i2c: use SPDX identifier for Renesas drivers
[linux] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31 static struct kmem_cache *fsync_node_entry_slab;
32
33 /*
34  * Check whether the given nid is within node id range.
35  */
36 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
37 {
38         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
39                 set_sbi_flag(sbi, SBI_NEED_FSCK);
40                 f2fs_msg(sbi->sb, KERN_WARNING,
41                                 "%s: out-of-range nid=%x, run fsck to fix.",
42                                 __func__, nid);
43                 return -EINVAL;
44         }
45         return 0;
46 }
47
48 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
49 {
50         struct f2fs_nm_info *nm_i = NM_I(sbi);
51         struct sysinfo val;
52         unsigned long avail_ram;
53         unsigned long mem_size = 0;
54         bool res = false;
55
56         si_meminfo(&val);
57
58         /* only uses low memory */
59         avail_ram = val.totalram - val.totalhigh;
60
61         /*
62          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63          */
64         if (type == FREE_NIDS) {
65                 mem_size = (nm_i->nid_cnt[FREE_NID] *
66                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68         } else if (type == NAT_ENTRIES) {
69                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
70                                                         PAGE_SHIFT;
71                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72                 if (excess_cached_nats(sbi))
73                         res = false;
74         } else if (type == DIRTY_DENTS) {
75                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76                         return false;
77                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79         } else if (type == INO_ENTRIES) {
80                 int i;
81
82                 for (i = 0; i < MAX_INO_ENTRY; i++)
83                         mem_size += sbi->im[i].ino_num *
84                                                 sizeof(struct ino_entry);
85                 mem_size >>= PAGE_SHIFT;
86                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87         } else if (type == EXTENT_CACHE) {
88                 mem_size = (atomic_read(&sbi->total_ext_tree) *
89                                 sizeof(struct extent_tree) +
90                                 atomic_read(&sbi->total_ext_node) *
91                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
92                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93         } else if (type == INMEM_PAGES) {
94                 /* it allows 20% / total_ram for inmemory pages */
95                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96                 res = mem_size < (val.totalram / 5);
97         } else {
98                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
99                         return true;
100         }
101         return res;
102 }
103
104 static void clear_node_page_dirty(struct page *page)
105 {
106         if (PageDirty(page)) {
107                 f2fs_clear_radix_tree_dirty_tag(page);
108                 clear_page_dirty_for_io(page);
109                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
110         }
111         ClearPageUptodate(page);
112 }
113
114 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
115 {
116         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
117 }
118
119 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
120 {
121         struct page *src_page;
122         struct page *dst_page;
123         pgoff_t dst_off;
124         void *src_addr;
125         void *dst_addr;
126         struct f2fs_nm_info *nm_i = NM_I(sbi);
127
128         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
129
130         /* get current nat block page with lock */
131         src_page = get_current_nat_page(sbi, nid);
132         dst_page = f2fs_grab_meta_page(sbi, dst_off);
133         f2fs_bug_on(sbi, PageDirty(src_page));
134
135         src_addr = page_address(src_page);
136         dst_addr = page_address(dst_page);
137         memcpy(dst_addr, src_addr, PAGE_SIZE);
138         set_page_dirty(dst_page);
139         f2fs_put_page(src_page, 1);
140
141         set_to_next_nat(nm_i, nid);
142
143         return dst_page;
144 }
145
146 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
147 {
148         struct nat_entry *new;
149
150         if (no_fail)
151                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         else
153                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
154         if (new) {
155                 nat_set_nid(new, nid);
156                 nat_reset_flag(new);
157         }
158         return new;
159 }
160
161 static void __free_nat_entry(struct nat_entry *e)
162 {
163         kmem_cache_free(nat_entry_slab, e);
164 }
165
166 /* must be locked by nat_tree_lock */
167 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
168         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
169 {
170         if (no_fail)
171                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
172         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
173                 return NULL;
174
175         if (raw_ne)
176                 node_info_from_raw_nat(&ne->ni, raw_ne);
177
178         spin_lock(&nm_i->nat_list_lock);
179         list_add_tail(&ne->list, &nm_i->nat_entries);
180         spin_unlock(&nm_i->nat_list_lock);
181
182         nm_i->nat_cnt++;
183         return ne;
184 }
185
186 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
187 {
188         struct nat_entry *ne;
189
190         ne = radix_tree_lookup(&nm_i->nat_root, n);
191
192         /* for recent accessed nat entry, move it to tail of lru list */
193         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
194                 spin_lock(&nm_i->nat_list_lock);
195                 if (!list_empty(&ne->list))
196                         list_move_tail(&ne->list, &nm_i->nat_entries);
197                 spin_unlock(&nm_i->nat_list_lock);
198         }
199
200         return ne;
201 }
202
203 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
204                 nid_t start, unsigned int nr, struct nat_entry **ep)
205 {
206         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
207 }
208
209 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
210 {
211         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
212         nm_i->nat_cnt--;
213         __free_nat_entry(e);
214 }
215
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217                                                         struct nat_entry *ne)
218 {
219         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220         struct nat_entry_set *head;
221
222         head = radix_tree_lookup(&nm_i->nat_set_root, set);
223         if (!head) {
224                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226                 INIT_LIST_HEAD(&head->entry_list);
227                 INIT_LIST_HEAD(&head->set_list);
228                 head->set = set;
229                 head->entry_cnt = 0;
230                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231         }
232         return head;
233 }
234
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236                                                 struct nat_entry *ne)
237 {
238         struct nat_entry_set *head;
239         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241         if (!new_ne)
242                 head = __grab_nat_entry_set(nm_i, ne);
243
244         /*
245          * update entry_cnt in below condition:
246          * 1. update NEW_ADDR to valid block address;
247          * 2. update old block address to new one;
248          */
249         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250                                 !get_nat_flag(ne, IS_DIRTY)))
251                 head->entry_cnt++;
252
253         set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255         if (get_nat_flag(ne, IS_DIRTY))
256                 goto refresh_list;
257
258         nm_i->dirty_nat_cnt++;
259         set_nat_flag(ne, IS_DIRTY, true);
260 refresh_list:
261         spin_lock(&nm_i->nat_list_lock);
262         if (new_ne)
263                 list_del_init(&ne->list);
264         else
265                 list_move_tail(&ne->list, &head->entry_list);
266         spin_unlock(&nm_i->nat_list_lock);
267 }
268
269 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
270                 struct nat_entry_set *set, struct nat_entry *ne)
271 {
272         spin_lock(&nm_i->nat_list_lock);
273         list_move_tail(&ne->list, &nm_i->nat_entries);
274         spin_unlock(&nm_i->nat_list_lock);
275
276         set_nat_flag(ne, IS_DIRTY, false);
277         set->entry_cnt--;
278         nm_i->dirty_nat_cnt--;
279 }
280
281 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
282                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
283 {
284         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
285                                                         start, nr);
286 }
287
288 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
289 {
290         return NODE_MAPPING(sbi) == page->mapping &&
291                         IS_DNODE(page) && is_cold_node(page);
292 }
293
294 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
295 {
296         spin_lock_init(&sbi->fsync_node_lock);
297         INIT_LIST_HEAD(&sbi->fsync_node_list);
298         sbi->fsync_seg_id = 0;
299         sbi->fsync_node_num = 0;
300 }
301
302 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
303                                                         struct page *page)
304 {
305         struct fsync_node_entry *fn;
306         unsigned long flags;
307         unsigned int seq_id;
308
309         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
310
311         get_page(page);
312         fn->page = page;
313         INIT_LIST_HEAD(&fn->list);
314
315         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
316         list_add_tail(&fn->list, &sbi->fsync_node_list);
317         fn->seq_id = sbi->fsync_seg_id++;
318         seq_id = fn->seq_id;
319         sbi->fsync_node_num++;
320         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
321
322         return seq_id;
323 }
324
325 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
326 {
327         struct fsync_node_entry *fn;
328         unsigned long flags;
329
330         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
331         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
332                 if (fn->page == page) {
333                         list_del(&fn->list);
334                         sbi->fsync_node_num--;
335                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
336                         kmem_cache_free(fsync_node_entry_slab, fn);
337                         put_page(page);
338                         return;
339                 }
340         }
341         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
342         f2fs_bug_on(sbi, 1);
343 }
344
345 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
346 {
347         unsigned long flags;
348
349         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
350         sbi->fsync_seg_id = 0;
351         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
352 }
353
354 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
355 {
356         struct f2fs_nm_info *nm_i = NM_I(sbi);
357         struct nat_entry *e;
358         bool need = false;
359
360         down_read(&nm_i->nat_tree_lock);
361         e = __lookup_nat_cache(nm_i, nid);
362         if (e) {
363                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
364                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
365                         need = true;
366         }
367         up_read(&nm_i->nat_tree_lock);
368         return need;
369 }
370
371 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
372 {
373         struct f2fs_nm_info *nm_i = NM_I(sbi);
374         struct nat_entry *e;
375         bool is_cp = true;
376
377         down_read(&nm_i->nat_tree_lock);
378         e = __lookup_nat_cache(nm_i, nid);
379         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
380                 is_cp = false;
381         up_read(&nm_i->nat_tree_lock);
382         return is_cp;
383 }
384
385 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
386 {
387         struct f2fs_nm_info *nm_i = NM_I(sbi);
388         struct nat_entry *e;
389         bool need_update = true;
390
391         down_read(&nm_i->nat_tree_lock);
392         e = __lookup_nat_cache(nm_i, ino);
393         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
394                         (get_nat_flag(e, IS_CHECKPOINTED) ||
395                          get_nat_flag(e, HAS_FSYNCED_INODE)))
396                 need_update = false;
397         up_read(&nm_i->nat_tree_lock);
398         return need_update;
399 }
400
401 /* must be locked by nat_tree_lock */
402 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
403                                                 struct f2fs_nat_entry *ne)
404 {
405         struct f2fs_nm_info *nm_i = NM_I(sbi);
406         struct nat_entry *new, *e;
407
408         new = __alloc_nat_entry(nid, false);
409         if (!new)
410                 return;
411
412         down_write(&nm_i->nat_tree_lock);
413         e = __lookup_nat_cache(nm_i, nid);
414         if (!e)
415                 e = __init_nat_entry(nm_i, new, ne, false);
416         else
417                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
418                                 nat_get_blkaddr(e) !=
419                                         le32_to_cpu(ne->block_addr) ||
420                                 nat_get_version(e) != ne->version);
421         up_write(&nm_i->nat_tree_lock);
422         if (e != new)
423                 __free_nat_entry(new);
424 }
425
426 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
427                         block_t new_blkaddr, bool fsync_done)
428 {
429         struct f2fs_nm_info *nm_i = NM_I(sbi);
430         struct nat_entry *e;
431         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
432
433         down_write(&nm_i->nat_tree_lock);
434         e = __lookup_nat_cache(nm_i, ni->nid);
435         if (!e) {
436                 e = __init_nat_entry(nm_i, new, NULL, true);
437                 copy_node_info(&e->ni, ni);
438                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
439         } else if (new_blkaddr == NEW_ADDR) {
440                 /*
441                  * when nid is reallocated,
442                  * previous nat entry can be remained in nat cache.
443                  * So, reinitialize it with new information.
