include/linux/relay.h: fix percpu annotation in struct rchan
[linux] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <linux/sched/mm.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52                          enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58         trace_block_touch_buffer(bh);
59         mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68
69 void unlock_buffer(struct buffer_head *bh)
70 {
71         clear_bit_unlock(BH_Lock, &bh->b_state);
72         smp_mb__after_atomic();
73         wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83                                      bool *dirty, bool *writeback)
84 {
85         struct buffer_head *head, *bh;
86         *dirty = false;
87         *writeback = false;
88
89         BUG_ON(!PageLocked(page));
90
91         if (!page_has_buffers(page))
92                 return;
93
94         if (PageWriteback(page))
95                 *writeback = true;
96
97         head = page_buffers(page);
98         bh = head;
99         do {
100                 if (buffer_locked(bh))
101                         *writeback = true;
102
103                 if (buffer_dirty(bh))
104                         *dirty = true;
105
106                 bh = bh->b_this_page;
107         } while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125         ClearPagePrivate(page);
126         set_page_private(page, 0);
127         put_page(page);
128 }
129
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132         if (!test_bit(BH_Quiet, &bh->b_state))
133                 printk_ratelimited(KERN_ERR
134                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
135                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148         if (uptodate) {
149                 set_buffer_uptodate(bh);
150         } else {
151                 /* This happens, due to failed read-ahead attempts. */
152                 clear_buffer_uptodate(bh);
153         }
154         unlock_buffer(bh);
155 }
156
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163         __end_buffer_read_notouch(bh, uptodate);
164         put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170         if (uptodate) {
171                 set_buffer_uptodate(bh);
172         } else {
173                 buffer_io_error(bh, ", lost sync page write");
174                 mark_buffer_write_io_error(bh);
175                 clear_buffer_uptodate(bh);
176         }
177         unlock_buffer(bh);
178         put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195         struct inode *bd_inode = bdev->bd_inode;
196         struct address_space *bd_mapping = bd_inode->i_mapping;
197         struct buffer_head *ret = NULL;
198         pgoff_t index;
199         struct buffer_head *bh;
200         struct buffer_head *head;
201         struct page *page;
202         int all_mapped = 1;
203
204         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
205         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206         if (!page)
207                 goto out;
208
209         spin_lock(&bd_mapping->private_lock);
210         if (!page_has_buffers(page))
211                 goto out_unlock;
212         head = page_buffers(page);
213         bh = head;
214         do {
215                 if (!buffer_mapped(bh))
216                         all_mapped = 0;
217                 else if (bh->b_blocknr == block) {
218                         ret = bh;
219                         get_bh(bh);
220                         goto out_unlock;
221                 }
222                 bh = bh->b_this_page;
223         } while (bh != head);
224
225         /* we might be here because some of the buffers on this page are
226          * not mapped.  This is due to various races between
227          * file io on the block device and getblk.  It gets dealt with
228          * elsewhere, don't buffer_error if we had some unmapped buffers
229          */
230         if (all_mapped) {
231                 printk("__find_get_block_slow() failed. "
232                         "block=%llu, b_blocknr=%llu\n",
233                         (unsigned long long)block,
234                         (unsigned long long)bh->b_blocknr);
235                 printk("b_state=0x%08lx, b_size=%zu\n",
236                         bh->b_state, bh->b_size);
237                 printk("device %pg blocksize: %d\n", bdev,
238                         1 << bd_inode->i_blkbits);
239         }
240 out_unlock:
241         spin_unlock(&bd_mapping->private_lock);
242         put_page(page);
243 out:
244         return ret;
245 }
246
247 /*
248  * I/O completion handler for block_read_full_page() - pages
249  * which come unlocked at the end of I/O.
250  */
251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
252 {
253         unsigned long flags;
254         struct buffer_head *first;
255         struct buffer_head *tmp;
256         struct page *page;
257         int page_uptodate = 1;
258
259         BUG_ON(!buffer_async_read(bh));
260
261         page = bh->b_page;
262         if (uptodate) {
263                 set_buffer_uptodate(bh);
264         } else {
265                 clear_buffer_uptodate(bh);
266                 buffer_io_error(bh, ", async page read");
267                 SetPageError(page);
268         }
269
270         /*
271          * Be _very_ careful from here on. Bad things can happen if
272          * two buffer heads end IO at almost the same time and both
273          * decide that the page is now completely done.
274          */
275         first = page_buffers(page);
276         local_irq_save(flags);
277         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
278         clear_buffer_async_read(bh);
279         unlock_buffer(bh);
280         tmp = bh;
281         do {
282                 if (!buffer_uptodate(tmp))
283                         page_uptodate = 0;
284                 if (buffer_async_read(tmp)) {
285                         BUG_ON(!buffer_locked(tmp));
286                         goto still_busy;
287                 }
288                 tmp = tmp->b_this_page;
289         } while (tmp != bh);
290         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
291         local_irq_restore(flags);
292
293         /*
294          * If none of the buffers had errors and they are all
295          * uptodate then we can set the page uptodate.
296          */
297         if (page_uptodate && !PageError(page))
298                 SetPageUptodate(page);
299         unlock_page(page);
300         return;
301
302 still_busy:
303         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
304         local_irq_restore(flags);
305         return;
306 }
307
308 /*
309  * Completion handler for block_write_full_page() - pages which are unlocked
310  * during I/O, and which have PageWriteback cleared upon I/O completion.
311  */
312 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
313 {
314         unsigned long flags;
315         struct buffer_head *first;
316         struct buffer_head *tmp;
317         struct page *page;
318
319         BUG_ON(!buffer_async_write(bh));
320
321         page = bh->b_page;
322         if (uptodate) {
323                 set_buffer_uptodate(bh);
324         } else {
325                 buffer_io_error(bh, ", lost async page write");
326                 mark_buffer_write_io_error(bh);
327                 clear_buffer_uptodate(bh);
328                 SetPageError(page);
329         }
330
331         first = page_buffers(page);
332         local_irq_save(flags);
333         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334
335         clear_buffer_async_write(bh);
336         unlock_buffer(bh);
337         tmp = bh->b_this_page;
338         while (tmp != bh) {
339                 if (buffer_async_write(tmp)) {
340                         BUG_ON(!buffer_locked(tmp));
341                         goto still_busy;
342                 }
343                 tmp = tmp->b_this_page;
344         }
345         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346         local_irq_restore(flags);
347         end_page_writeback(page);
348         return;
349
350 still_busy:
351         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
352         local_irq_restore(flags);
353         return;
354 }
355 EXPORT_SYMBOL(end_buffer_async_write);
356
357 /*
358  * If a page's buffers are under async readin (end_buffer_async_read
359  * completion) then there is a possibility that another thread of
360  * control could lock one of the buffers after it has completed
361  * but while some of the other buffers have not completed.  This
362  * locked buffer would confuse end_buffer_async_read() into not unlocking
363  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
364  * that this buffer is not under async I/O.
365  *
366  * The page comes unlocked when it has no locked buffer_async buffers
367  * left.
368  *
369  * PageLocked prevents anyone starting new async I/O reads any of
370  * the buffers.
371  *
372  * PageWriteback is used to prevent simultaneous writeout of the same
373  * page.
374  *
375  * PageLocked prevents anyone from starting writeback of a page which is
376  * under read I/O (PageWriteback is only ever set against a locked page).
377  */
378 static void mark_buffer_async_read(struct buffer_head *bh)
379 {
380         bh->b_end_io = end_buffer_async_read;
381         set_buffer_async_read(bh);
382 }
383
384 static void mark_buffer_async_write_endio(struct buffer_head *bh,
385                                           bh_end_io_t *handler)
386 {
387         bh->b_end_io = handler;
388         set_buffer_async_write(bh);
389 }
390
391 void mark_buffer_async_write(struct buffer_head *bh)
392 {
393         mark_buffer_async_write_endio(bh, end_buffer_async_write);
394 }
395 EXPORT_SYMBOL(mark_buffer_async_write);
396
397
398 /*
399  * fs/buffer.c contains helper functions for buffer-backed address space's
400  * fsync functions.  A common requirement for buffer-based filesystems is
401  * that certain data from the backing blockdev needs to be written out for
402  * a successful fsync().  For example, ext2 indirect blocks need to be
403  * written back and waited upon before fsync() returns.
404  *
405  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407  * management of a list of dependent buffers at ->i_mapping->private_list.
408  *
409  * Locking is a little subtle: try_to_free_buffers() will remove buffers
410  * from their controlling inode's queue when they are being freed.  But
411  * try_to_free_buffers() will be operating against the *blockdev* mapping
412  * at the time, not against the S_ISREG file which depends on those buffers.
413  * So the locking for private_list is via the private_lock in the address_space
414  * which backs the buffers.  Which is different from the address_space 
415  * against which the buffers are listed.  So for a particular address_space,
416  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
417  * mapping->private_list will always be protected by the backing blockdev's
418  * ->private_lock.
419  *
420  * Which introduces a requirement: all buffers on an address_space's
421  * ->private_list must be from the same address_space: the blockdev's.
422  *
423  * address_spaces which do not place buffers at ->private_list via these
424  * utility functions are free to use private_lock and private_list for
425  * whatever they want.  The only requirement is that list_empty(private_list)
426  * be true at clear_inode() time.
427  *
428  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
429  * filesystems should do that.  invalidate_inode_buffers() should just go
430  * BUG_ON(!list_empty).
431  *
432  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
433  * take an address_space, not an inode.  And it should be called
434  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
435  * queued up.
436  *
437  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438  * list if it is already on a list.  Because if the buffer is on a list,
439  * it *must* already be on the right one.  If not, the filesystem is being
440  * silly.  This will save a ton of locking.  But first we have to ensure
441  * that buffers are taken *off* the old inode's list when they are freed
442  * (presumably in truncate).  That requires careful auditing of all
443  * filesystems (do it inside bforget()).  It could also be done by bringing
444  * b_inode back.
445  */
446
447 /*
448  * The buffer's backing address_space's private_lock must be held
449  */
450 static void __remove_assoc_queue(struct buffer_head *bh)
451 {
452         list_del_init(&bh->b_assoc_buffers);
453         WARN_ON(!bh->b_assoc_map);
454         bh->b_assoc_map = NULL;
455 }
456
457 int inode_has_buffers(struct inode *inode)
458 {
459         return !list_empty(&inode->i_data.private_list);
460 }
461
462 /*
463  * osync is designed to support O_SYNC io.  It waits synchronously for
464  * all already-submitted IO to complete, but does not queue any new
465  * writes to the disk.
466  *
467  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468  * you dirty the buffers, and then use osync_inode_buffers to wait for
469  * completion.  Any other dirty buffers which are not yet queued for
470  * write will not be flushed to disk by the osync.
471  */
472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
473 {
474         struct buffer_head *bh;
475         struct list_head *p;
476         int err = 0;
477
478         spin_lock(lock);
479 repeat:
480         list_for_each_prev(p, list) {
481                 bh = BH_ENTRY(p);
482                 if (buffer_locked(bh)) {
483                         get_bh(bh);
484                         spin_unlock(lock);
485                         wait_on_buffer(bh);
486                         if (!buffer_uptodate(bh))
487                                 err = -EIO;
488                         brelse(bh);
489                         spin_lock(lock);
490                         goto repeat;
491                 }
492         }
493         spin_unlock(lock);
494         return err;
495 }
496
497 void emergency_thaw_bdev(struct super_block *sb)
498 {
499         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
500                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
501 }
502
503 /**
504  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505  * @mapping: the mapping which wants those buffers written
506  *
507  * Starts I/O against the buffers at mapping->private_list, and waits upon
508  * that I/O.
509  *
510  * Basically, this is a convenience function for fsync().
511  * @mapping is a file or directory which needs those buffers to be written for
512  * a successful fsync().
513  */
514 int sync_mapping_buffers(struct address_space *mapping)
515 {
516         struct address_space *buffer_mapping = mapping->private_data;
517
518         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
519                 return 0;
520
521         return fsync_buffers_list(&buffer_mapping->private_lock,
522                                         &mapping->private_list);
523 }
524 EXPORT_SYMBOL(sync_mapping_buffers);
525
526 /*
527  * Called when we've recently written block `bblock', and it is known that
528  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
529  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
530  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
531  */
532 void write_boundary_block(struct block_device *bdev,
533                         sector_t bblock, unsigned blocksize)
534 {
535         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
536         if (bh) {
537                 if (buffer_dirty(bh))
538                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
539                 put_bh(bh);
540         }
541 }
542
543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
544 {
545         struct address_space *mapping = inode->i_mapping;
546         struct address_space *buffer_mapping = bh->b_page->mapping;
547
548         mark_buffer_dirty(bh);
549         if (!mapping->private_data) {
550                 mapping->private_data = buffer_mapping;
551         } else {
552                 BUG_ON(mapping->private_data != buffer_mapping);
553         }
554         if (!bh->b_assoc_map) {
555                 spin_lock(&buffer_mapping->private_lock);
556                 list_move_tail(&bh->b_assoc_buffers,
557                                 &mapping->private_list);
558                 bh->b_assoc_map = mapping;
559                 spin_unlock(&buffer_mapping->private_lock);
560         }
561 }
562 EXPORT_SYMBOL(mark_buffer_dirty_inode);
563
564 /*
565  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
566  * dirty.
567  *
568  * If warn is true, then emit a warning if the page is not uptodate and has
569  * not been truncated.
570  *
571  * The caller must hold lock_page_memcg().
