mm: remove destroy_dirty_buffers from invalidate_bdev()
[powerpc.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         smp_mb__before_clear_bit();
82         clear_buffer_locked(bh);
83         smp_mb__after_clear_bit();
84         wake_up_bit(&bh->b_state, BH_Lock);
85 }
86
87 /*
88  * Block until a buffer comes unlocked.  This doesn't stop it
89  * from becoming locked again - you have to lock it yourself
90  * if you want to preserve its state.
91  */
92 void __wait_on_buffer(struct buffer_head * bh)
93 {
94         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 }
96
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100         ClearPagePrivate(page);
101         set_page_private(page, 0);
102         page_cache_release(page);
103 }
104
105 static void buffer_io_error(struct buffer_head *bh)
106 {
107         char b[BDEVNAME_SIZE];
108
109         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110                         bdevname(bh->b_bdev, b),
111                         (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
116  * unlock the buffer. This is what ll_rw_block uses too.
117  */
118 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 {
120         if (uptodate) {
121                 set_buffer_uptodate(bh);
122         } else {
123                 /* This happens, due to failed READA attempts. */
124                 clear_buffer_uptodate(bh);
125         }
126         unlock_buffer(bh);
127         put_bh(bh);
128 }
129
130 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 {
132         char b[BDEVNAME_SIZE];
133
134         if (uptodate) {
135                 set_buffer_uptodate(bh);
136         } else {
137                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138                         buffer_io_error(bh);
139                         printk(KERN_WARNING "lost page write due to "
140                                         "I/O error on %s\n",
141                                        bdevname(bh->b_bdev, b));
142                 }
143                 set_buffer_write_io_error(bh);
144                 clear_buffer_uptodate(bh);
145         }
146         unlock_buffer(bh);
147         put_bh(bh);
148 }
149
150 /*
151  * Write out and wait upon all the dirty data associated with a block
152  * device via its mapping.  Does not take the superblock lock.
153  */
154 int sync_blockdev(struct block_device *bdev)
155 {
156         int ret = 0;
157
158         if (bdev)
159                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160         return ret;
161 }
162 EXPORT_SYMBOL(sync_blockdev);
163
164 /*
165  * Write out and wait upon all dirty data associated with this
166  * device.   Filesystem data as well as the underlying block
167  * device.  Takes the superblock lock.
168  */
169 int fsync_bdev(struct block_device *bdev)
170 {
171         struct super_block *sb = get_super(bdev);
172         if (sb) {
173                 int res = fsync_super(sb);
174                 drop_super(sb);
175                 return res;
176         }
177         return sync_blockdev(bdev);
178 }
179
180 /**
181  * freeze_bdev  --  lock a filesystem and force it into a consistent state
182  * @bdev:       blockdevice to lock
183  *
184  * This takes the block device bd_mount_sem to make sure no new mounts
185  * happen on bdev until thaw_bdev() is called.
186  * If a superblock is found on this device, we take the s_umount semaphore
187  * on it to make sure nobody unmounts until the snapshot creation is done.
188  */
189 struct super_block *freeze_bdev(struct block_device *bdev)
190 {
191         struct super_block *sb;
192
193         down(&bdev->bd_mount_sem);
194         sb = get_super(bdev);
195         if (sb && !(sb->s_flags & MS_RDONLY)) {
196                 sb->s_frozen = SB_FREEZE_WRITE;
197                 smp_wmb();
198
199                 __fsync_super(sb);
200
201                 sb->s_frozen = SB_FREEZE_TRANS;
202                 smp_wmb();
203
204                 sync_blockdev(sb->s_bdev);
205
206                 if (sb->s_op->write_super_lockfs)
207                         sb->s_op->write_super_lockfs(sb);
208         }
209
210         sync_blockdev(bdev);
211         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
212 }
213 EXPORT_SYMBOL(freeze_bdev);
214
215 /**
216  * thaw_bdev  -- unlock filesystem
217  * @bdev:       blockdevice to unlock
218  * @sb:         associated superblock
219  *
220  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
221  */
222 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
223 {
224         if (sb) {
225                 BUG_ON(sb->s_bdev != bdev);
226
227                 if (sb->s_op->unlockfs)
228                         sb->s_op->unlockfs(sb);
229                 sb->s_frozen = SB_UNFROZEN;
230                 smp_wmb();
231                 wake_up(&sb->s_wait_unfrozen);
232                 drop_super(sb);
233         }
234
235         up(&bdev->bd_mount_sem);
236 }
237 EXPORT_SYMBOL(thaw_bdev);
238
239 /*
240  * Various filesystems appear to want __find_get_block to be non-blocking.
241  * But it's the page lock which protects the buffers.  To get around this,
242  * we get exclusion from try_to_free_buffers with the blockdev mapping's
243  * private_lock.
244  *
245  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
246  * may be quite high.  This code could TryLock the page, and if that
247  * succeeds, there is no need to take private_lock. (But if
248  * private_lock is contended then so is mapping->tree_lock).
249  */
250 static struct buffer_head *
251 __find_get_block_slow(struct block_device *bdev, sector_t block)
252 {
253         struct inode *bd_inode = bdev->bd_inode;
254         struct address_space *bd_mapping = bd_inode->i_mapping;
255         struct buffer_head *ret = NULL;
256         pgoff_t index;
257         struct buffer_head *bh;
258         struct buffer_head *head;
259         struct page *page;
260         int all_mapped = 1;
261
262         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
263         page = find_get_page(bd_mapping, index);
264         if (!page)
265                 goto out;
266
267         spin_lock(&bd_mapping->private_lock);
268         if (!page_has_buffers(page))
269                 goto out_unlock;
270         head = page_buffers(page);
271         bh = head;
272         do {
273                 if (bh->b_blocknr == block) {
274                         ret = bh;
275                         get_bh(bh);
276                         goto out_unlock;
277                 }
278                 if (!buffer_mapped(bh))
279                         all_mapped = 0;
280                 bh = bh->b_this_page;
281         } while (bh != head);
282
283         /* we might be here because some of the buffers on this page are
284          * not mapped.  This is due to various races between
285          * file io on the block device and getblk.  It gets dealt with
286          * elsewhere, don't buffer_error if we had some unmapped buffers
287          */
288         if (all_mapped) {
289                 printk("__find_get_block_slow() failed. "
290                         "block=%llu, b_blocknr=%llu\n",
291                         (unsigned long long)block,
292                         (unsigned long long)bh->b_blocknr);
293                 printk("b_state=0x%08lx, b_size=%zu\n",
294                         bh->b_state, bh->b_size);
295                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
296         }
297 out_unlock:
298         spin_unlock(&bd_mapping->private_lock);
299         page_cache_release(page);
300 out:
301         return ret;
302 }
303
304 /* If invalidate_buffers() will trash dirty buffers, it means some kind
305    of fs corruption is going on. Trashing dirty data always imply losing
306    information that was supposed to be just stored on the physical layer
307    by the user.
308
309    Thus invalidate_buffers in general usage is not allwowed to trash
310    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
311    be preserved.  These buffers are simply skipped.
312   
313    We also skip buffers which are still in use.  For example this can
314    happen if a userspace program is reading the block device.
315
316    NOTE: In the case where the user removed a removable-media-disk even if
317    there's still dirty data not synced on disk (due a bug in the device driver
318    or due an error of the user), by not destroying the dirty buffers we could
319    generate corruption also on the next media inserted, thus a parameter is
320    necessary to handle this case in the most safe way possible (trying
321    to not corrupt also the new disk inserted with the data belonging to
322    the old now corrupted disk). Also for the ramdisk the natural thing
323    to do in order to release the ramdisk memory is to destroy dirty buffers.
324
325    These are two special cases. Normal usage imply the device driver
326    to issue a sync on the device (without waiting I/O completion) and
327    then an invalidate_buffers call that doesn't trash dirty buffers.
328
329    For handling cache coherency with the blkdev pagecache the 'update' case
330    is been introduced. It is needed to re-read from disk any pinned
331    buffer. NOTE: re-reading from disk is destructive so we can do it only
332    when we assume nobody is changing the buffercache under our I/O and when
333    we think the disk contains more recent information than the buffercache.
334    The update == 1 pass marks the buffers we need to update, the update == 2
335    pass does the actual I/O. */
336 void invalidate_bdev(struct block_device *bdev)
337 {
338         struct address_space *mapping = bdev->bd_inode->i_mapping;
339
340         if (mapping->nrpages == 0)
341                 return;
342
343         invalidate_bh_lrus();
344         invalidate_mapping_pages(mapping, 0, -1);
345 }
346
347 /*
348  * Kick pdflush then try to free up some ZONE_NORMAL memory.
349  */
350 static void free_more_memory(void)
351 {
352         struct zone **zones;
353         pg_data_t *pgdat;
354
355         wakeup_pdflush(1024);
356         yield();
357
358         for_each_online_pgdat(pgdat) {
359                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
360                 if (*zones)
361                         try_to_free_pages(zones, GFP_NOFS);
362         }
363 }
364
365 /*
366  * I/O completion handler for block_read_full_page() - pages
367  * which come unlocked at the end of I/O.
368  */
369 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
370 {
371         unsigned long flags;
372         struct buffer_head *first;
373         struct buffer_head *tmp;
374         struct page *page;
375         int page_uptodate = 1;
376
377         BUG_ON(!buffer_async_read(bh));
378
379         page = bh->b_page;
380         if (uptodate) {
381                 set_buffer_uptodate(bh);
382         } else {
383                 clear_buffer_uptodate(bh);
384                 if (printk_ratelimit())
385                         buffer_io_error(bh);
386                 SetPageError(page);
387         }
388
389         /*
390          * Be _very_ careful from here on. Bad things can happen if
391          * two buffer heads end IO at almost the same time and both
392          * decide that the page is now completely done.
393          */
394         first = page_buffers(page);
395         local_irq_save(flags);
396         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
397         clear_buffer_async_read(bh);
398         unlock_buffer(bh);
399         tmp = bh;
400         do {
401                 if (!buffer_uptodate(tmp))
402                         page_uptodate = 0;
403                 if (buffer_async_read(tmp)) {
404                         BUG_ON(!buffer_locked(tmp));
405                         goto still_busy;
406                 }
407                 tmp = tmp->b_this_page;
408         } while (tmp != bh);
409         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410         local_irq_restore(flags);
411
412         /*
413          * If none of the buffers had errors and they are all
414          * uptodate then we can set the page uptodate.
415          */
416         if (page_uptodate && !PageError(page))
417                 SetPageUptodate(page);
418         unlock_page(page);
419         return;
420
421 still_busy:
422         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
423         local_irq_restore(flags);
424         return;
425 }
426
427 /*
428  * Completion handler for block_write_full_page() - pages which are unlocked
429  * during I/O, and which have PageWriteback cleared upon I/O completion.
430  */
431 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
432 {
433         char b[BDEVNAME_SIZE];
434         unsigned long flags;
435         struct buffer_head *first;
436         struct buffer_head *tmp;
437         struct page *page;
438
439         BUG_ON(!buffer_async_write(bh));
440
441         page = bh->b_page;
442         if (uptodate) {
443                 set_buffer_uptodate(bh);
444         } else {
445                 if (printk_ratelimit()) {
446                         buffer_io_error(bh);
447                         printk(KERN_WARNING "lost page write due to "
448                                         "I/O error on %s\n",
449                                bdevname(bh->b_bdev, b));
450                 }
451                 set_bit(AS_EIO, &page->mapping->flags);
452                 set_buffer_write_io_error(bh);
453                 clear_buffer_uptodate(bh);
454                 SetPageError(page);
455         }
456
457         first = page_buffers(page);
458         local_irq_save(flags);
459         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
460
461         clear_buffer_async_write(bh);
462         unlock_buffer(bh);
463         tmp = bh->b_this_page;
464         while (tmp != bh) {
465                 if (buffer_async_write(tmp)) {
466                         BUG_ON(!buffer_locked(tmp));
467                         goto still_busy;
468                 }
469                 tmp = tmp->b_this_page;
470         }
471         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
472         local_irq_restore(flags);
473         end_page_writeback(page);
474         return;
475
476 still_busy:
477         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
478         local_irq_restore(flags);
479         return;
480 }
481
482 /*
483  * If a page's buffers are under async readin (end_buffer_async_read
484  * completion) then there is a possibility that another thread of
485  * control could lock one of the buffers after it has completed
486  * but while some of the other buffers have not completed.  This
487  * locked buffer would confuse end_buffer_async_read() into not unlocking
488  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
489  * that this buffer is not under async I/O.