444                  */
445                 copy_node_info(&e->ni, ni);
446                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
447         }
448         /* let's free early to reduce memory consumption */
449         if (e != new)
450                 __free_nat_entry(new);
451
452         /* sanity check */
453         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
454         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
455                         new_blkaddr == NULL_ADDR);
456         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
457                         new_blkaddr == NEW_ADDR);
458         f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
459                         new_blkaddr == NEW_ADDR);
460
461         /* increment version no as node is removed */
462         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
463                 unsigned char version = nat_get_version(e);
464                 nat_set_version(e, inc_node_version(version));
465         }
466
467         /* change address */
468         nat_set_blkaddr(e, new_blkaddr);
469         if (!is_valid_data_blkaddr(sbi, new_blkaddr))
470                 set_nat_flag(e, IS_CHECKPOINTED, false);
471         __set_nat_cache_dirty(nm_i, e);
472
473         /* update fsync_mark if its inode nat entry is still alive */
474         if (ni->nid != ni->ino)
475                 e = __lookup_nat_cache(nm_i, ni->ino);
476         if (e) {
477                 if (fsync_done && ni->nid == ni->ino)
478                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
479                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
480         }
481         up_write(&nm_i->nat_tree_lock);
482 }
483
484 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
485 {
486         struct f2fs_nm_info *nm_i = NM_I(sbi);
487         int nr = nr_shrink;
488
489         if (!down_write_trylock(&nm_i->nat_tree_lock))
490                 return 0;
491
492         spin_lock(&nm_i->nat_list_lock);
493         while (nr_shrink) {
494                 struct nat_entry *ne;
495
496                 if (list_empty(&nm_i->nat_entries))
497                         break;
498
499                 ne = list_first_entry(&nm_i->nat_entries,
500                                         struct nat_entry, list);
501                 list_del(&ne->list);
502                 spin_unlock(&nm_i->nat_list_lock);
503
504                 __del_from_nat_cache(nm_i, ne);
505                 nr_shrink--;
506
507                 spin_lock(&nm_i->nat_list_lock);
508         }
509         spin_unlock(&nm_i->nat_list_lock);
510
511         up_write(&nm_i->nat_tree_lock);
512         return nr - nr_shrink;
513 }
514
515 /*
516  * This function always returns success
517  */
518 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
519                                                 struct node_info *ni)
520 {
521         struct f2fs_nm_info *nm_i = NM_I(sbi);
522         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
523         struct f2fs_journal *journal = curseg->journal;
524         nid_t start_nid = START_NID(nid);
525         struct f2fs_nat_block *nat_blk;
526         struct page *page = NULL;
527         struct f2fs_nat_entry ne;
528         struct nat_entry *e;
529         pgoff_t index;
530         int i;
531
532         ni->nid = nid;
533
534         /* Check nat cache */
535         down_read(&nm_i->nat_tree_lock);
536         e = __lookup_nat_cache(nm_i, nid);
537         if (e) {
538                 ni->ino = nat_get_ino(e);
539                 ni->blk_addr = nat_get_blkaddr(e);
540                 ni->version = nat_get_version(e);
541                 up_read(&nm_i->nat_tree_lock);
542                 return 0;
543         }
544
545         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547         /* Check current segment summary */
548         down_read(&curseg->journal_rwsem);
549         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550         if (i >= 0) {
551                 ne = nat_in_journal(journal, i);
552                 node_info_from_raw_nat(ni, &ne);
553         }
554         up_read(&curseg->journal_rwsem);
555         if (i >= 0) {
556                 up_read(&nm_i->nat_tree_lock);
557                 goto cache;
558         }
559
560         /* Fill node_info from nat page */
561         index = current_nat_addr(sbi, nid);
562         up_read(&nm_i->nat_tree_lock);
563
564         page = f2fs_get_meta_page(sbi, index);
565         if (IS_ERR(page))
566                 return PTR_ERR(page);
567
568         nat_blk = (struct f2fs_nat_block *)page_address(page);
569         ne = nat_blk->entries[nid - start_nid];
570         node_info_from_raw_nat(ni, &ne);
571         f2fs_put_page(page, 1);
572 cache:
573         /* cache nat entry */
574         cache_nat_entry(sbi, nid, &ne);
575         return 0;
576 }
577
578 /*
579  * readahead MAX_RA_NODE number of node pages.
580  */
581 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
582 {
583         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
584         struct blk_plug plug;
585         int i, end;
586         nid_t nid;
587
588         blk_start_plug(&plug);
589
590         /* Then, try readahead for siblings of the desired node */
591         end = start + n;
592         end = min(end, NIDS_PER_BLOCK);
593         for (i = start; i < end; i++) {
594                 nid = get_nid(parent, i, false);
595                 f2fs_ra_node_page(sbi, nid);
596         }
597
598         blk_finish_plug(&plug);
599 }
600
601 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
602 {
603         const long direct_index = ADDRS_PER_INODE(dn->inode);
604         const long direct_blks = ADDRS_PER_BLOCK;
605         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
606         unsigned int skipped_unit = ADDRS_PER_BLOCK;
607         int cur_level = dn->cur_level;
608         int max_level = dn->max_level;
609         pgoff_t base = 0;
610
611         if (!dn->max_level)
612                 return pgofs + 1;
613
614         while (max_level-- > cur_level)
615                 skipped_unit *= NIDS_PER_BLOCK;
616
617         switch (dn->max_level) {
618         case 3:
619                 base += 2 * indirect_blks;
620         case 2:
621                 base += 2 * direct_blks;
622         case 1:
623                 base += direct_index;
624                 break;
625         default:
626                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
627         }
628
629         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
630 }
631
632 /*
633  * The maximum depth is four.
634  * Offset[0] will have raw inode offset.
635  */
636 static int get_node_path(struct inode *inode, long block,
637                                 int offset[4], unsigned int noffset[4])
638 {
639         const long direct_index = ADDRS_PER_INODE(inode);
640         const long direct_blks = ADDRS_PER_BLOCK;
641         const long dptrs_per_blk = NIDS_PER_BLOCK;
642         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
643         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
644         int n = 0;
645         int level = 0;
646
647         noffset[0] = 0;
648
649         if (block < direct_index) {
650                 offset[n] = block;
651                 goto got;
652         }
653         block -= direct_index;
654         if (block < direct_blks) {
655                 offset[n++] = NODE_DIR1_BLOCK;
656                 noffset[n] = 1;
657                 offset[n] = block;
658                 level = 1;
659                 goto got;
660         }
661         block -= direct_blks;
662         if (block < direct_blks) {
663                 offset[n++] = NODE_DIR2_BLOCK;
664                 noffset[n] = 2;
665                 offset[n] = block;
666                 level = 1;
667                 goto got;
668         }
669         block -= direct_blks;
670         if (block < indirect_blks) {
671                 offset[n++] = NODE_IND1_BLOCK;
672                 noffset[n] = 3;
673                 offset[n++] = block / direct_blks;
674                 noffset[n] = 4 + offset[n - 1];
675                 offset[n] = block % direct_blks;
676                 level = 2;
677                 goto got;
678         }
679         block -= indirect_blks;
680         if (block < indirect_blks) {
681                 offset[n++] = NODE_IND2_BLOCK;
682                 noffset[n] = 4 + dptrs_per_blk;
683                 offset[n++] = block / direct_blks;
684                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
685                 offset[n] = block % direct_blks;
686                 level = 2;
687                 goto got;
688         }
689         block -= indirect_blks;
690         if (block < dindirect_blks) {
691                 offset[n++] = NODE_DIND_BLOCK;
692                 noffset[n] = 5 + (dptrs_per_blk * 2);
693                 offset[n++] = block / indirect_blks;
694                 noffset[n] = 6 + (dptrs_per_blk * 2) +
695                               offset[n - 1] * (dptrs_per_blk + 1);
696                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
697                 noffset[n] = 7 + (dptrs_per_blk * 2) +
698                               offset[n - 2] * (dptrs_per_blk + 1) +
699                               offset[n - 1];
700                 offset[n] = block % direct_blks;
701                 level = 3;
702                 goto got;
703         } else {
704                 return -E2BIG;
705         }
706 got:
707         return level;
708 }
709
710 /*
711  * Caller should call f2fs_put_dnode(dn).
712  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
713  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
714  * In the case of RDONLY_NODE, we don't need to care about mutex.
