, 0);
608         atomic_set(&sctx->cancel_req, 0);
609         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
610         INIT_LIST_HEAD(&sctx->csum_list);
611
612         spin_lock_init(&sctx->list_lock);
613         spin_lock_init(&sctx->stat_lock);
614         init_waitqueue_head(&sctx->list_wait);
615
616         WARN_ON(sctx->wr_curr_bio != NULL);
617         mutex_init(&sctx->wr_lock);
618         sctx->wr_curr_bio = NULL;
619         if (is_dev_replace) {
620                 WARN_ON(!fs_info->dev_replace.tgtdev);
621                 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
622                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
623                 sctx->flush_all_writes = false;
624         }
625
626         return sctx;
627
628 nomem:
629         scrub_free_ctx(sctx);
630         return ERR_PTR(-ENOMEM);
631 }
632
633 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
634                                      void *warn_ctx)
635 {
636         u64 isize;
637         u32 nlink;
638         int ret;
639         int i;
640         unsigned nofs_flag;
641         struct extent_buffer *eb;
642         struct btrfs_inode_item *inode_item;
643         struct scrub_warning *swarn = warn_ctx;
644         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
645         struct inode_fs_paths *ipath = NULL;
646         struct btrfs_root *local_root;
647         struct btrfs_key root_key;
648         struct btrfs_key key;
649
650         root_key.objectid = root;
651         root_key.type = BTRFS_ROOT_ITEM_KEY;
652         root_key.offset = (u64)-1;
653         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
654         if (IS_ERR(local_root)) {
655                 ret = PTR_ERR(local_root);
656                 goto err;
657         }
658
659         /*
660          * this makes the path point to (inum INODE_ITEM ioff)
661          */
662         key.objectid = inum;
663         key.type = BTRFS_INODE_ITEM_KEY;
664         key.offset = 0;
665
666         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
667         if (ret) {
668                 btrfs_release_path(swarn->path);
669                 goto err;
670         }
671
672         eb = swarn->path->nodes[0];
673         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
674                                         struct btrfs_inode_item);
675         isize = btrfs_inode_size(eb, inode_item);
676         nlink = btrfs_inode_nlink(eb, inode_item);
677         btrfs_release_path(swarn->path);
678
679         /*
680          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
681          * uses GFP_NOFS in this context, so we keep it consistent but it does
682          * not seem to be strictly necessary.
683          */
684         nofs_flag = memalloc_nofs_save();
685         ipath = init_ipath(4096, local_root, swarn->path);
686         memalloc_nofs_restore(nofs_flag);
687         if (IS_ERR(ipath)) {
688                 ret = PTR_ERR(ipath);
689                 ipath = NULL;
690                 goto err;
691         }
692         ret = paths_from_inode(inum, ipath);
693
694         if (ret < 0)
695                 goto err;
696
697         /*
698          * we deliberately ignore the bit ipath might have been too small to
699          * hold all of the paths here
700          */
701         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
702                 btrfs_warn_in_rcu(fs_info,
703 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
704                                   swarn->errstr, swarn->logical,
705                                   rcu_str_deref(swarn->dev->name),
706                                   swarn->physical,
707                                   root, inum, offset,
708                                   min(isize - offset, (u64)PAGE_SIZE), nlink,
709                                   (char *)(unsigned long)ipath->fspath->val[i]);
710
711         free_ipath(ipath);
712         return 0;
713
714 err:
715         btrfs_warn_in_rcu(fs_info,
716                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
717                           swarn->errstr, swarn->logical,
718                           rcu_str_deref(swarn->dev->name),
719                           swarn->physical,
720                           root, inum, offset, ret);
721
722         free_ipath(ipath);
723         return 0;
724 }
725
726 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
727 {
728         struct btrfs_device *dev;
729         struct btrfs_fs_info *fs_info;
730         struct btrfs_path *path;
731         struct btrfs_key found_key;
732         struct extent_buffer *eb;
733         struct btrfs_extent_item *ei;
734         struct scrub_warning swarn;
735         unsigned long ptr = 0;
736         u64 extent_item_pos;
737         u64 flags = 0;
738         u64 ref_root;
739         u32 item_size;
740         u8 ref_level = 0;
741         int ret;
742
743         WARN_ON(sblock->page_count < 1);
744         dev = sblock->pagev[0]->dev;
745         fs_info = sblock->sctx->fs_info;
746
747         path = btrfs_alloc_path();
748         if (!path)
749                 return;
750
751         swarn.physical = sblock->pagev[0]->physical;
752         swarn.logical = sblock->pagev[0]->logical;
753         swarn.errstr = errstr;
754         swarn.dev = NULL;
755
756         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
757                                   &flags);
758         if (ret < 0)
759                 goto out;
760
761         extent_item_pos = swarn.logical - found_key.objectid;
762         swarn.extent_item_size = found_key.offset;
763
764         eb = path->nodes[0];
765         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
766         item_size = btrfs_item_size_nr(eb, path->slots[0]);
767
768         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769                 do {
770                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
771                                                       item_size, &ref_root,
772                                                       &ref_level);
773                         btrfs_warn_in_rcu(fs_info,
774 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
775                                 errstr, swarn.logical,
776                                 rcu_str_deref(dev->name),
777                                 swarn.physical,
778                                 ref_level ? "node" : "leaf",
779                                 ret < 0 ? -1 : ref_level,
780                                 ret < 0 ? -1 : ref_root);
781                 } while (ret != 1);
782                 btrfs_release_path(path);
783         } else {
784                 btrfs_release_path(path);
785                 swarn.path = path;
786                 swarn.dev = dev;
787                 iterate_extent_inodes(fs_info, found_key.objectid,
788                                         extent_item_pos, 1,
789                                         scrub_print_warning_inode, &swarn, false);
790         }
791
792 out:
793         btrfs_free_path(path);
794 }
795
796 static inline void scrub_get_recover(struct scrub_recover *recover)
797 {
798         refcount_inc(&recover->refs);
799 }
800
801 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
802                                      struct scrub_recover *recover)
803 {
804         if (refcount_dec_and_test(&recover->refs)) {
805                 btrfs_bio_counter_dec(fs_info);
806                 btrfs_put_bbio(recover->bbio);
807                 kfree(recover);
808         }
809 }
810
811 /*
812  * scrub_handle_errored_block gets called when either verification of the
813  * pages failed or the bio failed to read, e.g. with EIO. In the latter
814  * case, this function handles all pages in the bio, even though only one
815  * may be bad.
816  * The goal of this function is to repair the errored block by using the
817  * contents of one of the mirrors.
818  */
819 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
820 {
821         struct scrub_ctx *sctx = sblock_to_check->sctx;
822         struct btrfs_device *dev;
823         struct btrfs_fs_info *fs_info;
824         u64 logical;
825         unsigned int failed_mirror_index;
826         unsigned int is_metadata;
827         unsigned int have_csum;
828         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
829         struct scrub_block *sblock_bad;
830         int ret;
831         int mirror_index;
832         int page_num;
833         int success;
834         bool full_stripe_locked;
835         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
836                                       DEFAULT_RATELIMIT_BURST);
837
838         BUG_ON(sblock_to_check->page_count < 1);
839         fs_info = sctx->fs_info;
840         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
841                 /*
842                  * if we find an error in a super block, we just report it.
843                  * They will get written with the next transaction commit
844                  * anyway
845                  */
846                 spin_lock(&sctx->stat_lock);
847                 ++sctx->stat.super_errors;
848                 spin_unlock(&sctx->stat_lock);
849                 return 0;
850         }
851         logical = sblock_to_check->pagev[0]->logical;
852         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854         is_metadata = !(sblock_to_check->pagev[0]->flags &
855                         BTRFS_EXTENT_FLAG_DATA);
856         have_csum = sblock_to_check->pagev[0]->have_csum;
857         dev = sblock_to_check->pagev[0]->dev;
858
859         /*
860          * For RAID5/6, race can happen for a different device scrub thread.
861          * For data corruption, Parity and Data threads will both try
862          * to recovery the data.
863          * Race can lead to doubly added csum error, or even unrecoverable
864          * error.
865          */
866         ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
867         if (ret < 0) {
868                 spin_lock(&sctx->stat_lock);
869                 if (ret == -ENOMEM)
870                         sctx->stat.malloc_errors++;
871                 sctx->stat.read_errors++;
872                 sctx->stat.uncorrectable_errors++;
873                 spin_unlock(&sctx->stat_lock);
874                 return ret;
875         }
876
877         /*
878          * read all mirrors one after the other. This includes to
879          * re-read the extent or metadata block that failed (that was
880          * the cause that this fixup code is called) another time,
881          * page by page this time in order to know which pages
882          * caused I/O errors and which ones are good (for all mirrors).
883          * It is the goal to handle the situation when more than one
884          * mirror contains I/O errors, but the errors do not
885          * overlap, i.e. the data can be repaired by selecting the
886          * pages from those mirrors without I/O error on the
887          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
888          * would be that mirror #1 has an I/O error on the first page,
889          * the second page is good, and mirror #2 has an I/O error on
890          * the second page, but the first page is good.
891          * Then the first page of the first mirror can be repaired by
892          * taking the first page of the second mirror, and the
893          * second page of the second mirror can be repaired by
894          * copying the contents of the 2nd page of the 1st mirror.
895          * One more note: if the pages of one mirror contain I/O
896          * errors, the checksum cannot be verified. In order to get
897          * the best data for repairing, the first attempt is to find
898          * a mirror without I/O errors and with a validated checksum.
899          * Only if this is not possible, the pages are picked from
900          * mirrors with I/O errors without considering the checksum.
901          * If the latter is the case, at the end, the checksum of the
902          * repaired area is verified in order to correctly maintain
903          * the statistics.
904          */
905
906         sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
907                                       sizeof(*sblocks_for_recheck), GFP_NOFS);
908         if (!sblocks_for_recheck) {
909                 spin_lock(&sctx->stat_lock);
910                 sctx->stat.malloc_errors++;
911                 sctx->stat.read_errors++;
912                 sctx->stat.uncorrectable_errors++;
913                 spin_unlock(&sctx->stat_lock);
914                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915                 goto out;
916         }
917
918         /* setup the context, map the logical blocks and alloc the pages */
919         ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
920         if (ret) {
921                 spin_lock(&sctx->stat_lock);
922                 sctx->stat.read_errors++;
923                 sctx->stat.uncorrectable_errors++;
924                 spin_unlock(&sctx->stat_lock);
925                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926                 goto out;
927         }
928         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
929         sblock_bad = sblocks_for_recheck + failed_mirror_index;
930
931         /* build and submit the bios for the failed mirror, check checksums */
932         scrub_recheck_block(fs_info, sblock_bad, 1);
933
934         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
935             sblock_bad->no_io_error_seen) {
936                 /*
937                  * the error disappeared after reading page by page, or
938                  * the area was part of a huge bio and other parts of the
939                  * bio caused I/O errors, or the block layer merged several
940                  * read requests into one and the error is caused by a
941                  * different bio (usually one of the two latter cases is
942                  * the cause)
943                  */
944                 spin_lock(&sctx->stat_lock);
945                 sctx->stat.unverified_errors++;
946                 sblock_to_check->data_corrected = 1;
947                 spin_unlock(&sctx->stat_lock);
948
949                 if (sctx->is_dev_replace)
950                         scrub_write_block_to_dev_replace(sblock_bad);
951                 goto out;
952         }
953
954         if (!sblock_bad->no_io_error_seen) {
955                 spin_lock(&sctx->stat_lock);
956                 sctx->stat.read_errors++;
957                 spin_unlock(&sctx->stat_lock);
958                 if (__ratelimit(&_rs))
959                         scrub_print_warning("i/o error", sblock_to_check);
960                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
961         } else if (sblock_bad->checksum_error) {
962                 spin_lock(&sctx->stat_lock);
963                 sctx->stat.csum_errors++;
964                 spin_unlock(&sctx->stat_lock);
965                 if (__ratelimit(&_rs))
966                         scrub_print_warning("checksum error", sblock_to_check);
967                 btrfs_dev_stat_inc_and_print(dev,
968                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
969         } else if (sblock_bad->header_error) {
970                 spin_lock(&sctx->stat_lock);
971                 sctx->stat.verify_errors++;
972                 spin_unlock(&sctx->stat_lock);
973                 if (__ratelimit(&_rs))
974                         scrub_print_warning("checksum/header error",
975                                             sblock_to_check);
976                 if (sblock_bad->generation_error)
977                         btrfs_dev_stat_inc_and_print(dev,
978                                 BTRFS_DEV_STAT_GENERATION_ERRS);
979                 else
980                         btrfs_dev_stat_inc_and_print(dev,
981                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
982         }
983
984         if (sctx->readonly) {
985                 ASSERT(!sctx->is_dev_replace);
986                 goto out;
987         }
988
989         /*
990          * now build and submit the bios for the other mirrors, check
991          * checksums.
992          * First try to pick the mirror which is completely without I/O
993          * errors and also does not have a checksum error.
994          * If one is found, and if a checksum is present, the full block
995          * that is known to contain an error is rewritten. Afterwards
996          * the block is known to be corrected.
997          * If a mirror is found which is completely correct, and no
998          * checksum is present, only those pages are rewritten that had
999          * an I/O error in the block to be repaired, since it cannot be
1000          * determined, which copy of the other pages is better (and it
1001          * could happen otherwise that a correct page would be
1002          * overwritten by a bad one).