490  *
491  * The page comes unlocked when it has no locked buffer_async buffers
492  * left.
493  *
494  * PageLocked prevents anyone starting new async I/O reads any of
495  * the buffers.
496  *
497  * PageWriteback is used to prevent simultaneous writeout of the same
498  * page.
499  *
500  * PageLocked prevents anyone from starting writeback of a page which is
501  * under read I/O (PageWriteback is only ever set against a locked page).
502  */
503 static void mark_buffer_async_read(struct buffer_head *bh)
504 {
505         bh->b_end_io = end_buffer_async_read;
506         set_buffer_async_read(bh);
507 }
508
509 void mark_buffer_async_write(struct buffer_head *bh)
510 {
511         bh->b_end_io = end_buffer_async_write;
512         set_buffer_async_write(bh);
513 }
514 EXPORT_SYMBOL(mark_buffer_async_write);
515
516
517 /*
518  * fs/buffer.c contains helper functions for buffer-backed address space's
519  * fsync functions.  A common requirement for buffer-based filesystems is
520  * that certain data from the backing blockdev needs to be written out for
521  * a successful fsync().  For example, ext2 indirect blocks need to be
522  * written back and waited upon before fsync() returns.
523  *
524  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
525  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
526  * management of a list of dependent buffers at ->i_mapping->private_list.
527  *
528  * Locking is a little subtle: try_to_free_buffers() will remove buffers
529  * from their controlling inode's queue when they are being freed.  But
530  * try_to_free_buffers() will be operating against the *blockdev* mapping
531  * at the time, not against the S_ISREG file which depends on those buffers.
532  * So the locking for private_list is via the private_lock in the address_space
533  * which backs the buffers.  Which is different from the address_space 
534  * against which the buffers are listed.  So for a particular address_space,
535  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
536  * mapping->private_list will always be protected by the backing blockdev's
537  * ->private_lock.
538  *
539  * Which introduces a requirement: all buffers on an address_space's
540  * ->private_list must be from the same address_space: the blockdev's.
541  *
542  * address_spaces which do not place buffers at ->private_list via these
543  * utility functions are free to use private_lock and private_list for
544  * whatever they want.  The only requirement is that list_empty(private_list)
545  * be true at clear_inode() time.
546  *
547  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
548  * filesystems should do that.  invalidate_inode_buffers() should just go
549  * BUG_ON(!list_empty).
550  *
551  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
552  * take an address_space, not an inode.  And it should be called
553  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
554  * queued up.
555  *
556  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
557  * list if it is already on a list.  Because if the buffer is on a list,
558  * it *must* already be on the right one.  If not, the filesystem is being
559  * silly.  This will save a ton of locking.  But first we have to ensure
560  * that buffers are taken *off* the old inode's list when they are freed
561  * (presumably in truncate).  That requires careful auditing of all
562  * filesystems (do it inside bforget()).  It could also be done by bringing
563  * b_inode back.
564  */
565
566 /*
567  * The buffer's backing address_space's private_lock must be held
568  */
569 static inline void __remove_assoc_queue(struct buffer_head *bh)
570 {
571         list_del_init(&bh->b_assoc_buffers);
572         WARN_ON(!bh->b_assoc_map);
573         if (buffer_write_io_error(bh))
574                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
575         bh->b_assoc_map = NULL;
576 }
577
578 int inode_has_buffers(struct inode *inode)
579 {
580         return !list_empty(&inode->i_data.private_list);
581 }
582
583 /*
584  * osync is designed to support O_SYNC io.  It waits synchronously for
585  * all already-submitted IO to complete, but does not queue any new
586  * writes to the disk.
587  *
588  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
589  * you dirty the buffers, and then use osync_inode_buffers to wait for
590  * completion.  Any other dirty buffers which are not yet queued for
591  * write will not be flushed to disk by the osync.
592  */
593 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
594 {
595         struct buffer_head *bh;
596         struct list_head *p;
597         int err = 0;
598
599         spin_lock(lock);
600 repeat:
601         list_for_each_prev(p, list) {
602                 bh = BH_ENTRY(p);
603                 if (buffer_locked(bh)) {
604                         get_bh(bh);
605                         spin_unlock(lock);
606                         wait_on_buffer(bh);
607                         if (!buffer_uptodate(bh))
608                                 err = -EIO;
609                         brelse(bh);
610                         spin_lock(lock);
611                         goto repeat;
612                 }
613         }
614         spin_unlock(lock);
615         return err;
616 }
617
618 /**
619  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
620  *                        buffers
621  * @mapping: the mapping which wants those buffers written
622  *
623  * Starts I/O against the buffers at mapping->private_list, and waits upon
624  * that I/O.
625  *
626  * Basically, this is a convenience function for fsync().
627  * @mapping is a file or directory which needs those buffers to be written for
628  * a successful fsync().
629  */
630 int sync_mapping_buffers(struct address_space *mapping)
631 {
632         struct address_space *buffer_mapping = mapping->assoc_mapping;
633
634         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
635                 return 0;
636
637         return fsync_buffers_list(&buffer_mapping->private_lock,
638                                         &mapping->private_list);
639 }
640 EXPORT_SYMBOL(sync_mapping_buffers);
641
642 /*
643  * Called when we've recently written block `bblock', and it is known that
644  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
645  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
646  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
647  */
648 void write_boundary_block(struct block_device *bdev,
649                         sector_t bblock, unsigned blocksize)
650 {
651         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
652         if (bh) {
653                 if (buffer_dirty(bh))
654                         ll_rw_block(WRITE, 1, &bh);
655                 put_bh(bh);
656         }
657 }
658
659 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
660 {
661         struct address_space *mapping = inode->i_mapping;
662         struct address_space *buffer_mapping = bh->b_page->mapping;
663
664         mark_buffer_dirty(bh);
665         if (!mapping->assoc_mapping) {
666                 mapping->assoc_mapping = buffer_mapping;
667         } else {
668                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
669         }
670         if (list_empty(&bh->b_assoc_buffers)) {
671                 spin_lock(&buffer_mapping->private_lock);
672                 list_move_tail(&bh->b_assoc_buffers,
673                                 &mapping->private_list);
674                 bh->b_assoc_map = mapping;
675                 spin_unlock(&buffer_mapping->private_lock);
676         }
677 }
678 EXPORT_SYMBOL(mark_buffer_dirty_inode);
679
680 /*
681  * Add a page to the dirty page list.
682  *
683  * It is a sad fact of life that this function is called from several places
684  * deeply under spinlocking.  It may not sleep.
685  *
686  * If the page has buffers, the uptodate buffers are set dirty, to preserve
687  * dirty-state coherency between the page and the buffers.  It the page does
688  * not have buffers then when they are later attached they will all be set
689  * dirty.
690  *
691  * The buffers are dirtied before the page is dirtied.  There's a small race
692  * window in which a writepage caller may see the page cleanness but not the
693  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
694  * before the buffers, a concurrent writepage caller could clear the page dirty
695  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
696  * page on the dirty page list.
697  *
698  * We use private_lock to lock against try_to_free_buffers while using the
699  * page's buffer list.  Also use this to protect against clean buffers being
700  * added to the page after it was set dirty.
701  *
702  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
703  * address_space though.
704  */
705 int __set_page_dirty_buffers(struct page *page)
706 {
707         struct address_space * const mapping = page_mapping(page);
708
709         if (unlikely(!mapping))
710                 return !TestSetPageDirty(page);
711
712         spin_lock(&mapping->private_lock);
713         if (page_has_buffers(page)) {
714                 struct buffer_head *head = page_buffers(page);
715                 struct buffer_head *bh = head;
716
717                 do {
718                         set_buffer_dirty(bh);
719                         bh = bh->b_this_page;
720                 } while (bh != head);
721         }
722         spin_unlock(&mapping->private_lock);
723
724         if (TestSetPageDirty(page))
725                 return 0;
726
727         write_lock_irq(&mapping->tree_lock);
728         if (page->mapping) {    /* Race with truncate? */
729                 if (mapping_cap_account_dirty(mapping)) {
730                         __inc_zone_page_state(page, NR_FILE_DIRTY);
731                         task_io_account_write(PAGE_CACHE_SIZE);
732                 }
733                 radix_tree_tag_set(&mapping->page_tree,
734                                 page_index(page), PAGECACHE_TAG_DIRTY);
735         }
736         write_unlock_irq(&mapping->tree_lock);
737         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
738         return 1;
739 }
740 EXPORT_SYMBOL(__set_page_dirty_buffers);
741
742 /*
743  * Write out and wait upon a list of buffers.
744  *
745  * We have conflicting pressures: we want to make sure that all
746  * initially dirty buffers get waited on, but that any subsequently
747  * dirtied buffers don't.  After all, we don't want fsync to last
748  * forever if somebody is actively writing to the file.
749  *
750  * Do this in two main stages: first we copy dirty buffers to a
751  * temporary inode list, queueing the writes as we go.  Then we clean
752  * up, waiting for those writes to complete.
753  * 
754  * During this second stage, any subsequent updates to the file may end
755  * up refiling the buffer on the original inode's dirty list again, so
756  * there is a chance we will end up with a buffer queued for write but
757  * not yet completed on that list.  So, as a final cleanup we go through
758  * the osync code to catch these locked, dirty buffers without requeuing
759  * any newly dirty buffers for write.
760  */
761 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
762 {
763         struct buffer_head *bh;
764         struct list_head tmp;
765         int err = 0, err2;
766
767         INIT_LIST_HEAD(&tmp);
768
769         spin_lock(lock);
770         while (!list_empty(list)) {
771                 bh = BH_ENTRY(list->next);
772                 __remove_assoc_queue(bh);
773                 if (buffer_dirty(bh) || buffer_locked(bh)) {
774                         list_add(&bh->b_assoc_buffers, &tmp);
775                         if (buffer_dirty(bh)) {
776                                 get_bh(bh);
777                                 spin_unlock(lock);
778                                 /*
779                                  * Ensure any pending I/O completes so that
780                                  * ll_rw_block() actually writes the current
781                                  * contents - it is a noop if I/O is still in
782                                  * flight on potentially older contents.
783                                  */
784                                 ll_rw_block(SWRITE, 1, &bh);
785                                 brelse(bh);
786                                 spin_lock(lock);
787                         }
788                 }
789         }
790
791         while (!list_empty(&tmp)) {
792                 bh = BH_ENTRY(tmp.prev);
793                 list_del_init(&bh->b_assoc_buffers);
794                 get_bh(bh);
795                 spin_unlock(lock);
796                 wait_on_buffer(bh);
797                 if (!buffer_uptodate(bh))
798                         err = -EIO;
799                 brelse(bh);
800                 spin_lock(lock);
801         }
802         
803         spin_unlock(lock);
804         err2 = osync_buffers_list(lock, list);
805         if (err)
806                 return err;
807         else
808                 return err2;
809 }
810
811 /*
812  * Invalidate any and all dirty buffers on a given inode.  We are
813  * probably unmounting the fs, but that doesn't mean we have already
814  * done a sync().  Just drop the buffers from the inode list.
815  *
816  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
817  * assumes that all the buffers are against the blockdev.  Not true
818  * for reiserfs.