572  */
573 void __set_page_dirty(struct page *page, struct address_space *mapping,
574                              int warn)
575 {
576         unsigned long flags;
577
578         xa_lock_irqsave(&mapping->i_pages, flags);
579         if (page->mapping) {    /* Race with truncate? */
580                 WARN_ON_ONCE(warn && !PageUptodate(page));
581                 account_page_dirtied(page, mapping);
582                 __xa_set_mark(&mapping->i_pages, page_index(page),
583                                 PAGECACHE_TAG_DIRTY);
584         }
585         xa_unlock_irqrestore(&mapping->i_pages, flags);
586 }
587 EXPORT_SYMBOL_GPL(__set_page_dirty);
588
589 /*
590  * Add a page to the dirty page list.
591  *
592  * It is a sad fact of life that this function is called from several places
593  * deeply under spinlocking.  It may not sleep.
594  *
595  * If the page has buffers, the uptodate buffers are set dirty, to preserve
596  * dirty-state coherency between the page and the buffers.  It the page does
597  * not have buffers then when they are later attached they will all be set
598  * dirty.
599  *
600  * The buffers are dirtied before the page is dirtied.  There's a small race
601  * window in which a writepage caller may see the page cleanness but not the
602  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
603  * before the buffers, a concurrent writepage caller could clear the page dirty
604  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605  * page on the dirty page list.
606  *
607  * We use private_lock to lock against try_to_free_buffers while using the
608  * page's buffer list.  Also use this to protect against clean buffers being
609  * added to the page after it was set dirty.
610  *
611  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
612  * address_space though.
613  */
614 int __set_page_dirty_buffers(struct page *page)
615 {
616         int newly_dirty;
617         struct address_space *mapping = page_mapping(page);
618
619         if (unlikely(!mapping))
620                 return !TestSetPageDirty(page);
621
622         spin_lock(&mapping->private_lock);
623         if (page_has_buffers(page)) {
624                 struct buffer_head *head = page_buffers(page);
625                 struct buffer_head *bh = head;
626
627                 do {
628                         set_buffer_dirty(bh);
629                         bh = bh->b_this_page;
630                 } while (bh != head);
631         }
632         /*
633          * Lock out page->mem_cgroup migration to keep PageDirty
634          * synchronized with per-memcg dirty page counters.
635          */
636         lock_page_memcg(page);
637         newly_dirty = !TestSetPageDirty(page);
638         spin_unlock(&mapping->private_lock);
639
640         if (newly_dirty)
641                 __set_page_dirty(page, mapping, 1);
642
643         unlock_page_memcg(page);
644
645         if (newly_dirty)
646                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
647
648         return newly_dirty;
649 }
650 EXPORT_SYMBOL(__set_page_dirty_buffers);
651
652 /*
653  * Write out and wait upon a list of buffers.
654  *
655  * We have conflicting pressures: we want to make sure that all
656  * initially dirty buffers get waited on, but that any subsequently
657  * dirtied buffers don't.  After all, we don't want fsync to last
658  * forever if somebody is actively writing to the file.
659  *
660  * Do this in two main stages: first we copy dirty buffers to a
661  * temporary inode list, queueing the writes as we go.  Then we clean
662  * up, waiting for those writes to complete.
663  * 
664  * During this second stage, any subsequent updates to the file may end
665  * up refiling the buffer on the original inode's dirty list again, so
666  * there is a chance we will end up with a buffer queued for write but
667  * not yet completed on that list.  So, as a final cleanup we go through
668  * the osync code to catch these locked, dirty buffers without requeuing
669  * any newly dirty buffers for write.
670  */
671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672 {
673         struct buffer_head *bh;
674         struct list_head tmp;
675         struct address_space *mapping;
676         int err = 0, err2;
677         struct blk_plug plug;
678
679         INIT_LIST_HEAD(&tmp);
680         blk_start_plug(&plug);
681
682         spin_lock(lock);
683         while (!list_empty(list)) {
684                 bh = BH_ENTRY(list->next);
685                 mapping = bh->b_assoc_map;
686                 __remove_assoc_queue(bh);
687                 /* Avoid race with mark_buffer_dirty_inode() which does
688                  * a lockless check and we rely on seeing the dirty bit */
689                 smp_mb();
690                 if (buffer_dirty(bh) || buffer_locked(bh)) {
691                         list_add(&bh->b_assoc_buffers, &tmp);
692                         bh->b_assoc_map = mapping;
693                         if (buffer_dirty(bh)) {
694                                 get_bh(bh);
695                                 spin_unlock(lock);
696                                 /*
697                                  * Ensure any pending I/O completes so that
698                                  * write_dirty_buffer() actually writes the
699                                  * current contents - it is a noop if I/O is
700                                  * still in flight on potentially older
701                                  * contents.
702                                  */
703                                 write_dirty_buffer(bh, REQ_SYNC);
704
705                                 /*
706                                  * Kick off IO for the previous mapping. Note
707                                  * that we will not run the very last mapping,
708                                  * wait_on_buffer() will do that for us
709                                  * through sync_buffer().
710                                  */
711                                 brelse(bh);
712                                 spin_lock(lock);
713                         }
714                 }
715         }
716
717         spin_unlock(lock);
718         blk_finish_plug(&plug);
719         spin_lock(lock);
720
721         while (!list_empty(&tmp)) {
722                 bh = BH_ENTRY(tmp.prev);
723                 get_bh(bh);
724                 mapping = bh->b_assoc_map;
725                 __remove_assoc_queue(bh);
726                 /* Avoid race with mark_buffer_dirty_inode() which does
727                  * a lockless check and we rely on seeing the dirty bit */
728                 smp_mb();
729                 if (buffer_dirty(bh)) {
730                         list_add(&bh->b_assoc_buffers,
731                                  &mapping->private_list);
732                         bh->b_assoc_map = mapping;
733                 }
734                 spin_unlock(lock);
735                 wait_on_buffer(bh);
736                 if (!buffer_uptodate(bh))
737                         err = -EIO;
738                 brelse(bh);
739                 spin_lock(lock);
740         }
741         
742         spin_unlock(lock);
743         err2 = osync_buffers_list(lock, list);
744         if (err)
745                 return err;
746         else
747                 return err2;
748 }
749
750 /*
751  * Invalidate any and all dirty buffers on a given inode.  We are
752  * probably unmounting the fs, but that doesn't mean we have already
753  * done a sync().  Just drop the buffers from the inode list.
754  *
755  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
756  * assumes that all the buffers are against the blockdev.  Not true
757  * for reiserfs.
758  */
759 void invalidate_inode_buffers(struct inode *inode)
760 {
761         if (inode_has_buffers(inode)) {
762                 struct address_space *mapping = &inode->i_data;
763                 struct list_head *list = &mapping->private_list;
764                 struct address_space *buffer_mapping = mapping->private_data;
765
766                 spin_lock(&buffer_mapping->private_lock);
767                 while (!list_empty(list))
768                         __remove_assoc_queue(BH_ENTRY(list->next));
769                 spin_unlock(&buffer_mapping->private_lock);
770         }
771 }
772 EXPORT_SYMBOL(invalidate_inode_buffers);
773
774 /*
775  * Remove any clean buffers from the inode's buffer list.  This is called
776  * when we're trying to free the inode itself.  Those buffers can pin it.
777  *
778  * Returns true if all buffers were removed.
779  */
780 int remove_inode_buffers(struct inode *inode)
781 {
782         int ret = 1;
783
784         if (inode_has_buffers(inode)) {
785                 struct address_space *mapping = &inode->i_data;
786                 struct list_head *list = &mapping->private_list;
787                 struct address_space *buffer_mapping = mapping->private_data;
788
789                 spin_lock(&buffer_mapping->private_lock);
790                 while (!list_empty(list)) {
791                         struct buffer_head *bh = BH_ENTRY(list->next);
792                         if (buffer_dirty(bh)) {
793                                 ret = 0;
794                                 break;
795                         }
796                         __remove_assoc_queue(bh);
797                 }
798                 spin_unlock(&buffer_mapping->private_lock);
799         }
800         return ret;
801 }
802
803 /*
804  * Create the appropriate buffers when given a page for data area and
805  * the size of each buffer.. Use the bh->b_this_page linked list to
806  * follow the buffers created.  Return NULL if unable to create more
807  * buffers.
808  *
809  * The retry flag is used to differentiate async IO (paging, swapping)
810  * which may not fail from ordinary buffer allocations.
811  */
812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
813                 bool retry)
814 {
815         struct buffer_head *bh, *head;
816         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
817         long offset;
818         struct mem_cgroup *memcg;
819
820         if (retry)
821                 gfp |= __GFP_NOFAIL;
822
823         memcg = get_mem_cgroup_from_page(page);
824         memalloc_use_memcg(memcg);
825
826         head = NULL;
827         offset = PAGE_SIZE;
828         while ((offset -= size) >= 0) {
829                 bh = alloc_buffer_head(gfp);
830                 if (!bh)
831                         goto no_grow;
832
833                 bh->b_this_page = head;
834                 bh->b_blocknr = -1;
835                 head = bh;
836
837                 bh->b_size = size;
838
839                 /* Link the buffer to its page */
840                 set_bh_page(bh, page, offset);
841         }
842 out:
843         memalloc_unuse_memcg();
844         mem_cgroup_put(memcg);
845         return head;
846 /*
847  * In case anything failed, we just free everything we got.
848  */
849 no_grow:
850         if (head) {
851                 do {
852                         bh = head;
853                         head = head->b_this_page;
854                         free_buffer_head(bh);
855                 } while (head);
856         }
857
858         goto out;
859 }
860 EXPORT_SYMBOL_GPL(alloc_page_buffers);
861
862 static inline void
863 link_dev_buffers(struct page *page, struct buffer_head *head)
864 {
865         struct buffer_head *bh, *tail;
866
867         bh = head;
868         do {
869                 tail = bh;
870                 bh = bh->b_this_page;
871         } while (bh);
872         tail->b_this_page = head;
873         attach_page_buffers(page, head);
874 }
875
876 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
877 {
878         sector_t retval = ~((sector_t)0);
879         loff_t sz = i_size_read(bdev->bd_inode);
880
881         if (sz) {
882                 unsigned int sizebits = blksize_bits(size);
883                 retval = (sz >> sizebits);
884         }
885         return retval;
886 }
887
888 /*
889  * Initialise the state of a blockdev page's buffers.
890  */ 
891 static sector_t
892 init_page_buffers(struct page *page, struct block_device *bdev,
893                         sector_t block, int size)
894 {
895         struct buffer_head *head = page_buffers(page);
896         struct buffer_head *bh = head;
897         int uptodate = PageUptodate(page);
898         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
899
900         do {
901                 if (!buffer_mapped(bh)) {
902                         bh->b_end_io = NULL;
903                         bh->b_private = NULL;
904                         bh->b_bdev = bdev;
905                         bh->b_blocknr = block;
906                         if (uptodate)
907                                 set_buffer_uptodate(bh);
908                         if (block < end_block)
909                                 set_buffer_mapped(bh);
910                 }
911                 block++;
912                 bh = bh->b_this_page;
913         } while (bh != head);
914
915         /*
916          * Caller needs to validate requested block against end of device.
917          */
918         return end_block;
919 }
920
921 /*
922  * Create the page-cache page that contains the requested block.
923  *
924  * This is used purely for blockdev mappings.
925  */
926 static int
927 grow_dev_page(struct block_device *bdev, sector_t block,
928               pgoff_t index, int size, int sizebits, gfp_t gfp)
929 {
930         struct inode *inode = bdev->bd_inode;
931         struct page *page;
932         struct buffer_head *bh;
933         sector_t end_block;
934         int ret = 0;            /* Will call free_more_memory() */
935         gfp_t gfp_mask;
936
937         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
938
939         /*
940          * XXX: __getblk_slow() can not really deal with failure and
941          * will endlessly loop on improvised global reclaim.  Prefer
942          * looping in the allocator rather than here, at least that
943          * code knows what it's doing.
944          */
945         gfp_mask |= __GFP_NOFAIL;
946
947         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
948
949         BUG_ON(!PageLocked(page));
950
951         if (page_has_buffers(page)) {
952                 bh = page_buffers(page);
953                 if (bh->b_size == size) {
954                         end_block = init_page_buffers(page, bdev,
955                                                 (sector_t)index << sizebits,
956                                                 size);
957 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
958                         current->getblk_executed |= 0x01;
959 #endif
960                         goto done;
961                 }
962                 if (!try_to_free_buffers(page)) {
963 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
964                         current->getblk_executed |= 0x02;
965 #endif
966                         goto failed;
967                 }
968 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
969                 current->getblk_executed |= 0x04;
970 #endif
971         }
972
973         /*
974          * Allocate some buffers for this page
975          */
976         bh = alloc_page_buffers(page, size, true);
977
978         /*
979          * Link the page to the buffers and initialise them.  Take the
980          * lock to be atomic wrt __find_get_block(), which does not
981          * run under the page lock.
982          */
983         spin_lock(&inode->i_mapping->private_lock);
984         link_dev_buffers(page, bh);
985         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
986                         size);
987         spin_unlock(&inode->i_mapping->private_lock);
988 done:
989         ret = (block < end_block) ? 1 : -ENXIO;
990 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
991         current->getblk_executed |= 0x08;
992 #endif
993 failed:
994         unlock_page(page);
995         put_page(page);
996         return ret;
997 }
998
999 /*
1000  * Create buffers for the specified block device block's page.  If
1001  * that page was dirty, the buffers are set dirty also.