1003          */
1004         for (mirror_index = 0; ;mirror_index++) {
1005                 struct scrub_block *sblock_other;
1006
1007                 if (mirror_index == failed_mirror_index)
1008                         continue;
1009
1010                 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1011                 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1012                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1013                                 break;
1014                         if (!sblocks_for_recheck[mirror_index].page_count)
1015                                 break;
1016
1017                         sblock_other = sblocks_for_recheck + mirror_index;
1018                 } else {
1019                         struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1020                         int max_allowed = r->bbio->num_stripes -
1021                                                 r->bbio->num_tgtdevs;
1022
1023                         if (mirror_index >= max_allowed)
1024                                 break;
1025                         if (!sblocks_for_recheck[1].page_count)
1026                                 break;
1027
1028                         ASSERT(failed_mirror_index == 0);
1029                         sblock_other = sblocks_for_recheck + 1;
1030                         sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1031                 }
1032
1033                 /* build and submit the bios, check checksums */
1034                 scrub_recheck_block(fs_info, sblock_other, 0);
1035
1036                 if (!sblock_other->header_error &&
1037                     !sblock_other->checksum_error &&
1038                     sblock_other->no_io_error_seen) {
1039                         if (sctx->is_dev_replace) {
1040                                 scrub_write_block_to_dev_replace(sblock_other);
1041                                 goto corrected_error;
1042                         } else {
1043                                 ret = scrub_repair_block_from_good_copy(
1044                                                 sblock_bad, sblock_other);
1045                                 if (!ret)
1046                                         goto corrected_error;
1047                         }
1048                 }
1049         }
1050
1051         if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1052                 goto did_not_correct_error;
1053
1054         /*
1055          * In case of I/O errors in the area that is supposed to be
1056          * repaired, continue by picking good copies of those pages.
1057          * Select the good pages from mirrors to rewrite bad pages from
1058          * the area to fix. Afterwards verify the checksum of the block
1059          * that is supposed to be repaired. This verification step is
1060          * only done for the purpose of statistic counting and for the
1061          * final scrub report, whether errors remain.
1062          * A perfect algorithm could make use of the checksum and try
1063          * all possible combinations of pages from the different mirrors
1064          * until the checksum verification succeeds. For example, when
1065          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1066          * of mirror #2 is readable but the final checksum test fails,
1067          * then the 2nd page of mirror #3 could be tried, whether now
1068          * the final checksum succeeds. But this would be a rare
1069          * exception and is therefore not implemented. At least it is
1070          * avoided that the good copy is overwritten.
1071          * A more useful improvement would be to pick the sectors
1072          * without I/O error based on sector sizes (512 bytes on legacy
1073          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1074          * mirror could be repaired by taking 512 byte of a different
1075          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1076          * area are unreadable.
1077          */
1078         success = 1;
1079         for (page_num = 0; page_num < sblock_bad->page_count;
1080              page_num++) {
1081                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1082                 struct scrub_block *sblock_other = NULL;
1083
1084                 /* skip no-io-error page in scrub */
1085                 if (!page_bad->io_error && !sctx->is_dev_replace)
1086                         continue;
1087
1088                 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1089                         /*
1090                          * In case of dev replace, if raid56 rebuild process
1091                          * didn't work out correct data, then copy the content
1092                          * in sblock_bad to make sure target device is identical
1093                          * to source device, instead of writing garbage data in
1094                          * sblock_for_recheck array to target device.
1095                          */
1096                         sblock_other = NULL;
1097                 } else if (page_bad->io_error) {
1098                         /* try to find no-io-error page in mirrors */
1099                         for (mirror_index = 0;
1100                              mirror_index < BTRFS_MAX_MIRRORS &&
1101                              sblocks_for_recheck[mirror_index].page_count > 0;
1102                              mirror_index++) {
1103                                 if (!sblocks_for_recheck[mirror_index].
1104                                     pagev[page_num]->io_error) {
1105                                         sblock_other = sblocks_for_recheck +
1106                                                        mirror_index;
1107                                         break;
1108                                 }
1109                         }
1110                         if (!sblock_other)
1111                                 success = 0;
1112                 }
1113
1114                 if (sctx->is_dev_replace) {
1115                         /*
1116                          * did not find a mirror to fetch the page
1117                          * from. scrub_write_page_to_dev_replace()
1118                          * handles this case (page->io_error), by
1119                          * filling the block with zeros before
1120                          * submitting the write request
1121                          */
1122                         if (!sblock_other)
1123                                 sblock_other = sblock_bad;
1124
1125                         if (scrub_write_page_to_dev_replace(sblock_other,
1126                                                             page_num) != 0) {
1127                                 atomic64_inc(
1128                                         &fs_info->dev_replace.num_write_errors);
1129                                 success = 0;
1130                         }
1131                 } else if (sblock_other) {
1132                         ret = scrub_repair_page_from_good_copy(sblock_bad,
1133                                                                sblock_other,
1134                                                                page_num, 0);
1135                         if (0 == ret)
1136                                 page_bad->io_error = 0;
1137                         else
1138                                 success = 0;
1139                 }
1140         }
1141
1142         if (success && !sctx->is_dev_replace) {
1143                 if (is_metadata || have_csum) {
1144                         /*
1145                          * need to verify the checksum now that all
1146                          * sectors on disk are repaired (the write
1147                          * request for data to be repaired is on its way).
1148                          * Just be lazy and use scrub_recheck_block()
1149                          * which re-reads the data before the checksum
1150                          * is verified, but most likely the data comes out
1151                          * of the page cache.
1152                          */
1153                         scrub_recheck_block(fs_info, sblock_bad, 1);
1154                         if (!sblock_bad->header_error &&
1155                             !sblock_bad->checksum_error &&
1156                             sblock_bad->no_io_error_seen)
1157                                 goto corrected_error;
1158                         else
1159                                 goto did_not_correct_error;
1160                 } else {
1161 corrected_error:
1162                         spin_lock(&sctx->stat_lock);
1163                         sctx->stat.corrected_errors++;
1164                         sblock_to_check->data_corrected = 1;
1165                         spin_unlock(&sctx->stat_lock);
1166                         btrfs_err_rl_in_rcu(fs_info,
1167                                 "fixed up error at logical %llu on dev %s",
1168                                 logical, rcu_str_deref(dev->name));
1169                 }
1170         } else {
1171 did_not_correct_error:
1172                 spin_lock(&sctx->stat_lock);
1173                 sctx->stat.uncorrectable_errors++;
1174                 spin_unlock(&sctx->stat_lock);
1175                 btrfs_err_rl_in_rcu(fs_info,
1176                         "unable to fixup (regular) error at logical %llu on dev %s",
1177                         logical, rcu_str_deref(dev->name));
1178         }
1179
1180 out:
1181         if (sblocks_for_recheck) {
1182                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1183                      mirror_index++) {
1184                         struct scrub_block *sblock = sblocks_for_recheck +
1185                                                      mirror_index;
1186                         struct scrub_recover *recover;
1187                         int page_index;
1188
1189                         for (page_index = 0; page_index < sblock->page_count;
1190                              page_index++) {
1191                                 sblock->pagev[page_index]->sblock = NULL;
1192                                 recover = sblock->pagev[page_index]->recover;
1193                                 if (recover) {
1194                                         scrub_put_recover(fs_info, recover);
1195                                         sblock->pagev[page_index]->recover =
1196                                                                         NULL;
1197                                 }
1198                                 scrub_page_put(sblock->pagev[page_index]);
1199                         }
1200                 }
1201                 kfree(sblocks_for_recheck);
1202         }
1203
1204         ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1205         if (ret < 0)
1206                 return ret;
1207         return 0;
1208 }
1209
1210 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1211 {
1212         if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1213                 return 2;
1214         else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1215                 return 3;
1216         else
1217                 return (int)bbio->num_stripes;
1218 }
1219
1220 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1221                                                  u64 *raid_map,
1222                                                  u64 mapped_length,
1223                                                  int nstripes, int mirror,
1224                                                  int *stripe_index,
1225                                                  u64 *stripe_offset)
1226 {
1227         int i;
1228
1229         if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1230                 /* RAID5/6 */
1231                 for (i = 0; i < nstripes; i++) {
1232                         if (raid_map[i] == RAID6_Q_STRIPE ||
1233                             raid_map[i] == RAID5_P_STRIPE)
1234                                 continue;
1235
1236                         if (logical >= raid_map[i] &&
1237                             logical < raid_map[i] + mapped_length)
1238                                 break;
1239                 }
1240
1241                 *stripe_index = i;
1242                 *stripe_offset = logical - raid_map[i];
1243         } else {
1244                 /* The other RAID type */
1245                 *stripe_index = mirror;
1246                 *stripe_offset = 0;
1247         }
1248 }
1249
1250 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1251                                      struct scrub_block *sblocks_for_recheck)
1252 {
1253         struct scrub_ctx *sctx = original_sblock->sctx;
1254         struct btrfs_fs_info *fs_info = sctx->fs_info;
1255         u64 length = original_sblock->page_count * PAGE_SIZE;
1256         u64 logical = original_sblock->pagev[0]->logical;
1257         u64 generation = original_sblock->pagev[0]->generation;
1258         u64 flags = original_sblock->pagev[0]->flags;
1259         u64 have_csum = original_sblock->pagev[0]->have_csum;
1260         struct scrub_recover *recover;
1261         struct btrfs_bio *bbio;
1262         u64 sublen;
1263         u64 mapped_length;
1264         u64 stripe_offset;
1265         int stripe_index;
1266         int page_index = 0;
1267         int mirror_index;
1268         int nmirrors;
1269         int ret;
1270
1271         /*
1272          * note: the two members refs and outstanding_pages
1273          * are not used (and not set) in the blocks that are used for
1274          * the recheck procedure
1275          */
1276
1277         while (length > 0) {
1278                 sublen = min_t(u64, length, PAGE_SIZE);
1279                 mapped_length = sublen;
1280                 bbio = NULL;
1281
1282                 /*
1283                  * with a length of PAGE_SIZE, each returned stripe
1284                  * represents one mirror
1285                  */
1286                 btrfs_bio_counter_inc_blocked(fs_info);
1287                 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1288                                 logical, &mapped_length, &bbio);
1289                 if (ret || !bbio || mapped_length < sublen) {
1290                         btrfs_put_bbio(bbio);
1291                         btrfs_bio_counter_dec(fs_info);
1292                         return -EIO;
1293                 }
1294
1295                 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1296                 if (!recover) {
1297                         btrfs_put_bbio(bbio);
1298                         btrfs_bio_counter_dec(fs_info);
1299                         return -ENOMEM;
1300                 }
1301
1302                 refcount_set(&recover->refs, 1);
1303                 recover->bbio = bbio;
1304                 recover->map_length = mapped_length;
1305
1306                 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1307
1308                 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1309
1310                 for (mirror_index = 0; mirror_index < nmirrors;
1311                      mirror_index++) {
1312                         struct scrub_block *sblock;
1313                         struct scrub_page *page;
1314
1315                         sblock = sblocks_for_recheck + mirror_index;
1316                         sblock->sctx = sctx;
1317
1318                         page = kzalloc(sizeof(*page), GFP_NOFS);
1319                         if (!page) {
1320 leave_nomem:
1321                                 spin_lock(&sctx->stat_lock);
1322                                 sctx->stat.malloc_errors++;
1323                                 spin_unlock(&sctx->stat_lock);
1324                                 scrub_put_recover(fs_info, recover);
1325                                 return -ENOMEM;
1326                         }
1327                         scrub_page_get(page);
1328                         sblock->pagev[page_index] = page;
1329                         page->sblock = sblock;
1330                         page->flags = flags;
1331                         page->generation = generation;
1332                         page->logical = logical;
1333                         page->have_csum = have_csum;
1334                         if (have_csum)
1335                                 memcpy(page->csum,
1336                                        original_sblock->pagev[0]->csum,
1337                                        sctx->csum_size);
1338
1339                         scrub_stripe_index_and_offset(logical,
1340                                                       bbio->map_type,
1341                                                       bbio->raid_map,
1342                                                       mapped_length,
1343                                                       bbio->num_stripes -
1344                                                       bbio->num_tgtdevs,
1345                                                       mirror_index,
1346                                                       &stripe_index,
1347                                                       &stripe_offset);
1348                         page->physical = bbio->stripes[stripe_index].physical +
1349                                          stripe_offset;
1350                         page->dev = bbio->stripes[stripe_index].dev;
1351
1352                         BUG_ON(page_index >= original_sblock->page_count);
1353                         page->physical_for_dev_replace =
1354                                 original_sblock->pagev[page_index]->
1355                                 physical_for_dev_replace;
1356                         /* for missing devices, dev->bdev is NULL */
1357                         page->mirror_num = mirror_index + 1;
1358                         sblock->page_count++;
1359                         page->page = alloc_page(GFP_NOFS);
1360                         if (!page->page)
1361                                 goto leave_nomem;
1362
1363                         scrub_get_recover(recover);
1364                         page->recover = recover;
1365                 }
1366                 scrub_put_recover(fs_info, recover);
1367                 length -= sublen;
1368                 logical += sublen;
1369                 page_index++;
1370         }
1371
1372         return 0;
1373 }
1374
1375 static void scrub_bio_wait_endio(struct bio *bio)
1376 {
1377         complete(bio->bi_private);
1378 }
1379
1380 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1381                                         struct bio *bio,
1382                                         struct scrub_page *page)
1383 {
1384         DECLARE_COMPLETION_ONSTACK(done);
1385         int ret;
1386         int mirror_num;
1387
1388         bio->bi_iter.bi_sector = page->logical >> 9;
1389         bio->bi_private = &done;
1390         bio->bi_end_io = scrub_bio_wait_endio;
1391
1392         mirror_num = page->sblock->pagev[0]->mirror_num;
1393         ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1394                                     page->recover->map_length,
1395                                     mirror_num, 0);
1396         if (ret)
1397                 return ret;
1398
1399         wait_for_completion_io(&done);
1400         return blk_status_to_errno(bio->bi_status);
1401 }
1402
1403 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1404                                           struct scrub_block *sblock)
1405 {
1406         struct scrub_page *first_page = sblock->pagev[0];
1407         struct bio *bio;
1408         int page_num;
1409
1410         /* All pages in sblock belong to the same stripe on the same device. */
1411         ASSERT(first_page->dev);
1412         if (!first_page->dev->bdev)
1413                 goto out;
1414
1415         bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1416         bio_set_dev(bio, first_page->dev->bdev);
1417
1418         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1419                 struct scrub_page *page = sblock->pagev[page_num];
1420
1421                 WARN_ON(!page->page);
1422                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1423         }
1424
1425         if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1426                 bio_put(bio);
1427                 goto out;
1428         }
1429
1430         bio_put(bio);
1431
1432         scrub_recheck_block_checksum(sblock);
1433
1434         return;
1435 out:
1436         for (page_num = 0; page_num < sblock->page_count; page_num++)
1437                 sblock->pagev[page_num]->io_error = 1;
1438
1439         sblock->no_io_error_seen = 0;
1440 }
1441
1442 /*
1443  * this function will check the on disk data for checksum errors, header
1444  * errors and read I/O errors. If any I/O errors happen, the exact pages
1445  * which are errored are marked as being bad. The goal is to enable scrub
1446  * to take those pages that are not errored from all the mirrors so that
1447  * the pages that are errored in the just handled mirror can be repaired.