819  */
820 void invalidate_inode_buffers(struct inode *inode)
821 {
822         if (inode_has_buffers(inode)) {
823                 struct address_space *mapping = &inode->i_data;
824                 struct list_head *list = &mapping->private_list;
825                 struct address_space *buffer_mapping = mapping->assoc_mapping;
826
827                 spin_lock(&buffer_mapping->private_lock);
828                 while (!list_empty(list))
829                         __remove_assoc_queue(BH_ENTRY(list->next));
830                 spin_unlock(&buffer_mapping->private_lock);
831         }
832 }
833
834 /*
835  * Remove any clean buffers from the inode's buffer list.  This is called
836  * when we're trying to free the inode itself.  Those buffers can pin it.
837  *
838  * Returns true if all buffers were removed.
839  */
840 int remove_inode_buffers(struct inode *inode)
841 {
842         int ret = 1;
843
844         if (inode_has_buffers(inode)) {
845                 struct address_space *mapping = &inode->i_data;
846                 struct list_head *list = &mapping->private_list;
847                 struct address_space *buffer_mapping = mapping->assoc_mapping;
848
849                 spin_lock(&buffer_mapping->private_lock);
850                 while (!list_empty(list)) {
851                         struct buffer_head *bh = BH_ENTRY(list->next);
852                         if (buffer_dirty(bh)) {
853                                 ret = 0;
854                                 break;
855                         }
856                         __remove_assoc_queue(bh);
857                 }
858                 spin_unlock(&buffer_mapping->private_lock);
859         }
860         return ret;
861 }
862
863 /*
864  * Create the appropriate buffers when given a page for data area and
865  * the size of each buffer.. Use the bh->b_this_page linked list to
866  * follow the buffers created.  Return NULL if unable to create more
867  * buffers.
868  *
869  * The retry flag is used to differentiate async IO (paging, swapping)
870  * which may not fail from ordinary buffer allocations.
871  */
872 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
873                 int retry)
874 {
875         struct buffer_head *bh, *head;
876         long offset;
877
878 try_again:
879         head = NULL;
880         offset = PAGE_SIZE;
881         while ((offset -= size) >= 0) {
882                 bh = alloc_buffer_head(GFP_NOFS);
883                 if (!bh)
884                         goto no_grow;
885
886                 bh->b_bdev = NULL;
887                 bh->b_this_page = head;
888                 bh->b_blocknr = -1;
889                 head = bh;
890
891                 bh->b_state = 0;
892                 atomic_set(&bh->b_count, 0);
893                 bh->b_private = NULL;
894                 bh->b_size = size;
895
896                 /* Link the buffer to its page */
897                 set_bh_page(bh, page, offset);
898
899                 init_buffer(bh, NULL, NULL);
900         }
901         return head;
902 /*
903  * In case anything failed, we just free everything we got.
904  */
905 no_grow:
906         if (head) {
907                 do {
908                         bh = head;
909                         head = head->b_this_page;
910                         free_buffer_head(bh);
911                 } while (head);
912         }
913
914         /*
915          * Return failure for non-async IO requests.  Async IO requests
916          * are not allowed to fail, so we have to wait until buffer heads
917          * become available.  But we don't want tasks sleeping with 
918          * partially complete buffers, so all were released above.
919          */
920         if (!retry)
921                 return NULL;
922
923         /* We're _really_ low on memory. Now we just
924          * wait for old buffer heads to become free due to
925          * finishing IO.  Since this is an async request and
926          * the reserve list is empty, we're sure there are 
927          * async buffer heads in use.
928          */
929         free_more_memory();
930         goto try_again;
931 }
932 EXPORT_SYMBOL_GPL(alloc_page_buffers);
933
934 static inline void
935 link_dev_buffers(struct page *page, struct buffer_head *head)
936 {
937         struct buffer_head *bh, *tail;
938
939         bh = head;
940         do {
941                 tail = bh;
942                 bh = bh->b_this_page;
943         } while (bh);
944         tail->b_this_page = head;
945         attach_page_buffers(page, head);
946 }
947
948 /*
949  * Initialise the state of a blockdev page's buffers.
950  */ 
951 static void
952 init_page_buffers(struct page *page, struct block_device *bdev,
953                         sector_t block, int size)
954 {
955         struct buffer_head *head = page_buffers(page);
956         struct buffer_head *bh = head;
957         int uptodate = PageUptodate(page);
958
959         do {
960                 if (!buffer_mapped(bh)) {
961                         init_buffer(bh, NULL, NULL);
962                         bh->b_bdev = bdev;
963                         bh->b_blocknr = block;
964                         if (uptodate)
965                                 set_buffer_uptodate(bh);
966                         set_buffer_mapped(bh);
967                 }
968                 block++;
969                 bh = bh->b_this_page;
970         } while (bh != head);
971 }
972
973 /*
974  * Create the page-cache page that contains the requested block.
975  *
976  * This is user purely for blockdev mappings.
977  */
978 static struct page *
979 grow_dev_page(struct block_device *bdev, sector_t block,
980                 pgoff_t index, int size)
981 {
982         struct inode *inode = bdev->bd_inode;
983         struct page *page;
984         struct buffer_head *bh;
985
986         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
987         if (!page)
988                 return NULL;
989
990         BUG_ON(!PageLocked(page));
991
992         if (page_has_buffers(page)) {
993                 bh = page_buffers(page);
994                 if (bh->b_size == size) {
995                         init_page_buffers(page, bdev, block, size);
996                         return page;
997                 }
998                 if (!try_to_free_buffers(page))
999                         goto failed;
1000         }
1001
1002         /*
1003          * Allocate some buffers for this page
1004          */
1005         bh = alloc_page_buffers(page, size, 0);
1006         if (!bh)
1007                 goto failed;
1008
1009         /*
1010          * Link the page to the buffers and initialise them.  Take the
1011          * lock to be atomic wrt __find_get_block(), which does not
1012          * run under the page lock.
1013          */
1014         spin_lock(&inode->i_mapping->private_lock);
1015         link_dev_buffers(page, bh);
1016         init_page_buffers(page, bdev, block, size);
1017         spin_unlock(&inode->i_mapping->private_lock);
1018         return page;
1019
1020 failed:
1021         BUG();
1022         unlock_page(page);
1023         page_cache_release(page);
1024         return NULL;
1025 }
1026
1027 /*
1028  * Create buffers for the specified block device block's page.  If
1029  * that page was dirty, the buffers are set dirty also.
1030  *
1031  * Except that's a bug.  Attaching dirty buffers to a dirty
1032  * blockdev's page can result in filesystem corruption, because
1033  * some of those buffers may be aliases of filesystem data.
1034  * grow_dev_page() will go BUG() if this happens.
1035  */
1036 static int
1037 grow_buffers(struct block_device *bdev, sector_t block, int size)
1038 {
1039         struct page *page;
1040         pgoff_t index;
1041         int sizebits;
1042
1043         sizebits = -1;
1044         do {
1045                 sizebits++;
1046         } while ((size << sizebits) < PAGE_SIZE);
1047
1048         index = block >> sizebits;
1049
1050         /*
1051          * Check for a block which wants to lie outside our maximum possible
1052          * pagecache index.  (this comparison is done using sector_t types).
1053          */
1054         if (unlikely(index != block >> sizebits)) {
1055                 char b[BDEVNAME_SIZE];
1056
1057                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1058                         "device %s\n",
1059                         __FUNCTION__, (unsigned long long)block,
1060                         bdevname(bdev, b));
1061                 return -EIO;
1062         }
1063         block = index << sizebits;
1064         /* Create a page with the proper size buffers.. */
1065         page = grow_dev_page(bdev, block, index, size);
1066         if (!page)
1067                 return 0;
1068         unlock_page(page);
1069         page_cache_release(page);
1070         return 1;
1071 }
1072
1073 static struct buffer_head *
1074 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1075 {
1076         /* Size must be multiple of hard sectorsize */
1077         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1078                         (size < 512 || size > PAGE_SIZE))) {
1079                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1080                                         size);
1081                 printk(KERN_ERR "hardsect size: %d\n",
1082                                         bdev_hardsect_size(bdev));
1083
1084                 dump_stack();
1085                 return NULL;
1086         }
1087
1088         for (;;) {
1089                 struct buffer_head * bh;
1090                 int ret;
1091
1092                 bh = __find_get_block(bdev, block, size);
1093                 if (bh)
1094                         return bh;
1095
1096                 ret = grow_buffers(bdev, block, size);
1097                 if (ret < 0)
1098                         return NULL;
1099                 if (ret == 0)
1100                         free_more_memory();
1101         }
1102 }
1103
1104 /*
1105  * The relationship between dirty buffers and dirty pages:
1106  *
1107  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1108  * the page is tagged dirty in its radix tree.
1109  *
1110  * At all times, the dirtiness of the buffers represents the dirtiness of
1111  * subsections of the page.  If the page has buffers, the page dirty bit is
1112  * merely a hint about the true dirty state.
1113  *
1114  * When a page is set dirty in its entirety, all its buffers are marked dirty
1115  * (if the page has buffers).
1116  *
1117  * When a buffer is marked dirty, its page is dirtied, but the page's other
1118  * buffers are not.
1119  *
1120  * Also.  When blockdev buffers are explicitly read with bread(), they
1121  * individually become uptodate.  But their backing page remains not
1122  * uptodate - even if all of its buffers are uptodate.  A subsequent
1123  * block_read_full_page() against that page will discover all the uptodate
1124  * buffers, will set the page uptodate and will perform no I/O.
1125  */
1126
1127 /**
1128  * mark_buffer_dirty - mark a buffer_head as needing writeout
1129  * @bh: the buffer_head to mark dirty
1130  *
1131  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1132  * backing page dirty, then tag the page as dirty in its address_space's radix
1133  * tree and then attach the address_space's inode to its superblock's dirty
1134  * inode list.
1135  *
1136  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1137  * mapping->tree_lock and the global inode_lock.
1138  */
1139 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1140 {
1141         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1142                 __set_page_dirty_nobuffers(bh->b_page);
1143 }
1144
1145 /*
1146  * Decrement a buffer_head's reference count.  If all buffers against a page
1147  * have zero reference count, are clean and unlocked, and if the page is clean
1148  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1149  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1150  * a page but it ends up not being freed, and buffers may later be reattached).
1151  */
1152 void __brelse(struct buffer_head * buf)
1153 {
1154         if (atomic_read(&buf->b_count)) {
1155                 put_bh(buf);
1156                 return;
1157         }
1158         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1159         WARN_ON(1);
1160 }
1161
1162 /*
1163  * bforget() is like brelse(), except it discards any
1164  * potentially dirty data.
1165  */
1166 void __bforget(struct buffer_head *bh)
1167 {
1168         clear_buffer_dirty(bh);
1169         if (!list_empty(&bh->b_assoc_buffers)) {
1170                 struct address_space *buffer_mapping = bh->b_page->mapping;
1171
1172                 spin_lock(&buffer_mapping->private_lock);
1173                 list_del_init(&bh->b_assoc_buffers);
1174                 bh->b_assoc_map = NULL;
1175                 spin_unlock(&buffer_mapping->private_lock);
1176         }
1177         __brelse(bh);
1178 }
1179
1180 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1181 {
1182         lock_buffer(bh);
1183         if (buffer_uptodate(bh)) {
1184                 unlock_buffer(bh);
1185                 return bh;
1186         } else {
1187                 get_bh(bh);
1188                 bh->b_end_io = end_buffer_read_sync;
1189                 submit_bh(READ, bh);
1190                 wait_on_buffer(bh);
1191                 if (buffer_uptodate(bh))
1192                         return bh;
1193         }
1194         brelse(bh);
1195         return NULL;
1196 }
1197
1198 /*
1199  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1200  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1201  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1202  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1203  * CPU's LRUs at the same time.
1204  *
1205  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1206  * sb_find_get_block().
1207  *
1208  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1209  * a local interrupt disable for that.