1002  */
1003 static int
1004 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1005 {
1006         pgoff_t index;
1007         int sizebits;
1008
1009         sizebits = -1;
1010         do {
1011                 sizebits++;
1012         } while ((size << sizebits) < PAGE_SIZE);
1013
1014         index = block >> sizebits;
1015
1016         /*
1017          * Check for a block which wants to lie outside our maximum possible
1018          * pagecache index.  (this comparison is done using sector_t types).
1019          */
1020         if (unlikely(index != block >> sizebits)) {
1021                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1022                         "device %pg\n",
1023                         __func__, (unsigned long long)block,
1024                         bdev);
1025                 return -EIO;
1026         }
1027
1028         /* Create a page with the proper size buffers.. */
1029         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1030 }
1031
1032 static struct buffer_head *
1033 __getblk_slow(struct block_device *bdev, sector_t block,
1034              unsigned size, gfp_t gfp)
1035 {
1036         /* Size must be multiple of hard sectorsize */
1037         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1038                         (size < 512 || size > PAGE_SIZE))) {
1039                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1040                                         size);
1041                 printk(KERN_ERR "logical block size: %d\n",
1042                                         bdev_logical_block_size(bdev));
1043
1044                 dump_stack();
1045                 return NULL;
1046         }
1047
1048 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
1049         current->getblk_stamp = jiffies;
1050         current->getblk_executed = 0;
1051         current->getblk_bh_count = 0;
1052         current->getblk_bh_state = 0;
1053 #endif
1054         for (;;) {
1055                 struct buffer_head *bh;
1056                 int ret;
1057
1058                 bh = __find_get_block(bdev, block, size);
1059                 if (bh)
1060                         return bh;
1061
1062                 ret = grow_buffers(bdev, block, size, gfp);
1063                 if (ret < 0)
1064                         return NULL;
1065
1066 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
1067                 if (!time_after(jiffies, current->getblk_stamp + 3 * HZ))
1068                         continue;
1069                 printk(KERN_ERR "%s(%u): getblk(): executed=%x bh_count=%d bh_state=%lx bdev_super_blocksize=%ld size=%u bdev_super_blocksize_bits=%d bdev_inode_blkbits=%d\n",
1070                        current->comm, current->pid, current->getblk_executed,
1071                        current->getblk_bh_count, current->getblk_bh_state,
1072                        IS_ERR_OR_NULL(bdev->bd_super) ? -1L :
1073                        bdev->bd_super->s_blocksize, size,
1074                        IS_ERR_OR_NULL(bdev->bd_super) ? -1 :
1075                        bdev->bd_super->s_blocksize_bits,
1076                        IS_ERR_OR_NULL(bdev->bd_inode) ? -1 :
1077                        bdev->bd_inode->i_blkbits);
1078                 current->getblk_executed = 0;
1079                 current->getblk_bh_count = 0;
1080                 current->getblk_bh_state = 0;
1081                 current->getblk_stamp = jiffies;
1082 #endif
1083         }
1084 }
1085
1086 /*
1087  * The relationship between dirty buffers and dirty pages:
1088  *
1089  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1090  * the page is tagged dirty in the page cache.
1091  *
1092  * At all times, the dirtiness of the buffers represents the dirtiness of
1093  * subsections of the page.  If the page has buffers, the page dirty bit is
1094  * merely a hint about the true dirty state.
1095  *
1096  * When a page is set dirty in its entirety, all its buffers are marked dirty
1097  * (if the page has buffers).
1098  *
1099  * When a buffer is marked dirty, its page is dirtied, but the page's other
1100  * buffers are not.
1101  *
1102  * Also.  When blockdev buffers are explicitly read with bread(), they
1103  * individually become uptodate.  But their backing page remains not
1104  * uptodate - even if all of its buffers are uptodate.  A subsequent
1105  * block_read_full_page() against that page will discover all the uptodate
1106  * buffers, will set the page uptodate and will perform no I/O.
1107  */
1108
1109 /**
1110  * mark_buffer_dirty - mark a buffer_head as needing writeout
1111  * @bh: the buffer_head to mark dirty
1112  *
1113  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1114  * its backing page dirty, then tag the page as dirty in the page cache
1115  * and then attach the address_space's inode to its superblock's dirty
1116  * inode list.
1117  *
1118  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1119  * i_pages lock and mapping->host->i_lock.
1120  */
1121 void mark_buffer_dirty(struct buffer_head *bh)
1122 {
1123         WARN_ON_ONCE(!buffer_uptodate(bh));
1124
1125         trace_block_dirty_buffer(bh);
1126
1127         /*
1128          * Very *carefully* optimize the it-is-already-dirty case.
1129          *
1130          * Don't let the final "is it dirty" escape to before we
1131          * perhaps modified the buffer.
1132          */
1133         if (buffer_dirty(bh)) {
1134                 smp_mb();
1135                 if (buffer_dirty(bh))
1136                         return;
1137         }
1138
1139         if (!test_set_buffer_dirty(bh)) {
1140                 struct page *page = bh->b_page;
1141                 struct address_space *mapping = NULL;
1142
1143                 lock_page_memcg(page);
1144                 if (!TestSetPageDirty(page)) {
1145                         mapping = page_mapping(page);
1146                         if (mapping)
1147                                 __set_page_dirty(page, mapping, 0);
1148                 }
1149                 unlock_page_memcg(page);
1150                 if (mapping)
1151                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1152         }
1153 }
1154 EXPORT_SYMBOL(mark_buffer_dirty);
1155
1156 void mark_buffer_write_io_error(struct buffer_head *bh)
1157 {
1158         set_buffer_write_io_error(bh);
1159         /* FIXME: do we need to set this in both places? */
1160         if (bh->b_page && bh->b_page->mapping)
1161                 mapping_set_error(bh->b_page->mapping, -EIO);
1162         if (bh->b_assoc_map)
1163                 mapping_set_error(bh->b_assoc_map, -EIO);
1164 }
1165 EXPORT_SYMBOL(mark_buffer_write_io_error);
1166
1167 /*
1168  * Decrement a buffer_head's reference count.  If all buffers against a page
1169  * have zero reference count, are clean and unlocked, and if the page is clean
1170  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1171  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1172  * a page but it ends up not being freed, and buffers may later be reattached).
1173  */
1174 void __brelse(struct buffer_head * buf)
1175 {
1176         if (atomic_read(&buf->b_count)) {
1177                 put_bh(buf);
1178                 return;
1179         }
1180         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1181 }
1182 EXPORT_SYMBOL(__brelse);
1183
1184 /*
1185  * bforget() is like brelse(), except it discards any
1186  * potentially dirty data.
1187  */
1188 void __bforget(struct buffer_head *bh)
1189 {
1190         clear_buffer_dirty(bh);
1191         if (bh->b_assoc_map) {
1192                 struct address_space *buffer_mapping = bh->b_page->mapping;
1193
1194                 spin_lock(&buffer_mapping->private_lock);
1195                 list_del_init(&bh->b_assoc_buffers);
1196                 bh->b_assoc_map = NULL;
1197                 spin_unlock(&buffer_mapping->private_lock);
1198         }
1199         __brelse(bh);
1200 }
1201 EXPORT_SYMBOL(__bforget);
1202
1203 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1204 {
1205         lock_buffer(bh);
1206         if (buffer_uptodate(bh)) {
1207                 unlock_buffer(bh);
1208                 return bh;
1209         } else {
1210                 get_bh(bh);
1211                 bh->b_end_io = end_buffer_read_sync;
1212                 submit_bh(REQ_OP_READ, 0, bh);
1213                 wait_on_buffer(bh);
1214                 if (buffer_uptodate(bh))
1215                         return bh;
1216         }
1217         brelse(bh);
1218         return NULL;
1219 }
1220
1221 /*
1222  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1223  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1224  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1225  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1226  * CPU's LRUs at the same time.
1227  *
1228  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1229  * sb_find_get_block().
1230  *
1231  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1232  * a local interrupt disable for that.
1233  */
1234
1235 #define BH_LRU_SIZE     16
1236
1237 struct bh_lru {
1238         struct buffer_head *bhs[BH_LRU_SIZE];
1239 };
1240
1241 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1242
1243 #ifdef CONFIG_SMP
1244 #define bh_lru_lock()   local_irq_disable()
1245 #define bh_lru_unlock() local_irq_enable()
1246 #else
1247 #define bh_lru_lock()   preempt_disable()
1248 #define bh_lru_unlock() preempt_enable()
1249 #endif
1250
1251 static inline void check_irqs_on(void)
1252 {
1253 #ifdef irqs_disabled
1254         BUG_ON(irqs_disabled());
1255 #endif
1256 }
1257
1258 /*
1259  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1260  * inserted at the front, and the buffer_head at the back if any is evicted.
1261  * Or, if already in the LRU it is moved to the front.
1262  */
1263 static void bh_lru_install(struct buffer_head *bh)
1264 {
1265         struct buffer_head *evictee = bh;
1266         struct bh_lru *b;
1267         int i;
1268
1269         check_irqs_on();
1270         bh_lru_lock();
1271
1272         b = this_cpu_ptr(&bh_lrus);
1273         for (i = 0; i < BH_LRU_SIZE; i++) {
1274                 swap(evictee, b->bhs[i]);
1275                 if (evictee == bh) {
1276                         bh_lru_unlock();
1277                         return;
1278                 }
1279         }
1280
1281         get_bh(bh);
1282         bh_lru_unlock();
1283         brelse(evictee);
1284 }
1285
1286 /*
1287  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1288  */
1289 static struct buffer_head *
1290 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1291 {
1292         struct buffer_head *ret = NULL;
1293         unsigned int i;
1294
1295         check_irqs_on();
1296         bh_lru_lock();
1297         for (i = 0; i < BH_LRU_SIZE; i++) {
1298                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1299
1300                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1301                     bh->b_size == size) {
1302                         if (i) {
1303                                 while (i) {
1304                                         __this_cpu_write(bh_lrus.bhs[i],
1305                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1306                                         i--;
1307                                 }
1308                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1309                         }
1310                         get_bh(bh);
1311                         ret = bh;
1312                         break;
1313                 }
1314         }
1315         bh_lru_unlock();
1316         return ret;
1317 }
1318
1319 /*
1320  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1321  * it in the LRU and mark it as accessed.  If it is not present then return
1322  * NULL
1323  */
1324 struct buffer_head *
1325 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1326 {
1327         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1328
1329         if (bh == NULL) {
1330                 /* __find_get_block_slow will mark the page accessed */
1331                 bh = __find_get_block_slow(bdev, block);
1332                 if (bh)
1333                         bh_lru_install(bh);
1334         } else
1335                 touch_buffer(bh);
1336
1337         return bh;
1338 }
1339 EXPORT_SYMBOL(__find_get_block);
1340
1341 /*
1342  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1343  * which corresponds to the passed block_device, block and size. The
1344  * returned buffer has its reference count incremented.
1345  *
1346  * __getblk_gfp() will lock up the machine if grow_dev_page's
1347  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1348  */
1349 struct buffer_head *
1350 __getblk_gfp(struct block_device *bdev, sector_t block,
1351              unsigned size, gfp_t gfp)
1352 {
1353         struct buffer_head *bh = __find_get_block(bdev, block, size);
1354
1355         might_sleep();
1356         if (bh == NULL)
1357                 bh = __getblk_slow(bdev, block, size, gfp);
1358         return bh;
1359 }
1360 EXPORT_SYMBOL(__getblk_gfp);
1361
1362 /*
1363  * Do async read-ahead on a buffer..
1364  */
1365 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1366 {
1367         struct buffer_head *bh = __getblk(bdev, block, size);
1368         if (likely(bh)) {
1369                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1370                 brelse(bh);
1371         }
1372 }
1373 EXPORT_SYMBOL(__breadahead);
1374
1375 /**
1376  *  __bread_gfp() - reads a specified block and returns the bh
1377  *  @bdev: the block_device to read from
1378  *  @block: number of block
1379  *  @size: size (in bytes) to read
1380  *  @gfp: page allocation flag
1381  *
1382  *  Reads a specified block, and returns buffer head that contains it.
1383  *  The page cache can be allocated from non-movable area
1384  *  not to prevent page migration if you set gfp to zero.
1385  *  It returns NULL if the block was unreadable.
1386  */
1387 struct buffer_head *
1388 __bread_gfp(struct block_device *bdev, sector_t block,
1389                    unsigned size, gfp_t gfp)
1390 {
1391         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1392
1393         if (likely(bh) && !buffer_uptodate(bh))
1394                 bh = __bread_slow(bh);
1395         return bh;
1396 }
1397 EXPORT_SYMBOL(__bread_gfp);
1398
1399 /*
1400  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1401  * This doesn't race because it runs in each cpu either in irq
1402  * or with preempt disabled.
1403  */
1404 static void invalidate_bh_lru(void *arg)
1405 {
1406         struct bh_lru *b = &get_cpu_var(bh_lrus);
1407         int i;
1408
1409         for (i = 0; i < BH_LRU_SIZE; i++) {
1410                 brelse(b->bhs[i]);
1411                 b->bhs[i] = NULL;
1412         }
1413         put_cpu_var(bh_lrus);
1414 }
1415
1416 static bool has_bh_in_lru(int cpu, void *dummy)
1417 {
1418         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1419         int i;
1420         
1421         for (i = 0; i < BH_LRU_SIZE; i++) {
1422                 if (b->bhs[i])
1423                         return 1;
1424         }
1425
1426         return 0;
1427 }
1428
1429 void invalidate_bh_lrus(void)
1430 {
1431         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1432 }
1433 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1434
1435 void set_bh_page(struct buffer_head *bh,
1436                 struct page *page, unsigned long offset)
1437 {
1438         bh->b_page = page;
1439         BUG_ON(offset >= PAGE_SIZE);
1440         if (PageHighMem(page))
1441                 /*
1442                  * This catches illegal uses and preserves the offset:
1443                  */
1444                 bh->b_data = (char *)(0 + offset);
1445         else
1446                 bh->b_data = page_address(page) + offset;
1447 }
1448 EXPORT_SYMBOL(set_bh_page);
1449
1450 /*
1451  * Called when truncating a buffer on a page completely.