715  */
716 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
717 {
718         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
719         struct page *npage[4];
720         struct page *parent = NULL;
721         int offset[4];
722         unsigned int noffset[4];
723         nid_t nids[4];
724         int level, i = 0;
725         int err = 0;
726
727         level = get_node_path(dn->inode, index, offset, noffset);
728         if (level < 0)
729                 return level;
730
731         nids[0] = dn->inode->i_ino;
732         npage[0] = dn->inode_page;
733
734         if (!npage[0]) {
735                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
736                 if (IS_ERR(npage[0]))
737                         return PTR_ERR(npage[0]);
738         }
739
740         /* if inline_data is set, should not report any block indices */
741         if (f2fs_has_inline_data(dn->inode) && index) {
742                 err = -ENOENT;
743                 f2fs_put_page(npage[0], 1);
744                 goto release_out;
745         }
746
747         parent = npage[0];
748         if (level != 0)
749                 nids[1] = get_nid(parent, offset[0], true);
750         dn->inode_page = npage[0];
751         dn->inode_page_locked = true;
752
753         /* get indirect or direct nodes */
754         for (i = 1; i <= level; i++) {
755                 bool done = false;
756
757                 if (!nids[i] && mode == ALLOC_NODE) {
758                         /* alloc new node */
759                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
760                                 err = -ENOSPC;
761                                 goto release_pages;
762                         }
763
764                         dn->nid = nids[i];
765                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
766                         if (IS_ERR(npage[i])) {
767                                 f2fs_alloc_nid_failed(sbi, nids[i]);
768                                 err = PTR_ERR(npage[i]);
769                                 goto release_pages;
770                         }
771
772                         set_nid(parent, offset[i - 1], nids[i], i == 1);
773                         f2fs_alloc_nid_done(sbi, nids[i]);
774                         done = true;
775                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
776                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
777                         if (IS_ERR(npage[i])) {
778                                 err = PTR_ERR(npage[i]);
779                                 goto release_pages;
780                         }
781                         done = true;
782                 }
783                 if (i == 1) {
784                         dn->inode_page_locked = false;
785                         unlock_page(parent);
786                 } else {
787                         f2fs_put_page(parent, 1);
788                 }
789
790                 if (!done) {
791                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
792                         if (IS_ERR(npage[i])) {
793                                 err = PTR_ERR(npage[i]);
794                                 f2fs_put_page(npage[0], 0);
795                                 goto release_out;
796                         }
797                 }
798                 if (i < level) {
799                         parent = npage[i];
800                         nids[i + 1] = get_nid(parent, offset[i], false);
801                 }
802         }
803         dn->nid = nids[level];
804         dn->ofs_in_node = offset[level];
805         dn->node_page = npage[level];
806         dn->data_blkaddr = datablock_addr(dn->inode,
807                                 dn->node_page, dn->ofs_in_node);
808         return 0;
809
810 release_pages:
811         f2fs_put_page(parent, 1);
812         if (i > 1)
813                 f2fs_put_page(npage[0], 0);
814 release_out:
815         dn->inode_page = NULL;
816         dn->node_page = NULL;
817         if (err == -ENOENT) {
818                 dn->cur_level = i;
819                 dn->max_level = level;
820                 dn->ofs_in_node = offset[level];
821         }
822         return err;
823 }
824
825 static int truncate_node(struct dnode_of_data *dn)
826 {
827         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
828         struct node_info ni;
829         int err;
830
831         err = f2fs_get_node_info(sbi, dn->nid, &ni);
832         if (err)
833                 return err;
834
835         /* Deallocate node address */
836         f2fs_invalidate_blocks(sbi, ni.blk_addr);
837         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
838         set_node_addr(sbi, &ni, NULL_ADDR, false);
839
840         if (dn->nid == dn->inode->i_ino) {
841                 f2fs_remove_orphan_inode(sbi, dn->nid);
842                 dec_valid_inode_count(sbi);
843                 f2fs_inode_synced(dn->inode);
844         }
845
846         clear_node_page_dirty(dn->node_page);
847         set_sbi_flag(sbi, SBI_IS_DIRTY);
848
849         f2fs_put_page(dn->node_page, 1);
850
851         invalidate_mapping_pages(NODE_MAPPING(sbi),
852                         dn->node_page->index, dn->node_page->index);
853
854         dn->node_page = NULL;
855         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
856
857         return 0;
858 }
859
860 static int truncate_dnode(struct dnode_of_data *dn)
861 {
862         struct page *page;
863         int err;
864
865         if (dn->nid == 0)
866                 return 1;
867
868         /* get direct node */
869         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
870         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
871                 return 1;
872         else if (IS_ERR(page))
873                 return PTR_ERR(page);
874
875         /* Make dnode_of_data for parameter */
876         dn->node_page = page;
877         dn->ofs_in_node = 0;
878         f2fs_truncate_data_blocks(dn);
879         err = truncate_node(dn);
880         if (err)
881                 return err;
882
883         return 1;
884 }
885
886 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
887                                                 int ofs, int depth)
888 {
889         struct dnode_of_data rdn = *dn;
890         struct page *page;
891         struct f2fs_node *rn;
892         nid_t child_nid;
893         unsigned int child_nofs;
894         int freed = 0;
895         int i, ret;
896
897         if (dn->nid == 0)
898                 return NIDS_PER_BLOCK + 1;
899
900         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
901
902         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
903         if (IS_ERR(page)) {
904                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
905                 return PTR_ERR(page);
906         }
907
908         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
909
910         rn = F2FS_NODE(page);
911         if (depth < 3) {
912                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
913                         child_nid = le32_to_cpu(rn->in.nid[i]);
914                         if (child_nid == 0)
915                                 continue;
916                         rdn.nid = child_nid;
917                         ret = truncate_dnode(&rdn);
918                         if (ret < 0)
919                                 goto out_err;
920                         if (set_nid(page, i, 0, false))
921                                 dn->node_changed = true;
922                 }
923         } else {
924                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
925                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
926                         child_nid = le32_to_cpu(rn->in.nid[i]);
927                         if (child_nid == 0) {
928                                 child_nofs += NIDS_PER_BLOCK + 1;
929                                 continue;
930                         }
931                         rdn.nid = child_nid;
932                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
933                         if (ret == (NIDS_PER_BLOCK + 1)) {
934                                 if (set_nid(page, i, 0, false))
935                                         dn->node_changed = true;
936                                 child_nofs += ret;
937                         } else if (ret < 0 && ret != -ENOENT) {
938                                 goto out_err;
939                         }
940                 }
941                 freed = child_nofs;
942         }
943
944         if (!ofs) {
945                 /* remove current indirect node */
946                 dn->node_page = page;
947                 ret = truncate_node(dn);
948                 if (ret)
949                         goto out_err;
950                 freed++;
951         } else {
952                 f2fs_put_page(page, 1);
953         }
954         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
955         return freed;
956
957 out_err:
958         f2fs_put_page(page, 1);
959         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
960         return ret;
961 }
962
963 static int truncate_partial_nodes(struct dnode_of_data *dn,
964                         struct f2fs_inode *ri, int *offset, int depth)
965 {
966         struct page *pages[2];
967         nid_t nid[3];
968         nid_t child_nid;
969         int err = 0;
970         int i;
971         int idx = depth - 2;
972
973         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
974         if (!nid[0])
975                 return 0;
976
977         /* get indirect nodes in the path */
978         for (i = 0; i < idx + 1; i++) {
979                 /* reference count'll be increased */
980                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
981                 if (IS_ERR(pages[i])) {
982                         err = PTR_ERR(pages[i]);
983                         idx = i - 1;
984                         goto fail;
985                 }
986                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
987         }
988
989         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
990
991         /* free direct nodes linked to a partial indirect node */
992         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
993                 child_nid = get_nid(pages[idx], i, false);
994                 if (!child_nid)
995                         continue;
996                 dn->nid = child_nid;
997                 err = truncate_dnode(dn);
998                 if (err < 0)
999                         goto fail;
1000                 if (set_nid(pages[idx], i, 0, false))
1001                         dn->node_changed = true;
1002         }
1003
1004         if (offset[idx + 1] == 0) {
1005                 dn->node_page = pages[idx];
1006                 dn->nid = nid[idx];
1007                 err = truncate_node(dn);
1008                 if (err)
1009                         goto fail;
1010         } else {
1011                 f2fs_put_page(pages[idx], 1);
1012         }
1013         offset[idx]++;
1014         offset[idx + 1] = 0;
1015         idx--;
1016 fail:
1017         for (i = idx; i >= 0; i--)
1018                 f2fs_put_page(pages[i], 1);
1019
1020         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1021
1022         return err;
1023 }
1024
1025 /*
1026  * All the block addresses of data and nodes should be nullified.
1027  */
1028 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031         int err = 0, cont = 1;
1032         int level, offset[4], noffset[4];
1033         unsigned int nofs = 0;
1034         struct f2fs_inode *ri;
1035         struct dnode_of_data dn;
1036         struct page *page;
1037
1038         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1039
1040         level = get_node_path(inode, from, offset, noffset);
1041         if (level < 0)
1042                 return level;
1043
1044         page = f2fs_get_node_page(sbi, inode->i_ino);
1045         if (IS_ERR(page)) {
1046                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1047                 return PTR_ERR(page);
1048         }
1049
1050         set_new_dnode(&dn, inode, page, NULL, 0);
1051         unlock_page(page);
1052
1053         ri = F2FS_INODE(page);
1054         switch (level) {
1055         case 0:
1056         case 1:
1057                 nofs = noffset[1];
1058                 break;
1059         case 2:
1060                 nofs = noffset[1];
1061                 if (!offset[level - 1])
1062                         goto skip_partial;
1063                 err = truncate_partial_nodes(&dn, ri, offset, level);
1064                 if (err < 0 && err != -ENOENT)
1065                         goto fail;
1066                 nofs += 1 + NIDS_PER_BLOCK;
1067                 break;
1068         case 3:
1069                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1070                 if (!offset[level - 1])
1071                         goto skip_partial;
1072                 err = truncate_partial_nodes(&dn, ri, offset, level);
1073                 if (err < 0 && err != -ENOENT)
1074                         goto fail;
1075                 break;
1076         default:
1077                 BUG();
1078         }
1079
1080 skip_partial:
1081         while (cont) {
1082                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1083                 switch (offset[0]) {
1084                 case NODE_DIR1_BLOCK:
1085                 case NODE_DIR2_BLOCK:
1086                         err = truncate_dnode(&dn);
1087                         break;
1088
1089                 case NODE_IND1_BLOCK:
1090                 case NODE_IND2_BLOCK:
1091                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1092                         break;
1093
1094                 case NODE_DIND_BLOCK:
1095                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1096                         cont = 0;
1097                         break;
1098
1099                 default:
1100                         BUG();
1101                 }
1102                 if (err < 0 && err != -ENOENT)
1103                         goto fail;
1104                 if (offset[1] == 0 &&
1105                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1106                         lock_page(page);
1107                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1108                         f2fs_wait_on_page_writeback(page, NODE, true);
1109                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1110                         set_page_dirty(page);
1111                         unlock_page(page);
1112                 }
1113                 offset[1] = 0;
1114                 offset[0]++;
1115                 nofs += err;
1116         }
1117 fail:
1118         f2fs_put_page(page, 0);
1119         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1120         return err > 0 ? 0 : err;
1121 }
1122
1123 /* caller must lock inode page */
1124 int f2fs_truncate_xattr_node(struct inode *inode)
1125 {
1126         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1128         struct dnode_of_data dn;
1129         struct page *npage;
1130         int err;
1131
1132         if (!nid)
1133                 return 0;
1134
1135         npage = f2fs_get_node_page(sbi, nid);
1136         if (IS_ERR(npage))
1137                 return PTR_ERR(npage);
1138
1139         set_new_dnode(&dn, inode, NULL, npage, nid);
1140         err = truncate_node(&dn);
1141         if (err) {
1142                 f2fs_put_page(npage, 1);
1143                 return err;
1144         }
1145
1146         f2fs_i_xnid_write(inode, 0);
1147
1148         return 0;
1149 }
1150
1151 /*
1152  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1153  * f2fs_unlock_op().
1154  */
1155 int f2fs_remove_inode_page(struct inode *inode)
1156 {
1157         struct dnode_of_data dn;
1158         int err;
1159
1160         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1161         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1162         if (err)
1163                 return err;
1164
1165         err = f2fs_truncate_xattr_node(inode);
1166         if (err) {
1167                 f2fs_put_dnode(&dn);
1168                 return err;
1169         }
1170
1171         /* remove potential inline_data blocks */
1172         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1173                                 S_ISLNK(inode->i_mode))
1174                 f2fs_truncate_data_blocks_range(&dn, 1);
1175
1176         /* 0 is possible, after f2fs_new_inode() has failed */
1177         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1178                 f2fs_put_dnode(&dn);
1179                 return -EIO;
1180         }
1181         f2fs_bug_on(F2FS_I_SB(inode),
1182                         inode->i_blocks != 0 && inode->i_blocks != 8);
1183
1184         /* will put inode & node pages */
1185         err = truncate_node(&dn);
1186         if (err) {
1187                 f2fs_put_dnode(&dn);
1188                 return err;
1189         }
1190         return 0;
1191 }
1192
1193 struct page *f2fs_new_inode_page(struct inode *inode)
1194 {
1195         struct dnode_of_data dn;
1196
1197         /* allocate inode page for new inode */
1198         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1199
1200         /* caller should f2fs_put_page(page, 1); */
1201         return f2fs_new_node_page(&dn, 0);
1202 }
1203
1204 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1205 {
1206         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1207         struct node_info new_ni;
1208         struct page *page;
1209         int err;
1210
1211         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1212                 return ERR_PTR(-EPERM);
1213
1214         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1215         if (!page)
1216                 return ERR_PTR(-ENOMEM);
1217
1218         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1219                 goto fail;
1220
1221 #ifdef CONFIG_F2FS_CHECK_FS
1222         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1223         if (err) {
1224                 dec_valid_node_count(sbi, dn->inode, !ofs);
1225                 goto fail;
1226         }
1227         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1228 #endif
1229         new_ni.nid = dn->nid;
1230         new_ni.ino = dn->inode->i_ino;
1231         new_ni.blk_addr = NULL_ADDR;
1232         new_ni.flag = 0;
1233         new_ni.version = 0;
1234         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1235
1236         f2fs_wait_on_page_writeback(page, NODE, true);
1237         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1238         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1239         if (!PageUptodate(page))
1240                 SetPageUptodate(page);
1241         if (set_page_dirty(page))
1242                 dn->node_changed = true;
1243
1244         if (f2fs_has_xattr_block(ofs))
1245                 f2fs_i_xnid_write(dn->inode, dn->nid);
1246
1247         if (ofs == 0)
1248                 inc_valid_inode_count(sbi);
1249         return page;
1250
1251 fail:
1252         clear_node_page_dirty(page);
1253         f2fs_put_page(page, 1);
1254         return ERR_PTR(err);
1255 }
1256
1257 /*
1258  * Caller should do after getting the following values.