1210  */
1211
1212 #define BH_LRU_SIZE     8
1213
1214 struct bh_lru {
1215         struct buffer_head *bhs[BH_LRU_SIZE];
1216 };
1217
1218 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1219
1220 #ifdef CONFIG_SMP
1221 #define bh_lru_lock()   local_irq_disable()
1222 #define bh_lru_unlock() local_irq_enable()
1223 #else
1224 #define bh_lru_lock()   preempt_disable()
1225 #define bh_lru_unlock() preempt_enable()
1226 #endif
1227
1228 static inline void check_irqs_on(void)
1229 {
1230 #ifdef irqs_disabled
1231         BUG_ON(irqs_disabled());
1232 #endif
1233 }
1234
1235 /*
1236  * The LRU management algorithm is dopey-but-simple.  Sorry.
1237  */
1238 static void bh_lru_install(struct buffer_head *bh)
1239 {
1240         struct buffer_head *evictee = NULL;
1241         struct bh_lru *lru;
1242
1243         check_irqs_on();
1244         bh_lru_lock();
1245         lru = &__get_cpu_var(bh_lrus);
1246         if (lru->bhs[0] != bh) {
1247                 struct buffer_head *bhs[BH_LRU_SIZE];
1248                 int in;
1249                 int out = 0;
1250
1251                 get_bh(bh);
1252                 bhs[out++] = bh;
1253                 for (in = 0; in < BH_LRU_SIZE; in++) {
1254                         struct buffer_head *bh2 = lru->bhs[in];
1255
1256                         if (bh2 == bh) {
1257                                 __brelse(bh2);
1258                         } else {
1259                                 if (out >= BH_LRU_SIZE) {
1260                                         BUG_ON(evictee != NULL);
1261                                         evictee = bh2;
1262                                 } else {
1263                                         bhs[out++] = bh2;
1264                                 }
1265                         }
1266                 }
1267                 while (out < BH_LRU_SIZE)
1268                         bhs[out++] = NULL;
1269                 memcpy(lru->bhs, bhs, sizeof(bhs));
1270         }
1271         bh_lru_unlock();
1272
1273         if (evictee)
1274                 __brelse(evictee);
1275 }
1276
1277 /*
1278  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1279  */
1280 static struct buffer_head *
1281 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1282 {
1283         struct buffer_head *ret = NULL;
1284         struct bh_lru *lru;
1285         unsigned int i;
1286
1287         check_irqs_on();
1288         bh_lru_lock();
1289         lru = &__get_cpu_var(bh_lrus);
1290         for (i = 0; i < BH_LRU_SIZE; i++) {
1291                 struct buffer_head *bh = lru->bhs[i];
1292
1293                 if (bh && bh->b_bdev == bdev &&
1294                                 bh->b_blocknr == block && bh->b_size == size) {
1295                         if (i) {
1296                                 while (i) {
1297                                         lru->bhs[i] = lru->bhs[i - 1];
1298                                         i--;
1299                                 }
1300                                 lru->bhs[0] = bh;
1301                         }
1302                         get_bh(bh);
1303                         ret = bh;
1304                         break;
1305                 }
1306         }
1307         bh_lru_unlock();
1308         return ret;
1309 }
1310
1311 /*
1312  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1313  * it in the LRU and mark it as accessed.  If it is not present then return
1314  * NULL
1315  */
1316 struct buffer_head *
1317 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1318 {
1319         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1320
1321         if (bh == NULL) {
1322                 bh = __find_get_block_slow(bdev, block);
1323                 if (bh)
1324                         bh_lru_install(bh);
1325         }
1326         if (bh)
1327                 touch_buffer(bh);
1328         return bh;
1329 }
1330 EXPORT_SYMBOL(__find_get_block);
1331
1332 /*
1333  * __getblk will locate (and, if necessary, create) the buffer_head
1334  * which corresponds to the passed block_device, block and size. The
1335  * returned buffer has its reference count incremented.
1336  *
1337  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1338  * illegal block number, __getblk() will happily return a buffer_head
1339  * which represents the non-existent block.  Very weird.
1340  *
1341  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1342  * attempt is failing.  FIXME, perhaps?
1343  */
1344 struct buffer_head *
1345 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1346 {
1347         struct buffer_head *bh = __find_get_block(bdev, block, size);
1348
1349         might_sleep();
1350         if (bh == NULL)
1351                 bh = __getblk_slow(bdev, block, size);
1352         return bh;
1353 }
1354 EXPORT_SYMBOL(__getblk);
1355
1356 /*
1357  * Do async read-ahead on a buffer..
1358  */
1359 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361         struct buffer_head *bh = __getblk(bdev, block, size);
1362         if (likely(bh)) {
1363                 ll_rw_block(READA, 1, &bh);
1364                 brelse(bh);
1365         }
1366 }
1367 EXPORT_SYMBOL(__breadahead);
1368
1369 /**
1370  *  __bread() - reads a specified block and returns the bh
1371  *  @bdev: the block_device to read from
1372  *  @block: number of block
1373  *  @size: size (in bytes) to read
1374  * 
1375  *  Reads a specified block, and returns buffer head that contains it.
1376  *  It returns NULL if the block was unreadable.
1377  */
1378 struct buffer_head *
1379 __bread(struct block_device *bdev, sector_t block, unsigned size)
1380 {
1381         struct buffer_head *bh = __getblk(bdev, block, size);
1382
1383         if (likely(bh) && !buffer_uptodate(bh))
1384                 bh = __bread_slow(bh);
1385         return bh;
1386 }
1387 EXPORT_SYMBOL(__bread);
1388
1389 /*
1390  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1391  * This doesn't race because it runs in each cpu either in irq
1392  * or with preempt disabled.
1393  */
1394 static void invalidate_bh_lru(void *arg)
1395 {
1396         struct bh_lru *b = &get_cpu_var(bh_lrus);
1397         int i;
1398
1399         for (i = 0; i < BH_LRU_SIZE; i++) {
1400                 brelse(b->bhs[i]);
1401                 b->bhs[i] = NULL;
1402         }
1403         put_cpu_var(bh_lrus);
1404 }
1405         
1406 static void invalidate_bh_lrus(void)
1407 {
1408         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1409 }
1410
1411 void set_bh_page(struct buffer_head *bh,
1412                 struct page *page, unsigned long offset)
1413 {
1414         bh->b_page = page;
1415         BUG_ON(offset >= PAGE_SIZE);
1416         if (PageHighMem(page))
1417                 /*
1418                  * This catches illegal uses and preserves the offset:
1419                  */
1420                 bh->b_data = (char *)(0 + offset);
1421         else
1422                 bh->b_data = page_address(page) + offset;
1423 }
1424 EXPORT_SYMBOL(set_bh_page);
1425
1426 /*
1427  * Called when truncating a buffer on a page completely.
1428  */
1429 static void discard_buffer(struct buffer_head * bh)
1430 {
1431         lock_buffer(bh);
1432         clear_buffer_dirty(bh);
1433         bh->b_bdev = NULL;
1434         clear_buffer_mapped(bh);
1435         clear_buffer_req(bh);
1436         clear_buffer_new(bh);
1437         clear_buffer_delay(bh);
1438         clear_buffer_unwritten(bh);
1439         unlock_buffer(bh);
1440 }
1441
1442 /**
1443  * block_invalidatepage - invalidate part of all of a buffer-backed page
1444  *
1445  * @page: the page which is affected
1446  * @offset: the index of the truncation point
1447  *
1448  * block_invalidatepage() is called when all or part of the page has become
1449  * invalidatedby a truncate operation.
1450  *
1451  * block_invalidatepage() does not have to release all buffers, but it must
1452  * ensure that no dirty buffer is left outside @offset and that no I/O
1453  * is underway against any of the blocks which are outside the truncation
1454  * point.  Because the caller is about to free (and possibly reuse) those
1455  * blocks on-disk.
1456  */
1457 void block_invalidatepage(struct page *page, unsigned long offset)
1458 {
1459         struct buffer_head *head, *bh, *next;
1460         unsigned int curr_off = 0;
1461
1462         BUG_ON(!PageLocked(page));
1463         if (!page_has_buffers(page))
1464                 goto out;
1465
1466         head = page_buffers(page);
1467         bh = head;
1468         do {
1469                 unsigned int next_off = curr_off + bh->b_size;
1470                 next = bh->b_this_page;
1471
1472                 /*
1473                  * is this block fully invalidated?
1474                  */
1475                 if (offset <= curr_off)
1476                         discard_buffer(bh);
1477                 curr_off = next_off;
1478                 bh = next;
1479         } while (bh != head);
1480
1481         /*
1482          * We release buffers only if the entire page is being invalidated.
1483          * The get_block cached value has been unconditionally invalidated,
1484          * so real IO is not possible anymore.
1485          */
1486         if (offset == 0)
1487                 try_to_release_page(page, 0);
1488 out:
1489         return;
1490 }
1491 EXPORT_SYMBOL(block_invalidatepage);
1492
1493 /*
1494  * We attach and possibly dirty the buffers atomically wrt
1495  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1496  * is already excluded via the page lock.
1497  */
1498 void create_empty_buffers(struct page *page,
1499                         unsigned long blocksize, unsigned long b_state)
1500 {
1501         struct buffer_head *bh, *head, *tail;
1502
1503         head = alloc_page_buffers(page, blocksize, 1);
1504         bh = head;
1505         do {
1506                 bh->b_state |= b_state;
1507                 tail = bh;
1508                 bh = bh->b_this_page;
1509         } while (bh);
1510         tail->b_this_page = head;
1511
1512         spin_lock(&page->mapping->private_lock);
1513         if (PageUptodate(page) || PageDirty(page)) {
1514                 bh = head;
1515                 do {
1516                         if (PageDirty(page))
1517                                 set_buffer_dirty(bh);
1518                         if (PageUptodate(page))
1519                                 set_buffer_uptodate(bh);
1520                         bh = bh->b_this_page;
1521                 } while (bh != head);
1522         }
1523         attach_page_buffers(page, head);
1524         spin_unlock(&page->mapping->private_lock);
1525 }
1526 EXPORT_SYMBOL(create_empty_buffers);
1527
1528 /*
1529  * We are taking a block for data and we don't want any output from any
1530  * buffer-cache aliases starting from return from that function and
1531  * until the moment when something will explicitly mark the buffer
1532  * dirty (hopefully that will not happen until we will free that block ;-)
1533  * We don't even need to mark it not-uptodate - nobody can expect
1534  * anything from a newly allocated buffer anyway. We used to used
1535  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1536  * don't want to mark the alias unmapped, for example - it would confuse
1537  * anyone who might pick it with bread() afterwards...
1538  *
1539  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1540  * be writeout I/O going on against recently-freed buffers.  We don't
1541  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1542  * only if we really need to.  That happens here.
1543  */
1544 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1545 {
1546         struct buffer_head *old_bh;
1547
1548         might_sleep();
1549
1550         old_bh = __find_get_block_slow(bdev, block);
1551         if (old_bh) {
1552                 clear_buffer_dirty(old_bh);
1553                 wait_on_buffer(old_bh);
1554                 clear_buffer_req(old_bh);
1555                 __brelse(old_bh);
1556         }
1557 }
1558 EXPORT_SYMBOL(unmap_underlying_metadata);
1559
1560 /*
1561  * NOTE! All mapped/uptodate combinations are valid:
1562  *
1563  *      Mapped  Uptodate        Meaning
1564  *
1565  *      No      No              "unknown" - must do get_block()
1566  *      No      Yes             "hole" - zero-filled
1567  *      Yes     No              "allocated" - allocated on disk, not read in
1568  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1569  *
1570  * "Dirty" is valid only with the last case (mapped+uptodate).
1571  */
1572
1573 /*
1574  * While block_write_full_page is writing back the dirty buffers under
1575  * the page lock, whoever dirtied the buffers may decide to clean them
1576  * again at any time.  We handle that by only looking at the buffer
1577  * state inside lock_buffer().
1578  *
1579  * If block_write_full_page() is called for regular writeback
1580  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1581  * locked buffer.   This only can happen if someone has written the buffer
1582  * directly, with submit_bh().  At the address_space level PageWriteback
1583  * prevents this contention from occurring.
