f2fs: modify for accurate fggc node io stat
[linux] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34         struct f2fs_nm_info *nm_i = NM_I(sbi);
35         struct sysinfo val;
36         unsigned long avail_ram;
37         unsigned long mem_size = 0;
38         bool res = false;
39
40         si_meminfo(&val);
41
42         /* only uses low memory */
43         avail_ram = val.totalram - val.totalhigh;
44
45         /*
46          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47          */
48         if (type == FREE_NIDS) {
49                 mem_size = (nm_i->nid_cnt[FREE_NID] *
50                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
51                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52         } else if (type == NAT_ENTRIES) {
53                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54                                                         PAGE_SHIFT;
55                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56                 if (excess_cached_nats(sbi))
57                         res = false;
58         } else if (type == DIRTY_DENTS) {
59                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
60                         return false;
61                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63         } else if (type == INO_ENTRIES) {
64                 int i;
65
66                 for (i = 0; i < MAX_INO_ENTRY; i++)
67                         mem_size += sbi->im[i].ino_num *
68                                                 sizeof(struct ino_entry);
69                 mem_size >>= PAGE_SHIFT;
70                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71         } else if (type == EXTENT_CACHE) {
72                 mem_size = (atomic_read(&sbi->total_ext_tree) *
73                                 sizeof(struct extent_tree) +
74                                 atomic_read(&sbi->total_ext_node) *
75                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
76                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77         } else if (type == INMEM_PAGES) {
78                 /* it allows 20% / total_ram for inmemory pages */
79                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80                 res = mem_size < (val.totalram / 5);
81         } else {
82                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83                         return true;
84         }
85         return res;
86 }
87
88 static void clear_node_page_dirty(struct page *page)
89 {
90         struct address_space *mapping = page->mapping;
91         unsigned int long flags;
92
93         if (PageDirty(page)) {
94                 spin_lock_irqsave(&mapping->tree_lock, flags);
95                 radix_tree_tag_clear(&mapping->page_tree,
96                                 page_index(page),
97                                 PAGECACHE_TAG_DIRTY);
98                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
99
100                 clear_page_dirty_for_io(page);
101                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102         }
103         ClearPageUptodate(page);
104 }
105
106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108         pgoff_t index = current_nat_addr(sbi, nid);
109         return get_meta_page(sbi, index);
110 }
111
112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114         struct page *src_page;
115         struct page *dst_page;
116         pgoff_t src_off;
117         pgoff_t dst_off;
118         void *src_addr;
119         void *dst_addr;
120         struct f2fs_nm_info *nm_i = NM_I(sbi);
121
122         src_off = current_nat_addr(sbi, nid);
123         dst_off = next_nat_addr(sbi, src_off);
124
125         /* get current nat block page with lock */
126         src_page = get_meta_page(sbi, src_off);
127         dst_page = grab_meta_page(sbi, dst_off);
128         f2fs_bug_on(sbi, PageDirty(src_page));
129
130         src_addr = page_address(src_page);
131         dst_addr = page_address(dst_page);
132         memcpy(dst_addr, src_addr, PAGE_SIZE);
133         set_page_dirty(dst_page);
134         f2fs_put_page(src_page, 1);
135
136         set_to_next_nat(nm_i, nid);
137
138         return dst_page;
139 }
140
141 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
142 {
143         return radix_tree_lookup(&nm_i->nat_root, n);
144 }
145
146 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
147                 nid_t start, unsigned int nr, struct nat_entry **ep)
148 {
149         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
150 }
151
152 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
153 {
154         list_del(&e->list);
155         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
156         nm_i->nat_cnt--;
157         kmem_cache_free(nat_entry_slab, e);
158 }
159
160 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
161                                                 struct nat_entry *ne)
162 {
163         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
164         struct nat_entry_set *head;
165
166         head = radix_tree_lookup(&nm_i->nat_set_root, set);
167         if (!head) {
168                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
169
170                 INIT_LIST_HEAD(&head->entry_list);
171                 INIT_LIST_HEAD(&head->set_list);
172                 head->set = set;
173                 head->entry_cnt = 0;
174                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
175         }
176
177         if (get_nat_flag(ne, IS_DIRTY))
178                 goto refresh_list;
179
180         nm_i->dirty_nat_cnt++;
181         head->entry_cnt++;
182         set_nat_flag(ne, IS_DIRTY, true);
183 refresh_list:
184         if (nat_get_blkaddr(ne) == NEW_ADDR)
185                 list_del_init(&ne->list);
186         else
187                 list_move_tail(&ne->list, &head->entry_list);
188 }
189
190 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
191                 struct nat_entry_set *set, struct nat_entry *ne)
192 {
193         list_move_tail(&ne->list, &nm_i->nat_entries);
194         set_nat_flag(ne, IS_DIRTY, false);
195         set->entry_cnt--;