1259  * 0: f2fs_put_page(page, 0)
1260  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1261  */
1262 static int read_node_page(struct page *page, int op_flags)
1263 {
1264         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1265         struct node_info ni;
1266         struct f2fs_io_info fio = {
1267                 .sbi = sbi,
1268                 .type = NODE,
1269                 .op = REQ_OP_READ,
1270                 .op_flags = op_flags,
1271                 .page = page,
1272                 .encrypted_page = NULL,
1273         };
1274         int err;
1275
1276         if (PageUptodate(page)) {
1277 #ifdef CONFIG_F2FS_CHECK_FS
1278                 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1279 #endif
1280                 return LOCKED_PAGE;
1281         }
1282
1283         err = f2fs_get_node_info(sbi, page->index, &ni);
1284         if (err)
1285                 return err;
1286
1287         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1288                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1289                 ClearPageUptodate(page);
1290                 return -ENOENT;
1291         }
1292
1293         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1294         return f2fs_submit_page_bio(&fio);
1295 }
1296
1297 /*
1298  * Readahead a node page
1299  */
1300 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1301 {
1302         struct page *apage;
1303         int err;
1304
1305         if (!nid)
1306                 return;
1307         if (f2fs_check_nid_range(sbi, nid))
1308                 return;
1309
1310         rcu_read_lock();
1311         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1312         rcu_read_unlock();
1313         if (apage)
1314                 return;
1315
1316         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1317         if (!apage)
1318                 return;
1319
1320         err = read_node_page(apage, REQ_RAHEAD);
1321         f2fs_put_page(apage, err ? 1 : 0);
1322 }
1323
1324 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1325                                         struct page *parent, int start)
1326 {
1327         struct page *page;
1328         int err;
1329
1330         if (!nid)
1331                 return ERR_PTR(-ENOENT);
1332         if (f2fs_check_nid_range(sbi, nid))
1333                 return ERR_PTR(-EINVAL);
1334 repeat:
1335         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336         if (!page)
1337                 return ERR_PTR(-ENOMEM);
1338
1339         err = read_node_page(page, 0);
1340         if (err < 0) {
1341                 f2fs_put_page(page, 1);
1342                 return ERR_PTR(err);
1343         } else if (err == LOCKED_PAGE) {
1344                 err = 0;
1345                 goto page_hit;
1346         }
1347
1348         if (parent)
1349                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1350
1351         lock_page(page);
1352
1353         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1354                 f2fs_put_page(page, 1);
1355                 goto repeat;
1356         }
1357
1358         if (unlikely(!PageUptodate(page))) {
1359                 err = -EIO;
1360                 goto out_err;
1361         }
1362
1363         if (!f2fs_inode_chksum_verify(sbi, page)) {
1364                 err = -EBADMSG;
1365                 goto out_err;
1366         }
1367 page_hit:
1368         if(unlikely(nid != nid_of_node(page))) {
1369                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1370                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1371                         nid, nid_of_node(page), ino_of_node(page),
1372                         ofs_of_node(page), cpver_of_node(page),
1373                         next_blkaddr_of_node(page));
1374                 err = -EINVAL;
1375 out_err:
1376                 ClearPageUptodate(page);
1377                 f2fs_put_page(page, 1);
1378                 return ERR_PTR(err);
1379         }
1380         return page;
1381 }
1382
1383 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1384 {
1385         return __get_node_page(sbi, nid, NULL, 0);
1386 }
1387
1388 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1389 {
1390         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1391         nid_t nid = get_nid(parent, start, false);
1392
1393         return __get_node_page(sbi, nid, parent, start);
1394 }
1395
1396 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1397 {
1398         struct inode *inode;
1399         struct page *page;
1400         int ret;
1401
1402         /* should flush inline_data before evict_inode */
1403         inode = ilookup(sbi->sb, ino);
1404         if (!inode)
1405                 return;
1406
1407         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1408                                         FGP_LOCK|FGP_NOWAIT, 0);
1409         if (!page)
1410                 goto iput_out;
1411
1412         if (!PageUptodate(page))
1413                 goto page_out;
1414
1415         if (!PageDirty(page))
1416                 goto page_out;
1417
1418         if (!clear_page_dirty_for_io(page))
1419                 goto page_out;
1420
1421         ret = f2fs_write_inline_data(inode, page);
1422         inode_dec_dirty_pages(inode);
1423         f2fs_remove_dirty_inode(inode);
1424         if (ret)
1425                 set_page_dirty(page);
1426 page_out:
1427         f2fs_put_page(page, 1);
1428 iput_out:
1429         iput(inode);
1430 }
1431
1432 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1433 {
1434         pgoff_t index;
1435         struct pagevec pvec;
1436         struct page *last_page = NULL;
1437         int nr_pages;
1438
1439         pagevec_init(&pvec);
1440         index = 0;
1441
1442         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1443                                 PAGECACHE_TAG_DIRTY))) {
1444                 int i;
1445
1446                 for (i = 0; i < nr_pages; i++) {
1447                         struct page *page = pvec.pages[i];
1448
1449                         if (unlikely(f2fs_cp_error(sbi))) {
1450                                 f2fs_put_page(last_page, 0);
1451                                 pagevec_release(&pvec);
1452                                 return ERR_PTR(-EIO);
1453                         }
1454
1455                         if (!IS_DNODE(page) || !is_cold_node(page))
1456                                 continue;
1457                         if (ino_of_node(page) != ino)
1458                                 continue;
1459
1460                         lock_page(page);
1461
1462                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1463 continue_unlock:
1464                                 unlock_page(page);
1465                                 continue;
1466                         }
1467                         if (ino_of_node(page) != ino)
1468                                 goto continue_unlock;
1469
1470                         if (!PageDirty(page)) {
1471                                 /* someone wrote it for us */
1472                                 goto continue_unlock;
1473                         }
1474
1475                         if (last_page)
1476                                 f2fs_put_page(last_page, 0);
1477
1478                         get_page(page);
1479                         last_page = page;
1480                         unlock_page(page);
1481                 }
1482                 pagevec_release(&pvec);
1483                 cond_resched();
1484         }
1485         return last_page;
1486 }
1487
1488 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1489                                 struct writeback_control *wbc, bool do_balance,
1490                                 enum iostat_type io_type, unsigned int *seq_id)
1491 {
1492         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1493         nid_t nid;
1494         struct node_info ni;
1495         struct f2fs_io_info fio = {
1496                 .sbi = sbi,
1497                 .ino = ino_of_node(page),
1498                 .type = NODE,
1499                 .op = REQ_OP_WRITE,
1500                 .op_flags = wbc_to_write_flags(wbc),
1501                 .page = page,
1502                 .encrypted_page = NULL,
1503                 .submitted = false,
1504                 .io_type = io_type,
1505                 .io_wbc = wbc,
1506         };
1507         unsigned int seq;
1508
1509         trace_f2fs_writepage(page, NODE);
1510
1511         if (unlikely(f2fs_cp_error(sbi)))
1512                 goto redirty_out;
1513
1514         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1515                 goto redirty_out;
1516
1517         if (wbc->sync_mode == WB_SYNC_NONE &&
1518                         IS_DNODE(page) && is_cold_node(page))
1519                 goto redirty_out;
1520
1521         /* get old block addr of this node page */
1522         nid = nid_of_node(page);
1523         f2fs_bug_on(sbi, page->index != nid);
1524
1525         if (f2fs_get_node_info(sbi, nid, &ni))
1526                 goto redirty_out;
1527
1528         if (wbc->for_reclaim) {
1529                 if (!down_read_trylock(&sbi->node_write))
1530                         goto redirty_out;
1531         } else {
1532                 down_read(&sbi->node_write);
1533         }
1534
1535         /* This page is already truncated */
1536         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1537                 ClearPageUptodate(page);
1538                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1539                 up_read(&sbi->node_write);
1540                 unlock_page(page);
1541                 return 0;
1542         }
1543
1544         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1545                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC))
1546                 goto redirty_out;
1547
1548         if (atomic && !test_opt(sbi, NOBARRIER))
1549                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1550
1551         set_page_writeback(page);
1552         ClearPageError(page);
1553
1554         if (f2fs_in_warm_node_list(sbi, page)) {
1555                 seq = f2fs_add_fsync_node_entry(sbi, page);
1556                 if (seq_id)
1557                         *seq_id = seq;
1558         }
1559
1560         fio.old_blkaddr = ni.blk_addr;
1561         f2fs_do_write_node_page(nid, &fio);
1562         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1563         dec_page_count(sbi, F2FS_DIRTY_NODES);
1564         up_read(&sbi->node_write);
1565
1566         if (wbc->for_reclaim) {
1567                 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1568                                                 page->index, NODE);
1569                 submitted = NULL;
1570         }
1571
1572         unlock_page(page);
1573
1574         if (unlikely(f2fs_cp_error(sbi))) {
1575                 f2fs_submit_merged_write(sbi, NODE);
1576                 submitted = NULL;
1577         }
1578         if (submitted)
1579                 *submitted = fio.submitted;
1580
1581         if (do_balance)
1582                 f2fs_balance_fs(sbi, false);
1583         return 0;
1584
1585 redirty_out:
1586         redirty_page_for_writepage(wbc, page);
1587         return AOP_WRITEPAGE_ACTIVATE;
1588 }
1589
1590 void f2fs_move_node_page(struct page *node_page, int gc_type)
1591 {
1592         if (gc_type == FG_GC) {
1593                 struct writeback_control wbc = {
1594                         .sync_mode = WB_SYNC_ALL,
1595                         .nr_to_write = 1,
1596                         .for_reclaim = 0,
1597                 };
1598
1599                 set_page_dirty(node_page);
1600                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1601
1602                 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1603                 if (!clear_page_dirty_for_io(node_page))
1604                         goto out_page;
1605
1606                 if (__write_node_page(node_page, false, NULL,
1607                                         &wbc, false, FS_GC_NODE_IO, NULL))
1608                         unlock_page(node_page);
1609                 goto release_page;
1610         } else {
1611                 /* set page dirty and write it */
1612                 if (!PageWriteback(node_page))
1613                         set_page_dirty(node_page);
1614         }
1615 out_page:
1616         unlock_page(node_page);
1617 release_page:
1618         f2fs_put_page(node_page, 0);
1619 }
1620
1621 static int f2fs_write_node_page(struct page *page,
1622                                 struct writeback_control *wbc)
1623 {
1624         return __write_node_page(page, false, NULL, wbc, false,
1625                                                 FS_NODE_IO, NULL);
1626 }
1627
1628 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1629                         struct writeback_control *wbc, bool atomic,
1630                         unsigned int *seq_id)
1631 {
1632         pgoff_t index;
1633         pgoff_t last_idx = ULONG_MAX;
1634         struct pagevec pvec;
1635         int ret = 0;
1636         struct page *last_page = NULL;
1637         bool marked = false;
1638         nid_t ino = inode->i_ino;
1639         int nr_pages;
1640
1641         if (atomic) {
1642                 last_page = last_fsync_dnode(sbi, ino);
1643                 if (IS_ERR_OR_NULL(last_page))
1644                         return PTR_ERR_OR_ZERO(last_page);
1645         }
1646 retry:
1647         pagevec_init(&pvec);
1648         index = 0;
1649
1650         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1651                                 PAGECACHE_TAG_DIRTY))) {
1652                 int i;
1653
1654                 for (i = 0; i < nr_pages; i++) {
1655                         struct page *page = pvec.pages[i];
1656                         bool submitted = false;
1657
1658                         if (unlikely(f2fs_cp_error(sbi))) {