1452  */
1453
1454 /* Bits that are cleared during an invalidate */
1455 #define BUFFER_FLAGS_DISCARD \
1456         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1457          1 << BH_Delay | 1 << BH_Unwritten)
1458
1459 static void discard_buffer(struct buffer_head * bh)
1460 {
1461         unsigned long b_state, b_state_old;
1462
1463         lock_buffer(bh);
1464         clear_buffer_dirty(bh);
1465         bh->b_bdev = NULL;
1466         b_state = bh->b_state;
1467         for (;;) {
1468                 b_state_old = cmpxchg(&bh->b_state, b_state,
1469                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1470                 if (b_state_old == b_state)
1471                         break;
1472                 b_state = b_state_old;
1473         }
1474         unlock_buffer(bh);
1475 }
1476
1477 /**
1478  * block_invalidatepage - invalidate part or all of a buffer-backed page
1479  *
1480  * @page: the page which is affected
1481  * @offset: start of the range to invalidate
1482  * @length: length of the range to invalidate
1483  *
1484  * block_invalidatepage() is called when all or part of the page has become
1485  * invalidated by a truncate operation.
1486  *
1487  * block_invalidatepage() does not have to release all buffers, but it must
1488  * ensure that no dirty buffer is left outside @offset and that no I/O
1489  * is underway against any of the blocks which are outside the truncation
1490  * point.  Because the caller is about to free (and possibly reuse) those
1491  * blocks on-disk.
1492  */
1493 void block_invalidatepage(struct page *page, unsigned int offset,
1494                           unsigned int length)
1495 {
1496         struct buffer_head *head, *bh, *next;
1497         unsigned int curr_off = 0;
1498         unsigned int stop = length + offset;
1499
1500         BUG_ON(!PageLocked(page));
1501         if (!page_has_buffers(page))
1502                 goto out;
1503
1504         /*
1505          * Check for overflow
1506          */
1507         BUG_ON(stop > PAGE_SIZE || stop < length);
1508
1509         head = page_buffers(page);
1510         bh = head;
1511         do {
1512                 unsigned int next_off = curr_off + bh->b_size;
1513                 next = bh->b_this_page;
1514
1515                 /*
1516                  * Are we still fully in range ?
1517                  */
1518                 if (next_off > stop)
1519                         goto out;
1520
1521                 /*
1522                  * is this block fully invalidated?
1523                  */
1524                 if (offset <= curr_off)
1525                         discard_buffer(bh);
1526                 curr_off = next_off;
1527                 bh = next;
1528         } while (bh != head);
1529
1530         /*
1531          * We release buffers only if the entire page is being invalidated.
1532          * The get_block cached value has been unconditionally invalidated,
1533          * so real IO is not possible anymore.
1534          */
1535         if (length == PAGE_SIZE)
1536                 try_to_release_page(page, 0);
1537 out:
1538         return;
1539 }
1540 EXPORT_SYMBOL(block_invalidatepage);
1541
1542
1543 /*
1544  * We attach and possibly dirty the buffers atomically wrt
1545  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1546  * is already excluded via the page lock.
1547  */
1548 void create_empty_buffers(struct page *page,
1549                         unsigned long blocksize, unsigned long b_state)
1550 {
1551         struct buffer_head *bh, *head, *tail;
1552
1553         head = alloc_page_buffers(page, blocksize, true);
1554         bh = head;
1555         do {
1556                 bh->b_state |= b_state;
1557                 tail = bh;
1558                 bh = bh->b_this_page;
1559         } while (bh);
1560         tail->b_this_page = head;
1561
1562         spin_lock(&page->mapping->private_lock);
1563         if (PageUptodate(page) || PageDirty(page)) {
1564                 bh = head;
1565                 do {
1566                         if (PageDirty(page))
1567                                 set_buffer_dirty(bh);
1568                         if (PageUptodate(page))
1569                                 set_buffer_uptodate(bh);
1570                         bh = bh->b_this_page;
1571                 } while (bh != head);
1572         }
1573         attach_page_buffers(page, head);
1574         spin_unlock(&page->mapping->private_lock);
1575 }
1576 EXPORT_SYMBOL(create_empty_buffers);
1577
1578 /**
1579  * clean_bdev_aliases: clean a range of buffers in block device
1580  * @bdev: Block device to clean buffers in
1581  * @block: Start of a range of blocks to clean
1582  * @len: Number of blocks to clean
1583  *
1584  * We are taking a range of blocks for data and we don't want writeback of any
1585  * buffer-cache aliases starting from return from this function and until the
1586  * moment when something will explicitly mark the buffer dirty (hopefully that
1587  * will not happen until we will free that block ;-) We don't even need to mark
1588  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1589  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1590  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1591  * would confuse anyone who might pick it with bread() afterwards...
1592  *
1593  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1594  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1595  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1596  * need to.  That happens here.
1597  */
1598 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1599 {
1600         struct inode *bd_inode = bdev->bd_inode;
1601         struct address_space *bd_mapping = bd_inode->i_mapping;
1602         struct pagevec pvec;
1603         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1604         pgoff_t end;
1605         int i, count;
1606         struct buffer_head *bh;
1607         struct buffer_head *head;
1608
1609         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1610         pagevec_init(&pvec);
1611         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1612                 count = pagevec_count(&pvec);
1613                 for (i = 0; i < count; i++) {
1614                         struct page *page = pvec.pages[i];
1615
1616                         if (!page_has_buffers(page))
1617                                 continue;
1618                         /*
1619                          * We use page lock instead of bd_mapping->private_lock
1620                          * to pin buffers here since we can afford to sleep and
1621                          * it scales better than a global spinlock lock.
1622                          */
1623                         lock_page(page);
1624                         /* Recheck when the page is locked which pins bhs */
1625                         if (!page_has_buffers(page))
1626                                 goto unlock_page;
1627                         head = page_buffers(page);
1628                         bh = head;
1629                         do {
1630                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1631                                         goto next;
1632                                 if (bh->b_blocknr >= block + len)
1633                                         break;
1634                                 clear_buffer_dirty(bh);
1635                                 wait_on_buffer(bh);
1636                                 clear_buffer_req(bh);
1637 next:
1638                                 bh = bh->b_this_page;
1639                         } while (bh != head);
1640 unlock_page:
1641                         unlock_page(page);
1642                 }
1643                 pagevec_release(&pvec);
1644                 cond_resched();
1645                 /* End of range already reached? */
1646                 if (index > end || !index)
1647                         break;
1648         }
1649 }
1650 EXPORT_SYMBOL(clean_bdev_aliases);
1651
1652 /*
1653  * Size is a power-of-two in the range 512..PAGE_SIZE,
1654  * and the case we care about most is PAGE_SIZE.
1655  *
1656  * So this *could* possibly be written with those
1657  * constraints in mind (relevant mostly if some
1658  * architecture has a slow bit-scan instruction)
1659  */
1660 static inline int block_size_bits(unsigned int blocksize)
1661 {
1662         return ilog2(blocksize);
1663 }
1664
1665 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1666 {
1667         BUG_ON(!PageLocked(page));
1668
1669         if (!page_has_buffers(page))
1670                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1671                                      b_state);
1672         return page_buffers(page);
1673 }
1674
1675 /*
1676  * NOTE! All mapped/uptodate combinations are valid:
1677  *
1678  *      Mapped  Uptodate        Meaning
1679  *
1680  *      No      No              "unknown" - must do get_block()
1681  *      No      Yes             "hole" - zero-filled
1682  *      Yes     No              "allocated" - allocated on disk, not read in
1683  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1684  *
1685  * "Dirty" is valid only with the last case (mapped+uptodate).
1686  */
1687
1688 /*
1689  * While block_write_full_page is writing back the dirty buffers under
1690  * the page lock, whoever dirtied the buffers may decide to clean them
1691  * again at any time.  We handle that by only looking at the buffer
1692  * state inside lock_buffer().
1693  *
1694  * If block_write_full_page() is called for regular writeback
1695  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1696  * locked buffer.   This only can happen if someone has written the buffer
1697  * directly, with submit_bh().  At the address_space level PageWriteback
1698  * prevents this contention from occurring.
1699  *
1700  * If block_write_full_page() is called with wbc->sync_mode ==
1701  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1702  * causes the writes to be flagged as synchronous writes.
1703  */
1704 int __block_write_full_page(struct inode *inode, struct page *page,
1705                         get_block_t *get_block, struct writeback_control *wbc,
1706                         bh_end_io_t *handler)
1707 {
1708         int err;
1709         sector_t block;
1710         sector_t last_block;
1711         struct buffer_head *bh, *head;
1712         unsigned int blocksize, bbits;
1713         int nr_underway = 0;
1714         int write_flags = wbc_to_write_flags(wbc);
1715
1716         head = create_page_buffers(page, inode,
1717                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1718
1719         /*
1720          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1721          * here, and the (potentially unmapped) buffers may become dirty at
1722          * any time.  If a buffer becomes dirty here after we've inspected it
1723          * then we just miss that fact, and the page stays dirty.
1724          *
1725          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1726          * handle that here by just cleaning them.
1727          */
1728
1729         bh = head;
1730         blocksize = bh->b_size;
1731         bbits = block_size_bits(blocksize);
1732
1733         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1734         last_block = (i_size_read(inode) - 1) >> bbits;
1735
1736         /*
1737          * Get all the dirty buffers mapped to disk addresses and
1738          * handle any aliases from the underlying blockdev's mapping.
1739          */
1740         do {
1741                 if (block > last_block) {
1742                         /*
1743                          * mapped buffers outside i_size will occur, because
1744                          * this page can be outside i_size when there is a
1745                          * truncate in progress.
1746                          */
1747                         /*
1748                          * The buffer was zeroed by block_write_full_page()
1749                          */
1750                         clear_buffer_dirty(bh);
1751                         set_buffer_uptodate(bh);
1752                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1753                            buffer_dirty(bh)) {
1754                         WARN_ON(bh->b_size != blocksize);
1755                         err = get_block(inode, block, bh, 1);
1756                         if (err)
1757                                 goto recover;
1758                         clear_buffer_delay(bh);
1759                         if (buffer_new(bh)) {
1760                                 /* blockdev mappings never come here */
1761                                 clear_buffer_new(bh);
1762                                 clean_bdev_bh_alias(bh);
1763                         }
1764                 }
1765                 bh = bh->b_this_page;
1766                 block++;
1767         } while (bh != head);
1768
1769         do {
1770                 if (!buffer_mapped(bh))
1771                         continue;
1772                 /*
1773                  * If it's a fully non-blocking write attempt and we cannot
1774                  * lock the buffer then redirty the page.  Note that this can
1775                  * potentially cause a busy-wait loop from writeback threads
1776                  * and kswapd activity, but those code paths have their own
1777                  * higher-level throttling.
1778                  */
1779                 if (wbc->sync_mode != WB_SYNC_NONE) {
1780                         lock_buffer(bh);
1781                 } else if (!trylock_buffer(bh)) {
1782                         redirty_page_for_writepage(wbc, page);
1783                         continue;
1784                 }
1785                 if (test_clear_buffer_dirty(bh)) {
1786                         mark_buffer_async_write_endio(bh, handler);
1787                 } else {
1788                         unlock_buffer(bh);
1789                 }
1790         } while ((bh = bh->b_this_page) != head);
1791
1792         /*
1793          * The page and its buffers are protected by PageWriteback(), so we can
1794          * drop the bh refcounts early.
1795          */
1796         BUG_ON(PageWriteback(page));
1797         set_page_writeback(page);
1798
1799         do {
1800                 struct buffer_head *next = bh->b_this_page;
1801                 if (buffer_async_write(bh)) {
1802                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1803                                         inode->i_write_hint, wbc);
1804                         nr_underway++;
1805                 }
1806                 bh = next;
1807         } while (bh != head);
1808         unlock_page(page);
1809
1810         err = 0;
1811 done:
1812         if (nr_underway == 0) {
1813                 /*
1814                  * The page was marked dirty, but the buffers were
1815                  * clean.  Someone wrote them back by hand with
1816                  * ll_rw_block/submit_bh.  A rare case.
1817                  */
1818                 end_page_writeback(page);
1819
1820                 /*
1821                  * The page and buffer_heads can be released at any time from
1822                  * here on.
1823                  */
1824         }
1825         return err;
1826
1827 recover:
1828         /*
1829          * ENOSPC, or some other error.  We may already have added some
1830          * blocks to the file, so we need to write these out to avoid
1831          * exposing stale data.
1832          * The page is currently locked and not marked for writeback
1833          */
1834         bh = head;
1835         /* Recovery: lock and submit the mapped buffers */
1836         do {
1837                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1838                     !buffer_delay(bh)) {
1839                         lock_buffer(bh);
1840                         mark_buffer_async_write_endio(bh, handler);
1841                 } else {
1842                         /*
1843                          * The buffer may have been set dirty during
1844                          * attachment to a dirty page.