196         nm_i->dirty_nat_cnt--;
197 }
198
199 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
200                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
201 {
202         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
203                                                         start, nr);
204 }
205
206 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
207 {
208         struct f2fs_nm_info *nm_i = NM_I(sbi);
209         struct nat_entry *e;
210         bool need = false;
211
212         down_read(&nm_i->nat_tree_lock);
213         e = __lookup_nat_cache(nm_i, nid);
214         if (e) {
215                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
216                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
217                         need = true;
218         }
219         up_read(&nm_i->nat_tree_lock);
220         return need;
221 }
222
223 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
224 {
225         struct f2fs_nm_info *nm_i = NM_I(sbi);
226         struct nat_entry *e;
227         bool is_cp = true;
228
229         down_read(&nm_i->nat_tree_lock);
230         e = __lookup_nat_cache(nm_i, nid);
231         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
232                 is_cp = false;
233         up_read(&nm_i->nat_tree_lock);
234         return is_cp;
235 }
236
237 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
238 {
239         struct f2fs_nm_info *nm_i = NM_I(sbi);
240         struct nat_entry *e;
241         bool need_update = true;
242
243         down_read(&nm_i->nat_tree_lock);
244         e = __lookup_nat_cache(nm_i, ino);
245         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
246                         (get_nat_flag(e, IS_CHECKPOINTED) ||
247                          get_nat_flag(e, HAS_FSYNCED_INODE)))
248                 need_update = false;
249         up_read(&nm_i->nat_tree_lock);
250         return need_update;
251 }
252
253 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
254                                                                 bool no_fail)
255 {
256         struct nat_entry *new;
257
258         if (no_fail) {
259                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
260                 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
261         } else {
262                 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
263                 if (!new)
264                         return NULL;
265                 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
266                         kmem_cache_free(nat_entry_slab, new);
267                         return NULL;
268                 }
269         }
270
271         memset(new, 0, sizeof(struct nat_entry));
272         nat_set_nid(new, nid);
273         nat_reset_flag(new);
274         list_add_tail(&new->list, &nm_i->nat_entries);
275         nm_i->nat_cnt++;
276         return new;
277 }
278
279 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
280                                                 struct f2fs_nat_entry *ne)
281 {
282         struct f2fs_nm_info *nm_i = NM_I(sbi);
283         struct nat_entry *e;
284
285         e = __lookup_nat_cache(nm_i, nid);
286         if (!e) {
287                 e = grab_nat_entry(nm_i, nid, false);
288                 if (e)
289                         node_info_from_raw_nat(&e->ni, ne);
290         } else {
291                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
292                                 nat_get_blkaddr(e) !=
293                                         le32_to_cpu(ne->block_addr) ||
294                                 nat_get_version(e) != ne->version);
295         }
296 }
297
298 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
299                         block_t new_blkaddr, bool fsync_done)
300 {
301         struct f2fs_nm_info *nm_i = NM_I(sbi);
302         struct nat_entry *e;
303
304         down_write(&nm_i->nat_tree_lock);
305         e = __lookup_nat_cache(nm_i, ni->nid);
306         if (!e) {
307                 e = grab_nat_entry(nm_i, ni->nid, true);
308                 copy_node_info(&e->ni, ni);
309                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
310         } else if (new_blkaddr == NEW_ADDR) {
311                 /*
312                  * when nid is reallocated,
313                  * previous nat entry can be remained in nat cache.
314                  * So, reinitialize it with new information.
315                  */
316                 copy_node_info(&e->ni, ni);
317                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
318         }
319
320         /* sanity check */
321         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
322         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
323                         new_blkaddr == NULL_ADDR);
324         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
325                         new_blkaddr == NEW_ADDR);
326         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
327                         nat_get_blkaddr(e) != NULL_ADDR &&
328                         new_blkaddr == NEW_ADDR);
329
330         /* increment version no as node is removed */
331         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
332                 unsigned char version = nat_get_version(e);
333                 nat_set_version(e, inc_node_version(version));
334         }
335
336         /* change address */
337         nat_set_blkaddr(e, new_blkaddr);
338         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
339                 set_nat_flag(e, IS_CHECKPOINTED, false);
340         __set_nat_cache_dirty(nm_i, e);
341
342         /* update fsync_mark if its inode nat entry is still alive */
343         if (ni->nid != ni->ino)
344                 e = __lookup_nat_cache(nm_i, ni->ino);
345         if (e) {
346                 if (fsync_done && ni->nid == ni->ino)
347                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
348                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
349         }
350         up_write(&nm_i->nat_tree_lock);
351 }
352
353 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
354 {
355         struct f2fs_nm_info *nm_i = NM_I(sbi);