1448  */
1449 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1450                                 struct scrub_block *sblock,
1451                                 int retry_failed_mirror)
1452 {
1453         int page_num;
1454
1455         sblock->no_io_error_seen = 1;
1456
1457         /* short cut for raid56 */
1458         if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1459                 return scrub_recheck_block_on_raid56(fs_info, sblock);
1460
1461         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1462                 struct bio *bio;
1463                 struct scrub_page *page = sblock->pagev[page_num];
1464
1465                 if (page->dev->bdev == NULL) {
1466                         page->io_error = 1;
1467                         sblock->no_io_error_seen = 0;
1468                         continue;
1469                 }
1470
1471                 WARN_ON(!page->page);
1472                 bio = btrfs_io_bio_alloc(1);
1473                 bio_set_dev(bio, page->dev->bdev);
1474
1475                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1476                 bio->bi_iter.bi_sector = page->physical >> 9;
1477                 bio->bi_opf = REQ_OP_READ;
1478
1479                 if (btrfsic_submit_bio_wait(bio)) {
1480                         page->io_error = 1;
1481                         sblock->no_io_error_seen = 0;
1482                 }
1483
1484                 bio_put(bio);
1485         }
1486
1487         if (sblock->no_io_error_seen)
1488                 scrub_recheck_block_checksum(sblock);
1489 }
1490
1491 static inline int scrub_check_fsid(u8 fsid[],
1492                                    struct scrub_page *spage)
1493 {
1494         struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1495         int ret;
1496
1497         ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1498         return !ret;
1499 }
1500
1501 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1502 {
1503         sblock->header_error = 0;
1504         sblock->checksum_error = 0;
1505         sblock->generation_error = 0;
1506
1507         if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1508                 scrub_checksum_data(sblock);
1509         else
1510                 scrub_checksum_tree_block(sblock);
1511 }
1512
1513 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1514                                              struct scrub_block *sblock_good)
1515 {
1516         int page_num;
1517         int ret = 0;
1518
1519         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1520                 int ret_sub;
1521
1522                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1523                                                            sblock_good,
1524                                                            page_num, 1);
1525                 if (ret_sub)
1526                         ret = ret_sub;
1527         }
1528
1529         return ret;
1530 }
1531
1532 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1533                                             struct scrub_block *sblock_good,
1534                                             int page_num, int force_write)
1535 {
1536         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1537         struct scrub_page *page_good = sblock_good->pagev[page_num];
1538         struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1539
1540         BUG_ON(page_bad->page == NULL);
1541         BUG_ON(page_good->page == NULL);
1542         if (force_write || sblock_bad->header_error ||
1543             sblock_bad->checksum_error || page_bad->io_error) {
1544                 struct bio *bio;
1545                 int ret;
1546
1547                 if (!page_bad->dev->bdev) {
1548                         btrfs_warn_rl(fs_info,
1549                                 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1550                         return -EIO;
1551                 }
1552
1553                 bio = btrfs_io_bio_alloc(1);
1554                 bio_set_dev(bio, page_bad->dev->bdev);
1555                 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1556                 bio->bi_opf = REQ_OP_WRITE;
1557
1558                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1559                 if (PAGE_SIZE != ret) {
1560                         bio_put(bio);
1561                         return -EIO;
1562                 }
1563
1564                 if (btrfsic_submit_bio_wait(bio)) {
1565                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1566                                 BTRFS_DEV_STAT_WRITE_ERRS);
1567                         atomic64_inc(&fs_info->dev_replace.num_write_errors);
1568                         bio_put(bio);
1569                         return -EIO;
1570                 }
1571                 bio_put(bio);
1572         }
1573
1574         return 0;
1575 }
1576
1577 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1578 {
1579         struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1580         int page_num;
1581
1582         /*
1583          * This block is used for the check of the parity on the source device,
1584          * so the data needn't be written into the destination device.
1585          */
1586         if (sblock->sparity)
1587                 return;
1588
1589         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1590                 int ret;
1591
1592                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1593                 if (ret)
1594                         atomic64_inc(&fs_info->dev_replace.num_write_errors);
1595         }
1596 }
1597
1598 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1599                                            int page_num)
1600 {
1601         struct scrub_page *spage = sblock->pagev[page_num];
1602
1603         BUG_ON(spage->page == NULL);
1604         if (spage->io_error) {
1605                 void *mapped_buffer = kmap_atomic(spage->page);
1606
1607                 clear_page(mapped_buffer);
1608                 flush_dcache_page(spage->page);
1609                 kunmap_atomic(mapped_buffer);
1610         }
1611         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1612 }
1613
1614 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1615                                     struct scrub_page *spage)
1616 {
1617         struct scrub_bio *sbio;
1618         int ret;
1619
1620         mutex_lock(&sctx->wr_lock);
1621 again:
1622         if (!sctx->wr_curr_bio) {
1623                 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1624                                               GFP_KERNEL);
1625                 if (!sctx->wr_curr_bio) {
1626                         mutex_unlock(&sctx->wr_lock);
1627                         return -ENOMEM;
1628                 }
1629                 sctx->wr_curr_bio->sctx = sctx;
1630                 sctx->wr_curr_bio->page_count = 0;
1631         }
1632         sbio = sctx->wr_curr_bio;
1633         if (sbio->page_count == 0) {
1634                 struct bio *bio;
1635
1636                 sbio->physical = spage->physical_for_dev_replace;
1637                 sbio->logical = spage->logical;
1638                 sbio->dev = sctx->wr_tgtdev;
1639                 bio = sbio->bio;
1640                 if (!bio) {
1641                         bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1642                         sbio->bio = bio;
1643                 }
1644
1645                 bio->bi_private = sbio;
1646                 bio->bi_end_io = scrub_wr_bio_end_io;
1647                 bio_set_dev(bio, sbio->dev->bdev);
1648                 bio->bi_iter.bi_sector = sbio->physical >> 9;
1649                 bio->bi_opf = REQ_OP_WRITE;
1650                 sbio->status = 0;
1651         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1652                    spage->physical_for_dev_replace ||
1653                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1654                    spage->logical) {
1655                 scrub_wr_submit(sctx);
1656                 goto again;
1657         }
1658
1659         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1660         if (ret != PAGE_SIZE) {
1661                 if (sbio->page_count < 1) {
1662                         bio_put(sbio->bio);
1663                         sbio->bio = NULL;
1664                         mutex_unlock(&sctx->wr_lock);
1665                         return -EIO;
1666                 }
1667                 scrub_wr_submit(sctx);
1668                 goto again;
1669         }
1670
1671         sbio->pagev[sbio->page_count] = spage;
1672         scrub_page_get(spage);
1673         sbio->page_count++;
1674         if (sbio->page_count == sctx->pages_per_wr_bio)
1675                 scrub_wr_submit(sctx);
1676         mutex_unlock(&sctx->wr_lock);
1677
1678         return 0;
1679 }
1680
1681 static void scrub_wr_submit(struct scrub_ctx *sctx)
1682 {
1683         struct scrub_bio *sbio;
1684
1685         if (!sctx->wr_curr_bio)
1686                 return;
1687
1688         sbio = sctx->wr_curr_bio;
1689         sctx->wr_curr_bio = NULL;
1690         WARN_ON(!sbio->bio->bi_disk);
1691         scrub_pending_bio_inc(sctx);
1692         /* process all writes in a single worker thread. Then the block layer
1693          * orders the requests before sending them to the driver which
1694          * doubled the write performance on spinning disks when measured
1695          * with Linux 3.5 */
1696         btrfsic_submit_bio(sbio->bio);
1697 }
1698
1699 static void scrub_wr_bio_end_io(struct bio *bio)
1700 {
1701         struct scrub_bio *sbio = bio->bi_private;
1702         struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1703
1704         sbio->status = bio->bi_status;
1705         sbio->bio = bio;
1706
1707         btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1708                          scrub_wr_bio_end_io_worker, NULL, NULL);
1709         btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1710 }
1711
1712 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1713 {
1714         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1715         struct scrub_ctx *sctx = sbio->sctx;
1716         int i;
1717
1718         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1719         if (sbio->status) {
1720                 struct btrfs_dev_replace *dev_replace =
1721                         &sbio->sctx->fs_info->dev_replace;
1722
1723                 for (i = 0; i < sbio->page_count; i++) {
1724                         struct scrub_page *spage = sbio->pagev[i];
1725
1726                         spage->io_error = 1;
1727                         atomic64_inc(&dev_replace->num_write_errors);
1728                 }
1729         }
1730
1731         for (i = 0; i < sbio->page_count; i++)
1732                 scrub_page_put(sbio->pagev[i]);
1733
1734         bio_put(sbio->bio);
1735         kfree(sbio);
1736         scrub_pending_bio_dec(sctx);
1737 }
1738
1739 static int scrub_checksum(struct scrub_block *sblock)
1740 {
1741         u64 flags;
1742         int ret;
1743
1744         /*
1745          * No need to initialize these stats currently,
1746          * because this function only use return value
1747          * instead of these stats value.
1748          *
1749          * Todo:
1750          * always use stats
1751          */
1752         sblock->header_error = 0;
1753         sblock->generation_error = 0;
1754         sblock->checksum_error = 0;
1755
1756         WARN_ON(sblock->page_count < 1);
1757         flags = sblock->pagev[0]->flags;
1758         ret = 0;
1759         if (flags & BTRFS_EXTENT_FLAG_DATA)
1760                 ret = scrub_checksum_data(sblock);
1761         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1762                 ret = scrub_checksum_tree_block(sblock);
1763         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1764                 (void)scrub_checksum_super(sblock);
1765         else
1766                 WARN_ON(1);
1767         if (ret)
1768                 scrub_handle_errored_block(sblock);
1769
1770         return ret;
1771 }
1772
1773 static int scrub_checksum_data(struct scrub_block *sblock)
1774 {
1775         struct scrub_ctx *sctx = sblock->sctx;
1776         u8 csum[BTRFS_CSUM_SIZE];
1777         u8 *on_disk_csum;
1778         struct page *page;
1779         void *buffer;
1780         u32 crc = ~(u32)0;
1781         u64 len;
1782         int index;
1783
1784         BUG_ON(sblock->page_count < 1);
1785         if (!sblock->pagev[0]->have_csum)
1786                 return 0;
1787
1788         on_disk_csum = sblock->pagev[0]->csum;
1789         page = sblock->pagev[0]->page;
1790         buffer = kmap_atomic(page);
1791
1792         len = sctx->fs_info->sectorsize;
1793         index = 0;
1794         for (;;) {
1795                 u64 l = min_t(u64, len, PAGE_SIZE);
1796
1797                 crc = btrfs_csum_data(buffer, crc, l);
1798                 kunmap_atomic(buffer);
1799                 len -= l;
1800                 if (len == 0)
1801                         break;
1802                 index++;
1803                 BUG_ON(index >= sblock->page_count);
1804                 BUG_ON(!sblock->pagev[index]->page);
1805                 page = sblock->pagev[index]->page;
1806                 buffer = kmap_atomic(page);
1807         }
1808
1809         btrfs_csum_final(crc, csum);
1810         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1811                 sblock->checksum_error = 1;
1812
1813         return sblock->checksum_error;
1814 }
1815
1816 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1817 {
1818         struct scrub_ctx *sctx = sblock->sctx;
1819         struct btrfs_header *h;
1820         struct btrfs_fs_info *fs_info = sctx->fs_info;
1821         u8 calculated_csum[BTRFS_CSUM_SIZE];
1822         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1823         struct page *page;
1824         void *mapped_buffer;
1825         u64 mapped_size;
1826         void *p;
1827         u32 crc = ~(u32)0;
1828         u64 len;
1829         int index;
1830
1831         BUG_ON(sblock->page_count < 1);
1832         page = sblock->pagev[0]->page;
1833         mapped_buffer = kmap_atomic(page);
1834         h = (struct btrfs_header *)mapped_buffer;
1835         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1836
1837         /*
1838          * we don't use the getter functions here, as we
1839          * a) don't have an extent buffer and
1840          * b) the page is already kmapped
1841          */
1842         if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1843                 sblock->header_error = 1;
1844
1845         if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1846                 sblock->header_error = 1;
1847                 sblock->generation_error = 1;
1848         }
1849
1850         if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1851                 sblock->header_error = 1;
1852
1853         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1854                    BTRFS_UUID_SIZE))
1855                 sblock->header_error = 1;
1856
1857         len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1858         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1859         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1860         index = 0;
1861         for (;;) {
1862                 u64 l = min_t(u64, len, mapped_size);
1863
1864                 crc = btrfs_csum_data(p, crc, l);
1865                 kunmap_atomic(mapped_buffer);
1866                 len -= l;
1867                 if (len == 0)
1868                         break;
1869                 index++;
1870                 BUG_ON(index >= sblock->page_count);
1871                 BUG_ON(!sblock->pagev[index]->page);
1872                 page = sblock->pagev[index]->page;
1873                 mapped_buffer = kmap_atomic(page);
1874                 mapped_size = PAGE_SIZE;
1875                 p = mapped_buffer;
1876         }
1877
1878         btrfs_csum_final(crc, calculated_csum);
1879         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1880                 sblock->checksum_error = 1;
1881
1882         return sblock->header_error || sblock->checksum_error;
1883 }
1884
1885 static int scrub_checksum_super(struct scrub_block *sblock)
1886 {
1887         struct btrfs_super_block *s;
1888         struct scrub_ctx *sctx = sblock->sctx;
1889         u8 calculated_csum[BTRFS_CSUM_SIZE];
1890         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1891         struct page *page;
1892         void *mapped_buffer;
1893         u64 mapped_size;
1894         void *p;
1895         u32 crc = ~(u32)0;
1896         int fail_gen = 0;
1897         int fail_cor = 0;
1898         u64 len;
1899         int index;
1900
1901         BUG_ON(sblock->page_count < 1);
1902         page = sblock->pagev[0]->page;
1903         mapped_buffer = kmap_atomic(page);
1904         s = (struct btrfs_super_block *)mapped_buffer;
1905         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1906
1907         if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1908                 ++fail_cor;
1909
1910         if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1911                 ++fail_gen;
1912
1913         if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1914                 ++fail_cor;
1915
1916         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1917         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1918         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1919         index = 0;
1920         for (;;) {
1921                 u64 l = min_t(u64, len, mapped_size);
1922
1923                 crc = btrfs_csum_data(p, crc, l);
1924                 kunmap_atomic(mapped_buffer);
1925                 len -= l;
1926                 if (len == 0)
1927                         break;
1928                 index++;
1929                 BUG_ON(index >= sblock->page_count);
1930                 BUG_ON(!sblock->pagev[index]->page);
1931                 page = sblock->pagev[index]->page;
1932                 mapped_buffer = kmap_atomic(page);
1933                 mapped_size = PAGE_SIZE;
1934                 p = mapped_buffer;
1935         }
1936
1937         btrfs_csum_final(crc, calculated_csum);
1938         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1939                 ++fail_cor;
1940
1941         if (fail_cor + fail_gen) {
1942                 /*
1943                  * if we find an error in a super block, we just report it.