1584  */
1585 static int __block_write_full_page(struct inode *inode, struct page *page,
1586                         get_block_t *get_block, struct writeback_control *wbc)
1587 {
1588         int err;
1589         sector_t block;
1590         sector_t last_block;
1591         struct buffer_head *bh, *head;
1592         const unsigned blocksize = 1 << inode->i_blkbits;
1593         int nr_underway = 0;
1594
1595         BUG_ON(!PageLocked(page));
1596
1597         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1598
1599         if (!page_has_buffers(page)) {
1600                 create_empty_buffers(page, blocksize,
1601                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1602         }
1603
1604         /*
1605          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1606          * here, and the (potentially unmapped) buffers may become dirty at
1607          * any time.  If a buffer becomes dirty here after we've inspected it
1608          * then we just miss that fact, and the page stays dirty.
1609          *
1610          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1611          * handle that here by just cleaning them.
1612          */
1613
1614         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1615         head = page_buffers(page);
1616         bh = head;
1617
1618         /*
1619          * Get all the dirty buffers mapped to disk addresses and
1620          * handle any aliases from the underlying blockdev's mapping.
1621          */
1622         do {
1623                 if (block > last_block) {
1624                         /*
1625                          * mapped buffers outside i_size will occur, because
1626                          * this page can be outside i_size when there is a
1627                          * truncate in progress.
1628                          */
1629                         /*
1630                          * The buffer was zeroed by block_write_full_page()
1631                          */
1632                         clear_buffer_dirty(bh);
1633                         set_buffer_uptodate(bh);
1634                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1635                         WARN_ON(bh->b_size != blocksize);
1636                         err = get_block(inode, block, bh, 1);
1637                         if (err)
1638                                 goto recover;
1639                         if (buffer_new(bh)) {
1640                                 /* blockdev mappings never come here */
1641                                 clear_buffer_new(bh);
1642                                 unmap_underlying_metadata(bh->b_bdev,
1643                                                         bh->b_blocknr);
1644                         }
1645                 }
1646                 bh = bh->b_this_page;
1647                 block++;
1648         } while (bh != head);
1649
1650         do {
1651                 if (!buffer_mapped(bh))
1652                         continue;
1653                 /*
1654                  * If it's a fully non-blocking write attempt and we cannot
1655                  * lock the buffer then redirty the page.  Note that this can
1656                  * potentially cause a busy-wait loop from pdflush and kswapd
1657                  * activity, but those code paths have their own higher-level
1658                  * throttling.
1659                  */
1660                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1661                         lock_buffer(bh);
1662                 } else if (test_set_buffer_locked(bh)) {
1663                         redirty_page_for_writepage(wbc, page);
1664                         continue;
1665                 }
1666                 if (test_clear_buffer_dirty(bh)) {
1667                         mark_buffer_async_write(bh);
1668                 } else {
1669                         unlock_buffer(bh);
1670                 }
1671         } while ((bh = bh->b_this_page) != head);
1672
1673         /*
1674          * The page and its buffers are protected by PageWriteback(), so we can
1675          * drop the bh refcounts early.
1676          */
1677         BUG_ON(PageWriteback(page));
1678         set_page_writeback(page);
1679
1680         do {
1681                 struct buffer_head *next = bh->b_this_page;
1682                 if (buffer_async_write(bh)) {
1683                         submit_bh(WRITE, bh);
1684                         nr_underway++;
1685                 }
1686                 bh = next;
1687         } while (bh != head);
1688         unlock_page(page);
1689
1690         err = 0;
1691 done:
1692         if (nr_underway == 0) {
1693                 /*
1694                  * The page was marked dirty, but the buffers were
1695                  * clean.  Someone wrote them back by hand with
1696                  * ll_rw_block/submit_bh.  A rare case.
1697                  */
1698                 end_page_writeback(page);
1699
1700                 /*
1701                  * The page and buffer_heads can be released at any time from
1702                  * here on.
1703                  */
1704                 wbc->pages_skipped++;   /* We didn't write this page */
1705         }
1706         return err;
1707
1708 recover:
1709         /*
1710          * ENOSPC, or some other error.  We may already have added some
1711          * blocks to the file, so we need to write these out to avoid
1712          * exposing stale data.
1713          * The page is currently locked and not marked for writeback
1714          */
1715         bh = head;
1716         /* Recovery: lock and submit the mapped buffers */
1717         do {
1718                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1719                         lock_buffer(bh);
1720                         mark_buffer_async_write(bh);
1721                 } else {
1722                         /*
1723                          * The buffer may have been set dirty during
1724                          * attachment to a dirty page.
1725                          */
1726                         clear_buffer_dirty(bh);
1727                 }
1728         } while ((bh = bh->b_this_page) != head);
1729         SetPageError(page);
1730         BUG_ON(PageWriteback(page));
1731         set_page_writeback(page);
1732         do {
1733                 struct buffer_head *next = bh->b_this_page;
1734                 if (buffer_async_write(bh)) {
1735                         clear_buffer_dirty(bh);
1736                         submit_bh(WRITE, bh);
1737                         nr_underway++;
1738                 }
1739                 bh = next;
1740         } while (bh != head);
1741         unlock_page(page);
1742         goto done;
1743 }
1744
1745 static int __block_prepare_write(struct inode *inode, struct page *page,
1746                 unsigned from, unsigned to, get_block_t *get_block)
1747 {
1748         unsigned block_start, block_end;
1749         sector_t block;
1750         int err = 0;
1751         unsigned blocksize, bbits;
1752         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1753
1754         BUG_ON(!PageLocked(page));
1755         BUG_ON(from > PAGE_CACHE_SIZE);
1756         BUG_ON(to > PAGE_CACHE_SIZE);
1757         BUG_ON(from > to);
1758
1759         blocksize = 1 << inode->i_blkbits;
1760         if (!page_has_buffers(page))
1761                 create_empty_buffers(page, blocksize, 0);
1762         head = page_buffers(page);
1763
1764         bbits = inode->i_blkbits;
1765         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1766
1767         for(bh = head, block_start = 0; bh != head || !block_start;
1768             block++, block_start=block_end, bh = bh->b_this_page) {
1769                 block_end = block_start + blocksize;
1770                 if (block_end <= from || block_start >= to) {
1771                         if (PageUptodate(page)) {
1772                                 if (!buffer_uptodate(bh))
1773                                         set_buffer_uptodate(bh);
1774                         }
1775                         continue;
1776                 }
1777                 if (buffer_new(bh))
1778                         clear_buffer_new(bh);
1779                 if (!buffer_mapped(bh)) {
1780                         WARN_ON(bh->b_size != blocksize);
1781                         err = get_block(inode, block, bh, 1);
1782                         if (err)
1783                                 break;
1784                         if (buffer_new(bh)) {
1785                                 unmap_underlying_metadata(bh->b_bdev,
1786                                                         bh->b_blocknr);
1787                                 if (PageUptodate(page)) {
1788                                         set_buffer_uptodate(bh);
1789                                         continue;
1790                                 }
1791                                 if (block_end > to || block_start < from) {
1792                                         void *kaddr;
1793
1794                                         kaddr = kmap_atomic(page, KM_USER0);
1795                                         if (block_end > to)
1796                                                 memset(kaddr+to, 0,
1797                                                         block_end-to);
1798                                         if (block_start < from)
1799                                                 memset(kaddr+block_start,
1800                                                         0, from-block_start);
1801                                         flush_dcache_page(page);
1802                                         kunmap_atomic(kaddr, KM_USER0);
1803                                 }
1804                                 continue;
1805                         }
1806                 }
1807                 if (PageUptodate(page)) {
1808                         if (!buffer_uptodate(bh))
1809                                 set_buffer_uptodate(bh);
1810                         continue; 
1811                 }
1812                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1813                     !buffer_unwritten(bh) &&
1814                      (block_start < from || block_end > to)) {
1815                         ll_rw_block(READ, 1, &bh);
1816                         *wait_bh++=bh;
1817                 }
1818         }
1819         /*
1820          * If we issued read requests - let them complete.
1821          */
1822         while(wait_bh > wait) {
1823                 wait_on_buffer(*--wait_bh);
1824                 if (!buffer_uptodate(*wait_bh))
1825                         err = -EIO;
1826         }
1827         if (!err) {
1828                 bh = head;
1829                 do {
1830                         if (buffer_new(bh))
1831                                 clear_buffer_new(bh);
1832                 } while ((bh = bh->b_this_page) != head);
1833                 return 0;
1834         }
1835         /* Error case: */
1836         /*
1837          * Zero out any newly allocated blocks to avoid exposing stale
1838          * data.  If BH_New is set, we know that the block was newly
1839          * allocated in the above loop.
1840          */
1841         bh = head;
1842         block_start = 0;
1843         do {
1844                 block_end = block_start+blocksize;
1845                 if (block_end <= from)
1846                         goto next_bh;
1847                 if (block_start >= to)
1848                         break;
1849                 if (buffer_new(bh)) {
1850                         void *kaddr;
1851
1852                         clear_buffer_new(bh);
1853                         kaddr = kmap_atomic(page, KM_USER0);
1854                         memset(kaddr+block_start, 0, bh->b_size);
1855                         flush_dcache_page(page);
1856                         kunmap_atomic(kaddr, KM_USER0);
1857                         set_buffer_uptodate(bh);
1858                         mark_buffer_dirty(bh);
1859                 }
1860 next_bh:
1861                 block_start = block_end;
1862                 bh = bh->b_this_page;
1863         } while (bh != head);
1864         return err;
1865 }
1866
1867 static int __block_commit_write(struct inode *inode, struct page *page,
1868                 unsigned from, unsigned to)
1869 {
1870         unsigned block_start, block_end;
1871         int partial = 0;
1872         unsigned blocksize;
1873         struct buffer_head *bh, *head;
1874
1875         blocksize = 1 << inode->i_blkbits;
1876
1877         for(bh = head = page_buffers(page), block_start = 0;
1878             bh != head || !block_start;
1879             block_start=block_end, bh = bh->b_this_page) {
1880                 block_end = block_start + blocksize;
1881                 if (block_end <= from || block_start >= to) {
1882                         if (!buffer_uptodate(bh))
1883                                 partial = 1;
1884                 } else {
1885                         set_buffer_uptodate(bh);
1886                         mark_buffer_dirty(bh);
1887                 }
1888         }
1889
1890         /*
1891          * If this is a partial write which happened to make all buffers
1892          * uptodate then we can optimize away a bogus readpage() for
1893          * the next read(). Here we 'discover' whether the page went
1894          * uptodate as a result of this (potentially partial) write.
1895          */
1896         if (!partial)
1897                 SetPageUptodate(page);
1898         return 0;
1899 }
1900
1901 /*
1902  * Generic "read page" function for block devices that have the normal
1903  * get_block functionality. This is most of the block device filesystems.
1904  * Reads the page asynchronously --- the unlock_buffer() and
1905  * set/clear_buffer_uptodate() functions propagate buffer state into the
1906  * page struct once IO has completed.
1907  */
1908 int block_read_full_page(struct page *page, get_block_t *get_block)
1909 {
1910         struct inode *inode = page->mapping->host;
1911         sector_t iblock, lblock;
1912         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1913         unsigned int blocksize;
1914         int nr, i;
1915         int fully_mapped = 1;
1916
1917         BUG_ON(!PageLocked(page));
1918         blocksize = 1 << inode->i_blkbits;
1919         if (!page_has_buffers(page))
1920                 create_empty_buffers(page, blocksize, 0);
1921         head = page_buffers(page);
1922
1923         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1924         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1925         bh = head;
1926         nr = 0;
1927         i = 0;
1928
1929         do {
1930                 if (buffer_uptodate(bh))
1931                         continue;
1932
1933                 if (!buffer_mapped(bh)) {
1934                         int err = 0;
1935
1936                         fully_mapped = 0;
1937                         if (iblock < lblock) {
1938                                 WARN_ON(bh->b_size != blocksize);
1939                                 err = get_block(inode, iblock, bh, 0);
1940                                 if (err)
1941                                         SetPageError(page);
1942                         }
1943                         if (!buffer_mapped(bh)) {
1944                                 void *kaddr = kmap_atomic(page, KM_USER0);
1945                                 memset(kaddr + i * blocksize, 0, blocksize);
1946                                 flush_dcache_page(page);
1947                                 kunmap_atomic(kaddr, KM_USER0);
1948                                 if (!err)
1949                                         set_buffer_uptodate(bh);
1950                                 continue;
1951                         }
1952                         /*
1953                          * get_block() might have updated the buffer
1954                          * synchronously
1955                          */
1956                         if (buffer_uptodate(bh))
1957                                 continue;
1958                 }
1959                 arr[nr++] = bh;
1960         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1961
1962         if (fully_mapped)
1963                 SetPageMappedToDisk(page);
1964
1965         if (!nr) {
1966                 /*
1967                  * All buffers are uptodate - we can set the page uptodate
1968                  * as well. But not if get_block() returned an error.