1845                          */
1846                         clear_buffer_dirty(bh);
1847                 }
1848         } while ((bh = bh->b_this_page) != head);
1849         SetPageError(page);
1850         BUG_ON(PageWriteback(page));
1851         mapping_set_error(page->mapping, err);
1852         set_page_writeback(page);
1853         do {
1854                 struct buffer_head *next = bh->b_this_page;
1855                 if (buffer_async_write(bh)) {
1856                         clear_buffer_dirty(bh);
1857                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1858                                         inode->i_write_hint, wbc);
1859                         nr_underway++;
1860                 }
1861                 bh = next;
1862         } while (bh != head);
1863         unlock_page(page);
1864         goto done;
1865 }
1866 EXPORT_SYMBOL(__block_write_full_page);
1867
1868 /*
1869  * If a page has any new buffers, zero them out here, and mark them uptodate
1870  * and dirty so they'll be written out (in order to prevent uninitialised
1871  * block data from leaking). And clear the new bit.
1872  */
1873 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1874 {
1875         unsigned int block_start, block_end;
1876         struct buffer_head *head, *bh;
1877
1878         BUG_ON(!PageLocked(page));
1879         if (!page_has_buffers(page))
1880                 return;
1881
1882         bh = head = page_buffers(page);
1883         block_start = 0;
1884         do {
1885                 block_end = block_start + bh->b_size;
1886
1887                 if (buffer_new(bh)) {
1888                         if (block_end > from && block_start < to) {
1889                                 if (!PageUptodate(page)) {
1890                                         unsigned start, size;
1891
1892                                         start = max(from, block_start);
1893                                         size = min(to, block_end) - start;
1894
1895                                         zero_user(page, start, size);
1896                                         set_buffer_uptodate(bh);
1897                                 }
1898
1899                                 clear_buffer_new(bh);
1900                                 mark_buffer_dirty(bh);
1901                         }
1902                 }
1903
1904                 block_start = block_end;
1905                 bh = bh->b_this_page;
1906         } while (bh != head);
1907 }
1908 EXPORT_SYMBOL(page_zero_new_buffers);
1909
1910 static void
1911 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1912                 struct iomap *iomap)
1913 {
1914         loff_t offset = block << inode->i_blkbits;
1915
1916         bh->b_bdev = iomap->bdev;
1917
1918         /*
1919          * Block points to offset in file we need to map, iomap contains
1920          * the offset at which the map starts. If the map ends before the
1921          * current block, then do not map the buffer and let the caller
1922          * handle it.
1923          */
1924         BUG_ON(offset >= iomap->offset + iomap->length);
1925
1926         switch (iomap->type) {
1927         case IOMAP_HOLE:
1928                 /*
1929                  * If the buffer is not up to date or beyond the current EOF,
1930                  * we need to mark it as new to ensure sub-block zeroing is
1931                  * executed if necessary.
1932                  */
1933                 if (!buffer_uptodate(bh) ||
1934                     (offset >= i_size_read(inode)))
1935                         set_buffer_new(bh);
1936                 break;
1937         case IOMAP_DELALLOC:
1938                 if (!buffer_uptodate(bh) ||
1939                     (offset >= i_size_read(inode)))
1940                         set_buffer_new(bh);
1941                 set_buffer_uptodate(bh);
1942                 set_buffer_mapped(bh);
1943                 set_buffer_delay(bh);
1944                 break;
1945         case IOMAP_UNWRITTEN:
1946                 /*
1947                  * For unwritten regions, we always need to ensure that regions
1948                  * in the block we are not writing to are zeroed. Mark the
1949                  * buffer as new to ensure this.
1950                  */
1951                 set_buffer_new(bh);
1952                 set_buffer_unwritten(bh);
1953                 /* FALLTHRU */
1954         case IOMAP_MAPPED:
1955                 if ((iomap->flags & IOMAP_F_NEW) ||
1956                     offset >= i_size_read(inode))
1957                         set_buffer_new(bh);
1958                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1959                                 inode->i_blkbits;
1960                 set_buffer_mapped(bh);
1961                 break;
1962         }
1963 }
1964
1965 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1966                 get_block_t *get_block, struct iomap *iomap)
1967 {
1968         unsigned from = pos & (PAGE_SIZE - 1);
1969         unsigned to = from + len;
1970         struct inode *inode = page->mapping->host;
1971         unsigned block_start, block_end;
1972         sector_t block;
1973         int err = 0;
1974         unsigned blocksize, bbits;
1975         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1976
1977         BUG_ON(!PageLocked(page));
1978         BUG_ON(from > PAGE_SIZE);
1979         BUG_ON(to > PAGE_SIZE);
1980         BUG_ON(from > to);
1981
1982         head = create_page_buffers(page, inode, 0);
1983         blocksize = head->b_size;
1984         bbits = block_size_bits(blocksize);
1985
1986         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1987
1988         for(bh = head, block_start = 0; bh != head || !block_start;
1989             block++, block_start=block_end, bh = bh->b_this_page) {
1990                 block_end = block_start + blocksize;
1991                 if (block_end <= from || block_start >= to) {
1992                         if (PageUptodate(page)) {
1993                                 if (!buffer_uptodate(bh))
1994                                         set_buffer_uptodate(bh);
1995                         }
1996                         continue;
1997                 }
1998                 if (buffer_new(bh))
1999                         clear_buffer_new(bh);
2000                 if (!buffer_mapped(bh)) {
2001                         WARN_ON(bh->b_size != blocksize);
2002                         if (get_block) {
2003                                 err = get_block(inode, block, bh, 1);
2004                                 if (err)
2005                                         break;
2006                         } else {
2007                                 iomap_to_bh(inode, block, bh, iomap);
2008                         }
2009
2010                         if (buffer_new(bh)) {
2011                                 clean_bdev_bh_alias(bh);
2012                                 if (PageUptodate(page)) {
2013                                         clear_buffer_new(bh);
2014                                         set_buffer_uptodate(bh);
2015                                         mark_buffer_dirty(bh);
2016                                         continue;
2017                                 }
2018                                 if (block_end > to || block_start < from)
2019                                         zero_user_segments(page,
2020                                                 to, block_end,
2021                                                 block_start, from);
2022                                 continue;
2023                         }
2024                 }
2025                 if (PageUptodate(page)) {
2026                         if (!buffer_uptodate(bh))
2027                                 set_buffer_uptodate(bh);
2028                         continue; 
2029                 }
2030                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2031                     !buffer_unwritten(bh) &&
2032                      (block_start < from || block_end > to)) {
2033                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2034                         *wait_bh++=bh;
2035                 }
2036         }
2037         /*
2038          * If we issued read requests - let them complete.
2039          */
2040         while(wait_bh > wait) {
2041                 wait_on_buffer(*--wait_bh);
2042                 if (!buffer_uptodate(*wait_bh))
2043                         err = -EIO;
2044         }
2045         if (unlikely(err))
2046                 page_zero_new_buffers(page, from, to);
2047         return err;
2048 }
2049
2050 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2051                 get_block_t *get_block)
2052 {
2053         return __block_write_begin_int(page, pos, len, get_block, NULL);
2054 }
2055 EXPORT_SYMBOL(__block_write_begin);
2056
2057 static int __block_commit_write(struct inode *inode, struct page *page,
2058                 unsigned from, unsigned to)
2059 {
2060         unsigned block_start, block_end;
2061         int partial = 0;
2062         unsigned blocksize;
2063         struct buffer_head *bh, *head;
2064
2065         bh = head = page_buffers(page);
2066         blocksize = bh->b_size;
2067
2068         block_start = 0;
2069         do {
2070                 block_end = block_start + blocksize;
2071                 if (block_end <= from || block_start >= to) {
2072                         if (!buffer_uptodate(bh))
2073                                 partial = 1;
2074                 } else {
2075                         set_buffer_uptodate(bh);
2076                         mark_buffer_dirty(bh);
2077                 }
2078                 clear_buffer_new(bh);
2079
2080                 block_start = block_end;
2081                 bh = bh->b_this_page;
2082         } while (bh != head);
2083
2084         /*
2085          * If this is a partial write which happened to make all buffers
2086          * uptodate then we can optimize away a bogus readpage() for
2087          * the next read(). Here we 'discover' whether the page went
2088          * uptodate as a result of this (potentially partial) write.
2089          */
2090         if (!partial)
2091                 SetPageUptodate(page);
2092         return 0;
2093 }
2094
2095 /*
2096  * block_write_begin takes care of the basic task of block allocation and
2097  * bringing partial write blocks uptodate first.
2098  *
2099  * The filesystem needs to handle block truncation upon failure.
2100  */
2101 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2102                 unsigned flags, struct page **pagep, get_block_t *get_block)
2103 {
2104         pgoff_t index = pos >> PAGE_SHIFT;
2105         struct page *page;
2106         int status;
2107
2108         page = grab_cache_page_write_begin(mapping, index, flags);
2109         if (!page)
2110                 return -ENOMEM;
2111
2112         status = __block_write_begin(page, pos, len, get_block);
2113         if (unlikely(status)) {
2114                 unlock_page(page);
2115                 put_page(page);
2116                 page = NULL;
2117         }
2118
2119         *pagep = page;
2120         return status;
2121 }
2122 EXPORT_SYMBOL(block_write_begin);
2123
2124 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2125                 struct page *page)
2126 {
2127         loff_t old_size = inode->i_size;
2128         bool i_size_changed = false;
2129
2130         /*
2131          * No need to use i_size_read() here, the i_size cannot change under us
2132          * because we hold i_rwsem.
2133          *
2134          * But it's important to update i_size while still holding page lock:
2135          * page writeout could otherwise come in and zero beyond i_size.
2136          */
2137         if (pos + copied > inode->i_size) {
2138                 i_size_write(inode, pos + copied);
2139                 i_size_changed = true;
2140         }
2141
2142         unlock_page(page);
2143         put_page(page);
2144
2145         if (old_size < pos)
2146                 pagecache_isize_extended(inode, old_size, pos);
2147         /*
2148          * Don't mark the inode dirty under page lock. First, it unnecessarily
2149          * makes the holding time of page lock longer. Second, it forces lock
2150          * ordering of page lock and transaction start for journaling
2151          * filesystems.
2152          */
2153         if (i_size_changed)
2154                 mark_inode_dirty(inode);
2155         return copied;
2156 }
2157
2158 int block_write_end(struct file *file, struct address_space *mapping,
2159                         loff_t pos, unsigned len, unsigned copied,
2160                         struct page *page, void *fsdata)
2161 {
2162         struct inode *inode = mapping->host;
2163         unsigned start;
2164
2165         start = pos & (PAGE_SIZE - 1);
2166
2167         if (unlikely(copied < len)) {
2168                 /*
2169                  * The buffers that were written will now be uptodate, so we
2170                  * don't have to worry about a readpage reading them and
2171                  * overwriting a partial write. However if we have encountered
2172                  * a short write and only partially written into a buffer, it
2173                  * will not be marked uptodate, so a readpage might come in and
2174                  * destroy our partial write.
2175                  *
2176                  * Do the simplest thing, and just treat any short write to a
2177                  * non uptodate page as a zero-length write, and force the
2178                  * caller to redo the whole thing.
2179                  */
2180                 if (!PageUptodate(page))
2181                         copied = 0;
2182
2183                 page_zero_new_buffers(page, start+copied, start+len);
2184         }
2185         flush_dcache_page(page);
2186
2187         /* This could be a short (even 0-length) commit */
2188         __block_commit_write(inode, page, start, start+copied);
2189
2190         return copied;
2191 }
2192 EXPORT_SYMBOL(block_write_end);
2193
2194 int generic_write_end(struct file *file, struct address_space *mapping,
2195                         loff_t pos, unsigned len, unsigned copied,
2196                         struct page *page, void *fsdata)
2197 {
2198         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2199         return __generic_write_end(mapping->host, pos, copied, page);
2200 }
2201 EXPORT_SYMBOL(generic_write_end);
2202
2203 /*
2204  * block_is_partially_uptodate checks whether buffers within a page are
2205  * uptodate or not.
2206  *
2207  * Returns true if all buffers which correspond to a file portion
2208  * we want to read are uptodate.
2209  */
2210 int block_is_partially_uptodate(struct page *page, unsigned long from,
2211                                         unsigned long count)
2212 {
2213         unsigned block_start, block_end, blocksize;
2214         unsigned to;
2215         struct buffer_head *bh, *head;
2216         int ret = 1;
2217
2218         if (!page_has_buffers(page))
2219                 return 0;
2220
2221         head = page_buffers(page);
2222         blocksize = head->b_size;
2223         to = min_t(unsigned, PAGE_SIZE - from, count);
2224         to = from + to;
2225         if (from < blocksize && to > PAGE_SIZE - blocksize)
2226                 return 0;
2227
2228         bh = head;
2229         block_start = 0;
2230         do {
2231                 block_end = block_start + blocksize;
2232                 if (block_end > from && block_start < to) {
2233                         if (!buffer_uptodate(bh)) {
2234                                 ret = 0;
2235                                 break;
2236                         }
2237                         if (block_end >= to)
2238                                 break;
2239                 }
2240                 block_start = block_end;
2241                 bh = bh->b_this_page;
2242         } while (bh != head);
2243
2244         return ret;
2245 }
2246 EXPORT_SYMBOL(block_is_partially_uptodate);
2247
2248 /*
2249  * Generic "read page" function for block devices that have the normal
2250  * get_block functionality. This is most of the block device filesystems.
2251  * Reads the page asynchronously --- the unlock_buffer() and
2252  * set/clear_buffer_uptodate() functions propagate buffer state into the
2253  * page struct once IO has completed.