1944                  * They will get written with the next transaction commit
1945                  * anyway
1946                  */
1947                 spin_lock(&sctx->stat_lock);
1948                 ++sctx->stat.super_errors;
1949                 spin_unlock(&sctx->stat_lock);
1950                 if (fail_cor)
1951                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1952                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1953                 else
1954                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1955                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1956         }
1957
1958         return fail_cor + fail_gen;
1959 }
1960
1961 static void scrub_block_get(struct scrub_block *sblock)
1962 {
1963         refcount_inc(&sblock->refs);
1964 }
1965
1966 static void scrub_block_put(struct scrub_block *sblock)
1967 {
1968         if (refcount_dec_and_test(&sblock->refs)) {
1969                 int i;
1970
1971                 if (sblock->sparity)
1972                         scrub_parity_put(sblock->sparity);
1973
1974                 for (i = 0; i < sblock->page_count; i++)
1975                         scrub_page_put(sblock->pagev[i]);
1976                 kfree(sblock);
1977         }
1978 }
1979
1980 static void scrub_page_get(struct scrub_page *spage)
1981 {
1982         atomic_inc(&spage->refs);
1983 }
1984
1985 static void scrub_page_put(struct scrub_page *spage)
1986 {
1987         if (atomic_dec_and_test(&spage->refs)) {
1988                 if (spage->page)
1989                         __free_page(spage->page);
1990                 kfree(spage);
1991         }
1992 }
1993
1994 static void scrub_submit(struct scrub_ctx *sctx)
1995 {
1996         struct scrub_bio *sbio;
1997
1998         if (sctx->curr == -1)
1999                 return;
2000
2001         sbio = sctx->bios[sctx->curr];
2002         sctx->curr = -1;
2003         scrub_pending_bio_inc(sctx);
2004         btrfsic_submit_bio(sbio->bio);
2005 }
2006
2007 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2008                                     struct scrub_page *spage)
2009 {
2010         struct scrub_block *sblock = spage->sblock;
2011         struct scrub_bio *sbio;
2012         int ret;
2013
2014 again:
2015         /*
2016          * grab a fresh bio or wait for one to become available
2017          */
2018         while (sctx->curr == -1) {
2019                 spin_lock(&sctx->list_lock);
2020                 sctx->curr = sctx->first_free;
2021                 if (sctx->curr != -1) {
2022                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
2023                         sctx->bios[sctx->curr]->next_free = -1;
2024                         sctx->bios[sctx->curr]->page_count = 0;
2025                         spin_unlock(&sctx->list_lock);
2026                 } else {
2027                         spin_unlock(&sctx->list_lock);
2028                         wait_event(sctx->list_wait, sctx->first_free != -1);
2029                 }
2030         }
2031         sbio = sctx->bios[sctx->curr];
2032         if (sbio->page_count == 0) {
2033                 struct bio *bio;
2034
2035                 sbio->physical = spage->physical;
2036                 sbio->logical = spage->logical;
2037                 sbio->dev = spage->dev;
2038                 bio = sbio->bio;
2039                 if (!bio) {
2040                         bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2041                         sbio->bio = bio;
2042                 }
2043
2044                 bio->bi_private = sbio;
2045                 bio->bi_end_io = scrub_bio_end_io;
2046                 bio_set_dev(bio, sbio->dev->bdev);
2047                 bio->bi_iter.bi_sector = sbio->physical >> 9;
2048                 bio->bi_opf = REQ_OP_READ;
2049                 sbio->status = 0;
2050         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2051                    spage->physical ||
2052                    sbio->logical + sbio->page_count * PAGE_SIZE !=
2053                    spage->logical ||
2054                    sbio->dev != spage->dev) {
2055                 scrub_submit(sctx);
2056                 goto again;
2057         }
2058
2059         sbio->pagev[sbio->page_count] = spage;
2060         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2061         if (ret != PAGE_SIZE) {
2062                 if (sbio->page_count < 1) {
2063                         bio_put(sbio->bio);
2064                         sbio->bio = NULL;
2065                         return -EIO;
2066                 }
2067                 scrub_submit(sctx);
2068                 goto again;
2069         }
2070
2071         scrub_block_get(sblock); /* one for the page added to the bio */
2072         atomic_inc(&sblock->outstanding_pages);
2073         sbio->page_count++;
2074         if (sbio->page_count == sctx->pages_per_rd_bio)
2075                 scrub_submit(sctx);
2076
2077         return 0;
2078 }
2079
2080 static void scrub_missing_raid56_end_io(struct bio *bio)
2081 {
2082         struct scrub_block *sblock = bio->bi_private;
2083         struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2084
2085         if (bio->bi_status)
2086                 sblock->no_io_error_seen = 0;
2087
2088         bio_put(bio);
2089
2090         btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2091 }
2092
2093 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2094 {
2095         struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2096         struct scrub_ctx *sctx = sblock->sctx;
2097         struct btrfs_fs_info *fs_info = sctx->fs_info;
2098         u64 logical;
2099         struct btrfs_device *dev;
2100
2101         logical = sblock->pagev[0]->logical;
2102         dev = sblock->pagev[0]->dev;
2103
2104         if (sblock->no_io_error_seen)
2105                 scrub_recheck_block_checksum(sblock);
2106
2107         if (!sblock->no_io_error_seen) {
2108                 spin_lock(&sctx->stat_lock);
2109                 sctx->stat.read_errors++;
2110                 spin_unlock(&sctx->stat_lock);
2111                 btrfs_err_rl_in_rcu(fs_info,
2112                         "IO error rebuilding logical %llu for dev %s",
2113                         logical, rcu_str_deref(dev->name));
2114         } else if (sblock->header_error || sblock->checksum_error) {
2115                 spin_lock(&sctx->stat_lock);
2116                 sctx->stat.uncorrectable_errors++;
2117                 spin_unlock(&sctx->stat_lock);
2118                 btrfs_err_rl_in_rcu(fs_info,
2119                         "failed to rebuild valid logical %llu for dev %s",
2120                         logical, rcu_str_deref(dev->name));
2121         } else {
2122                 scrub_write_block_to_dev_replace(sblock);
2123         }
2124
2125         scrub_block_put(sblock);
2126
2127         if (sctx->is_dev_replace && sctx->flush_all_writes) {
2128                 mutex_lock(&sctx->wr_lock);
2129                 scrub_wr_submit(sctx);
2130                 mutex_unlock(&sctx->wr_lock);
2131         }
2132
2133         scrub_pending_bio_dec(sctx);
2134 }
2135
2136 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2137 {
2138         struct scrub_ctx *sctx = sblock->sctx;
2139         struct btrfs_fs_info *fs_info = sctx->fs_info;
2140         u64 length = sblock->page_count * PAGE_SIZE;
2141         u64 logical = sblock->pagev[0]->logical;
2142         struct btrfs_bio *bbio = NULL;
2143         struct bio *bio;
2144         struct btrfs_raid_bio *rbio;
2145         int ret;
2146         int i;
2147
2148         btrfs_bio_counter_inc_blocked(fs_info);
2149         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2150                         &length, &bbio);
2151         if (ret || !bbio || !bbio->raid_map)
2152                 goto bbio_out;
2153
2154         if (WARN_ON(!sctx->is_dev_replace ||
2155                     !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2156                 /*
2157                  * We shouldn't be scrubbing a missing device. Even for dev
2158                  * replace, we should only get here for RAID 5/6. We either
2159                  * managed to mount something with no mirrors remaining or
2160                  * there's a bug in scrub_remap_extent()/btrfs_map_block().
2161                  */
2162                 goto bbio_out;
2163         }
2164
2165         bio = btrfs_io_bio_alloc(0);
2166         bio->bi_iter.bi_sector = logical >> 9;
2167         bio->bi_private = sblock;
2168         bio->bi_end_io = scrub_missing_raid56_end_io;
2169
2170         rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2171         if (!rbio)
2172                 goto rbio_out;
2173
2174         for (i = 0; i < sblock->page_count; i++) {
2175                 struct scrub_page *spage = sblock->pagev[i];
2176
2177                 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2178         }
2179
2180         btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2181                         scrub_missing_raid56_worker, NULL, NULL);
2182         scrub_block_get(sblock);
2183         scrub_pending_bio_inc(sctx);
2184         raid56_submit_missing_rbio(rbio);
2185         return;
2186
2187 rbio_out:
2188         bio_put(bio);
2189 bbio_out:
2190         btrfs_bio_counter_dec(fs_info);
2191         btrfs_put_bbio(bbio);
2192         spin_lock(&sctx->stat_lock);
2193         sctx->stat.malloc_errors++;
2194         spin_unlock(&sctx->stat_lock);
2195 }
2196
2197 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2198                        u64 physical, struct btrfs_device *dev, u64 flags,
2199                        u64 gen, int mirror_num, u8 *csum, int force,
2200                        u64 physical_for_dev_replace)
2201 {
2202         struct scrub_block *sblock;
2203         int index;
2204
2205         sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2206         if (!sblock) {
2207                 spin_lock(&sctx->stat_lock);
2208                 sctx->stat.malloc_errors++;
2209                 spin_unlock(&sctx->stat_lock);
2210                 return -ENOMEM;
2211         }
2212
2213         /* one ref inside this function, plus one for each page added to
2214          * a bio later on */
2215         refcount_set(&sblock->refs, 1);
2216         sblock->sctx = sctx;
2217         sblock->no_io_error_seen = 1;
2218
2219         for (index = 0; len > 0; index++) {
2220                 struct scrub_page *spage;
2221                 u64 l = min_t(u64, len, PAGE_SIZE);
2222
2223                 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2224                 if (!spage) {
2225 leave_nomem:
2226                         spin_lock(&sctx->stat_lock);
2227                         sctx->stat.malloc_errors++;
2228                         spin_unlock(&sctx->stat_lock);
2229                         scrub_block_put(sblock);
2230                         return -ENOMEM;
2231                 }
2232                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2233                 scrub_page_get(spage);
2234                 sblock->pagev[index] = spage;
2235                 spage->sblock = sblock;
2236                 spage->dev = dev;
2237                 spage->flags = flags;
2238                 spage->generation = gen;
2239                 spage->logical = logical;
2240                 spage->physical = physical;
2241                 spage->physical_for_dev_replace = physical_for_dev_replace;
2242                 spage->mirror_num = mirror_num;
2243                 if (csum) {
2244                         spage->have_csum = 1;
2245                         memcpy(spage->csum, csum, sctx->csum_size);
2246                 } else {
2247                         spage->have_csum = 0;
2248                 }
2249                 sblock->page_count++;
2250                 spage->page = alloc_page(GFP_KERNEL);
2251                 if (!spage->page)
2252                         goto leave_nomem;
2253                 len -= l;
2254                 logical += l;
2255                 physical += l;
2256                 physical_for_dev_replace += l;
2257         }
2258
2259         WARN_ON(sblock->page_count == 0);
2260         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2261                 /*
2262                  * This case should only be hit for RAID 5/6 device replace. See
2263                  * the comment in scrub_missing_raid56_pages() for details.