1969                  */
1970                 if (!PageError(page))
1971                         SetPageUptodate(page);
1972                 unlock_page(page);
1973                 return 0;
1974         }
1975
1976         /* Stage two: lock the buffers */
1977         for (i = 0; i < nr; i++) {
1978                 bh = arr[i];
1979                 lock_buffer(bh);
1980                 mark_buffer_async_read(bh);
1981         }
1982
1983         /*
1984          * Stage 3: start the IO.  Check for uptodateness
1985          * inside the buffer lock in case another process reading
1986          * the underlying blockdev brought it uptodate (the sct fix).
1987          */
1988         for (i = 0; i < nr; i++) {
1989                 bh = arr[i];
1990                 if (buffer_uptodate(bh))
1991                         end_buffer_async_read(bh, 1);
1992                 else
1993                         submit_bh(READ, bh);
1994         }
1995         return 0;
1996 }
1997
1998 /* utility function for filesystems that need to do work on expanding
1999  * truncates.  Uses prepare/commit_write to allow the filesystem to
2000  * deal with the hole.  
2001  */
2002 static int __generic_cont_expand(struct inode *inode, loff_t size,
2003                                  pgoff_t index, unsigned int offset)
2004 {
2005         struct address_space *mapping = inode->i_mapping;
2006         struct page *page;
2007         unsigned long limit;
2008         int err;
2009
2010         err = -EFBIG;
2011         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2012         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2013                 send_sig(SIGXFSZ, current, 0);
2014                 goto out;
2015         }
2016         if (size > inode->i_sb->s_maxbytes)
2017                 goto out;
2018
2019         err = -ENOMEM;
2020         page = grab_cache_page(mapping, index);
2021         if (!page)
2022                 goto out;
2023         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2024         if (err) {
2025                 /*
2026                  * ->prepare_write() may have instantiated a few blocks
2027                  * outside i_size.  Trim these off again.
2028                  */
2029                 unlock_page(page);
2030                 page_cache_release(page);
2031                 vmtruncate(inode, inode->i_size);
2032                 goto out;
2033         }
2034
2035         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2036
2037         unlock_page(page);
2038         page_cache_release(page);
2039         if (err > 0)
2040                 err = 0;
2041 out:
2042         return err;
2043 }
2044
2045 int generic_cont_expand(struct inode *inode, loff_t size)
2046 {
2047         pgoff_t index;
2048         unsigned int offset;
2049
2050         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2051
2052         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2053         ** skip the prepare.  make sure we never send an offset for the start
2054         ** of a block
2055         */
2056         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2057                 /* caller must handle this extra byte. */
2058                 offset++;
2059         }
2060         index = size >> PAGE_CACHE_SHIFT;
2061
2062         return __generic_cont_expand(inode, size, index, offset);
2063 }
2064
2065 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2066 {
2067         loff_t pos = size - 1;
2068         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2069         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2070
2071         /* prepare/commit_write can handle even if from==to==start of block. */
2072         return __generic_cont_expand(inode, size, index, offset);
2073 }
2074
2075 /*
2076  * For moronic filesystems that do not allow holes in file.
2077  * We may have to extend the file.
2078  */
2079
2080 int cont_prepare_write(struct page *page, unsigned offset,
2081                 unsigned to, get_block_t *get_block, loff_t *bytes)
2082 {
2083         struct address_space *mapping = page->mapping;
2084         struct inode *inode = mapping->host;
2085         struct page *new_page;
2086         pgoff_t pgpos;
2087         long status;
2088         unsigned zerofrom;
2089         unsigned blocksize = 1 << inode->i_blkbits;
2090         void *kaddr;
2091
2092         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2093                 status = -ENOMEM;
2094                 new_page = grab_cache_page(mapping, pgpos);
2095                 if (!new_page)
2096                         goto out;
2097                 /* we might sleep */
2098                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2099                         unlock_page(new_page);
2100                         page_cache_release(new_page);
2101                         continue;
2102                 }
2103                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2104                 if (zerofrom & (blocksize-1)) {
2105                         *bytes |= (blocksize-1);
2106                         (*bytes)++;
2107                 }
2108                 status = __block_prepare_write(inode, new_page, zerofrom,
2109                                                 PAGE_CACHE_SIZE, get_block);
2110                 if (status)
2111                         goto out_unmap;
2112                 kaddr = kmap_atomic(new_page, KM_USER0);
2113                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2114                 flush_dcache_page(new_page);
2115                 kunmap_atomic(kaddr, KM_USER0);
2116                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2117                 unlock_page(new_page);
2118                 page_cache_release(new_page);
2119         }
2120
2121         if (page->index < pgpos) {
2122                 /* completely inside the area */
2123                 zerofrom = offset;
2124         } else {
2125                 /* page covers the boundary, find the boundary offset */
2126                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2127
2128                 /* if we will expand the thing last block will be filled */
2129                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2130                         *bytes |= (blocksize-1);
2131                         (*bytes)++;
2132                 }
2133
2134                 /* starting below the boundary? Nothing to zero out */
2135                 if (offset <= zerofrom)
2136                         zerofrom = offset;
2137         }
2138         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2139         if (status)
2140                 goto out1;
2141         if (zerofrom < offset) {
2142                 kaddr = kmap_atomic(page, KM_USER0);
2143                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2144                 flush_dcache_page(page);
2145                 kunmap_atomic(kaddr, KM_USER0);
2146                 __block_commit_write(inode, page, zerofrom, offset);
2147         }
2148         return 0;
2149 out1:
2150         ClearPageUptodate(page);
2151         return status;
2152
2153 out_unmap:
2154         ClearPageUptodate(new_page);
2155         unlock_page(new_page);
2156         page_cache_release(new_page);
2157 out:
2158         return status;
2159 }
2160
2161 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2162                         get_block_t *get_block)
2163 {
2164         struct inode *inode = page->mapping->host;
2165         int err = __block_prepare_write(inode, page, from, to, get_block);
2166         if (err)
2167                 ClearPageUptodate(page);
2168         return err;
2169 }
2170
2171 int block_commit_write(struct page *page, unsigned from, unsigned to)
2172 {
2173         struct inode *inode = page->mapping->host;
2174         __block_commit_write(inode,page,from,to);
2175         return 0;
2176 }
2177
2178 int generic_commit_write(struct file *file, struct page *page,
2179                 unsigned from, unsigned to)
2180 {
2181         struct inode *inode = page->mapping->host;
2182         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2183         __block_commit_write(inode,page,from,to);
2184         /*
2185          * No need to use i_size_read() here, the i_size
2186          * cannot change under us because we hold i_mutex.
2187          */
2188         if (pos > inode->i_size) {
2189                 i_size_write(inode, pos);
2190                 mark_inode_dirty(inode);
2191         }
2192         return 0;
2193 }
2194
2195
2196 /*
2197  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2198  * immediately, while under the page lock.  So it needs a special end_io
2199  * handler which does not touch the bh after unlocking it.
2200  *
2201  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2202  * a race there is benign: unlock_buffer() only use the bh's address for
2203  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2204  * itself.
2205  */
2206 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2207 {
2208         if (uptodate) {
2209                 set_buffer_uptodate(bh);
2210         } else {
2211                 /* This happens, due to failed READA attempts. */
2212                 clear_buffer_uptodate(bh);
2213         }
2214         unlock_buffer(bh);
2215 }
2216
2217 /*
2218  * On entry, the page is fully not uptodate.
2219  * On exit the page is fully uptodate in the areas outside (from,to)
2220  */
2221 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2222                         get_block_t *get_block)
2223 {
2224         struct inode *inode = page->mapping->host;
2225         const unsigned blkbits = inode->i_blkbits;
2226         const unsigned blocksize = 1 << blkbits;
2227         struct buffer_head map_bh;
2228         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2229         unsigned block_in_page;
2230         unsigned block_start;
2231         sector_t block_in_file;
2232         char *kaddr;
2233         int nr_reads = 0;
2234         int i;
2235         int ret = 0;
2236         int is_mapped_to_disk = 1;
2237
2238         if (PageMappedToDisk(page))
2239                 return 0;
2240
2241         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2242         map_bh.b_page = page;
2243
2244         /*
2245          * We loop across all blocks in the page, whether or not they are
2246          * part of the affected region.  This is so we can discover if the
2247          * page is fully mapped-to-disk.
2248          */
2249         for (block_start = 0, block_in_page = 0;
2250                   block_start < PAGE_CACHE_SIZE;
2251                   block_in_page++, block_start += blocksize) {
2252                 unsigned block_end = block_start + blocksize;
2253                 int create;
2254
2255                 map_bh.b_state = 0;
2256                 create = 1;
2257                 if (block_start >= to)
2258                         create = 0;
2259                 map_bh.b_size = blocksize;
2260                 ret = get_block(inode, block_in_file + block_in_page,
2261                                         &map_bh, create);
2262                 if (ret)
2263                         goto failed;
2264                 if (!buffer_mapped(&map_bh))
2265                         is_mapped_to_disk = 0;
2266                 if (buffer_new(&map_bh))
2267                         unmap_underlying_metadata(map_bh.b_bdev,
2268                                                         map_bh.b_blocknr);
2269                 if (PageUptodate(page))
2270                         continue;
2271                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2272                         kaddr = kmap_atomic(page, KM_USER0);
2273                         if (block_start < from)
2274                                 memset(kaddr+block_start, 0, from-block_start);
2275                         if (block_end > to)
2276                                 memset(kaddr + to, 0, block_end - to);
2277                         flush_dcache_page(page);
2278                         kunmap_atomic(kaddr, KM_USER0);
2279                         continue;
2280                 }
2281                 if (buffer_uptodate(&map_bh))
2282                         continue;       /* reiserfs does this */
2283                 if (block_start < from || block_end > to) {
2284                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2285
2286                         if (!bh) {
2287                                 ret = -ENOMEM;
2288                                 goto failed;
2289                         }
2290                         bh->b_state = map_bh.b_state;
2291                         atomic_set(&bh->b_count, 0);
2292                         bh->b_this_page = NULL;
2293                         bh->b_page = page;
2294                         bh->b_blocknr = map_bh.b_blocknr;
2295                         bh->b_size = blocksize;
2296                         bh->b_data = (char *)(long)block_start;
2297                         bh->b_bdev = map_bh.b_bdev;
2298                         bh->b_private = NULL;
2299                         read_bh[nr_reads++] = bh;
2300                 }
2301         }
2302
2303         if (nr_reads) {
2304                 struct buffer_head *bh;
2305
2306                 /*
2307                  * The page is locked, so these buffers are protected from
2308                  * any VM or truncate activity.  Hence we don't need to care
2309                  * for the buffer_head refcounts.