1659                                 f2fs_put_page(last_page, 0);
1660                                 pagevec_release(&pvec);
1661                                 ret = -EIO;
1662                                 goto out;
1663                         }
1664
1665                         if (!IS_DNODE(page) || !is_cold_node(page))
1666                                 continue;
1667                         if (ino_of_node(page) != ino)
1668                                 continue;
1669
1670                         lock_page(page);
1671
1672                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1673 continue_unlock:
1674                                 unlock_page(page);
1675                                 continue;
1676                         }
1677                         if (ino_of_node(page) != ino)
1678                                 goto continue_unlock;
1679
1680                         if (!PageDirty(page) && page != last_page) {
1681                                 /* someone wrote it for us */
1682                                 goto continue_unlock;
1683                         }
1684
1685                         f2fs_wait_on_page_writeback(page, NODE, true);
1686                         BUG_ON(PageWriteback(page));
1687
1688                         set_fsync_mark(page, 0);
1689                         set_dentry_mark(page, 0);
1690
1691                         if (!atomic || page == last_page) {
1692                                 set_fsync_mark(page, 1);
1693                                 if (IS_INODE(page)) {
1694                                         if (is_inode_flag_set(inode,
1695                                                                 FI_DIRTY_INODE))
1696                                                 f2fs_update_inode(inode, page);
1697                                         set_dentry_mark(page,
1698                                                 f2fs_need_dentry_mark(sbi, ino));
1699                                 }
1700                                 /*  may be written by other thread */
1701                                 if (!PageDirty(page))
1702                                         set_page_dirty(page);
1703                         }
1704
1705                         if (!clear_page_dirty_for_io(page))
1706                                 goto continue_unlock;
1707
1708                         ret = __write_node_page(page, atomic &&
1709                                                 page == last_page,
1710                                                 &submitted, wbc, true,
1711                                                 FS_NODE_IO, seq_id);
1712                         if (ret) {
1713                                 unlock_page(page);
1714                                 f2fs_put_page(last_page, 0);
1715                                 break;
1716                         } else if (submitted) {
1717                                 last_idx = page->index;
1718                         }
1719
1720                         if (page == last_page) {
1721                                 f2fs_put_page(page, 0);
1722                                 marked = true;
1723                                 break;
1724                         }
1725                 }
1726                 pagevec_release(&pvec);
1727                 cond_resched();
1728
1729                 if (ret || marked)
1730                         break;
1731         }
1732         if (!ret && atomic && !marked) {
1733                 f2fs_msg(sbi->sb, KERN_DEBUG,
1734                         "Retry to write fsync mark: ino=%u, idx=%lx",
1735                                         ino, last_page->index);
1736                 lock_page(last_page);
1737                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1738                 set_page_dirty(last_page);
1739                 unlock_page(last_page);
1740                 goto retry;
1741         }
1742 out:
1743         if (last_idx != ULONG_MAX)
1744                 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1745         return ret ? -EIO: 0;
1746 }
1747
1748 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1749                                 struct writeback_control *wbc,
1750                                 bool do_balance, enum iostat_type io_type)
1751 {
1752         pgoff_t index;
1753         struct pagevec pvec;
1754         int step = 0;
1755         int nwritten = 0;
1756         int ret = 0;
1757         int nr_pages, done = 0;
1758
1759         pagevec_init(&pvec);
1760
1761 next_step:
1762         index = 0;
1763
1764         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1765                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1766                 int i;
1767
1768                 for (i = 0; i < nr_pages; i++) {
1769                         struct page *page = pvec.pages[i];
1770                         bool submitted = false;
1771
1772                         /* give a priority to WB_SYNC threads */
1773                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1774                                         wbc->sync_mode == WB_SYNC_NONE) {
1775                                 done = 1;
1776                                 break;
1777                         }
1778
1779                         /*
1780                          * flushing sequence with step:
1781                          * 0. indirect nodes
1782                          * 1. dentry dnodes
1783                          * 2. file dnodes
1784                          */
1785                         if (step == 0 && IS_DNODE(page))
1786                                 continue;
1787                         if (step == 1 && (!IS_DNODE(page) ||
1788                                                 is_cold_node(page)))
1789                                 continue;
1790                         if (step == 2 && (!IS_DNODE(page) ||
1791                                                 !is_cold_node(page)))
1792                                 continue;
1793 lock_node:
1794                         if (wbc->sync_mode == WB_SYNC_ALL)
1795                                 lock_page(page);
1796                         else if (!trylock_page(page))
1797                                 continue;
1798
1799                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1800 continue_unlock:
1801                                 unlock_page(page);
1802                                 continue;
1803                         }
1804
1805                         if (!PageDirty(page)) {
1806                                 /* someone wrote it for us */
1807                                 goto continue_unlock;
1808                         }
1809
1810                         /* flush inline_data */
1811                         if (is_inline_node(page)) {
1812                                 clear_inline_node(page);
1813                                 unlock_page(page);
1814                                 flush_inline_data(sbi, ino_of_node(page));
1815                                 goto lock_node;
1816                         }
1817
1818                         f2fs_wait_on_page_writeback(page, NODE, true);
1819
1820                         BUG_ON(PageWriteback(page));
1821                         if (!clear_page_dirty_for_io(page))
1822                                 goto continue_unlock;
1823
1824                         set_fsync_mark(page, 0);
1825                         set_dentry_mark(page, 0);
1826
1827                         ret = __write_node_page(page, false, &submitted,
1828                                                 wbc, do_balance, io_type, NULL);
1829                         if (ret)
1830                                 unlock_page(page);
1831                         else if (submitted)
1832                                 nwritten++;
1833
1834                         if (--wbc->nr_to_write == 0)
1835                                 break;
1836                 }
1837                 pagevec_release(&pvec);
1838                 cond_resched();
1839
1840                 if (wbc->nr_to_write == 0) {
1841                         step = 2;
1842                         break;
1843                 }
1844         }
1845
1846         if (step < 2) {
1847                 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1848                         goto out;
1849                 step++;
1850                 goto next_step;
1851         }
1852 out:
1853         if (nwritten)
1854                 f2fs_submit_merged_write(sbi, NODE);
1855
1856         if (unlikely(f2fs_cp_error(sbi)))
1857                 return -EIO;
1858         return ret;
1859 }
1860
1861 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1862                                                 unsigned int seq_id)
1863 {
1864         struct fsync_node_entry *fn;
1865         struct page *page;
1866         struct list_head *head = &sbi->fsync_node_list;
1867         unsigned long flags;
1868         unsigned int cur_seq_id = 0;
1869         int ret2, ret = 0;
1870
1871         while (seq_id && cur_seq_id < seq_id) {
1872                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1873                 if (list_empty(head)) {
1874                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1875                         break;
1876                 }
1877                 fn = list_first_entry(head, struct fsync_node_entry, list);
1878                 if (fn->seq_id > seq_id) {
1879                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880                         break;
1881                 }
1882                 cur_seq_id = fn->seq_id;
1883                 page = fn->page;
1884                 get_page(page);
1885                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1886
1887                 f2fs_wait_on_page_writeback(page, NODE, true);
1888                 if (TestClearPageError(page))
1889                         ret = -EIO;
1890
1891                 put_page(page);
1892
1893                 if (ret)
1894                         break;
1895         }
1896
1897         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1898         if (!ret)
1899                 ret = ret2;
1900
1901         return ret;
1902 }
1903
1904 static int f2fs_write_node_pages(struct address_space *mapping,
1905                             struct writeback_control *wbc)
1906 {
1907         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1908         struct blk_plug plug;
1909         long diff;
1910
1911         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1912                 goto skip_write;
1913
1914         /* balancing f2fs's metadata in background */
1915         f2fs_balance_fs_bg(sbi);
1916
1917         /* collect a number of dirty node pages and write together */
1918         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1919                 goto skip_write;
1920
1921         if (wbc->sync_mode == WB_SYNC_ALL)
1922                 atomic_inc(&sbi->wb_sync_req[NODE]);
1923         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1924                 goto skip_write;
1925
1926         trace_f2fs_writepages(mapping->host, wbc, NODE);
1927
1928         diff = nr_pages_to_write(sbi, NODE, wbc);
1929         blk_start_plug(&plug);
1930         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1931         blk_finish_plug(&plug);
1932         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1933
1934         if (wbc->sync_mode == WB_SYNC_ALL)
1935                 atomic_dec(&sbi->wb_sync_req[NODE]);
1936         return 0;
1937
1938 skip_write:
1939         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1940         trace_f2fs_writepages(mapping->host, wbc, NODE);
1941         return 0;
1942 }
1943
1944 static int f2fs_set_node_page_dirty(struct page *page)
1945 {
1946         trace_f2fs_set_page_dirty(page, NODE);
1947
1948         if (!PageUptodate(page))
1949                 SetPageUptodate(page);
1950 #ifdef CONFIG_F2FS_CHECK_FS
1951         if (IS_INODE(page))
1952                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1953 #endif
1954         if (!PageDirty(page)) {
1955                 __set_page_dirty_nobuffers(page);
1956                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1957                 SetPagePrivate(page);
1958                 f2fs_trace_pid(page);
1959                 return 1;
1960         }
1961         return 0;
1962 }
1963
1964 /*
1965  * Structure of the f2fs node operations
1966  */
1967 const struct address_space_operations f2fs_node_aops = {
1968         .writepage      = f2fs_write_node_page,
1969         .writepages     = f2fs_write_node_pages,
1970         .set_page_dirty = f2fs_set_node_page_dirty,
1971         .invalidatepage = f2fs_invalidate_page,
1972         .releasepage    = f2fs_release_page,
1973 #ifdef CONFIG_MIGRATION
1974         .migratepage    = f2fs_migrate_page,
1975 #endif
1976 };
1977
1978 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1979                                                 nid_t n)
1980 {
1981         return radix_tree_lookup(&nm_i->free_nid_root, n);
1982 }
1983
1984 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1985                         struct free_nid *i, enum nid_state state)
1986 {
1987         struct f2fs_nm_info *nm_i = NM_I(sbi);
1988
1989         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1990         if (err)
1991                 return err;
1992
1993         f2fs_bug_on(sbi, state != i->state);
1994         nm_i->nid_cnt[state]++;
1995         if (state == FREE_NID)
1996                 list_add_tail(&i->list, &nm_i->free_nid_list);
1997         return 0;
1998 }
1999
2000 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2001                         struct free_nid *i, enum nid_state state)
2002 {
2003         struct f2fs_nm_info *nm_i = NM_I(sbi);
2004
2005         f2fs_bug_on(sbi, state != i->state);