2264                  */
2265                 scrub_missing_raid56_pages(sblock);
2266         } else {
2267                 for (index = 0; index < sblock->page_count; index++) {
2268                         struct scrub_page *spage = sblock->pagev[index];
2269                         int ret;
2270
2271                         ret = scrub_add_page_to_rd_bio(sctx, spage);
2272                         if (ret) {
2273                                 scrub_block_put(sblock);
2274                                 return ret;
2275                         }
2276                 }
2277
2278                 if (force)
2279                         scrub_submit(sctx);
2280         }
2281
2282         /* last one frees, either here or in bio completion for last page */
2283         scrub_block_put(sblock);
2284         return 0;
2285 }
2286
2287 static void scrub_bio_end_io(struct bio *bio)
2288 {
2289         struct scrub_bio *sbio = bio->bi_private;
2290         struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2291
2292         sbio->status = bio->bi_status;
2293         sbio->bio = bio;
2294
2295         btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2296 }
2297
2298 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2299 {
2300         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2301         struct scrub_ctx *sctx = sbio->sctx;
2302         int i;
2303
2304         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2305         if (sbio->status) {
2306                 for (i = 0; i < sbio->page_count; i++) {
2307                         struct scrub_page *spage = sbio->pagev[i];
2308
2309                         spage->io_error = 1;
2310                         spage->sblock->no_io_error_seen = 0;
2311                 }
2312         }
2313
2314         /* now complete the scrub_block items that have all pages completed */
2315         for (i = 0; i < sbio->page_count; i++) {
2316                 struct scrub_page *spage = sbio->pagev[i];
2317                 struct scrub_block *sblock = spage->sblock;
2318
2319                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2320                         scrub_block_complete(sblock);
2321                 scrub_block_put(sblock);
2322         }
2323
2324         bio_put(sbio->bio);
2325         sbio->bio = NULL;
2326         spin_lock(&sctx->list_lock);
2327         sbio->next_free = sctx->first_free;
2328         sctx->first_free = sbio->index;
2329         spin_unlock(&sctx->list_lock);
2330
2331         if (sctx->is_dev_replace && sctx->flush_all_writes) {
2332                 mutex_lock(&sctx->wr_lock);
2333                 scrub_wr_submit(sctx);
2334                 mutex_unlock(&sctx->wr_lock);
2335         }
2336
2337         scrub_pending_bio_dec(sctx);
2338 }
2339
2340 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2341                                        unsigned long *bitmap,
2342                                        u64 start, u64 len)
2343 {
2344         u64 offset;
2345         u64 nsectors64;
2346         u32 nsectors;
2347         int sectorsize = sparity->sctx->fs_info->sectorsize;
2348
2349         if (len >= sparity->stripe_len) {
2350                 bitmap_set(bitmap, 0, sparity->nsectors);
2351                 return;
2352         }
2353
2354         start -= sparity->logic_start;
2355         start = div64_u64_rem(start, sparity->stripe_len, &offset);
2356         offset = div_u64(offset, sectorsize);
2357         nsectors64 = div_u64(len, sectorsize);
2358
2359         ASSERT(nsectors64 < UINT_MAX);
2360         nsectors = (u32)nsectors64;
2361
2362         if (offset + nsectors <= sparity->nsectors) {
2363                 bitmap_set(bitmap, offset, nsectors);
2364                 return;
2365         }
2366
2367         bitmap_set(bitmap, offset, sparity->nsectors - offset);
2368         bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2369 }
2370
2371 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2372                                                    u64 start, u64 len)
2373 {
2374         __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2375 }
2376
2377 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2378                                                   u64 start, u64 len)
2379 {
2380         __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2381 }
2382
2383 static void scrub_block_complete(struct scrub_block *sblock)
2384 {
2385         int corrupted = 0;
2386
2387         if (!sblock->no_io_error_seen) {
2388                 corrupted = 1;
2389                 scrub_handle_errored_block(sblock);
2390         } else {
2391                 /*
2392                  * if has checksum error, write via repair mechanism in
2393                  * dev replace case, otherwise write here in dev replace
2394                  * case.
2395                  */
2396                 corrupted = scrub_checksum(sblock);
2397                 if (!corrupted && sblock->sctx->is_dev_replace)
2398                         scrub_write_block_to_dev_replace(sblock);
2399         }
2400
2401         if (sblock->sparity && corrupted && !sblock->data_corrected) {
2402                 u64 start = sblock->pagev[0]->logical;
2403                 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2404                           PAGE_SIZE;
2405
2406                 scrub_parity_mark_sectors_error(sblock->sparity,
2407                                                 start, end - start);
2408         }
2409 }
2410
2411 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2412 {
2413         struct btrfs_ordered_sum *sum = NULL;
2414         unsigned long index;
2415         unsigned long num_sectors;
2416
2417         while (!list_empty(&sctx->csum_list)) {
2418                 sum = list_first_entry(&sctx->csum_list,
2419                                        struct btrfs_ordered_sum, list);
2420                 if (sum->bytenr > logical)
2421                         return 0;
2422                 if (sum->bytenr + sum->len > logical)
2423                         break;
2424
2425                 ++sctx->stat.csum_discards;
2426                 list_del(&sum->list);
2427                 kfree(sum);
2428                 sum = NULL;
2429         }
2430         if (!sum)
2431                 return 0;
2432
2433         index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2434         ASSERT(index < UINT_MAX);
2435
2436         num_sectors = sum->len / sctx->fs_info->sectorsize;
2437         memcpy(csum, sum->sums + index, sctx->csum_size);
2438         if (index == num_sectors - 1) {
2439                 list_del(&sum->list);
2440                 kfree(sum);
2441         }
2442         return 1;
2443 }
2444
2445 /* scrub extent tries to collect up to 64 kB for each bio */
2446 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2447                         u64 logical, u64 len,
2448                         u64 physical, struct btrfs_device *dev, u64 flags,
2449                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2450 {
2451         int ret;
2452         u8 csum[BTRFS_CSUM_SIZE];
2453         u32 blocksize;
2454
2455         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2456                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2457                         blocksize = map->stripe_len;
2458                 else
2459                         blocksize = sctx->fs_info->sectorsize;
2460                 spin_lock(&sctx->stat_lock);
2461                 sctx->stat.data_extents_scrubbed++;
2462                 sctx->stat.data_bytes_scrubbed += len;
2463                 spin_unlock(&sctx->stat_lock);
2464         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2465                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2466                         blocksize = map->stripe_len;
2467                 else
2468                         blocksize = sctx->fs_info->nodesize;
2469                 spin_lock(&sctx->stat_lock);
2470                 sctx->stat.tree_extents_scrubbed++;
2471                 sctx->stat.tree_bytes_scrubbed += len;
2472                 spin_unlock(&sctx->stat_lock);
2473         } else {
2474                 blocksize = sctx->fs_info->sectorsize;
2475                 WARN_ON(1);
2476         }
2477
2478         while (len) {
2479                 u64 l = min_t(u64, len, blocksize);
2480                 int have_csum = 0;
2481
2482                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483                         /* push csums to sbio */
2484                         have_csum = scrub_find_csum(sctx, logical, csum);
2485                         if (have_csum == 0)
2486                                 ++sctx->stat.no_csum;
2487                 }
2488                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2489                                   mirror_num, have_csum ? csum : NULL, 0,
2490                                   physical_for_dev_replace);
2491                 if (ret)
2492                         return ret;
2493                 len -= l;
2494                 logical += l;
2495                 physical += l;
2496                 physical_for_dev_replace += l;
2497         }
2498         return 0;
2499 }
2500
2501 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2502                                   u64 logical, u64 len,
2503                                   u64 physical, struct btrfs_device *dev,
2504                                   u64 flags, u64 gen, int mirror_num, u8 *csum)
2505 {
2506         struct scrub_ctx *sctx = sparity->sctx;
2507         struct scrub_block *sblock;
2508         int index;
2509
2510         sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2511         if (!sblock) {
2512                 spin_lock(&sctx->stat_lock);
2513                 sctx->stat.malloc_errors++;
2514                 spin_unlock(&sctx->stat_lock);
2515                 return -ENOMEM;
2516         }
2517
2518         /* one ref inside this function, plus one for each page added to
2519          * a bio later on */
2520         refcount_set(&sblock->refs, 1);
2521         sblock->sctx = sctx;
2522         sblock->no_io_error_seen = 1;
2523         sblock->sparity = sparity;
2524         scrub_parity_get(sparity);
2525
2526         for (index = 0; len > 0; index++) {
2527                 struct scrub_page *spage;
2528                 u64 l = min_t(u64, len, PAGE_SIZE);
2529
2530                 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2531                 if (!spage) {
2532 leave_nomem:
2533                         spin_lock(&sctx->stat_lock);
2534                         sctx->stat.malloc_errors++;
2535                         spin_unlock(&sctx->stat_lock);
2536                         scrub_block_put(sblock);
2537                         return -ENOMEM;
2538                 }
2539                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2540                 /* For scrub block */
2541                 scrub_page_get(spage);
2542                 sblock->pagev[index] = spage;
2543                 /* For scrub parity */
2544                 scrub_page_get(spage);
2545                 list_add_tail(&spage->list, &sparity->spages);
2546                 spage->sblock = sblock;
2547                 spage->dev = dev;
2548                 spage->flags = flags;
2549                 spage->generation = gen;
2550                 spage->logical = logical;
2551                 spage->physical = physical;
2552                 spage->mirror_num = mirror_num;
2553                 if (csum) {
2554                         spage->have_csum = 1;
2555                         memcpy(spage->csum, csum, sctx->csum_size);
2556                 } else {
2557                         spage->have_csum = 0;
2558                 }
2559                 sblock->page_count++;
2560                 spage->page = alloc_page(GFP_KERNEL);
2561                 if (!spage->page)
2562                         goto leave_nomem;
2563                 len -= l;
2564                 logical += l;
2565                 physical += l;
2566         }
2567
2568         WARN_ON(sblock->page_count == 0);
2569         for (index = 0; index < sblock->page_count; index++) {
2570                 struct scrub_page *spage = sblock->pagev[index];
2571                 int ret;
2572
2573                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2574                 if (ret) {
2575                         scrub_block_put(sblock);
2576                         return ret;
2577                 }
2578         }
2579
2580         /* last one frees, either here or in bio completion for last page */
2581         scrub_block_put(sblock);
2582         return 0;
2583 }
2584
2585 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2586                                    u64 logical, u64 len,
2587                                    u64 physical, struct btrfs_device *dev,
2588                                    u64 flags, u64 gen, int mirror_num)
2589 {
2590         struct scrub_ctx *sctx = sparity->sctx;
2591         int ret;
2592         u8 csum[BTRFS_CSUM_SIZE];
2593         u32 blocksize;
2594
2595         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2596                 scrub_parity_mark_sectors_error(sparity, logical, len);
2597                 return 0;
2598         }
2599
2600         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2601                 blocksize = sparity->stripe_len;
2602         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2603                 blocksize = sparity->stripe_len;
2604         } else {
2605                 blocksize = sctx->fs_info->sectorsize;
2606                 WARN_ON(1);
2607         }
2608
2609         while (len) {
2610                 u64 l = min_t(u64, len, blocksize);
2611                 int have_csum = 0;
2612
2613                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2614                         /* push csums to sbio */
2615                         have_csum = scrub_find_csum(sctx, logical, csum);
2616                         if (have_csum == 0)
2617                                 goto skip;
2618                 }
2619                 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2620                                              flags, gen, mirror_num,
2621                                              have_csum ? csum : NULL);
2622                 if (ret)
2623                         return ret;
2624 skip:
2625                 len -= l;
2626                 logical += l;
2627                 physical += l;
2628         }
2629         return 0;
2630 }
2631
2632 /*
2633  * Given a physical address, this will calculate it's
2634  * logical offset. if this is a parity stripe, it will return
2635  * the most left data stripe's logical offset.
2636  *
2637  * return 0 if it is a data stripe, 1 means parity stripe.