2310                  */
2311                 for (i = 0; i < nr_reads; i++) {
2312                         bh = read_bh[i];
2313                         lock_buffer(bh);
2314                         bh->b_end_io = end_buffer_read_nobh;
2315                         submit_bh(READ, bh);
2316                 }
2317                 for (i = 0; i < nr_reads; i++) {
2318                         bh = read_bh[i];
2319                         wait_on_buffer(bh);
2320                         if (!buffer_uptodate(bh))
2321                                 ret = -EIO;
2322                         free_buffer_head(bh);
2323                         read_bh[i] = NULL;
2324                 }
2325                 if (ret)
2326                         goto failed;
2327         }
2328
2329         if (is_mapped_to_disk)
2330                 SetPageMappedToDisk(page);
2331
2332         return 0;
2333
2334 failed:
2335         for (i = 0; i < nr_reads; i++) {
2336                 if (read_bh[i])
2337                         free_buffer_head(read_bh[i]);
2338         }
2339
2340         /*
2341          * Error recovery is pretty slack.  Clear the page and mark it dirty
2342          * so we'll later zero out any blocks which _were_ allocated.
2343          */
2344         kaddr = kmap_atomic(page, KM_USER0);
2345         memset(kaddr, 0, PAGE_CACHE_SIZE);
2346         flush_dcache_page(page);
2347         kunmap_atomic(kaddr, KM_USER0);
2348         SetPageUptodate(page);
2349         set_page_dirty(page);
2350         return ret;
2351 }
2352 EXPORT_SYMBOL(nobh_prepare_write);
2353
2354 /*
2355  * Make sure any changes to nobh_commit_write() are reflected in
2356  * nobh_truncate_page(), since it doesn't call commit_write().
2357  */
2358 int nobh_commit_write(struct file *file, struct page *page,
2359                 unsigned from, unsigned to)
2360 {
2361         struct inode *inode = page->mapping->host;
2362         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2363
2364         SetPageUptodate(page);
2365         set_page_dirty(page);
2366         if (pos > inode->i_size) {
2367                 i_size_write(inode, pos);
2368                 mark_inode_dirty(inode);
2369         }
2370         return 0;
2371 }
2372 EXPORT_SYMBOL(nobh_commit_write);
2373
2374 /*
2375  * nobh_writepage() - based on block_full_write_page() except
2376  * that it tries to operate without attaching bufferheads to
2377  * the page.
2378  */
2379 int nobh_writepage(struct page *page, get_block_t *get_block,
2380                         struct writeback_control *wbc)
2381 {
2382         struct inode * const inode = page->mapping->host;
2383         loff_t i_size = i_size_read(inode);
2384         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2385         unsigned offset;
2386         void *kaddr;
2387         int ret;
2388
2389         /* Is the page fully inside i_size? */
2390         if (page->index < end_index)
2391                 goto out;
2392
2393         /* Is the page fully outside i_size? (truncate in progress) */
2394         offset = i_size & (PAGE_CACHE_SIZE-1);
2395         if (page->index >= end_index+1 || !offset) {
2396                 /*
2397                  * The page may have dirty, unmapped buffers.  For example,
2398                  * they may have been added in ext3_writepage().  Make them
2399                  * freeable here, so the page does not leak.
2400                  */
2401 #if 0
2402                 /* Not really sure about this  - do we need this ? */
2403                 if (page->mapping->a_ops->invalidatepage)
2404                         page->mapping->a_ops->invalidatepage(page, offset);
2405 #endif
2406                 unlock_page(page);
2407                 return 0; /* don't care */
2408         }
2409
2410         /*
2411          * The page straddles i_size.  It must be zeroed out on each and every
2412          * writepage invocation because it may be mmapped.  "A file is mapped
2413          * in multiples of the page size.  For a file that is not a multiple of
2414          * the  page size, the remaining memory is zeroed when mapped, and
2415          * writes to that region are not written out to the file."
2416          */
2417         kaddr = kmap_atomic(page, KM_USER0);
2418         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2419         flush_dcache_page(page);
2420         kunmap_atomic(kaddr, KM_USER0);
2421 out:
2422         ret = mpage_writepage(page, get_block, wbc);
2423         if (ret == -EAGAIN)
2424                 ret = __block_write_full_page(inode, page, get_block, wbc);
2425         return ret;
2426 }
2427 EXPORT_SYMBOL(nobh_writepage);
2428
2429 /*
2430  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2431  */
2432 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2433 {
2434         struct inode *inode = mapping->host;
2435         unsigned blocksize = 1 << inode->i_blkbits;
2436         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2437         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2438         unsigned to;
2439         struct page *page;
2440         const struct address_space_operations *a_ops = mapping->a_ops;
2441         char *kaddr;
2442         int ret = 0;
2443
2444         if ((offset & (blocksize - 1)) == 0)
2445                 goto out;
2446
2447         ret = -ENOMEM;
2448         page = grab_cache_page(mapping, index);
2449         if (!page)
2450                 goto out;
2451
2452         to = (offset + blocksize) & ~(blocksize - 1);
2453         ret = a_ops->prepare_write(NULL, page, offset, to);
2454         if (ret == 0) {
2455                 kaddr = kmap_atomic(page, KM_USER0);
2456                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2457                 flush_dcache_page(page);
2458                 kunmap_atomic(kaddr, KM_USER0);
2459                 /*
2460                  * It would be more correct to call aops->commit_write()
2461                  * here, but this is more efficient.
2462                  */
2463                 SetPageUptodate(page);
2464                 set_page_dirty(page);
2465         }
2466         unlock_page(page);
2467         page_cache_release(page);
2468 out:
2469         return ret;
2470 }
2471 EXPORT_SYMBOL(nobh_truncate_page);
2472
2473 int block_truncate_page(struct address_space *mapping,
2474                         loff_t from, get_block_t *get_block)
2475 {
2476         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2477         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2478         unsigned blocksize;
2479         sector_t iblock;
2480         unsigned length, pos;
2481         struct inode *inode = mapping->host;
2482         struct page *page;
2483         struct buffer_head *bh;
2484         void *kaddr;
2485         int err;
2486
2487         blocksize = 1 << inode->i_blkbits;
2488         length = offset & (blocksize - 1);
2489
2490         /* Block boundary? Nothing to do */
2491         if (!length)
2492                 return 0;
2493
2494         length = blocksize - length;
2495         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2496         
2497         page = grab_cache_page(mapping, index);
2498         err = -ENOMEM;
2499         if (!page)
2500                 goto out;
2501
2502         if (!page_has_buffers(page))
2503                 create_empty_buffers(page, blocksize, 0);
2504
2505         /* Find the buffer that contains "offset" */
2506         bh = page_buffers(page);
2507         pos = blocksize;
2508         while (offset >= pos) {
2509                 bh = bh->b_this_page;
2510                 iblock++;
2511                 pos += blocksize;
2512         }
2513
2514         err = 0;
2515         if (!buffer_mapped(bh)) {
2516                 WARN_ON(bh->b_size != blocksize);
2517                 err = get_block(inode, iblock, bh, 0);
2518                 if (err)
2519                         goto unlock;
2520                 /* unmapped? It's a hole - nothing to do */
2521                 if (!buffer_mapped(bh))
2522                         goto unlock;
2523         }
2524
2525         /* Ok, it's mapped. Make sure it's up-to-date */
2526         if (PageUptodate(page))
2527                 set_buffer_uptodate(bh);
2528
2529         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2530                 err = -EIO;
2531                 ll_rw_block(READ, 1, &bh);
2532                 wait_on_buffer(bh);
2533                 /* Uhhuh. Read error. Complain and punt. */
2534                 if (!buffer_uptodate(bh))
2535                         goto unlock;
2536         }
2537
2538         kaddr = kmap_atomic(page, KM_USER0);
2539         memset(kaddr + offset, 0, length);
2540         flush_dcache_page(page);
2541         kunmap_atomic(kaddr, KM_USER0);
2542
2543         mark_buffer_dirty(bh);
2544         err = 0;
2545
2546 unlock:
2547         unlock_page(page);
2548         page_cache_release(page);
2549 out:
2550         return err;
2551 }
2552
2553 /*
2554  * The generic ->writepage function for buffer-backed address_spaces
2555  */
2556 int block_write_full_page(struct page *page, get_block_t *get_block,
2557                         struct writeback_control *wbc)
2558 {
2559         struct inode * const inode = page->mapping->host;
2560         loff_t i_size = i_size_read(inode);
2561         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2562         unsigned offset;
2563         void *kaddr;
2564
2565         /* Is the page fully inside i_size? */
2566         if (page->index < end_index)
2567                 return __block_write_full_page(inode, page, get_block, wbc);
2568
2569         /* Is the page fully outside i_size? (truncate in progress) */
2570         offset = i_size & (PAGE_CACHE_SIZE-1);
2571         if (page->index >= end_index+1 || !offset) {
2572                 /*
2573                  * The page may have dirty, unmapped buffers.  For example,
2574                  * they may have been added in ext3_writepage().  Make them
2575                  * freeable here, so the page does not leak.
2576                  */
2577                 do_invalidatepage(page, 0);
2578                 unlock_page(page);
2579                 return 0; /* don't care */
2580         }
2581
2582         /*
2583          * The page straddles i_size.  It must be zeroed out on each and every
2584          * writepage invokation because it may be mmapped.  "A file is mapped
2585          * in multiples of the page size.  For a file that is not a multiple of
2586          * the  page size, the remaining memory is zeroed when mapped, and
2587          * writes to that region are not written out to the file."
2588          */
2589         kaddr = kmap_atomic(page, KM_USER0);
2590         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2591         flush_dcache_page(page);
2592         kunmap_atomic(kaddr, KM_USER0);
2593         return __block_write_full_page(inode, page, get_block, wbc);
2594 }
2595
2596 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2597                             get_block_t *get_block)
2598 {
2599         struct buffer_head tmp;
2600         struct inode *inode = mapping->host;
2601         tmp.b_state = 0;
2602         tmp.b_blocknr = 0;
2603         tmp.b_size = 1 << inode->i_blkbits;
2604         get_block(inode, block, &tmp, 0);
2605         return tmp.b_blocknr;
2606 }
2607
2608 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2609 {
2610         struct buffer_head *bh = bio->bi_private;
2611
2612         if (bio->bi_size)
2613                 return 1;
2614
2615         if (err == -EOPNOTSUPP) {
2616                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2617                 set_bit(BH_Eopnotsupp, &bh->b_state);
2618         }
2619
2620         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2621         bio_put(bio);
2622         return 0;
2623 }
2624
2625 int submit_bh(int rw, struct buffer_head * bh)
2626 {
2627         struct bio *bio;
2628         int ret = 0;
2629
2630         BUG_ON(!buffer_locked(bh));
2631         BUG_ON(!buffer_mapped(bh));
2632         BUG_ON(!bh->b_end_io);
2633
2634         if (buffer_ordered(bh) && (rw == WRITE))
2635                 rw = WRITE_BARRIER;
2636
2637         /*
2638          * Only clear out a write error when rewriting, should this
2639          * include WRITE_SYNC as well?
2640          */
2641         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2642                 clear_buffer_write_io_error(bh);
2643
2644         /*
2645          * from here on down, it's all bio -- do the initial mapping,
2646          * submit_bio -> generic_make_request may further map this bio around
2647          */
2648         bio = bio_alloc(GFP_NOIO, 1);
2649
2650         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2651         bio->bi_bdev = bh->b_bdev;
2652         bio->bi_io_vec[0].bv_page = bh->b_page;
2653         bio->bi_io_vec[0].bv_len = bh->b_size;
2654         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2655
2656         bio->bi_vcnt = 1;
2657         bio->bi_idx = 0;
2658         bio->bi_size = bh->b_size;
2659
2660         bio->bi_end_io = end_bio_bh_io_sync;
2661         bio->bi_private = bh;
2662
2663         bio_get(bio);
2664         submit_bio(rw, bio);
2665
2666         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2667                 ret = -EOPNOTSUPP;
2668
2669         bio_put(bio);
2670         return ret;
2671 }
2672
2673 /**
2674  * ll_rw_block: low-level access to block devices (DEPRECATED)
2675  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2676  * @nr: number of &struct buffer_heads in the array
2677  * @bhs: array of pointers to &struct buffer_head
2678  *
2679  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2680  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2681  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2682  * are sent to disk. The fourth %READA option is described in the documentation
2683  * for generic_make_request() which ll_rw_block() calls.