2254  */
2255 int block_read_full_page(struct page *page, get_block_t *get_block)
2256 {
2257         struct inode *inode = page->mapping->host;
2258         sector_t iblock, lblock;
2259         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2260         unsigned int blocksize, bbits;
2261         int nr, i;
2262         int fully_mapped = 1;
2263
2264         head = create_page_buffers(page, inode, 0);
2265         blocksize = head->b_size;
2266         bbits = block_size_bits(blocksize);
2267
2268         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2269         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2270         bh = head;
2271         nr = 0;
2272         i = 0;
2273
2274         do {
2275                 if (buffer_uptodate(bh))
2276                         continue;
2277
2278                 if (!buffer_mapped(bh)) {
2279                         int err = 0;
2280
2281                         fully_mapped = 0;
2282                         if (iblock < lblock) {
2283                                 WARN_ON(bh->b_size != blocksize);
2284                                 err = get_block(inode, iblock, bh, 0);
2285                                 if (err)
2286                                         SetPageError(page);
2287                         }
2288                         if (!buffer_mapped(bh)) {
2289                                 zero_user(page, i * blocksize, blocksize);
2290                                 if (!err)
2291                                         set_buffer_uptodate(bh);
2292                                 continue;
2293                         }
2294                         /*
2295                          * get_block() might have updated the buffer
2296                          * synchronously
2297                          */
2298                         if (buffer_uptodate(bh))
2299                                 continue;
2300                 }
2301                 arr[nr++] = bh;
2302         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2303
2304         if (fully_mapped)
2305                 SetPageMappedToDisk(page);
2306
2307         if (!nr) {
2308                 /*
2309                  * All buffers are uptodate - we can set the page uptodate
2310                  * as well. But not if get_block() returned an error.
2311                  */
2312                 if (!PageError(page))
2313                         SetPageUptodate(page);
2314                 unlock_page(page);
2315                 return 0;
2316         }
2317
2318         /* Stage two: lock the buffers */
2319         for (i = 0; i < nr; i++) {
2320                 bh = arr[i];
2321                 lock_buffer(bh);
2322                 mark_buffer_async_read(bh);
2323         }
2324
2325         /*
2326          * Stage 3: start the IO.  Check for uptodateness
2327          * inside the buffer lock in case another process reading
2328          * the underlying blockdev brought it uptodate (the sct fix).
2329          */
2330         for (i = 0; i < nr; i++) {
2331                 bh = arr[i];
2332                 if (buffer_uptodate(bh))
2333                         end_buffer_async_read(bh, 1);
2334                 else
2335                         submit_bh(REQ_OP_READ, 0, bh);
2336         }
2337         return 0;
2338 }
2339 EXPORT_SYMBOL(block_read_full_page);
2340
2341 /* utility function for filesystems that need to do work on expanding
2342  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2343  * deal with the hole.  
2344  */
2345 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2346 {
2347         struct address_space *mapping = inode->i_mapping;
2348         struct page *page;
2349         void *fsdata;
2350         int err;
2351
2352         err = inode_newsize_ok(inode, size);
2353         if (err)
2354                 goto out;
2355
2356         err = pagecache_write_begin(NULL, mapping, size, 0,
2357                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2358         if (err)
2359                 goto out;
2360
2361         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2362         BUG_ON(err > 0);
2363
2364 out:
2365         return err;
2366 }
2367 EXPORT_SYMBOL(generic_cont_expand_simple);
2368
2369 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2370                             loff_t pos, loff_t *bytes)
2371 {
2372         struct inode *inode = mapping->host;
2373         unsigned int blocksize = i_blocksize(inode);
2374         struct page *page;
2375         void *fsdata;
2376         pgoff_t index, curidx;
2377         loff_t curpos;
2378         unsigned zerofrom, offset, len;
2379         int err = 0;
2380
2381         index = pos >> PAGE_SHIFT;
2382         offset = pos & ~PAGE_MASK;
2383
2384         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2385                 zerofrom = curpos & ~PAGE_MASK;
2386                 if (zerofrom & (blocksize-1)) {
2387                         *bytes |= (blocksize-1);
2388                         (*bytes)++;
2389                 }
2390                 len = PAGE_SIZE - zerofrom;
2391
2392                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2393                                             &page, &fsdata);
2394                 if (err)
2395                         goto out;
2396                 zero_user(page, zerofrom, len);
2397                 err = pagecache_write_end(file, mapping, curpos, len, len,
2398                                                 page, fsdata);
2399                 if (err < 0)
2400                         goto out;
2401                 BUG_ON(err != len);
2402                 err = 0;
2403
2404                 balance_dirty_pages_ratelimited(mapping);
2405
2406                 if (fatal_signal_pending(current)) {
2407                         err = -EINTR;
2408                         goto out;
2409                 }
2410         }
2411
2412         /* page covers the boundary, find the boundary offset */
2413         if (index == curidx) {
2414                 zerofrom = curpos & ~PAGE_MASK;
2415                 /* if we will expand the thing last block will be filled */
2416                 if (offset <= zerofrom) {
2417                         goto out;
2418                 }
2419                 if (zerofrom & (blocksize-1)) {
2420                         *bytes |= (blocksize-1);
2421                         (*bytes)++;
2422                 }
2423                 len = offset - zerofrom;
2424
2425                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2426                                             &page, &fsdata);
2427                 if (err)
2428                         goto out;
2429                 zero_user(page, zerofrom, len);
2430                 err = pagecache_write_end(file, mapping, curpos, len, len,
2431                                                 page, fsdata);
2432                 if (err < 0)
2433                         goto out;
2434                 BUG_ON(err != len);
2435                 err = 0;
2436         }
2437 out:
2438         return err;
2439 }
2440
2441 /*
2442  * For moronic filesystems that do not allow holes in file.
2443  * We may have to extend the file.
2444  */
2445 int cont_write_begin(struct file *file, struct address_space *mapping,
2446                         loff_t pos, unsigned len, unsigned flags,
2447                         struct page **pagep, void **fsdata,
2448                         get_block_t *get_block, loff_t *bytes)
2449 {
2450         struct inode *inode = mapping->host;
2451         unsigned int blocksize = i_blocksize(inode);
2452         unsigned int zerofrom;
2453         int err;
2454
2455         err = cont_expand_zero(file, mapping, pos, bytes);
2456         if (err)
2457                 return err;
2458
2459         zerofrom = *bytes & ~PAGE_MASK;
2460         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2461                 *bytes |= (blocksize-1);
2462                 (*bytes)++;
2463         }
2464
2465         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2466 }
2467 EXPORT_SYMBOL(cont_write_begin);
2468
2469 int block_commit_write(struct page *page, unsigned from, unsigned to)
2470 {
2471         struct inode *inode = page->mapping->host;
2472         __block_commit_write(inode,page,from,to);
2473         return 0;
2474 }
2475 EXPORT_SYMBOL(block_commit_write);
2476
2477 /*
2478  * block_page_mkwrite() is not allowed to change the file size as it gets
2479  * called from a page fault handler when a page is first dirtied. Hence we must
2480  * be careful to check for EOF conditions here. We set the page up correctly
2481  * for a written page which means we get ENOSPC checking when writing into
2482  * holes and correct delalloc and unwritten extent mapping on filesystems that
2483  * support these features.
2484  *
2485  * We are not allowed to take the i_mutex here so we have to play games to
2486  * protect against truncate races as the page could now be beyond EOF.  Because
2487  * truncate writes the inode size before removing pages, once we have the
2488  * page lock we can determine safely if the page is beyond EOF. If it is not
2489  * beyond EOF, then the page is guaranteed safe against truncation until we
2490  * unlock the page.
2491  *
2492  * Direct callers of this function should protect against filesystem freezing
2493  * using sb_start_pagefault() - sb_end_pagefault() functions.
2494  */
2495 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2496                          get_block_t get_block)
2497 {
2498         struct page *page = vmf->page;
2499         struct inode *inode = file_inode(vma->vm_file);
2500         unsigned long end;
2501         loff_t size;
2502         int ret;
2503
2504         lock_page(page);
2505         size = i_size_read(inode);
2506         if ((page->mapping != inode->i_mapping) ||
2507             (page_offset(page) > size)) {
2508                 /* We overload EFAULT to mean page got truncated */
2509                 ret = -EFAULT;
2510                 goto out_unlock;
2511         }
2512
2513         /* page is wholly or partially inside EOF */
2514         if (((page->index + 1) << PAGE_SHIFT) > size)
2515                 end = size & ~PAGE_MASK;
2516         else
2517                 end = PAGE_SIZE;
2518
2519         ret = __block_write_begin(page, 0, end, get_block);
2520         if (!ret)
2521                 ret = block_commit_write(page, 0, end);
2522
2523         if (unlikely(ret < 0))
2524                 goto out_unlock;
2525         set_page_dirty(page);
2526         wait_for_stable_page(page);
2527         return 0;
2528 out_unlock:
2529         unlock_page(page);
2530         return ret;
2531 }
2532 EXPORT_SYMBOL(block_page_mkwrite);
2533
2534 /*
2535  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2536  * immediately, while under the page lock.  So it needs a special end_io
2537  * handler which does not touch the bh after unlocking it.
2538  */
2539 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2540 {
2541         __end_buffer_read_notouch(bh, uptodate);
2542 }
2543
2544 /*
2545  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2546  * the page (converting it to circular linked list and taking care of page
2547  * dirty races).
2548  */
2549 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2550 {
2551         struct buffer_head *bh;
2552
2553         BUG_ON(!PageLocked(page));
2554
2555         spin_lock(&page->mapping->private_lock);
2556         bh = head;
2557         do {
2558                 if (PageDirty(page))
2559                         set_buffer_dirty(bh);
2560                 if (!bh->b_this_page)
2561                         bh->b_this_page = head;
2562                 bh = bh->b_this_page;
2563         } while (bh != head);
2564         attach_page_buffers(page, head);
2565         spin_unlock(&page->mapping->private_lock);
2566 }
2567
2568 /*
2569  * On entry, the page is fully not uptodate.
2570  * On exit the page is fully uptodate in the areas outside (from,to)
2571  * The filesystem needs to handle block truncation upon failure.
2572  */
2573 int nobh_write_begin(struct address_space *mapping,
2574                         loff_t pos, unsigned len, unsigned flags,
2575                         struct page **pagep, void **fsdata,
2576                         get_block_t *get_block)
2577 {
2578         struct inode *inode = mapping->host;
2579         const unsigned blkbits = inode->i_blkbits;
2580         const unsigned blocksize = 1 << blkbits;
2581         struct buffer_head *head, *bh;
2582         struct page *page;
2583         pgoff_t index;
2584         unsigned from, to;
2585         unsigned block_in_page;
2586         unsigned block_start, block_end;
2587         sector_t block_in_file;
2588         int nr_reads = 0;
2589         int ret = 0;
2590         int is_mapped_to_disk = 1;
2591
2592         index = pos >> PAGE_SHIFT;
2593         from = pos & (PAGE_SIZE - 1);
2594         to = from + len;
2595
2596         page = grab_cache_page_write_begin(mapping, index, flags);
2597         if (!page)
2598                 return -ENOMEM;
2599         *pagep = page;
2600         *fsdata = NULL;
2601
2602         if (page_has_buffers(page)) {
2603                 ret = __block_write_begin(page, pos, len, get_block);
2604                 if (unlikely(ret))
2605                         goto out_release;
2606                 return ret;
2607         }
2608
2609         if (PageMappedToDisk(page))
2610                 return 0;
2611
2612         /*
2613          * Allocate buffers so that we can keep track of state, and potentially
2614          * attach them to the page if an error occurs. In the common case of
2615          * no error, they will just be freed again without ever being attached
2616          * to the page (which is all OK, because we're under the page lock).
2617          *
2618          * Be careful: the buffer linked list is a NULL terminated one, rather
2619          * than the circular one we're used to.
2620          */
2621         head = alloc_page_buffers(page, blocksize, false);
2622         if (!head) {
2623                 ret = -ENOMEM;
2624                 goto out_release;
2625         }
2626
2627         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2628
2629         /*
2630          * We loop across all blocks in the page, whether or not they are
2631          * part of the affected region.  This is so we can discover if the
2632          * page is fully mapped-to-disk.
2633          */
2634         for (block_start = 0, block_in_page = 0, bh = head;
2635                   block_start < PAGE_SIZE;
2636                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2637                 int create;
2638
2639                 block_end = block_start + blocksize;
2640                 bh->b_state = 0;
2641                 create = 1;
2642                 if (block_start >= to)
2643                         create = 0;
2644                 ret = get_block(inode, block_in_file + block_in_page,
2645                                         bh, create);
2646                 if (ret)
2647                         goto failed;
2648                 if (!buffer_mapped(bh))
2649                         is_mapped_to_disk = 0;
2650                 if (buffer_new(bh))
2651                         clean_bdev_bh_alias(bh);
2652                 if (PageUptodate(page)) {
2653                         set_buffer_uptodate(bh);
2654                         continue;
2655                 }
2656                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2657                         zero_user_segments(page, block_start, from,
2658                                                         to, block_end);
2659                         continue;
2660                 }
2661                 if (buffer_uptodate(bh))
2662                         continue;       /* reiserfs does this */
2663                 if (block_start < from || block_end > to) {
2664                         lock_buffer(bh);
2665                         bh->b_end_io = end_buffer_read_nobh;
2666                         submit_bh(REQ_OP_READ, 0, bh);
2667                         nr_reads++;
2668                 }
2669         }
2670
2671         if (nr_reads) {
2672                 /*
2673                  * The page is locked, so these buffers are protected from
2674                  * any VM or truncate activity.  Hence we don't need to care
2675                  * for the buffer_head refcounts.