2006         nm_i->nid_cnt[state]--;
2007         if (state == FREE_NID)
2008                 list_del(&i->list);
2009         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2010 }
2011
2012 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2013                         enum nid_state org_state, enum nid_state dst_state)
2014 {
2015         struct f2fs_nm_info *nm_i = NM_I(sbi);
2016
2017         f2fs_bug_on(sbi, org_state != i->state);
2018         i->state = dst_state;
2019         nm_i->nid_cnt[org_state]--;
2020         nm_i->nid_cnt[dst_state]++;
2021
2022         switch (dst_state) {
2023         case PREALLOC_NID:
2024                 list_del(&i->list);
2025                 break;
2026         case FREE_NID:
2027                 list_add_tail(&i->list, &nm_i->free_nid_list);
2028                 break;
2029         default:
2030                 BUG_ON(1);
2031         }
2032 }
2033
2034 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2035                                                         bool set, bool build)
2036 {
2037         struct f2fs_nm_info *nm_i = NM_I(sbi);
2038         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2039         unsigned int nid_ofs = nid - START_NID(nid);
2040
2041         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2042                 return;
2043
2044         if (set) {
2045                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2046                         return;
2047                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2048                 nm_i->free_nid_count[nat_ofs]++;
2049         } else {
2050                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2051                         return;
2052                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2053                 if (!build)
2054                         nm_i->free_nid_count[nat_ofs]--;
2055         }
2056 }
2057
2058 /* return if the nid is recognized as free */
2059 static bool add_free_nid(struct f2fs_sb_info *sbi,
2060                                 nid_t nid, bool build, bool update)
2061 {
2062         struct f2fs_nm_info *nm_i = NM_I(sbi);
2063         struct free_nid *i, *e;
2064         struct nat_entry *ne;
2065         int err = -EINVAL;
2066         bool ret = false;
2067
2068         /* 0 nid should not be used */
2069         if (unlikely(nid == 0))
2070                 return false;
2071
2072         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2073         i->nid = nid;
2074         i->state = FREE_NID;
2075
2076         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2077
2078         spin_lock(&nm_i->nid_list_lock);
2079
2080         if (build) {
2081                 /*
2082                  *   Thread A             Thread B
2083                  *  - f2fs_create
2084                  *   - f2fs_new_inode
2085                  *    - f2fs_alloc_nid
2086                  *     - __insert_nid_to_list(PREALLOC_NID)
2087                  *                     - f2fs_balance_fs_bg
2088                  *                      - f2fs_build_free_nids
2089                  *                       - __f2fs_build_free_nids
2090                  *                        - scan_nat_page
2091                  *                         - add_free_nid
2092                  *                          - __lookup_nat_cache
2093                  *  - f2fs_add_link
2094                  *   - f2fs_init_inode_metadata
2095                  *    - f2fs_new_inode_page
2096                  *     - f2fs_new_node_page
2097                  *      - set_node_addr
2098                  *  - f2fs_alloc_nid_done
2099                  *   - __remove_nid_from_list(PREALLOC_NID)
2100                  *                         - __insert_nid_to_list(FREE_NID)
2101                  */
2102                 ne = __lookup_nat_cache(nm_i, nid);
2103                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2104                                 nat_get_blkaddr(ne) != NULL_ADDR))
2105                         goto err_out;
2106
2107                 e = __lookup_free_nid_list(nm_i, nid);
2108                 if (e) {
2109                         if (e->state == FREE_NID)
2110                                 ret = true;
2111                         goto err_out;
2112                 }
2113         }
2114         ret = true;
2115         err = __insert_free_nid(sbi, i, FREE_NID);
2116 err_out:
2117         if (update) {
2118                 update_free_nid_bitmap(sbi, nid, ret, build);
2119                 if (!build)
2120                         nm_i->available_nids++;
2121         }
2122         spin_unlock(&nm_i->nid_list_lock);
2123         radix_tree_preload_end();
2124
2125         if (err)
2126                 kmem_cache_free(free_nid_slab, i);
2127         return ret;
2128 }
2129
2130 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2131 {
2132         struct f2fs_nm_info *nm_i = NM_I(sbi);
2133         struct free_nid *i;
2134         bool need_free = false;
2135
2136         spin_lock(&nm_i->nid_list_lock);
2137         i = __lookup_free_nid_list(nm_i, nid);
2138         if (i && i->state == FREE_NID) {
2139                 __remove_free_nid(sbi, i, FREE_NID);
2140                 need_free = true;
2141         }
2142         spin_unlock(&nm_i->nid_list_lock);
2143
2144         if (need_free)
2145                 kmem_cache_free(free_nid_slab, i);
2146 }
2147
2148 static int scan_nat_page(struct f2fs_sb_info *sbi,
2149                         struct page *nat_page, nid_t start_nid)
2150 {
2151         struct f2fs_nm_info *nm_i = NM_I(sbi);
2152         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2153         block_t blk_addr;
2154         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2155         int i;
2156
2157         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2158
2159         i = start_nid % NAT_ENTRY_PER_BLOCK;
2160
2161         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2162                 if (unlikely(start_nid >= nm_i->max_nid))
2163                         break;
2164
2165                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2166
2167                 if (blk_addr == NEW_ADDR)
2168                         return -EINVAL;
2169
2170                 if (blk_addr == NULL_ADDR) {
2171                         add_free_nid(sbi, start_nid, true, true);
2172                 } else {
2173                         spin_lock(&NM_I(sbi)->nid_list_lock);
2174                         update_free_nid_bitmap(sbi, start_nid, false, true);
2175                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2176                 }
2177         }
2178
2179         return 0;
2180 }
2181
2182 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2183 {
2184         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2185         struct f2fs_journal *journal = curseg->journal;
2186         int i;
2187
2188         down_read(&curseg->journal_rwsem);
2189         for (i = 0; i < nats_in_cursum(journal); i++) {
2190                 block_t addr;
2191                 nid_t nid;
2192
2193                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2194                 nid = le32_to_cpu(nid_in_journal(journal, i));
2195                 if (addr == NULL_ADDR)
2196                         add_free_nid(sbi, nid, true, false);
2197                 else
2198                         remove_free_nid(sbi, nid);
2199         }
2200         up_read(&curseg->journal_rwsem);
2201 }
2202
2203 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2204 {
2205         struct f2fs_nm_info *nm_i = NM_I(sbi);
2206         unsigned int i, idx;
2207         nid_t nid;
2208
2209         down_read(&nm_i->nat_tree_lock);
2210
2211         for (i = 0; i < nm_i->nat_blocks; i++) {
2212                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2213                         continue;
2214                 if (!nm_i->free_nid_count[i])
2215                         continue;
2216                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2217                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2218                                                 NAT_ENTRY_PER_BLOCK, idx);
2219                         if (idx >= NAT_ENTRY_PER_BLOCK)
2220                                 break;
2221
2222                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2223                         add_free_nid(sbi, nid, true, false);
2224
2225                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2226                                 goto out;
2227                 }
2228         }
2229 out:
2230         scan_curseg_cache(sbi);
2231
2232         up_read(&nm_i->nat_tree_lock);
2233 }
2234
2235 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2236                                                 bool sync, bool mount)
2237 {
2238         struct f2fs_nm_info *nm_i = NM_I(sbi);
2239         int i = 0, ret;
2240         nid_t nid = nm_i->next_scan_nid;
2241
2242         if (unlikely(nid >= nm_i->max_nid))
2243                 nid = 0;
2244
2245         /* Enough entries */
2246         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2247                 return 0;
2248
2249         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2250                 return 0;
2251
2252         if (!mount) {
2253                 /* try to find free nids in free_nid_bitmap */
2254                 scan_free_nid_bits(sbi);
2255
2256                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2257                         return 0;
2258         }
2259
2260         /* readahead nat pages to be scanned */
2261         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2262                                                         META_NAT, true);
2263
2264         down_read(&nm_i->nat_tree_lock);
2265
2266         while (1) {
2267                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2268                                                 nm_i->nat_block_bitmap)) {
2269                         struct page *page = get_current_nat_page(sbi, nid);
2270
2271                         ret = scan_nat_page(sbi, page, nid);
2272                         f2fs_put_page(page, 1);
2273
2274                         if (ret) {
2275                                 up_read(&nm_i->nat_tree_lock);
2276                                 f2fs_bug_on(sbi, !mount);
2277                                 f2fs_msg(sbi->sb, KERN_ERR,
2278                                         "NAT is corrupt, run fsck to fix it");
2279                                 return -EINVAL;
2280                         }
2281                 }
2282
2283                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2284                 if (unlikely(nid >= nm_i->max_nid))
2285                         nid = 0;
2286
2287                 if (++i >= FREE_NID_PAGES)
2288                         break;
2289         }
2290
2291         /* go to the next free nat pages to find free nids abundantly */
2292         nm_i->next_scan_nid = nid;
2293
2294         /* find free nids from current sum_pages */
2295         scan_curseg_cache(sbi);
2296
2297         up_read(&nm_i->nat_tree_lock);
2298
2299         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2300                                         nm_i->ra_nid_pages, META_NAT, false);
2301
2302         return 0;
2303 }
2304
2305 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2306 {
2307         int ret;
2308
2309         mutex_lock(&NM_I(sbi)->build_lock);
2310         ret = __f2fs_build_free_nids(sbi, sync, mount);
2311         mutex_unlock(&NM_I(sbi)->build_lock);
2312
2313         return ret;
2314 }
2315
2316 /*
2317  * If this function returns success, caller can obtain a new nid
2318  * from second parameter of this function.
2319  * The returned nid could be used ino as well as nid when inode is created.
2320  */
2321 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2322 {
2323         struct f2fs_nm_info *nm_i = NM_I(sbi);
2324         struct free_nid *i = NULL;
2325 retry:
2326         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2327                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2328                 return false;
2329         }
2330
2331         spin_lock(&nm_i->nid_list_lock);
2332
2333         if (unlikely(nm_i->available_nids == 0)) {
2334                 spin_unlock(&nm_i->nid_list_lock);
2335                 return false;
2336         }
2337
2338         /* We should not use stale free nids created by f2fs_build_free_nids */
2339         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2340                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2341                 i = list_first_entry(&nm_i->free_nid_list,
2342                                         struct free_nid, list);
2343                 *nid = i->nid;
2344
2345                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2346                 nm_i->available_nids--;
2347
2348                 update_free_nid_bitmap(sbi, *nid, false, false);
2349
2350                 spin_unlock(&nm_i->nid_list_lock);
2351                 return true;
2352         }
2353         spin_unlock(&nm_i->nid_list_lock);
2354
2355         /* Let's scan nat pages and its caches to get free nids */
2356         f2fs_build_free_nids(sbi, true, false);
2357         goto retry;
2358 }
2359
2360 /*
2361  * f2fs_alloc_nid() should be called prior to this function.
2362  */
2363 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2364 {
2365         struct f2fs_nm_info *nm_i = NM_I(sbi);
2366         struct free_nid *i;
2367
2368         spin_lock(&nm_i->nid_list_lock);
2369         i = __lookup_free_nid_list(nm_i, nid);
2370         f2fs_bug_on(sbi, !i);
2371         __remove_free_nid(sbi, i, PREALLOC_NID);
2372         spin_unlock(&nm_i->nid_list_lock);
2373
2374         kmem_cache_free(free_nid_slab, i);
2375 }
2376
2377 /*
2378  * f2fs_alloc_nid() should be called prior to this function.