2684  *
2685  * This function drops any buffer that it cannot get a lock on (with the
2686  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2687  * clean when doing a write request, and any buffer that appears to be
2688  * up-to-date when doing read request.  Further it marks as clean buffers that
2689  * are processed for writing (the buffer cache won't assume that they are
2690  * actually clean until the buffer gets unlocked).
2691  *
2692  * ll_rw_block sets b_end_io to simple completion handler that marks
2693  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2694  * any waiters. 
2695  *
2696  * All of the buffers must be for the same device, and must also be a
2697  * multiple of the current approved size for the device.
2698  */
2699 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2700 {
2701         int i;
2702
2703         for (i = 0; i < nr; i++) {
2704                 struct buffer_head *bh = bhs[i];
2705
2706                 if (rw == SWRITE)
2707                         lock_buffer(bh);
2708                 else if (test_set_buffer_locked(bh))
2709                         continue;
2710
2711                 if (rw == WRITE || rw == SWRITE) {
2712                         if (test_clear_buffer_dirty(bh)) {
2713                                 bh->b_end_io = end_buffer_write_sync;
2714                                 get_bh(bh);
2715                                 submit_bh(WRITE, bh);
2716                                 continue;
2717                         }
2718                 } else {
2719                         if (!buffer_uptodate(bh)) {
2720                                 bh->b_end_io = end_buffer_read_sync;
2721                                 get_bh(bh);
2722                                 submit_bh(rw, bh);
2723                                 continue;
2724                         }
2725                 }
2726                 unlock_buffer(bh);
2727         }
2728 }
2729
2730 /*
2731  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2732  * and then start new I/O and then wait upon it.  The caller must have a ref on
2733  * the buffer_head.
2734  */
2735 int sync_dirty_buffer(struct buffer_head *bh)
2736 {
2737         int ret = 0;
2738
2739         WARN_ON(atomic_read(&bh->b_count) < 1);
2740         lock_buffer(bh);
2741         if (test_clear_buffer_dirty(bh)) {
2742                 get_bh(bh);
2743                 bh->b_end_io = end_buffer_write_sync;
2744                 ret = submit_bh(WRITE, bh);
2745                 wait_on_buffer(bh);
2746                 if (buffer_eopnotsupp(bh)) {
2747                         clear_buffer_eopnotsupp(bh);
2748                         ret = -EOPNOTSUPP;
2749                 }
2750                 if (!ret && !buffer_uptodate(bh))
2751                         ret = -EIO;
2752         } else {
2753                 unlock_buffer(bh);
2754         }
2755         return ret;
2756 }
2757
2758 /*
2759  * try_to_free_buffers() checks if all the buffers on this particular page
2760  * are unused, and releases them if so.
2761  *
2762  * Exclusion against try_to_free_buffers may be obtained by either
2763  * locking the page or by holding its mapping's private_lock.
2764  *
2765  * If the page is dirty but all the buffers are clean then we need to
2766  * be sure to mark the page clean as well.  This is because the page
2767  * may be against a block device, and a later reattachment of buffers
2768  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2769  * filesystem data on the same device.
2770  *
2771  * The same applies to regular filesystem pages: if all the buffers are
2772  * clean then we set the page clean and proceed.  To do that, we require
2773  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2774  * private_lock.
2775  *
2776  * try_to_free_buffers() is non-blocking.
2777  */
2778 static inline int buffer_busy(struct buffer_head *bh)
2779 {
2780         return atomic_read(&bh->b_count) |
2781                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2782 }
2783
2784 static int
2785 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2786 {
2787         struct buffer_head *head = page_buffers(page);
2788         struct buffer_head *bh;
2789
2790         bh = head;
2791         do {
2792                 if (buffer_write_io_error(bh) && page->mapping)
2793                         set_bit(AS_EIO, &page->mapping->flags);
2794                 if (buffer_busy(bh))
2795                         goto failed;
2796                 bh = bh->b_this_page;
2797         } while (bh != head);
2798
2799         do {
2800                 struct buffer_head *next = bh->b_this_page;
2801
2802                 if (!list_empty(&bh->b_assoc_buffers))
2803                         __remove_assoc_queue(bh);
2804                 bh = next;
2805         } while (bh != head);
2806         *buffers_to_free = head;
2807         __clear_page_buffers(page);
2808         return 1;
2809 failed:
2810         return 0;
2811 }
2812
2813 int try_to_free_buffers(struct page *page)
2814 {
2815         struct address_space * const mapping = page->mapping;
2816         struct buffer_head *buffers_to_free = NULL;
2817         int ret = 0;
2818
2819         BUG_ON(!PageLocked(page));
2820         if (PageWriteback(page))
2821                 return 0;
2822
2823         if (mapping == NULL) {          /* can this still happen? */
2824                 ret = drop_buffers(page, &buffers_to_free);
2825                 goto out;
2826         }
2827
2828         spin_lock(&mapping->private_lock);
2829         ret = drop_buffers(page, &buffers_to_free);
2830
2831         /*
2832          * If the filesystem writes its buffers by hand (eg ext3)
2833          * then we can have clean buffers against a dirty page.  We
2834          * clean the page here; otherwise the VM will never notice
2835          * that the filesystem did any IO at all.
2836          *
2837          * Also, during truncate, discard_buffer will have marked all
2838          * the page's buffers clean.  We discover that here and clean
2839          * the page also.
2840          *
2841          * private_lock must be held over this entire operation in order
2842          * to synchronise against __set_page_dirty_buffers and prevent the
2843          * dirty bit from being lost.
2844          */
2845         if (ret)
2846                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2847         spin_unlock(&mapping->private_lock);
2848 out:
2849         if (buffers_to_free) {
2850                 struct buffer_head *bh = buffers_to_free;
2851
2852                 do {
2853                         struct buffer_head *next = bh->b_this_page;
2854                         free_buffer_head(bh);
2855                         bh = next;
2856                 } while (bh != buffers_to_free);
2857         }
2858         return ret;
2859 }
2860 EXPORT_SYMBOL(try_to_free_buffers);
2861
2862 void block_sync_page(struct page *page)
2863 {
2864         struct address_space *mapping;
2865
2866         smp_mb();
2867         mapping = page_mapping(page);
2868         if (mapping)
2869                 blk_run_backing_dev(mapping->backing_dev_info, page);
2870 }
2871
2872 /*
2873  * There are no bdflush tunables left.  But distributions are
2874  * still running obsolete flush daemons, so we terminate them here.
2875  *
2876  * Use of bdflush() is deprecated and will be removed in a future kernel.
2877  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2878  */
2879 asmlinkage long sys_bdflush(int func, long data)
2880 {
2881         static int msg_count;
2882
2883         if (!capable(CAP_SYS_ADMIN))
2884                 return -EPERM;
2885
2886         if (msg_count < 5) {
2887                 msg_count++;
2888                 printk(KERN_INFO
2889                         "warning: process `%s' used the obsolete bdflush"
2890                         " system call\n", current->comm);
2891                 printk(KERN_INFO "Fix your initscripts?\n");
2892         }
2893
2894         if (func == 1)
2895                 do_exit(0);
2896         return 0;
2897 }
2898
2899 /*
2900  * Buffer-head allocation
2901  */
2902 static struct kmem_cache *bh_cachep;
2903
2904 /*
2905  * Once the number of bh's in the machine exceeds this level, we start
2906  * stripping them in writeback.
2907  */
2908 static int max_buffer_heads;
2909
2910 int buffer_heads_over_limit;
2911
2912 struct bh_accounting {
2913         int nr;                 /* Number of live bh's */
2914         int ratelimit;          /* Limit cacheline bouncing */
2915 };
2916
2917 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2918
2919 static void recalc_bh_state(void)
2920 {
2921         int i;
2922         int tot = 0;
2923
2924         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2925                 return;
2926         __get_cpu_var(bh_accounting).ratelimit = 0;
2927         for_each_online_cpu(i)
2928                 tot += per_cpu(bh_accounting, i).nr;
2929         buffer_heads_over_limit = (tot > max_buffer_heads);
2930 }
2931         
2932 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2933 {
2934         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2935         if (ret) {
2936                 get_cpu_var(bh_accounting).nr++;
2937                 recalc_bh_state();
2938                 put_cpu_var(bh_accounting);
2939         }
2940         return ret;
2941 }
2942 EXPORT_SYMBOL(alloc_buffer_head);
2943
2944 void free_buffer_head(struct buffer_head *bh)
2945 {
2946         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2947         kmem_cache_free(bh_cachep, bh);
2948         get_cpu_var(bh_accounting).nr--;
2949         recalc_bh_state();
2950         put_cpu_var(bh_accounting);
2951 }
2952 EXPORT_SYMBOL(free_buffer_head);
2953
2954 static void
2955 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2956 {
2957         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2958                             SLAB_CTOR_CONSTRUCTOR) {
2959                 struct buffer_head * bh = (struct buffer_head *)data;
2960
2961                 memset(bh, 0, sizeof(*bh));
2962                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2963         }
2964 }
2965
2966 static void buffer_exit_cpu(int cpu)
2967 {
2968         int i;
2969         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2970
2971         for (i = 0; i < BH_LRU_SIZE; i++) {
2972                 brelse(b->bhs[i]);
2973                 b->bhs[i] = NULL;
2974         }
2975         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2976         per_cpu(bh_accounting, cpu).nr = 0;
2977         put_cpu_var(bh_accounting);
2978 }
2979
2980 static int buffer_cpu_notify(struct notifier_block *self,
2981                               unsigned long action, void *hcpu)
2982 {
2983         if (action == CPU_DEAD)
2984                 buffer_exit_cpu((unsigned long)hcpu);
2985         return NOTIFY_OK;
2986 }
2987
2988 void __init buffer_init(void)
2989 {
2990         int nrpages;
2991
2992         bh_cachep = kmem_cache_create("buffer_head",
2993                                         sizeof(struct buffer_head), 0,
2994                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2995                                         SLAB_MEM_SPREAD),
2996                                         init_buffer_head,
2997                                         NULL);
2998
2999         /*
3000          * Limit the bh occupancy to 10% of ZONE_NORMAL
3001          */
3002         nrpages = (nr_free_buffer_pages() * 10) / 100;
3003         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3004         hotcpu_notifier(buffer_cpu_notify, 0);
3005 }
3006
3007 EXPORT_SYMBOL(__bforget);
3008 EXPORT_SYMBOL(__brelse);
3009 EXPORT_SYMBOL(__wait_on_buffer);
3010 EXPORT_SYMBOL(block_commit_write);
3011 EXPORT_SYMBOL(block_prepare_write);
3012 EXPORT_SYMBOL(block_read_full_page);
3013 EXPORT_SYMBOL(block_sync_page);
3014 EXPORT_SYMBOL(block_truncate_page);
3015 EXPORT_SYMBOL(block_write_full_page);
3016 EXPORT_SYMBOL(cont_prepare_write);
3017 EXPORT_SYMBOL(end_buffer_read_sync);
3018 EXPORT_SYMBOL(end_buffer_write_sync);
3019 EXPORT_SYMBOL(file_fsync);
3020 EXPORT_SYMBOL(fsync_bdev);
3021 EXPORT_SYMBOL(generic_block_bmap);
3022 EXPORT_SYMBOL(generic_commit_write);
3023 EXPORT_SYMBOL(generic_cont_expand);
3024 EXPORT_SYMBOL(generic_cont_expand_simple);
3025 EXPORT_SYMBOL(init_buffer);
3026 EXPORT_SYMBOL(invalidate_bdev);
3027 EXPORT_SYMBOL(ll_rw_block);
3028 EXPORT_SYMBOL(mark_buffer_dirty);
3029 EXPORT_SYMBOL(submit_bh);
3030 EXPORT_SYMBOL(sync_dirty_buffer);
3031 EXPORT_SYMBOL(unlock_buffer);