2638  */
2639 static int get_raid56_logic_offset(u64 physical, int num,
2640                                    struct map_lookup *map, u64 *offset,
2641                                    u64 *stripe_start)
2642 {
2643         int i;
2644         int j = 0;
2645         u64 stripe_nr;
2646         u64 last_offset;
2647         u32 stripe_index;
2648         u32 rot;
2649
2650         last_offset = (physical - map->stripes[num].physical) *
2651                       nr_data_stripes(map);
2652         if (stripe_start)
2653                 *stripe_start = last_offset;
2654
2655         *offset = last_offset;
2656         for (i = 0; i < nr_data_stripes(map); i++) {
2657                 *offset = last_offset + i * map->stripe_len;
2658
2659                 stripe_nr = div64_u64(*offset, map->stripe_len);
2660                 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2661
2662                 /* Work out the disk rotation on this stripe-set */
2663                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2664                 /* calculate which stripe this data locates */
2665                 rot += i;
2666                 stripe_index = rot % map->num_stripes;
2667                 if (stripe_index == num)
2668                         return 0;
2669                 if (stripe_index < num)
2670                         j++;
2671         }
2672         *offset = last_offset + j * map->stripe_len;
2673         return 1;
2674 }
2675
2676 static void scrub_free_parity(struct scrub_parity *sparity)
2677 {
2678         struct scrub_ctx *sctx = sparity->sctx;
2679         struct scrub_page *curr, *next;
2680         int nbits;
2681
2682         nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2683         if (nbits) {
2684                 spin_lock(&sctx->stat_lock);
2685                 sctx->stat.read_errors += nbits;
2686                 sctx->stat.uncorrectable_errors += nbits;
2687                 spin_unlock(&sctx->stat_lock);
2688         }
2689
2690         list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2691                 list_del_init(&curr->list);
2692                 scrub_page_put(curr);
2693         }
2694
2695         kfree(sparity);
2696 }
2697
2698 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2699 {
2700         struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2701                                                     work);
2702         struct scrub_ctx *sctx = sparity->sctx;
2703
2704         scrub_free_parity(sparity);
2705         scrub_pending_bio_dec(sctx);
2706 }
2707
2708 static void scrub_parity_bio_endio(struct bio *bio)
2709 {
2710         struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2711         struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2712
2713         if (bio->bi_status)
2714                 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2715                           sparity->nsectors);
2716
2717         bio_put(bio);
2718
2719         btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2720                         scrub_parity_bio_endio_worker, NULL, NULL);
2721         btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2722 }
2723
2724 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2725 {
2726         struct scrub_ctx *sctx = sparity->sctx;
2727         struct btrfs_fs_info *fs_info = sctx->fs_info;
2728         struct bio *bio;
2729         struct btrfs_raid_bio *rbio;
2730         struct btrfs_bio *bbio = NULL;
2731         u64 length;
2732         int ret;
2733
2734         if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2735                            sparity->nsectors))
2736                 goto out;
2737
2738         length = sparity->logic_end - sparity->logic_start;
2739
2740         btrfs_bio_counter_inc_blocked(fs_info);
2741         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2742                                &length, &bbio);
2743         if (ret || !bbio || !bbio->raid_map)
2744                 goto bbio_out;
2745
2746         bio = btrfs_io_bio_alloc(0);
2747         bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2748         bio->bi_private = sparity;
2749         bio->bi_end_io = scrub_parity_bio_endio;
2750
2751         rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2752                                               length, sparity->scrub_dev,
2753                                               sparity->dbitmap,
2754                                               sparity->nsectors);
2755         if (!rbio)
2756                 goto rbio_out;
2757
2758         scrub_pending_bio_inc(sctx);
2759         raid56_parity_submit_scrub_rbio(rbio);
2760         return;
2761
2762 rbio_out:
2763         bio_put(bio);
2764 bbio_out:
2765         btrfs_bio_counter_dec(fs_info);
2766         btrfs_put_bbio(bbio);
2767         bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2768                   sparity->nsectors);
2769         spin_lock(&sctx->stat_lock);
2770         sctx->stat.malloc_errors++;
2771         spin_unlock(&sctx->stat_lock);
2772 out:
2773         scrub_free_parity(sparity);
2774 }
2775
2776 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2777 {
2778         return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2779 }
2780
2781 static void scrub_parity_get(struct scrub_parity *sparity)
2782 {
2783         refcount_inc(&sparity->refs);
2784 }
2785
2786 static void scrub_parity_put(struct scrub_parity *sparity)
2787 {
2788         if (!refcount_dec_and_test(&sparity->refs))
2789                 return;
2790
2791         scrub_parity_check_and_repair(sparity);
2792 }
2793
2794 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2795                                                   struct map_lookup *map,
2796                                                   struct btrfs_device *sdev,
2797                                                   struct btrfs_path *path,
2798                                                   u64 logic_start,
2799                                                   u64 logic_end)
2800 {
2801         struct btrfs_fs_info *fs_info = sctx->fs_info;
2802         struct btrfs_root *root = fs_info->extent_root;
2803         struct btrfs_root *csum_root = fs_info->csum_root;
2804         struct btrfs_extent_item *extent;
2805         struct btrfs_bio *bbio = NULL;
2806         u64 flags;
2807         int ret;
2808         int slot;
2809         struct extent_buffer *l;
2810         struct btrfs_key key;
2811         u64 generation;
2812         u64 extent_logical;
2813         u64 extent_physical;
2814         u64 extent_len;
2815         u64 mapped_length;
2816         struct btrfs_device *extent_dev;
2817         struct scrub_parity *sparity;
2818         int nsectors;
2819         int bitmap_len;
2820         int extent_mirror_num;
2821         int stop_loop = 0;
2822
2823         nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2824         bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2825         sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2826                           GFP_NOFS);
2827         if (!sparity) {
2828                 spin_lock(&sctx->stat_lock);
2829                 sctx->stat.malloc_errors++;
2830                 spin_unlock(&sctx->stat_lock);
2831                 return -ENOMEM;
2832         }
2833
2834         sparity->stripe_len = map->stripe_len;
2835         sparity->nsectors = nsectors;
2836         sparity->sctx = sctx;
2837         sparity->scrub_dev = sdev;
2838         sparity->logic_start = logic_start;
2839         sparity->logic_end = logic_end;
2840         refcount_set(&sparity->refs, 1);
2841         INIT_LIST_HEAD(&sparity->spages);
2842         sparity->dbitmap = sparity->bitmap;
2843         sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2844
2845         ret = 0;
2846         while (logic_start < logic_end) {
2847                 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2848                         key.type = BTRFS_METADATA_ITEM_KEY;
2849                 else
2850                         key.type = BTRFS_EXTENT_ITEM_KEY;
2851                 key.objectid = logic_start;
2852                 key.offset = (u64)-1;
2853
2854                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2855                 if (ret < 0)
2856                         goto out;
2857
2858                 if (ret > 0) {
2859                         ret = btrfs_previous_extent_item(root, path, 0);
2860                         if (ret < 0)
2861                                 goto out;
2862                         if (ret > 0) {
2863                                 btrfs_release_path(path);
2864                                 ret = btrfs_search_slot(NULL, root, &key,
2865                                                         path, 0, 0);
2866                                 if (ret < 0)
2867                                         goto out;
2868                         }
2869                 }
2870
2871                 stop_loop = 0;
2872                 while (1) {
2873                         u64 bytes;
2874
2875                         l = path->nodes[0];
2876                         slot = path->slots[0];
2877                         if (slot >= btrfs_header_nritems(l)) {
2878                                 ret = btrfs_next_leaf(root, path);
2879                                 if (ret == 0)
2880                                         continue;
2881                                 if (ret < 0)
2882                                         goto out;
2883
2884                                 stop_loop = 1;
2885                                 break;
2886                         }
2887                         btrfs_item_key_to_cpu(l, &key, slot);
2888
2889                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2890                             key.type != BTRFS_METADATA_ITEM_KEY)
2891                                 goto next;
2892
2893                         if (key.type == BTRFS_METADATA_ITEM_KEY)
2894                                 bytes = fs_info->nodesize;
2895                         else
2896                                 bytes = key.offset;
2897
2898                         if (key.objectid + bytes <= logic_start)
2899                                 goto next;
2900
2901                         if (key.objectid >= logic_end) {
2902                                 stop_loop = 1;
2903                                 break;
2904                         }
2905
2906                         while (key.objectid >= logic_start + map->stripe_len)
2907                                 logic_start += map->stripe_len;
2908
2909                         extent = btrfs_item_ptr(l, slot,
2910                                                 struct btrfs_extent_item);
2911                         flags = btrfs_extent_flags(l, extent);
2912                         generation = btrfs_extent_generation(l, extent);
2913
2914                         if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2915                             (key.objectid < logic_start ||
2916                              key.objectid + bytes >
2917                              logic_start + map->stripe_len)) {
2918                                 btrfs_err(fs_info,
2919                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2920                                           key.objectid, logic_start);
2921                                 spin_lock(&sctx->stat_lock);
2922                                 sctx->stat.uncorrectable_errors++;
2923                                 spin_unlock(&sctx->stat_lock);
2924                                 goto next;
2925                         }
2926 again:
2927                         extent_logical = key.objectid;
2928                         extent_len = bytes;
2929
2930                         if (extent_logical < logic_start) {
2931                                 extent_len -= logic_start - extent_logical;
2932                                 extent_logical = logic_start;
2933                         }
2934
2935                         if (extent_logical + extent_len >
2936                             logic_start + map->stripe_len)
2937                                 extent_len = logic_start + map->stripe_len -
2938                                              extent_logical;
2939
2940                         scrub_parity_mark_sectors_data(sparity, extent_logical,
2941                                                        extent_len);
2942
2943                         mapped_length = extent_len;
2944                         bbio = NULL;
2945                         ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2946                                         extent_logical, &mapped_length, &bbio,
2947                                         0);
2948                         if (!ret) {
2949                                 if (!bbio || mapped_length < extent_len)
2950                                         ret = -EIO;
2951                         }
2952                         if (ret) {
2953                                 btrfs_put_bbio(bbio);
2954                                 goto out;
2955                         }
2956                         extent_physical = bbio->stripes[0].physical;
2957                         extent_mirror_num = bbio->mirror_num;
2958                         extent_dev = bbio->stripes[0].dev;
2959                         btrfs_put_bbio(bbio);
2960
2961                         ret = btrfs_lookup_csums_range(csum_root,
2962                                                 extent_logical,
2963                                                 extent_logical + extent_len - 1,
2964                                                 &sctx->csum_list, 1);
2965                         if (ret)
2966                                 goto out;
2967
2968                         ret = scrub_extent_for_parity(sparity, extent_logical,
2969                                                       extent_len,
2970                                                       extent_physical,
2971                                                       extent_dev, flags,
2972                                                       generation,
2973                                                       extent_mirror_num);
2974
2975                         scrub_free_csums(sctx);
2976
2977                         if (ret)
2978                                 goto out;
2979
2980                         if (extent_logical + extent_len <
2981                             key.objectid + bytes) {
2982                                 logic_start += map->stripe_len;
2983
2984                                 if (logic_start >= logic_end) {
2985                                         stop_loop = 1;
2986                                         break;
2987                                 }
2988
2989                                 if (logic_start < key.objectid + bytes) {
2990                                         cond_resched();
2991                                         goto again;
2992                                 }
2993                         }
2994 next:
2995                         path->slots[0]++;
2996                 }
2997
2998                 btrfs_release_path(path);
2999
3000                 if (stop_loop)
3001                         break;
3002
3003                 logic_start += map->stripe_len;
3004         }
3005 out:
3006         if (ret < 0)
3007                 scrub_parity_mark_sectors_error(sparity, logic_start,
3008                                                 logic_end - logic_start);
3009         scrub_parity_put(sparity);
3010         scrub_submit(sctx);
3011         mutex_lock(&sctx->wr_lock);
3012         scrub_wr_submit(sctx);
3013         mutex_unlock(&sctx->wr_lock);
3014
3015         btrfs_release_path(path);
3016         return ret < 0 ? ret : 0;
3017 }
3018
3019 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3020                                            struct map_lookup *map,
3021                                            struct btrfs_device *scrub_dev,
3022                                            int num, u64 base, u64 length)
3023 {
3024         struct btrfs_path *path, *ppath;
3025         struct btrfs_fs_info *fs_info = sctx->fs_info;
3026         struct btrfs_root *root = fs_info->extent_root;
3027         struct btrfs_root *csum_root = fs_info->csum_root;
3028         struct btrfs_extent_item *extent;
3029         struct blk_plug plug;
3030         u64 flags;
3031         int ret;
3032         int slot;
3033         u64 nstripes;
3034         struct extent_buffer *l;
3035         u64 physical;
3036         u64 logical;
3037         u64 logic_end;
3038         u64 physical_end;
3039         u64 generation;
3040         int mirror_num;
3041         struct reada_control *reada1;
3042         struct reada_control *reada2;
3043         struct btrfs_key key;
3044         struct btrfs_key key_end;
3045         u64 increment = map->stripe_len;
3046         u64 offset;
3047         u64 extent_logical;
3048         u64 extent_physical;
3049         u64 extent_len;
3050         u64 stripe_logical;
3051         u64 stripe_end;
3052         struct btrfs_device *extent_dev;
3053         int extent_mirror_num;
3054         int stop_loop = 0;
3055
3056         physical = map->stripes[num].physical;
3057         offset = 0;
3058         nstripes = div64_u64(length, map->stripe_len);
3059         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3060                 offset = map->stripe_len * num;
3061                 increment = map->stripe_len * map->num_stripes;
3062                 mirror_num = 1;
3063         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3064                 int factor = map->num_stripes / map->sub_stripes;
3065                 offset = map->stripe_len * (num / map->sub_stripes);
3066                 increment = map->stripe_len * factor;
3067                 mirror_num = num % map->sub_stripes + 1;
3068         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3069                 increment = map->stripe_len;
3070                 mirror_num = num % map->num_stripes + 1;
3071         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3072                 increment = map->stripe_len;
3073                 mirror_num = num % map->num_stripes + 1;
3074         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3075                 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3076                 increment = map->stripe_len * nr_data_stripes(map);
3077                 mirror_num = 1;
3078         } else {
3079                 increment = map->stripe_len;
3080                 mirror_num = 1;
3081         }
3082
3083         path = btrfs_alloc_path();
3084         if (!path)
3085                 return -ENOMEM;
3086
3087         ppath = btrfs_alloc_path();
3088         if (!ppath) {
3089                 btrfs_free_path(path);
3090                 return -ENOMEM;
3091         }
3092
3093         /*
3094          * work on commit root. The related disk blocks are static as
3095          * long as COW is applied. This means, it is save to rewrite
3096          * them to repair disk errors without any race conditions
3097          */
3098         path->search_commit_root = 1;
3099         path->skip_locking = 1;
3100
3101         ppath->search_commit_root = 1;
3102         ppath->skip_locking = 1;
3103         /*
3104          * trigger the readahead for extent tree csum tree and wait for
3105          * completion. During readahead, the scrub is officially paused
3106          * to not hold off transaction commits
3107          */
3108         logical = base + offset;
3109         physical_end = physical + nstripes * map->stripe_len;
3110         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3111                 get_raid56_logic_offset(physical_end, num,
3112                                         map, &logic_end, NULL);
3113                 logic_end += base;
3114         } else {
3115                 logic_end = logical + increment * nstripes;
3116         }
3117         wait_event(sctx->list_wait,
3118                    atomic_read(&sctx->bios_in_flight) == 0);
3119         scrub_blocked_if_needed(fs_info);
3120
3121         /* FIXME it might be better to start readahead at commit root */
3122         key.objectid = logical;
3123         key.type = BTRFS_EXTENT_ITEM_KEY;
3124         key.offset = (u64)0;
3125         key_end.objectid = logic_end;
3126         key_end.type = BTRFS_METADATA_ITEM_KEY;
3127         key_end.offset = (u64)-1;
3128         reada1 = btrfs_reada_add(root, &key, &key_end);
3129
3130         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3131         key.type = BTRFS_EXTENT_CSUM_KEY;
3132         key.offset = logical;
3133         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3134         key_end.type = BTRFS_EXTENT_CSUM_KEY;
3135         key_end.offset = logic_end;
3136         reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3137
3138         if (!IS_ERR(reada1))
3139                 btrfs_reada_wait(reada1);
3140         if (!IS_ERR(reada2))
3141                 btrfs_reada_wait(reada2);
3142
3143
3144         /*
3145          * collect all data csums for the stripe to avoid seeking during
3146          * the scrub. This might currently (crc32) end up to be about 1MB
3147          */
3148         blk_start_plug(&plug);
3149
3150         /*
3151          * now find all extents for each stripe and scrub them
3152          */
3153         ret = 0;
3154         while (physical < physical_end) {
3155                 /*
3156                  * canceled?