2676                  */
2677                 for (bh = head; bh; bh = bh->b_this_page) {
2678                         wait_on_buffer(bh);
2679                         if (!buffer_uptodate(bh))
2680                                 ret = -EIO;
2681                 }
2682                 if (ret)
2683                         goto failed;
2684         }
2685
2686         if (is_mapped_to_disk)
2687                 SetPageMappedToDisk(page);
2688
2689         *fsdata = head; /* to be released by nobh_write_end */
2690
2691         return 0;
2692
2693 failed:
2694         BUG_ON(!ret);
2695         /*
2696          * Error recovery is a bit difficult. We need to zero out blocks that
2697          * were newly allocated, and dirty them to ensure they get written out.
2698          * Buffers need to be attached to the page at this point, otherwise
2699          * the handling of potential IO errors during writeout would be hard
2700          * (could try doing synchronous writeout, but what if that fails too?)
2701          */
2702         attach_nobh_buffers(page, head);
2703         page_zero_new_buffers(page, from, to);
2704
2705 out_release:
2706         unlock_page(page);
2707         put_page(page);
2708         *pagep = NULL;
2709
2710         return ret;
2711 }
2712 EXPORT_SYMBOL(nobh_write_begin);
2713
2714 int nobh_write_end(struct file *file, struct address_space *mapping,
2715                         loff_t pos, unsigned len, unsigned copied,
2716                         struct page *page, void *fsdata)
2717 {
2718         struct inode *inode = page->mapping->host;
2719         struct buffer_head *head = fsdata;
2720         struct buffer_head *bh;
2721         BUG_ON(fsdata != NULL && page_has_buffers(page));
2722
2723         if (unlikely(copied < len) && head)
2724                 attach_nobh_buffers(page, head);
2725         if (page_has_buffers(page))
2726                 return generic_write_end(file, mapping, pos, len,
2727                                         copied, page, fsdata);
2728
2729         SetPageUptodate(page);
2730         set_page_dirty(page);
2731         if (pos+copied > inode->i_size) {
2732                 i_size_write(inode, pos+copied);
2733                 mark_inode_dirty(inode);
2734         }
2735
2736         unlock_page(page);
2737         put_page(page);
2738
2739         while (head) {
2740                 bh = head;
2741                 head = head->b_this_page;
2742                 free_buffer_head(bh);
2743         }
2744
2745         return copied;
2746 }
2747 EXPORT_SYMBOL(nobh_write_end);
2748
2749 /*
2750  * nobh_writepage() - based on block_full_write_page() except
2751  * that it tries to operate without attaching bufferheads to
2752  * the page.
2753  */
2754 int nobh_writepage(struct page *page, get_block_t *get_block,
2755                         struct writeback_control *wbc)
2756 {
2757         struct inode * const inode = page->mapping->host;
2758         loff_t i_size = i_size_read(inode);
2759         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2760         unsigned offset;
2761         int ret;
2762
2763         /* Is the page fully inside i_size? */
2764         if (page->index < end_index)
2765                 goto out;
2766
2767         /* Is the page fully outside i_size? (truncate in progress) */
2768         offset = i_size & (PAGE_SIZE-1);
2769         if (page->index >= end_index+1 || !offset) {
2770                 /*
2771                  * The page may have dirty, unmapped buffers.  For example,
2772                  * they may have been added in ext3_writepage().  Make them
2773                  * freeable here, so the page does not leak.
2774                  */
2775 #if 0
2776                 /* Not really sure about this  - do we need this ? */
2777                 if (page->mapping->a_ops->invalidatepage)
2778                         page->mapping->a_ops->invalidatepage(page, offset);
2779 #endif
2780                 unlock_page(page);
2781                 return 0; /* don't care */
2782         }
2783
2784         /*
2785          * The page straddles i_size.  It must be zeroed out on each and every
2786          * writepage invocation because it may be mmapped.  "A file is mapped
2787          * in multiples of the page size.  For a file that is not a multiple of
2788          * the  page size, the remaining memory is zeroed when mapped, and
2789          * writes to that region are not written out to the file."
2790          */
2791         zero_user_segment(page, offset, PAGE_SIZE);
2792 out:
2793         ret = mpage_writepage(page, get_block, wbc);
2794         if (ret == -EAGAIN)
2795                 ret = __block_write_full_page(inode, page, get_block, wbc,
2796                                               end_buffer_async_write);
2797         return ret;
2798 }
2799 EXPORT_SYMBOL(nobh_writepage);
2800
2801 int nobh_truncate_page(struct address_space *mapping,
2802                         loff_t from, get_block_t *get_block)
2803 {
2804         pgoff_t index = from >> PAGE_SHIFT;
2805         unsigned offset = from & (PAGE_SIZE-1);
2806         unsigned blocksize;
2807         sector_t iblock;
2808         unsigned length, pos;
2809         struct inode *inode = mapping->host;
2810         struct page *page;
2811         struct buffer_head map_bh;
2812         int err;
2813
2814         blocksize = i_blocksize(inode);
2815         length = offset & (blocksize - 1);
2816
2817         /* Block boundary? Nothing to do */
2818         if (!length)
2819                 return 0;
2820
2821         length = blocksize - length;
2822         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2823
2824         page = grab_cache_page(mapping, index);
2825         err = -ENOMEM;
2826         if (!page)
2827                 goto out;
2828
2829         if (page_has_buffers(page)) {
2830 has_buffers:
2831                 unlock_page(page);
2832                 put_page(page);
2833                 return block_truncate_page(mapping, from, get_block);
2834         }
2835
2836         /* Find the buffer that contains "offset" */
2837         pos = blocksize;
2838         while (offset >= pos) {
2839                 iblock++;
2840                 pos += blocksize;
2841         }
2842
2843         map_bh.b_size = blocksize;
2844         map_bh.b_state = 0;
2845         err = get_block(inode, iblock, &map_bh, 0);
2846         if (err)
2847                 goto unlock;
2848         /* unmapped? It's a hole - nothing to do */
2849         if (!buffer_mapped(&map_bh))
2850                 goto unlock;
2851
2852         /* Ok, it's mapped. Make sure it's up-to-date */
2853         if (!PageUptodate(page)) {
2854                 err = mapping->a_ops->readpage(NULL, page);
2855                 if (err) {
2856                         put_page(page);
2857                         goto out;
2858                 }
2859                 lock_page(page);
2860                 if (!PageUptodate(page)) {
2861                         err = -EIO;
2862                         goto unlock;
2863                 }
2864                 if (page_has_buffers(page))
2865                         goto has_buffers;
2866         }
2867         zero_user(page, offset, length);
2868         set_page_dirty(page);
2869         err = 0;
2870
2871 unlock:
2872         unlock_page(page);
2873         put_page(page);
2874 out:
2875         return err;
2876 }
2877 EXPORT_SYMBOL(nobh_truncate_page);
2878
2879 int block_truncate_page(struct address_space *mapping,
2880                         loff_t from, get_block_t *get_block)
2881 {
2882         pgoff_t index = from >> PAGE_SHIFT;
2883         unsigned offset = from & (PAGE_SIZE-1);
2884         unsigned blocksize;
2885         sector_t iblock;
2886         unsigned length, pos;
2887         struct inode *inode = mapping->host;
2888         struct page *page;
2889         struct buffer_head *bh;
2890         int err;
2891
2892         blocksize = i_blocksize(inode);
2893         length = offset & (blocksize - 1);
2894
2895         /* Block boundary? Nothing to do */
2896         if (!length)
2897                 return 0;
2898
2899         length = blocksize - length;
2900         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2901         
2902         page = grab_cache_page(mapping, index);
2903         err = -ENOMEM;
2904         if (!page)
2905                 goto out;
2906
2907         if (!page_has_buffers(page))
2908                 create_empty_buffers(page, blocksize, 0);
2909
2910         /* Find the buffer that contains "offset" */
2911         bh = page_buffers(page);
2912         pos = blocksize;
2913         while (offset >= pos) {
2914                 bh = bh->b_this_page;
2915                 iblock++;
2916                 pos += blocksize;
2917         }
2918
2919         err = 0;
2920         if (!buffer_mapped(bh)) {
2921                 WARN_ON(bh->b_size != blocksize);
2922                 err = get_block(inode, iblock, bh, 0);
2923                 if (err)
2924                         goto unlock;
2925                 /* unmapped? It's a hole - nothing to do */
2926                 if (!buffer_mapped(bh))
2927                         goto unlock;
2928         }
2929
2930         /* Ok, it's mapped. Make sure it's up-to-date */
2931         if (PageUptodate(page))
2932                 set_buffer_uptodate(bh);
2933
2934         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2935                 err = -EIO;
2936                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2937                 wait_on_buffer(bh);
2938                 /* Uhhuh. Read error. Complain and punt. */
2939                 if (!buffer_uptodate(bh))
2940                         goto unlock;
2941         }
2942
2943         zero_user(page, offset, length);
2944         mark_buffer_dirty(bh);
2945         err = 0;
2946
2947 unlock:
2948         unlock_page(page);
2949         put_page(page);
2950 out:
2951         return err;
2952 }
2953 EXPORT_SYMBOL(block_truncate_page);
2954
2955 /*
2956  * The generic ->writepage function for buffer-backed address_spaces
2957  */
2958 int block_write_full_page(struct page *page, get_block_t *get_block,
2959                         struct writeback_control *wbc)
2960 {
2961         struct inode * const inode = page->mapping->host;
2962         loff_t i_size = i_size_read(inode);
2963         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2964         unsigned offset;
2965
2966         /* Is the page fully inside i_size? */
2967         if (page->index < end_index)
2968                 return __block_write_full_page(inode, page, get_block, wbc,
2969                                                end_buffer_async_write);
2970
2971         /* Is the page fully outside i_size? (truncate in progress) */
2972         offset = i_size & (PAGE_SIZE-1);
2973         if (page->index >= end_index+1 || !offset) {
2974                 /*
2975                  * The page may have dirty, unmapped buffers.  For example,
2976                  * they may have been added in ext3_writepage().  Make them
2977                  * freeable here, so the page does not leak.
2978                  */
2979                 do_invalidatepage(page, 0, PAGE_SIZE);
2980                 unlock_page(page);
2981                 return 0; /* don't care */
2982         }
2983
2984         /*
2985          * The page straddles i_size.  It must be zeroed out on each and every
2986          * writepage invocation because it may be mmapped.  "A file is mapped
2987          * in multiples of the page size.  For a file that is not a multiple of
2988          * the  page size, the remaining memory is zeroed when mapped, and
2989          * writes to that region are not written out to the file."
2990          */
2991         zero_user_segment(page, offset, PAGE_SIZE);
2992         return __block_write_full_page(inode, page, get_block, wbc,
2993                                                         end_buffer_async_write);
2994 }
2995 EXPORT_SYMBOL(block_write_full_page);
2996
2997 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2998                             get_block_t *get_block)
2999 {
3000         struct inode *inode = mapping->host;
3001         struct buffer_head tmp = {
3002                 .b_size = i_blocksize(inode),
3003         };
3004
3005         get_block(inode, block, &tmp, 0);
3006         return tmp.b_blocknr;
3007 }
3008 EXPORT_SYMBOL(generic_block_bmap);
3009
3010 static void end_bio_bh_io_sync(struct bio *bio)
3011 {
3012         struct buffer_head *bh = bio->bi_private;
3013
3014         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3015                 set_bit(BH_Quiet, &bh->b_state);
3016
3017         bh->b_end_io(bh, !bio->bi_status);
3018         bio_put(bio);
3019 }
3020
3021 /*
3022  * This allows us to do IO even on the odd last sectors
3023  * of a device, even if the block size is some multiple
3024  * of the physical sector size.
3025  *
3026  * We'll just truncate the bio to the size of the device,
3027  * and clear the end of the buffer head manually.
3028  *
3029  * Truly out-of-range accesses will turn into actual IO
3030  * errors, this only handles the "we need to be able to
3031  * do IO at the final sector" case.
3032  */
3033 void guard_bio_eod(int op, struct bio *bio)
3034 {
3035         sector_t maxsector;
3036         struct bio_vec *bvec = bio_last_bvec_all(bio);
3037         unsigned truncated_bytes;
3038         struct hd_struct *part;
3039
3040         rcu_read_lock();
3041         part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3042         if (part)
3043                 maxsector = part_nr_sects_read(part);
3044         else
3045                 maxsector = get_capacity(bio->bi_disk);
3046         rcu_read_unlock();
3047
3048         if (!maxsector)
3049                 return;
3050
3051         /*
3052          * If the *whole* IO is past the end of the device,
3053          * let it through, and the IO layer will turn it into
3054          * an EIO.