2379  */
2380 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2381 {
2382         struct f2fs_nm_info *nm_i = NM_I(sbi);
2383         struct free_nid *i;
2384         bool need_free = false;
2385
2386         if (!nid)
2387                 return;
2388
2389         spin_lock(&nm_i->nid_list_lock);
2390         i = __lookup_free_nid_list(nm_i, nid);
2391         f2fs_bug_on(sbi, !i);
2392
2393         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2394                 __remove_free_nid(sbi, i, PREALLOC_NID);
2395                 need_free = true;
2396         } else {
2397                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2398         }
2399
2400         nm_i->available_nids++;
2401
2402         update_free_nid_bitmap(sbi, nid, true, false);
2403
2404         spin_unlock(&nm_i->nid_list_lock);
2405
2406         if (need_free)
2407                 kmem_cache_free(free_nid_slab, i);
2408 }
2409
2410 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2411 {
2412         struct f2fs_nm_info *nm_i = NM_I(sbi);
2413         struct free_nid *i, *next;
2414         int nr = nr_shrink;
2415
2416         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2417                 return 0;
2418
2419         if (!mutex_trylock(&nm_i->build_lock))
2420                 return 0;
2421
2422         spin_lock(&nm_i->nid_list_lock);
2423         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2424                 if (nr_shrink <= 0 ||
2425                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2426                         break;
2427
2428                 __remove_free_nid(sbi, i, FREE_NID);
2429                 kmem_cache_free(free_nid_slab, i);
2430                 nr_shrink--;
2431         }
2432         spin_unlock(&nm_i->nid_list_lock);
2433         mutex_unlock(&nm_i->build_lock);
2434
2435         return nr - nr_shrink;
2436 }
2437
2438 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2439 {
2440         void *src_addr, *dst_addr;
2441         size_t inline_size;
2442         struct page *ipage;
2443         struct f2fs_inode *ri;
2444
2445         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2446         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2447
2448         ri = F2FS_INODE(page);
2449         if (ri->i_inline & F2FS_INLINE_XATTR) {
2450                 set_inode_flag(inode, FI_INLINE_XATTR);
2451         } else {
2452                 clear_inode_flag(inode, FI_INLINE_XATTR);
2453                 goto update_inode;
2454         }
2455
2456         dst_addr = inline_xattr_addr(inode, ipage);
2457         src_addr = inline_xattr_addr(inode, page);
2458         inline_size = inline_xattr_size(inode);
2459
2460         f2fs_wait_on_page_writeback(ipage, NODE, true);
2461         memcpy(dst_addr, src_addr, inline_size);
2462 update_inode:
2463         f2fs_update_inode(inode, ipage);
2464         f2fs_put_page(ipage, 1);
2465 }
2466
2467 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2468 {
2469         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2470         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2471         nid_t new_xnid;
2472         struct dnode_of_data dn;
2473         struct node_info ni;
2474         struct page *xpage;
2475         int err;
2476
2477         if (!prev_xnid)
2478                 goto recover_xnid;
2479
2480         /* 1: invalidate the previous xattr nid */
2481         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2482         if (err)
2483                 return err;
2484
2485         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2486         dec_valid_node_count(sbi, inode, false);
2487         set_node_addr(sbi, &ni, NULL_ADDR, false);
2488
2489 recover_xnid:
2490         /* 2: update xattr nid in inode */
2491         if (!f2fs_alloc_nid(sbi, &new_xnid))
2492                 return -ENOSPC;
2493
2494         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2495         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2496         if (IS_ERR(xpage)) {
2497                 f2fs_alloc_nid_failed(sbi, new_xnid);
2498                 return PTR_ERR(xpage);
2499         }
2500
2501         f2fs_alloc_nid_done(sbi, new_xnid);
2502         f2fs_update_inode_page(inode);
2503
2504         /* 3: update and set xattr node page dirty */
2505         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2506
2507         set_page_dirty(xpage);
2508         f2fs_put_page(xpage, 1);
2509
2510         return 0;
2511 }
2512
2513 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2514 {
2515         struct f2fs_inode *src, *dst;
2516         nid_t ino = ino_of_node(page);
2517         struct node_info old_ni, new_ni;
2518         struct page *ipage;
2519         int err;
2520
2521         err = f2fs_get_node_info(sbi, ino, &old_ni);
2522         if (err)
2523                 return err;
2524
2525         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2526                 return -EINVAL;
2527 retry:
2528         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2529         if (!ipage) {
2530                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2531                 goto retry;
2532         }
2533
2534         /* Should not use this inode from free nid list */
2535         remove_free_nid(sbi, ino);
2536
2537         if (!PageUptodate(ipage))
2538                 SetPageUptodate(ipage);
2539         fill_node_footer(ipage, ino, ino, 0, true);
2540         set_cold_node(page, false);
2541
2542         src = F2FS_INODE(page);
2543         dst = F2FS_INODE(ipage);
2544
2545         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2546         dst->i_size = 0;
2547         dst->i_blocks = cpu_to_le64(1);
2548         dst->i_links = cpu_to_le32(1);
2549         dst->i_xattr_nid = 0;
2550         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2551         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2552                 dst->i_extra_isize = src->i_extra_isize;
2553
2554                 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2555                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2556                                                         i_inline_xattr_size))
2557                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2558
2559                 if (f2fs_sb_has_project_quota(sbi->sb) &&
2560                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2561                                                                 i_projid))
2562                         dst->i_projid = src->i_projid;
2563         }
2564
2565         new_ni = old_ni;
2566         new_ni.ino = ino;
2567
2568         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2569                 WARN_ON(1);
2570         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2571         inc_valid_inode_count(sbi);
2572         set_page_dirty(ipage);
2573         f2fs_put_page(ipage, 1);
2574         return 0;
2575 }
2576
2577 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2578                         unsigned int segno, struct f2fs_summary_block *sum)
2579 {
2580         struct f2fs_node *rn;
2581         struct f2fs_summary *sum_entry;
2582         block_t addr;
2583         int i, idx, last_offset, nrpages;
2584
2585         /* scan the node segment */
2586         last_offset = sbi->blocks_per_seg;
2587         addr = START_BLOCK(sbi, segno);
2588         sum_entry = &sum->entries[0];
2589
2590         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2591                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2592
2593                 /* readahead node pages */
2594                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2595
2596                 for (idx = addr; idx < addr + nrpages; idx++) {
2597                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2598
2599                         if (IS_ERR(page))
2600                                 return PTR_ERR(page);
2601
2602                         rn = F2FS_NODE(page);
2603                         sum_entry->nid = rn->footer.nid;
2604                         sum_entry->version = 0;
2605                         sum_entry->ofs_in_node = 0;
2606                         sum_entry++;
2607                         f2fs_put_page(page, 1);
2608                 }
2609
2610                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2611                                                         addr + nrpages);
2612         }
2613         return 0;
2614 }
2615
2616 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2617 {
2618         struct f2fs_nm_info *nm_i = NM_I(sbi);
2619         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2620         struct f2fs_journal *journal = curseg->journal;
2621         int i;
2622
2623         down_write(&curseg->journal_rwsem);
2624         for (i = 0; i < nats_in_cursum(journal); i++) {
2625                 struct nat_entry *ne;
2626                 struct f2fs_nat_entry raw_ne;
2627                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2628
2629                 raw_ne = nat_in_journal(journal, i);
2630
2631                 ne = __lookup_nat_cache(nm_i, nid);
2632                 if (!ne) {
2633                         ne = __alloc_nat_entry(nid, true);
2634                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2635                 }
2636
2637                 /*
2638                  * if a free nat in journal has not been used after last
2639                  * checkpoint, we should remove it from available nids,
2640                  * since later we will add it again.
2641                  */
2642                 if (!get_nat_flag(ne, IS_DIRTY) &&
2643                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2644                         spin_lock(&nm_i->nid_list_lock);
2645                         nm_i->available_nids--;
2646                         spin_unlock(&nm_i->nid_list_lock);
2647                 }
2648
2649                 __set_nat_cache_dirty(nm_i, ne);
2650         }
2651         update_nats_in_cursum(journal, -i);
2652         up_write(&curseg->journal_rwsem);
2653 }
2654
2655 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2656                                                 struct list_head *head, int max)
2657 {
2658         struct nat_entry_set *cur;
2659
2660         if (nes->entry_cnt >= max)
2661                 goto add_out;
2662
2663         list_for_each_entry(cur, head, set_list) {
2664                 if (cur->entry_cnt >= nes->entry_cnt) {
2665                         list_add(&nes->set_list, cur->set_list.prev);
2666                         return;
2667                 }
2668         }
2669 add_out:
2670         list_add_tail(&nes->set_list, head);
2671 }
2672
2673 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2674                                                 struct page *page)
2675 {
2676         struct f2fs_nm_info *nm_i = NM_I(sbi);
2677         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2678         struct f2fs_nat_block *nat_blk = page_address(page);
2679         int valid = 0;
2680         int i = 0;
2681
2682         if (!enabled_nat_bits(sbi, NULL))
2683                 return;
2684
2685         if (nat_index == 0) {
2686                 valid = 1;
2687                 i = 1;
2688         }
2689         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2690                 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2691                         valid++;
2692         }
2693         if (valid == 0) {
2694                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2695                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2696                 return;
2697         }
2698
2699         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2700         if (valid == NAT_ENTRY_PER_BLOCK)
2701                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2702         else
2703                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2704 }
2705
2706 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2707                 struct nat_entry_set *set, struct cp_control *cpc)
2708 {
2709         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2710         struct f2fs_journal *journal = curseg->journal;
2711         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2712         bool to_journal = true;
2713         struct f2fs_nat_block *nat_blk;
2714         struct nat_entry *ne, *cur;
2715         struct page *page = NULL;
2716
2717         /*
2718          * there are two steps to flush nat entries:
2719          * #1, flush nat entries to journal in current hot data summary block.
2720          * #2, flush nat entries to nat page.
2721          */
2722         if (enabled_nat_bits(sbi, cpc) ||
2723                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2724                 to_journal = false;
2725
2726         if (to_journal) {
2727                 down_write(&curseg->journal_rwsem);
2728         } else {
2729                 page = get_next_nat_page(sbi, start_nid);
2730                 nat_blk = page_address(page);
2731                 f2fs_bug_on(sbi, !nat_blk);
2732         }
2733
2734         /* flush dirty nats in nat entry set */
2735         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2736                 struct f2fs_nat_entry *raw_ne;
2737                 nid_t nid = nat_get_nid(ne);
2738                 int offset;
2739
2740                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2741
2742                 if (to_journal) {
2743                         offset = f2fs_lookup_journal_in_cursum(journal,
2744                                                         NAT_JOURNAL, nid, 1);
2745                         f2fs_bug_on(sbi, offset < 0);
2746                         raw_ne = &nat_in_journal(journal, offset);
2747                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2748                 } else {
2749                         raw_ne = &nat_blk->entries[nid - start_nid];
2750                 }
2751                 raw_nat_from_node_info(raw_ne, &ne->ni);
2752                 nat_reset_flag(ne);
2753                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2754                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2755                         add_free_nid(sbi, nid, false, true);
2756                 } else {
2757                         spin_lock(&NM_I(sbi)->nid_list_lock);
2758                         update_free_nid_bitmap(sbi, nid, false, false);
2759                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2760                 }
2761         }
2762
2763         if (to_journal) {
2764                 up_write(&curseg->journal_rwsem);
2765         } else {
2766                 __update_nat_bits(sbi, start_nid, page);
2767                 f2fs_put_page(page, 1);
2768         }
2769
2770         /* Allow dirty nats by node block allocation in write_begin */
2771         if (!set->entry_cnt) {
2772                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2773                 kmem_cache_free(nat_entry_set_slab, set);
2774         }
2775 }
2776
2777 /*
2778  * This function is called during the checkpointing process.