3157                  */
3158                 if (atomic_read(&fs_info->scrub_cancel_req) ||
3159                     atomic_read(&sctx->cancel_req)) {
3160                         ret = -ECANCELED;
3161                         goto out;
3162                 }
3163                 /*
3164                  * check to see if we have to pause
3165                  */
3166                 if (atomic_read(&fs_info->scrub_pause_req)) {
3167                         /* push queued extents */
3168                         sctx->flush_all_writes = true;
3169                         scrub_submit(sctx);
3170                         mutex_lock(&sctx->wr_lock);
3171                         scrub_wr_submit(sctx);
3172                         mutex_unlock(&sctx->wr_lock);
3173                         wait_event(sctx->list_wait,
3174                                    atomic_read(&sctx->bios_in_flight) == 0);
3175                         sctx->flush_all_writes = false;
3176                         scrub_blocked_if_needed(fs_info);
3177                 }
3178
3179                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3180                         ret = get_raid56_logic_offset(physical, num, map,
3181                                                       &logical,
3182                                                       &stripe_logical);
3183                         logical += base;
3184                         if (ret) {
3185                                 /* it is parity strip */
3186                                 stripe_logical += base;
3187                                 stripe_end = stripe_logical + increment;
3188                                 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3189                                                           ppath, stripe_logical,
3190                                                           stripe_end);
3191                                 if (ret)
3192                                         goto out;
3193                                 goto skip;
3194                         }
3195                 }
3196
3197                 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3198                         key.type = BTRFS_METADATA_ITEM_KEY;
3199                 else
3200                         key.type = BTRFS_EXTENT_ITEM_KEY;
3201                 key.objectid = logical;
3202                 key.offset = (u64)-1;
3203
3204                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3205                 if (ret < 0)
3206                         goto out;
3207
3208                 if (ret > 0) {
3209                         ret = btrfs_previous_extent_item(root, path, 0);
3210                         if (ret < 0)
3211                                 goto out;
3212                         if (ret > 0) {
3213                                 /* there's no smaller item, so stick with the
3214                                  * larger one */
3215                                 btrfs_release_path(path);
3216                                 ret = btrfs_search_slot(NULL, root, &key,
3217                                                         path, 0, 0);
3218                                 if (ret < 0)
3219                                         goto out;
3220                         }
3221                 }
3222
3223                 stop_loop = 0;
3224                 while (1) {
3225                         u64 bytes;
3226
3227                         l = path->nodes[0];
3228                         slot = path->slots[0];
3229                         if (slot >= btrfs_header_nritems(l)) {
3230                                 ret = btrfs_next_leaf(root, path);
3231                                 if (ret == 0)
3232                                         continue;
3233                                 if (ret < 0)
3234                                         goto out;
3235
3236                                 stop_loop = 1;
3237                                 break;
3238                         }
3239                         btrfs_item_key_to_cpu(l, &key, slot);
3240
3241                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3242                             key.type != BTRFS_METADATA_ITEM_KEY)
3243                                 goto next;
3244
3245                         if (key.type == BTRFS_METADATA_ITEM_KEY)
3246                                 bytes = fs_info->nodesize;
3247                         else
3248                                 bytes = key.offset;
3249
3250                         if (key.objectid + bytes <= logical)
3251                                 goto next;
3252
3253                         if (key.objectid >= logical + map->stripe_len) {
3254                                 /* out of this device extent */
3255                                 if (key.objectid >= logic_end)
3256                                         stop_loop = 1;
3257                                 break;
3258                         }
3259
3260                         extent = btrfs_item_ptr(l, slot,
3261                                                 struct btrfs_extent_item);
3262                         flags = btrfs_extent_flags(l, extent);
3263                         generation = btrfs_extent_generation(l, extent);
3264
3265                         if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3266                             (key.objectid < logical ||
3267                              key.objectid + bytes >
3268                              logical + map->stripe_len)) {
3269                                 btrfs_err(fs_info,
3270                                            "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3271                                        key.objectid, logical);
3272                                 spin_lock(&sctx->stat_lock);
3273                                 sctx->stat.uncorrectable_errors++;
3274                                 spin_unlock(&sctx->stat_lock);
3275                                 goto next;
3276                         }
3277
3278 again:
3279                         extent_logical = key.objectid;
3280                         extent_len = bytes;
3281
3282                         /*
3283                          * trim extent to this stripe
3284                          */
3285                         if (extent_logical < logical) {
3286                                 extent_len -= logical - extent_logical;
3287                                 extent_logical = logical;
3288                         }
3289                         if (extent_logical + extent_len >
3290                             logical + map->stripe_len) {
3291                                 extent_len = logical + map->stripe_len -
3292                                              extent_logical;
3293                         }
3294
3295                         extent_physical = extent_logical - logical + physical;
3296                         extent_dev = scrub_dev;
3297                         extent_mirror_num = mirror_num;
3298                         if (sctx->is_dev_replace)
3299                                 scrub_remap_extent(fs_info, extent_logical,
3300                                                    extent_len, &extent_physical,
3301                                                    &extent_dev,
3302                                                    &extent_mirror_num);
3303
3304                         ret = btrfs_lookup_csums_range(csum_root,
3305                                                        extent_logical,
3306                                                        extent_logical +
3307                                                        extent_len - 1,
3308                                                        &sctx->csum_list, 1);
3309                         if (ret)
3310                                 goto out;
3311
3312                         ret = scrub_extent(sctx, map, extent_logical, extent_len,
3313                                            extent_physical, extent_dev, flags,
3314                                            generation, extent_mirror_num,
3315                                            extent_logical - logical + physical);
3316
3317                         scrub_free_csums(sctx);
3318
3319                         if (ret)
3320                                 goto out;
3321
3322                         if (extent_logical + extent_len <
3323                             key.objectid + bytes) {
3324                                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3325                                         /*
3326                                          * loop until we find next data stripe
3327                                          * or we have finished all stripes.
3328                                          */
3329 loop:
3330                                         physical += map->stripe_len;
3331                                         ret = get_raid56_logic_offset(physical,
3332                                                         num, map, &logical,
3333                                                         &stripe_logical);
3334                                         logical += base;
3335
3336                                         if (ret && physical < physical_end) {
3337                                                 stripe_logical += base;
3338                                                 stripe_end = stripe_logical +
3339                                                                 increment;
3340                                                 ret = scrub_raid56_parity(sctx,
3341                                                         map, scrub_dev, ppath,
3342                                                         stripe_logical,
3343                                                         stripe_end);
3344                                                 if (ret)
3345                                                         goto out;
3346                                                 goto loop;
3347                                         }
3348                                 } else {
3349                                         physical += map->stripe_len;
3350                                         logical += increment;
3351                                 }
3352                                 if (logical < key.objectid + bytes) {
3353                                         cond_resched();
3354                                         goto again;
3355                                 }
3356
3357                                 if (physical >= physical_end) {
3358                                         stop_loop = 1;
3359                                         break;
3360                                 }
3361                         }
3362 next:
3363                         path->slots[0]++;
3364                 }
3365                 btrfs_release_path(path);
3366 skip:
3367                 logical += increment;
3368                 physical += map->stripe_len;
3369                 spin_lock(&sctx->stat_lock);
3370                 if (stop_loop)
3371                         sctx->stat.last_physical = map->stripes[num].physical +
3372                                                    length;
3373                 else
3374                         sctx->stat.last_physical = physical;
3375                 spin_unlock(&sctx->stat_lock);
3376                 if (stop_loop)
3377                         break;
3378         }
3379 out:
3380         /* push queued extents */
3381         scrub_submit(sctx);
3382         mutex_lock(&sctx->wr_lock);
3383         scrub_wr_submit(sctx);
3384         mutex_unlock(&sctx->wr_lock);
3385
3386         blk_finish_plug(&plug);
3387         btrfs_free_path(path);
3388         btrfs_free_path(ppath);
3389         return ret < 0 ? ret : 0;
3390 }
3391
3392 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3393                                           struct btrfs_device *scrub_dev,
3394                                           u64 chunk_offset, u64 length,
3395                                           u64 dev_offset,
3396                                           struct btrfs_block_group_cache *cache)
3397 {
3398         struct btrfs_fs_info *fs_info = sctx->fs_info;
3399         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3400         struct map_lookup *map;
3401         struct extent_map *em;
3402         int i;
3403         int ret = 0;
3404
3405         read_lock(&map_tree->map_tree.lock);
3406         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3407         read_unlock(&map_tree->map_tree.lock);
3408
3409         if (!em) {
3410                 /*
3411                  * Might have been an unused block group deleted by the cleaner
3412                  * kthread or relocation.
3413                  */
3414                 spin_lock(&cache->lock);
3415                 if (!cache->removed)
3416                         ret = -EINVAL;
3417                 spin_unlock(&cache->lock);
3418
3419                 return ret;
3420         }
3421
3422         map = em->map_lookup;
3423         if (em->start != chunk_offset)
3424                 goto out;
3425
3426         if (em->len < length)
3427                 goto out;
3428
3429         for (i = 0; i < map->num_stripes; ++i) {
3430                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3431                     map->stripes[i].physical == dev_offset) {
3432                         ret = scrub_stripe(sctx, map, scrub_dev, i,
3433                                            chunk_offset, length);
3434                         if (ret)
3435                                 goto out;
3436                 }
3437         }
3438 out:
3439         free_extent_map(em);
3440
3441         return ret;
3442 }
3443
3444 static noinline_for_stack
3445 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3446                            struct btrfs_device *scrub_dev, u64 start, u64 end)
3447 {
3448         struct btrfs_dev_extent *dev_extent = NULL;
3449         struct btrfs_path *path;
3450         struct btrfs_fs_info *fs_info = sctx->fs_info;
3451         struct btrfs_root *root = fs_info->dev_root;
3452         u64 length;
3453         u64 chunk_offset;
3454         int ret = 0;
3455         int ro_set;
3456         int slot;
3457         struct extent_buffer *l;
3458         struct btrfs_key key;
3459         struct btrfs_key found_key;
3460         struct btrfs_block_group_cache *cache;
3461         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3462
3463         path = btrfs_alloc_path();
3464         if (!path)
3465                 return -ENOMEM;
3466
3467         path->reada = READA_FORWARD;
3468         path->search_commit_root = 1;
3469         path->skip_locking = 1;
3470
3471         key.objectid = scrub_dev->devid;
3472         key.offset = 0ull;
3473         key.type = BTRFS_DEV_EXTENT_KEY;
3474
3475         while (1) {
3476                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3477                 if (ret < 0)
3478                         break;
3479                 if (ret > 0) {
3480                         if (path->slots[0] >=
3481                             btrfs_header_nritems(path->nodes[0])) {
3482                                 ret = btrfs_next_leaf(root, path);
3483                                 if (ret < 0)
3484                                         break;
3485                                 if (ret > 0) {
3486                                         ret = 0;
3487                                         break;
3488                                 }
3489                         } else {
3490                                 ret = 0;
3491                         }
3492                 }
3493
3494                 l = path->nodes[0];
3495                 slot = path->slots[0];
3496
3497                 btrfs_item_key_to_cpu(l, &found_key, slot);
3498
3499                 if (found_key.objectid != scrub_dev->devid)
3500                         break;
3501
3502                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3503                         break;
3504
3505                 if (found_key.offset >= end)
3506                         break;
3507
3508                 if (found_key.offset < key.offset)
3509                         break;
3510
3511                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3512                 length = btrfs_dev_extent_length(l, dev_extent);
3513
3514                 if (found_key.offset + length <= start)
3515                         goto skip;
3516
3517                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3518
3519                 /*
3520                  * get a reference on the corresponding block group to prevent
3521                  * the chunk from going away while we scrub it
3522                  */
3523                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3524
3525                 /* some chunks are removed but not committed to disk yet,
3526                  * continue scrubbing */
3527                 if (!cache)
3528                         goto skip;
3529
3530                 /*
3531                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3532                  * to avoid deadlock caused by:
3533                  * btrfs_inc_block_group_ro()
3534                  * -> btrfs_wait_for_commit()
3535                  * -> btrfs_commit_transaction()
3536                  * -> btrfs_scrub_pause()
3537                  */
3538                 scrub_pause_on(fs_info);
3539                 ret = btrfs_inc_block_group_ro(cache);
3540                 if (!ret && sctx->is_dev_replace) {
3541                         /*
3542                          * If we are doing a device replace wait for any tasks
3543                          * that started dellaloc right before we set the block
3544                          * group to RO mode, as they might have just allocated
3545                          * an extent from it or decided they could do a nocow
3546                          * write. And if any such tasks did that, wait for their
3547                          * ordered extents to complete and then commit the
3548                          * current transaction, so that we can later see the new
3549                          * extent items in the extent tree - the ordered extents
3550                          * create delayed data references (for cow writes) when
3551                          * they complete, which will be run and insert the
3552                          * corresponding extent items into the extent tree when
3553                          * we commit the transaction they used when running
3554                          * inode.c:btrfs_finish_ordered_io(). We later use
3555                          * the commit root of the extent tree to find extents
3556                          * to copy from the srcdev into the tgtdev, and we don't
3557                          * want to miss any new extents.
3558                          */
3559                         btrfs_wait_block_group_reservations(cache);
3560                         btrfs_wait_nocow_writers(cache);
3561                         ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3562                                                        cache->key.objectid,
3563                                                        cache->key.offset);
3564                         if (ret > 0) {
3565                                 struct btrfs_trans_handle *trans;
3566
3567                                 trans = btrfs_join_transaction(root);
3568                                 if (IS_ERR(trans))
3569                                         ret = PTR_ERR(trans);
3570                                 else
3571                                         ret = btrfs_commit_transaction(trans);
3572                                 if (ret) {
3573                                         scrub_pause_off(fs_info);
3574                                         btrfs_put_block_group(cache);
3575                                         break;
3576                                 }
3577                         }
3578                 }
3579                 scrub_pause_off(fs_info);
3580
3581                 if (ret == 0) {
3582                         ro_set = 1;
3583                 } else if (ret == -ENOSPC) {
3584                         /*
3585                          * btrfs_inc_block_group_ro return -ENOSPC when it
3586                          * failed in creating new chunk for metadata.