3055          */
3056         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3057                 return;
3058
3059         maxsector -= bio->bi_iter.bi_sector;
3060         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3061                 return;
3062
3063         /* Uhhuh. We've got a bio that straddles the device size! */
3064         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3065
3066         /* Truncate the bio.. */
3067         bio->bi_iter.bi_size -= truncated_bytes;
3068         bvec->bv_len -= truncated_bytes;
3069
3070         /* ..and clear the end of the buffer for reads */
3071         if (op == REQ_OP_READ) {
3072                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3073                                 truncated_bytes);
3074         }
3075 }
3076
3077 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3078                          enum rw_hint write_hint, struct writeback_control *wbc)
3079 {
3080         struct bio *bio;
3081
3082         BUG_ON(!buffer_locked(bh));
3083         BUG_ON(!buffer_mapped(bh));
3084         BUG_ON(!bh->b_end_io);
3085         BUG_ON(buffer_delay(bh));
3086         BUG_ON(buffer_unwritten(bh));
3087
3088         /*
3089          * Only clear out a write error when rewriting
3090          */
3091         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3092                 clear_buffer_write_io_error(bh);
3093
3094         /*
3095          * from here on down, it's all bio -- do the initial mapping,
3096          * submit_bio -> generic_make_request may further map this bio around
3097          */
3098         bio = bio_alloc(GFP_NOIO, 1);
3099
3100         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3101         bio_set_dev(bio, bh->b_bdev);
3102         bio->bi_write_hint = write_hint;
3103
3104         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3105         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3106
3107         bio->bi_end_io = end_bio_bh_io_sync;
3108         bio->bi_private = bh;
3109
3110         /* Take care of bh's that straddle the end of the device */
3111         guard_bio_eod(op, bio);
3112
3113         if (buffer_meta(bh))
3114                 op_flags |= REQ_META;
3115         if (buffer_prio(bh))
3116                 op_flags |= REQ_PRIO;
3117         bio_set_op_attrs(bio, op, op_flags);
3118
3119         if (wbc) {
3120                 wbc_init_bio(wbc, bio);
3121                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3122         }
3123
3124         submit_bio(bio);
3125         return 0;
3126 }
3127
3128 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3129 {
3130         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3131 }
3132 EXPORT_SYMBOL(submit_bh);
3133
3134 /**
3135  * ll_rw_block: low-level access to block devices (DEPRECATED)
3136  * @op: whether to %READ or %WRITE
3137  * @op_flags: req_flag_bits
3138  * @nr: number of &struct buffer_heads in the array
3139  * @bhs: array of pointers to &struct buffer_head
3140  *
3141  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3142  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3143  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3144  * %REQ_RAHEAD.
3145  *
3146  * This function drops any buffer that it cannot get a lock on (with the
3147  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3148  * request, and any buffer that appears to be up-to-date when doing read
3149  * request.  Further it marks as clean buffers that are processed for
3150  * writing (the buffer cache won't assume that they are actually clean
3151  * until the buffer gets unlocked).
3152  *
3153  * ll_rw_block sets b_end_io to simple completion handler that marks
3154  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3155  * any waiters. 
3156  *
3157  * All of the buffers must be for the same device, and must also be a
3158  * multiple of the current approved size for the device.
3159  */
3160 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3161 {
3162         int i;
3163
3164         for (i = 0; i < nr; i++) {
3165                 struct buffer_head *bh = bhs[i];
3166
3167                 if (!trylock_buffer(bh))
3168                         continue;
3169                 if (op == WRITE) {
3170                         if (test_clear_buffer_dirty(bh)) {
3171                                 bh->b_end_io = end_buffer_write_sync;
3172                                 get_bh(bh);
3173                                 submit_bh(op, op_flags, bh);
3174                                 continue;
3175                         }
3176                 } else {
3177                         if (!buffer_uptodate(bh)) {
3178                                 bh->b_end_io = end_buffer_read_sync;
3179                                 get_bh(bh);
3180                                 submit_bh(op, op_flags, bh);
3181                                 continue;
3182                         }
3183                 }
3184                 unlock_buffer(bh);
3185         }
3186 }
3187 EXPORT_SYMBOL(ll_rw_block);
3188
3189 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3190 {
3191         lock_buffer(bh);
3192         if (!test_clear_buffer_dirty(bh)) {
3193                 unlock_buffer(bh);
3194                 return;
3195         }
3196         bh->b_end_io = end_buffer_write_sync;
3197         get_bh(bh);
3198         submit_bh(REQ_OP_WRITE, op_flags, bh);
3199 }
3200 EXPORT_SYMBOL(write_dirty_buffer);
3201
3202 /*
3203  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3204  * and then start new I/O and then wait upon it.  The caller must have a ref on
3205  * the buffer_head.
3206  */
3207 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3208 {
3209         int ret = 0;
3210
3211         WARN_ON(atomic_read(&bh->b_count) < 1);
3212         lock_buffer(bh);
3213         if (test_clear_buffer_dirty(bh)) {
3214                 get_bh(bh);
3215                 bh->b_end_io = end_buffer_write_sync;
3216                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3217                 wait_on_buffer(bh);
3218                 if (!ret && !buffer_uptodate(bh))
3219                         ret = -EIO;
3220         } else {
3221                 unlock_buffer(bh);
3222         }
3223         return ret;
3224 }
3225 EXPORT_SYMBOL(__sync_dirty_buffer);
3226
3227 int sync_dirty_buffer(struct buffer_head *bh)
3228 {
3229         return __sync_dirty_buffer(bh, REQ_SYNC);
3230 }
3231 EXPORT_SYMBOL(sync_dirty_buffer);
3232
3233 /*
3234  * try_to_free_buffers() checks if all the buffers on this particular page
3235  * are unused, and releases them if so.
3236  *
3237  * Exclusion against try_to_free_buffers may be obtained by either
3238  * locking the page or by holding its mapping's private_lock.
3239  *
3240  * If the page is dirty but all the buffers are clean then we need to
3241  * be sure to mark the page clean as well.  This is because the page
3242  * may be against a block device, and a later reattachment of buffers
3243  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3244  * filesystem data on the same device.
3245  *
3246  * The same applies to regular filesystem pages: if all the buffers are
3247  * clean then we set the page clean and proceed.  To do that, we require
3248  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3249  * private_lock.
3250  *
3251  * try_to_free_buffers() is non-blocking.
3252  */
3253 static inline int buffer_busy(struct buffer_head *bh)
3254 {
3255 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
3256         current->getblk_executed |= 0x80;
3257         current->getblk_bh_count = atomic_read(&bh->b_count);
3258         current->getblk_bh_state = bh->b_state;
3259 #endif
3260         return atomic_read(&bh->b_count) |
3261                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3262 }
3263
3264 static int
3265 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3266 {
3267         struct buffer_head *head = page_buffers(page);
3268         struct buffer_head *bh;
3269
3270         bh = head;
3271         do {
3272                 if (buffer_busy(bh))
3273                         goto failed;
3274                 bh = bh->b_this_page;
3275         } while (bh != head);
3276
3277         do {
3278                 struct buffer_head *next = bh->b_this_page;
3279
3280                 if (bh->b_assoc_map)
3281                         __remove_assoc_queue(bh);
3282                 bh = next;
3283         } while (bh != head);
3284         *buffers_to_free = head;
3285         __clear_page_buffers(page);
3286         return 1;
3287 failed:
3288         return 0;
3289 }
3290
3291 int try_to_free_buffers(struct page *page)
3292 {
3293         struct address_space * const mapping = page->mapping;
3294         struct buffer_head *buffers_to_free = NULL;
3295         int ret = 0;
3296
3297         BUG_ON(!PageLocked(page));
3298         if (PageWriteback(page)) {
3299 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
3300                 current->getblk_executed |= 0x10;
3301 #endif
3302                 return 0;
3303         }
3304
3305         if (mapping == NULL) {          /* can this still happen? */
3306                 ret = drop_buffers(page, &buffers_to_free);
3307 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
3308                 current->getblk_executed |= 0x20;
3309 #endif
3310                 goto out;
3311         }
3312
3313         spin_lock(&mapping->private_lock);
3314         ret = drop_buffers(page, &buffers_to_free);
3315
3316         /*
3317          * If the filesystem writes its buffers by hand (eg ext3)
3318          * then we can have clean buffers against a dirty page.  We
3319          * clean the page here; otherwise the VM will never notice
3320          * that the filesystem did any IO at all.
3321          *
3322          * Also, during truncate, discard_buffer will have marked all
3323          * the page's buffers clean.  We discover that here and clean
3324          * the page also.
3325          *
3326          * private_lock must be held over this entire operation in order
3327          * to synchronise against __set_page_dirty_buffers and prevent the
3328          * dirty bit from being lost.
3329          */
3330         if (ret)
3331                 cancel_dirty_page(page);
3332         spin_unlock(&mapping->private_lock);
3333 #ifdef CONFIG_DEBUG_AID_FOR_SYZBOT
3334         current->getblk_executed |= 0x40;
3335 #endif
3336 out:
3337         if (buffers_to_free) {
3338                 struct buffer_head *bh = buffers_to_free;
3339
3340                 do {
3341                         struct buffer_head *next = bh->b_this_page;
3342                         free_buffer_head(bh);
3343                         bh = next;
3344                 } while (bh != buffers_to_free);
3345         }
3346         return ret;
3347 }
3348 EXPORT_SYMBOL(try_to_free_buffers);
3349
3350 /*
3351  * There are no bdflush tunables left.  But distributions are
3352  * still running obsolete flush daemons, so we terminate them here.
3353  *
3354  * Use of bdflush() is deprecated and will be removed in a future kernel.
3355  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3356  */
3357 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3358 {
3359         static int msg_count;
3360
3361         if (!capable(CAP_SYS_ADMIN))
3362                 return -EPERM;
3363
3364         if (msg_count < 5) {
3365                 msg_count++;
3366                 printk(KERN_INFO
3367                         "warning: process `%s' used the obsolete bdflush"
3368                         " system call\n", current->comm);
3369                 printk(KERN_INFO "Fix your initscripts?\n");
3370         }
3371
3372         if (func == 1)
3373                 do_exit(0);
3374         return 0;
3375 }
3376
3377 /*
3378  * Buffer-head allocation
3379  */
3380 static struct kmem_cache *bh_cachep __read_mostly;
3381
3382 /*
3383  * Once the number of bh's in the machine exceeds this level, we start
3384  * stripping them in writeback.
3385  */
3386 static unsigned long max_buffer_heads;
3387
3388 int buffer_heads_over_limit;
3389
3390 struct bh_accounting {
3391         int nr;                 /* Number of live bh's */
3392         int ratelimit;          /* Limit cacheline bouncing */
3393 };
3394
3395 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3396
3397 static void recalc_bh_state(void)
3398 {
3399         int i;
3400         int tot = 0;
3401
3402         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3403                 return;
3404         __this_cpu_write(bh_accounting.ratelimit, 0);
3405         for_each_online_cpu(i)
3406                 tot += per_cpu(bh_accounting, i).nr;
3407         buffer_heads_over_limit = (tot > max_buffer_heads);
3408 }
3409
3410 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3411 {
3412         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3413         if (ret) {
3414                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3415                 preempt_disable();
3416                 __this_cpu_inc(bh_accounting.nr);
3417                 recalc_bh_state();
3418                 preempt_enable();
3419         }
3420         return ret;
3421 }
3422 EXPORT_SYMBOL(alloc_buffer_head);
3423
3424 void free_buffer_head(struct buffer_head *bh)
3425 {
3426         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3427         kmem_cache_free(bh_cachep, bh);
3428         preempt_disable();
3429         __this_cpu_dec(bh_accounting.nr);
3430         recalc_bh_state();
3431         preempt_enable();
3432 }
3433 EXPORT_SYMBOL(free_buffer_head);
3434
3435 static int buffer_exit_cpu_dead(unsigned int cpu)
3436 {
3437         int i;
3438         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3439
3440         for (i = 0; i < BH_LRU_SIZE; i++) {
3441                 brelse(b->bhs[i]);
3442                 b->bhs[i] = NULL;
3443         }
3444         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3445         per_cpu(bh_accounting, cpu).nr = 0;
3446         return 0;
3447 }
3448
3449 /**
3450  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3451  * @bh: struct buffer_head
3452  *
3453  * Return true if the buffer is up-to-date and false,
3454  * with the buffer locked, if not.
3455  */
3456 int bh_uptodate_or_lock(struct buffer_head *bh)
3457 {
3458         if (!buffer_uptodate(bh)) {
3459                 lock_buffer(bh);
3460                 if (!buffer_uptodate(bh))
3461                         return 0;
3462                 unlock_buffer(bh);
3463         }
3464         return 1;
3465 }
3466 EXPORT_SYMBOL(bh_uptodate_or_lock);
3467
3468 /**
3469  * bh_submit_read - Submit a locked buffer for reading
3470  * @bh: struct buffer_head
3471  *
3472  * Returns zero on success and -EIO on error.
3473  */
3474 int bh_submit_read(struct buffer_head *bh)
3475 {
3476         BUG_ON(!buffer_locked(bh));
3477
3478         if (buffer_uptodate(bh)) {
3479                 unlock_buffer(bh);
3480                 return 0;
3481         }
3482
3483         get_bh(bh);
3484         bh->b_end_io = end_buffer_read_sync;
3485         submit_bh(REQ_OP_READ, 0, bh);
3486         wait_on_buffer(bh);
3487         if (buffer_uptodate(bh))
3488                 return 0;
3489         return -EIO;
3490 }
3491 EXPORT_SYMBOL(bh_submit_read);
3492
3493 void __init buffer_init(void)
3494 {
3495         unsigned long nrpages;
3496         int ret;
3497
3498         bh_cachep = kmem_cache_create("buffer_head",
3499                         sizeof(struct buffer_head), 0,
3500                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3501                                 SLAB_MEM_SPREAD),
3502                                 NULL);
3503
3504         /*
3505          * Limit the bh occupancy to 10% of ZONE_NORMAL
3506          */
3507         nrpages = (nr_free_buffer_pages() * 10) / 100;
3508         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3509         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3510                                         NULL, buffer_exit_cpu_dead);
3511         WARN_ON(ret < 0);
3512 }