2779  */
2780 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2781 {
2782         struct f2fs_nm_info *nm_i = NM_I(sbi);
2783         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2784         struct f2fs_journal *journal = curseg->journal;
2785         struct nat_entry_set *setvec[SETVEC_SIZE];
2786         struct nat_entry_set *set, *tmp;
2787         unsigned int found;
2788         nid_t set_idx = 0;
2789         LIST_HEAD(sets);
2790
2791         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2792         if (enabled_nat_bits(sbi, cpc)) {
2793                 down_write(&nm_i->nat_tree_lock);
2794                 remove_nats_in_journal(sbi);
2795                 up_write(&nm_i->nat_tree_lock);
2796         }
2797
2798         if (!nm_i->dirty_nat_cnt)
2799                 return;
2800
2801         down_write(&nm_i->nat_tree_lock);
2802
2803         /*
2804          * if there are no enough space in journal to store dirty nat
2805          * entries, remove all entries from journal and merge them
2806          * into nat entry set.
2807          */
2808         if (enabled_nat_bits(sbi, cpc) ||
2809                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2810                 remove_nats_in_journal(sbi);
2811
2812         while ((found = __gang_lookup_nat_set(nm_i,
2813                                         set_idx, SETVEC_SIZE, setvec))) {
2814                 unsigned idx;
2815                 set_idx = setvec[found - 1]->set + 1;
2816                 for (idx = 0; idx < found; idx++)
2817                         __adjust_nat_entry_set(setvec[idx], &sets,
2818                                                 MAX_NAT_JENTRIES(journal));
2819         }
2820
2821         /* flush dirty nats in nat entry set */
2822         list_for_each_entry_safe(set, tmp, &sets, set_list)
2823                 __flush_nat_entry_set(sbi, set, cpc);
2824
2825         up_write(&nm_i->nat_tree_lock);
2826         /* Allow dirty nats by node block allocation in write_begin */
2827 }
2828
2829 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2830 {
2831         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2832         struct f2fs_nm_info *nm_i = NM_I(sbi);
2833         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2834         unsigned int i;
2835         __u64 cp_ver = cur_cp_version(ckpt);
2836         block_t nat_bits_addr;
2837
2838         if (!enabled_nat_bits(sbi, NULL))
2839                 return 0;
2840
2841         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2842         nm_i->nat_bits = f2fs_kzalloc(sbi,
2843                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2844         if (!nm_i->nat_bits)
2845                 return -ENOMEM;
2846
2847         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2848                                                 nm_i->nat_bits_blocks;
2849         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2850                 struct page *page;
2851
2852                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2853                 if (IS_ERR(page)) {
2854                         disable_nat_bits(sbi, true);
2855                         return PTR_ERR(page);
2856                 }
2857
2858                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2859                                         page_address(page), F2FS_BLKSIZE);
2860                 f2fs_put_page(page, 1);
2861         }
2862
2863         cp_ver |= (cur_cp_crc(ckpt) << 32);
2864         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2865                 disable_nat_bits(sbi, true);
2866                 return 0;
2867         }
2868
2869         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2870         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2871
2872         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2873         return 0;
2874 }
2875
2876 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2877 {
2878         struct f2fs_nm_info *nm_i = NM_I(sbi);
2879         unsigned int i = 0;
2880         nid_t nid, last_nid;
2881
2882         if (!enabled_nat_bits(sbi, NULL))
2883                 return;
2884
2885         for (i = 0; i < nm_i->nat_blocks; i++) {
2886                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2887                 if (i >= nm_i->nat_blocks)
2888                         break;
2889
2890                 __set_bit_le(i, nm_i->nat_block_bitmap);
2891
2892                 nid = i * NAT_ENTRY_PER_BLOCK;
2893                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2894
2895                 spin_lock(&NM_I(sbi)->nid_list_lock);
2896                 for (; nid < last_nid; nid++)
2897                         update_free_nid_bitmap(sbi, nid, true, true);
2898                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2899         }
2900
2901         for (i = 0; i < nm_i->nat_blocks; i++) {
2902                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2903                 if (i >= nm_i->nat_blocks)
2904                         break;
2905
2906                 __set_bit_le(i, nm_i->nat_block_bitmap);
2907         }
2908 }
2909
2910 static int init_node_manager(struct f2fs_sb_info *sbi)
2911 {
2912         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2913         struct f2fs_nm_info *nm_i = NM_I(sbi);
2914         unsigned char *version_bitmap;
2915         unsigned int nat_segs;
2916         int err;
2917
2918         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2919
2920         /* segment_count_nat includes pair segment so divide to 2. */
2921         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2922         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2923         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2924
2925         /* not used nids: 0, node, meta, (and root counted as valid node) */
2926         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2927                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2928         nm_i->nid_cnt[FREE_NID] = 0;
2929         nm_i->nid_cnt[PREALLOC_NID] = 0;
2930         nm_i->nat_cnt = 0;
2931         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2932         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2933         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2934
2935         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2936         INIT_LIST_HEAD(&nm_i->free_nid_list);
2937         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2938         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2939         INIT_LIST_HEAD(&nm_i->nat_entries);
2940         spin_lock_init(&nm_i->nat_list_lock);
2941
2942         mutex_init(&nm_i->build_lock);
2943         spin_lock_init(&nm_i->nid_list_lock);
2944         init_rwsem(&nm_i->nat_tree_lock);
2945
2946         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2947         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2948         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2949         if (!version_bitmap)
2950                 return -EFAULT;
2951
2952         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2953                                         GFP_KERNEL);
2954         if (!nm_i->nat_bitmap)
2955                 return -ENOMEM;
2956
2957         err = __get_nat_bitmaps(sbi);
2958         if (err)
2959                 return err;
2960
2961 #ifdef CONFIG_F2FS_CHECK_FS
2962         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2963                                         GFP_KERNEL);
2964         if (!nm_i->nat_bitmap_mir)
2965                 return -ENOMEM;
2966 #endif
2967
2968         return 0;
2969 }
2970
2971 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2972 {
2973         struct f2fs_nm_info *nm_i = NM_I(sbi);
2974         int i;
2975
2976         nm_i->free_nid_bitmap =
2977                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
2978                                              nm_i->nat_blocks),
2979                              GFP_KERNEL);
2980         if (!nm_i->free_nid_bitmap)
2981                 return -ENOMEM;
2982
2983         for (i = 0; i < nm_i->nat_blocks; i++) {
2984                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2985                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
2986                 if (!nm_i->free_nid_bitmap[i])
2987                         return -ENOMEM;
2988         }
2989
2990         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2991                                                                 GFP_KERNEL);
2992         if (!nm_i->nat_block_bitmap)
2993                 return -ENOMEM;
2994
2995         nm_i->free_nid_count =
2996                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
2997                                               nm_i->nat_blocks),
2998                               GFP_KERNEL);
2999         if (!nm_i->free_nid_count)
3000                 return -ENOMEM;
3001         return 0;
3002 }
3003
3004 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3005 {
3006         int err;
3007
3008         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3009                                                         GFP_KERNEL);
3010         if (!sbi->nm_info)
3011                 return -ENOMEM;
3012
3013         err = init_node_manager(sbi);
3014         if (err)
3015                 return err;
3016
3017         err = init_free_nid_cache(sbi);
3018         if (err)
3019                 return err;
3020
3021         /* load free nid status from nat_bits table */
3022         load_free_nid_bitmap(sbi);
3023
3024         return f2fs_build_free_nids(sbi, true, true);
3025 }
3026
3027 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3028 {
3029         struct f2fs_nm_info *nm_i = NM_I(sbi);
3030         struct free_nid *i, *next_i;
3031         struct nat_entry *natvec[NATVEC_SIZE];
3032         struct nat_entry_set *setvec[SETVEC_SIZE];
3033         nid_t nid = 0;
3034         unsigned int found;
3035
3036         if (!nm_i)
3037                 return;
3038
3039         /* destroy free nid list */
3040         spin_lock(&nm_i->nid_list_lock);
3041         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3042                 __remove_free_nid(sbi, i, FREE_NID);
3043                 spin_unlock(&nm_i->nid_list_lock);
3044                 kmem_cache_free(free_nid_slab, i);
3045                 spin_lock(&nm_i->nid_list_lock);
3046         }
3047         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3048         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3049         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3050         spin_unlock(&nm_i->nid_list_lock);
3051
3052         /* destroy nat cache */
3053         down_write(&nm_i->nat_tree_lock);
3054         while ((found = __gang_lookup_nat_cache(nm_i,
3055                                         nid, NATVEC_SIZE, natvec))) {
3056                 unsigned idx;
3057
3058                 nid = nat_get_nid(natvec[found - 1]) + 1;
3059                 for (idx = 0; idx < found; idx++) {
3060                         spin_lock(&nm_i->nat_list_lock);
3061                         list_del(&natvec[idx]->list);
3062                         spin_unlock(&nm_i->nat_list_lock);
3063
3064                         __del_from_nat_cache(nm_i, natvec[idx]);
3065                 }
3066         }
3067         f2fs_bug_on(sbi, nm_i->nat_cnt);
3068
3069         /* destroy nat set cache */
3070         nid = 0;
3071         while ((found = __gang_lookup_nat_set(nm_i,
3072                                         nid, SETVEC_SIZE, setvec))) {
3073                 unsigned idx;
3074
3075                 nid = setvec[found - 1]->set + 1;
3076                 for (idx = 0; idx < found; idx++) {
3077                         /* entry_cnt is not zero, when cp_error was occurred */
3078                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3079                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3080                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3081                 }
3082         }
3083         up_write(&nm_i->nat_tree_lock);
3084
3085         kvfree(nm_i->nat_block_bitmap);
3086         if (nm_i->free_nid_bitmap) {
3087                 int i;
3088
3089                 for (i = 0; i < nm_i->nat_blocks; i++)
3090                         kvfree(nm_i->free_nid_bitmap[i]);
3091                 kfree(nm_i->free_nid_bitmap);
3092         }
3093         kvfree(nm_i->free_nid_count);
3094
3095         kfree(nm_i->nat_bitmap);
3096         kfree(nm_i->nat_bits);
3097 #ifdef CONFIG_F2FS_CHECK_FS
3098         kfree(nm_i->nat_bitmap_mir);
3099 #endif
3100         sbi->nm_info = NULL;
3101         kfree(nm_i);
3102 }
3103
3104 int __init f2fs_create_node_manager_caches(void)
3105 {
3106         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3107                         sizeof(struct nat_entry));
3108         if (!nat_entry_slab)
3109                 goto fail;
3110
3111         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3112                         sizeof(struct free_nid));
3113         if (!free_nid_slab)
3114                 goto destroy_nat_entry;
3115
3116         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3117                         sizeof(struct nat_entry_set));
3118         if (!nat_entry_set_slab)
3119                 goto destroy_free_nid;
3120
3121         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3122                         sizeof(struct fsync_node_entry));
3123         if (!fsync_node_entry_slab)
3124                 goto destroy_nat_entry_set;
3125         return 0;
3126
3127 destroy_nat_entry_set:
3128         kmem_cache_destroy(nat_entry_set_slab);
3129 destroy_free_nid:
3130         kmem_cache_destroy(free_nid_slab);
3131 destroy_nat_entry:
3132         kmem_cache_destroy(nat_entry_slab);
3133 fail:
3134         return -ENOMEM;
3135 }
3136
3137 void f2fs_destroy_node_manager_caches(void)
3138 {
3139         kmem_cache_destroy(fsync_node_entry_slab);
3140         kmem_cache_destroy(nat_entry_set_slab);
3141         kmem_cache_destroy(free_nid_slab);
3142         kmem_cache_destroy(nat_entry_slab);
3143 }