3587                          * It is not a problem for scrub/replace, because
3588                          * metadata are always cowed, and our scrub paused
3589                          * commit_transactions.
3590                          */
3591                         ro_set = 0;
3592                 } else {
3593                         btrfs_warn(fs_info,
3594                                    "failed setting block group ro: %d", ret);
3595                         btrfs_put_block_group(cache);
3596                         break;
3597                 }
3598
3599                 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3600                 dev_replace->cursor_right = found_key.offset + length;
3601                 dev_replace->cursor_left = found_key.offset;
3602                 dev_replace->item_needs_writeback = 1;
3603                 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3604                 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3605                                   found_key.offset, cache);
3606
3607                 /*
3608                  * flush, submit all pending read and write bios, afterwards
3609                  * wait for them.
3610                  * Note that in the dev replace case, a read request causes
3611                  * write requests that are submitted in the read completion
3612                  * worker. Therefore in the current situation, it is required
3613                  * that all write requests are flushed, so that all read and
3614                  * write requests are really completed when bios_in_flight
3615                  * changes to 0.
3616                  */
3617                 sctx->flush_all_writes = true;
3618                 scrub_submit(sctx);
3619                 mutex_lock(&sctx->wr_lock);
3620                 scrub_wr_submit(sctx);
3621                 mutex_unlock(&sctx->wr_lock);
3622
3623                 wait_event(sctx->list_wait,
3624                            atomic_read(&sctx->bios_in_flight) == 0);
3625
3626                 scrub_pause_on(fs_info);
3627
3628                 /*
3629                  * must be called before we decrease @scrub_paused.
3630                  * make sure we don't block transaction commit while
3631                  * we are waiting pending workers finished.
3632                  */
3633                 wait_event(sctx->list_wait,
3634                            atomic_read(&sctx->workers_pending) == 0);
3635                 sctx->flush_all_writes = false;
3636
3637                 scrub_pause_off(fs_info);
3638
3639                 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3640                 dev_replace->cursor_left = dev_replace->cursor_right;
3641                 dev_replace->item_needs_writeback = 1;
3642                 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3643
3644                 if (ro_set)
3645                         btrfs_dec_block_group_ro(cache);
3646
3647                 /*
3648                  * We might have prevented the cleaner kthread from deleting
3649                  * this block group if it was already unused because we raced
3650                  * and set it to RO mode first. So add it back to the unused
3651                  * list, otherwise it might not ever be deleted unless a manual
3652                  * balance is triggered or it becomes used and unused again.
3653                  */
3654                 spin_lock(&cache->lock);
3655                 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3656                     btrfs_block_group_used(&cache->item) == 0) {
3657                         spin_unlock(&cache->lock);
3658                         btrfs_mark_bg_unused(cache);
3659                 } else {
3660                         spin_unlock(&cache->lock);
3661                 }
3662
3663                 btrfs_put_block_group(cache);
3664                 if (ret)
3665                         break;
3666                 if (sctx->is_dev_replace &&
3667                     atomic64_read(&dev_replace->num_write_errors) > 0) {
3668                         ret = -EIO;
3669                         break;
3670                 }
3671                 if (sctx->stat.malloc_errors > 0) {
3672                         ret = -ENOMEM;
3673                         break;
3674                 }
3675 skip:
3676                 key.offset = found_key.offset + length;
3677                 btrfs_release_path(path);
3678         }
3679
3680         btrfs_free_path(path);
3681
3682         return ret;
3683 }
3684
3685 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3686                                            struct btrfs_device *scrub_dev)
3687 {
3688         int     i;
3689         u64     bytenr;
3690         u64     gen;
3691         int     ret;
3692         struct btrfs_fs_info *fs_info = sctx->fs_info;
3693
3694         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3695                 return -EIO;
3696
3697         /* Seed devices of a new filesystem has their own generation. */
3698         if (scrub_dev->fs_devices != fs_info->fs_devices)
3699                 gen = scrub_dev->generation;
3700         else
3701                 gen = fs_info->last_trans_committed;
3702
3703         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3704                 bytenr = btrfs_sb_offset(i);
3705                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3706                     scrub_dev->commit_total_bytes)
3707                         break;
3708
3709                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3710                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3711                                   NULL, 1, bytenr);
3712                 if (ret)
3713                         return ret;
3714         }
3715         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3716
3717         return 0;
3718 }
3719
3720 /*
3721  * get a reference count on fs_info->scrub_workers. start worker if necessary
3722  */
3723 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3724                                                 int is_dev_replace)
3725 {
3726         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3727         int max_active = fs_info->thread_pool_size;
3728
3729         if (fs_info->scrub_workers_refcnt == 0) {
3730                 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3731                                 flags, is_dev_replace ? 1 : max_active, 4);
3732                 if (!fs_info->scrub_workers)
3733                         goto fail_scrub_workers;
3734
3735                 fs_info->scrub_wr_completion_workers =
3736                         btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3737                                               max_active, 2);
3738                 if (!fs_info->scrub_wr_completion_workers)
3739                         goto fail_scrub_wr_completion_workers;
3740
3741                 fs_info->scrub_parity_workers =
3742                         btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3743                                               max_active, 2);
3744                 if (!fs_info->scrub_parity_workers)
3745                         goto fail_scrub_parity_workers;
3746         }
3747         ++fs_info->scrub_workers_refcnt;
3748         return 0;
3749
3750 fail_scrub_parity_workers:
3751         btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3752 fail_scrub_wr_completion_workers:
3753         btrfs_destroy_workqueue(fs_info->scrub_workers);
3754 fail_scrub_workers:
3755         return -ENOMEM;
3756 }
3757
3758 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3759 {
3760         if (--fs_info->scrub_workers_refcnt == 0) {
3761                 btrfs_destroy_workqueue(fs_info->scrub_workers);
3762                 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3763                 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3764         }
3765         WARN_ON(fs_info->scrub_workers_refcnt < 0);
3766 }
3767
3768 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3769                     u64 end, struct btrfs_scrub_progress *progress,
3770                     int readonly, int is_dev_replace)
3771 {
3772         struct scrub_ctx *sctx;
3773         int ret;
3774         struct btrfs_device *dev;
3775
3776         if (btrfs_fs_closing(fs_info))
3777                 return -EINVAL;
3778
3779         if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3780                 /*
3781                  * in this case scrub is unable to calculate the checksum
3782                  * the way scrub is implemented. Do not handle this
3783                  * situation at all because it won't ever happen.
3784                  */
3785                 btrfs_err(fs_info,
3786                            "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3787                        fs_info->nodesize,
3788                        BTRFS_STRIPE_LEN);
3789                 return -EINVAL;
3790         }
3791
3792         if (fs_info->sectorsize != PAGE_SIZE) {
3793                 /* not supported for data w/o checksums */
3794                 btrfs_err_rl(fs_info,
3795                            "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3796                        fs_info->sectorsize, PAGE_SIZE);
3797                 return -EINVAL;
3798         }
3799
3800         if (fs_info->nodesize >
3801             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3802             fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3803                 /*
3804                  * would exhaust the array bounds of pagev member in
3805                  * struct scrub_block
3806                  */
3807                 btrfs_err(fs_info,
3808                           "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3809                        fs_info->nodesize,
3810                        SCRUB_MAX_PAGES_PER_BLOCK,
3811                        fs_info->sectorsize,
3812                        SCRUB_MAX_PAGES_PER_BLOCK);
3813                 return -EINVAL;
3814         }
3815
3816
3817         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3818         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3819         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3820                      !is_dev_replace)) {
3821                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3822                 return -ENODEV;
3823         }
3824
3825         if (!is_dev_replace && !readonly &&
3826             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3827                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3828                 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3829                                 rcu_str_deref(dev->name));
3830                 return -EROFS;
3831         }
3832
3833         mutex_lock(&fs_info->scrub_lock);
3834         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3835             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3836                 mutex_unlock(&fs_info->scrub_lock);
3837                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3838                 return -EIO;
3839         }
3840
3841         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3842         if (dev->scrub_ctx ||
3843             (!is_dev_replace &&
3844              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3845                 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3846                 mutex_unlock(&fs_info->scrub_lock);
3847                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3848                 return -EINPROGRESS;
3849         }
3850         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3851
3852         ret = scrub_workers_get(fs_info, is_dev_replace);
3853         if (ret) {
3854                 mutex_unlock(&fs_info->scrub_lock);
3855                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856                 return ret;
3857         }
3858
3859         sctx = scrub_setup_ctx(dev, is_dev_replace);
3860         if (IS_ERR(sctx)) {
3861                 mutex_unlock(&fs_info->scrub_lock);
3862                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863                 scrub_workers_put(fs_info);
3864                 return PTR_ERR(sctx);
3865         }
3866         sctx->readonly = readonly;
3867         dev->scrub_ctx = sctx;
3868         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3869
3870         /*
3871          * checking @scrub_pause_req here, we can avoid
3872          * race between committing transaction and scrubbing.
3873          */
3874         __scrub_blocked_if_needed(fs_info);
3875         atomic_inc(&fs_info->scrubs_running);
3876         mutex_unlock(&fs_info->scrub_lock);
3877
3878         if (!is_dev_replace) {
3879                 /*
3880                  * by holding device list mutex, we can
3881                  * kick off writing super in log tree sync.
3882                  */
3883                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3884                 ret = scrub_supers(sctx, dev);
3885                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3886         }
3887
3888         if (!ret)
3889                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3890
3891         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3892         atomic_dec(&fs_info->scrubs_running);
3893         wake_up(&fs_info->scrub_pause_wait);
3894
3895         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3896
3897         if (progress)
3898                 memcpy(progress, &sctx->stat, sizeof(*progress));
3899
3900         mutex_lock(&fs_info->scrub_lock);
3901         dev->scrub_ctx = NULL;
3902         scrub_workers_put(fs_info);
3903         mutex_unlock(&fs_info->scrub_lock);
3904
3905         scrub_put_ctx(sctx);
3906
3907         return ret;
3908 }
3909
3910 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3911 {
3912         mutex_lock(&fs_info->scrub_lock);
3913         atomic_inc(&fs_info->scrub_pause_req);
3914         while (atomic_read(&fs_info->scrubs_paused) !=
3915                atomic_read(&fs_info->scrubs_running)) {
3916                 mutex_unlock(&fs_info->scrub_lock);
3917                 wait_event(fs_info->scrub_pause_wait,
3918                            atomic_read(&fs_info->scrubs_paused) ==
3919                            atomic_read(&fs_info->scrubs_running));
3920                 mutex_lock(&fs_info->scrub_lock);
3921         }
3922         mutex_unlock(&fs_info->scrub_lock);
3923 }
3924
3925 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3926 {
3927         atomic_dec(&fs_info->scrub_pause_req);
3928         wake_up(&fs_info->scrub_pause_wait);
3929 }
3930
3931 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3932 {
3933         mutex_lock(&fs_info->scrub_lock);
3934         if (!atomic_read(&fs_info->scrubs_running)) {
3935                 mutex_unlock(&fs_info->scrub_lock);
3936                 return -ENOTCONN;
3937         }
3938
3939         atomic_inc(&fs_info->scrub_cancel_req);
3940         while (atomic_read(&fs_info->scrubs_running)) {
3941                 mutex_unlock(&fs_info->scrub_lock);
3942                 wait_event(fs_info->scrub_pause_wait,
3943                            atomic_read(&fs_info->scrubs_running) == 0);
3944                 mutex_lock(&fs_info->scrub_lock);
3945         }
3946         atomic_dec(&fs_info->scrub_cancel_req);
3947         mutex_unlock(&fs_info->scrub_lock);
3948
3949         return 0;
3950 }
3951
3952 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3953                            struct btrfs_device *dev)
3954 {
3955         struct scrub_ctx *sctx;
3956
3957         mutex_lock(&fs_info->scrub_lock);
3958         sctx = dev->scrub_ctx;
3959         if (!sctx) {
3960                 mutex_unlock(&fs_info->scrub_lock);
3961                 return -ENOTCONN;
3962         }
3963         atomic_inc(&sctx->cancel_req);
3964         while (dev->scrub_ctx) {
3965                 mutex_unlock(&fs_info->scrub_lock);
3966                 wait_event(fs_info->scrub_pause_wait,
3967                            dev->scrub_ctx == NULL);
3968                 mutex_lock(&fs_info->scrub_lock);
3969         }
3970         mutex_unlock(&fs_info->scrub_lock);
3971
3972         return 0;
3973 }
3974
3975 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3976                          struct btrfs_scrub_progress *progress)
3977 {
3978         struct btrfs_device *dev;
3979         struct scrub_ctx *sctx = NULL;
3980
3981         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3982         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3983         if (dev)
3984                 sctx = dev->scrub_ctx;
3985         if (sctx)
3986                 memcpy(progress, &sctx->stat, sizeof(*progress));
3987         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3988
3989         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3990 }
3991
3992 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3993                                u64 extent_logical, u64 extent_len,
3994                                u64 *extent_physical,
3995                                struct btrfs_device **extent_dev,
3996                                int *extent_mirror_num)
3997 {
3998         u64 mapped_length;
3999         struct btrfs_bio *bbio = NULL;
4000         int ret;
4001
4002         mapped_length = extent_len;
4003         ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4004                               &mapped_length, &bbio, 0);
4005         if (ret || !bbio || mapped_length < extent_len ||
4006             !bbio->stripes[0].dev->bdev) {
4007                 btrfs_put_bbio(bbio);
4008                 return;
4009         }
4010
4011         *extent_physical = bbio->stripes[0].physical;
4012         *extent_mirror_num = bbio->mirror_num;
4013         *extent_dev = bbio->stripes[0].dev;
4014         btrfs_put_bbio(bbio);
4015 }