356         int nr = nr_shrink;
357
358         if (!down_write_trylock(&nm_i->nat_tree_lock))
359                 return 0;
360
361         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
362                 struct nat_entry *ne;
363                 ne = list_first_entry(&nm_i->nat_entries,
364                                         struct nat_entry, list);
365                 __del_from_nat_cache(nm_i, ne);
366                 nr_shrink--;
367         }
368         up_write(&nm_i->nat_tree_lock);
369         return nr - nr_shrink;
370 }
371
372 /*
373  * This function always returns success
374  */
375 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
376 {
377         struct f2fs_nm_info *nm_i = NM_I(sbi);
378         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
379         struct f2fs_journal *journal = curseg->journal;
380         nid_t start_nid = START_NID(nid);
381         struct f2fs_nat_block *nat_blk;
382         struct page *page = NULL;
383         struct f2fs_nat_entry ne;
384         struct nat_entry *e;
385         pgoff_t index;
386         int i;
387
388         ni->nid = nid;
389
390         /* Check nat cache */
391         down_read(&nm_i->nat_tree_lock);
392         e = __lookup_nat_cache(nm_i, nid);
393         if (e) {
394                 ni->ino = nat_get_ino(e);
395                 ni->blk_addr = nat_get_blkaddr(e);
396                 ni->version = nat_get_version(e);
397                 up_read(&nm_i->nat_tree_lock);
398                 return;
399         }
400
401         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
402
403         /* Check current segment summary */
404         down_read(&curseg->journal_rwsem);
405         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
406         if (i >= 0) {
407                 ne = nat_in_journal(journal, i);
408                 node_info_from_raw_nat(ni, &ne);
409         }
410         up_read(&curseg->journal_rwsem);
411         if (i >= 0) {
412                 up_read(&nm_i->nat_tree_lock);
413                 goto cache;
414         }
415
416         /* Fill node_info from nat page */
417         index = current_nat_addr(sbi, nid);
418         up_read(&nm_i->nat_tree_lock);
419
420         page = get_meta_page(sbi, index);
421         nat_blk = (struct f2fs_nat_block *)page_address(page);
422         ne = nat_blk->entries[nid - start_nid];
423         node_info_from_raw_nat(ni, &ne);
424         f2fs_put_page(page, 1);
425 cache:
426         /* cache nat entry */
427         down_write(&nm_i->nat_tree_lock);
428         cache_nat_entry(sbi, nid, &ne);
429         up_write(&nm_i->nat_tree_lock);
430 }
431
432 /*
433  * readahead MAX_RA_NODE number of node pages.
434  */
435 static void ra_node_pages(struct page *parent, int start, int n)
436 {
437         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
438         struct blk_plug plug;
439         int i, end;
440         nid_t nid;
441
442         blk_start_plug(&plug);
443
444         /* Then, try readahead for siblings of the desired node */
445         end = start + n;
446         end = min(end, NIDS_PER_BLOCK);
447         for (i = start; i < end; i++) {
448                 nid = get_nid(parent, i, false);
449                 ra_node_page(sbi, nid);
450         }
451
452         blk_finish_plug(&plug);
453 }
454
455 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
456 {
457         const long direct_index = ADDRS_PER_INODE(dn->inode);
458         const long direct_blks = ADDRS_PER_BLOCK;
459         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
460         unsigned int skipped_unit = ADDRS_PER_BLOCK;
461         int cur_level = dn->cur_level;
462         int max_level = dn->max_level;
463         pgoff_t base = 0;
464
465         if (!dn->max_level)
466                 return pgofs + 1;
467
468         while (max_level-- > cur_level)
469                 skipped_unit *= NIDS_PER_BLOCK;
470
471         switch (dn->max_level) {
472         case 3:
473                 base += 2 * indirect_blks;
474         case 2:
475                 base += 2 * direct_blks;
476         case 1:
477                 base += direct_index;
478                 break;
479         default:
480                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
481         }
482
483         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
484 }
485
486 /*
487  * The maximum depth is four.
488  * Offset[0] will have raw inode offset.
489  */
490 static int get_node_path(struct inode *inode, long block,
491                                 int offset[4], unsigned int noffset[4])
492 {
493         const long direct_index = ADDRS_PER_INODE(inode);
494         const long direct_blks = ADDRS_PER_BLOCK;
495         const long dptrs_per_blk = NIDS_PER_BLOCK;
496         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
497         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
498         int n = 0;
499         int level = 0;
500
501         noffset[0] = 0;
502
503         if (block < direct_index) {
504                 offset[n] = block;
505                 goto got;
506         }
507         block -= direct_index;
508         if (block < direct_blks) {
509                 offset[n++] = NODE_DIR1_BLOCK;
510                 noffset[n] = 1;
511                 offset[n] = block;
512                 level = 1;
513                 goto got;
514         }
515         block -= direct_blks;
516         if (block < direct_blks) {
517                 offset[n++] = NODE_DIR2_BLOCK;
518                 noffset[n] = 2;
519                 offset[n] = block;
520                 level = 1;
521                 goto got;
522         }
523         block -= direct_blks;
524         if (block < indirect_blks) {
525                 offset[n++] = NODE_IND1_BLOCK;
526                 noffset[n] = 3;
527                 offset[n++] = block / direct_blks;
528                 noffset[n] = 4 + offset[n - 1];
529                 offset[n] = block % direct_blks;
530                 level = 2;
531                 goto got;
532         }
533         block -= indirect_blks;
534         if (block < indirect_blks) {
535                 offset[n++] = NODE_IND2_BLOCK;
536                 noffset[n] = 4 + dptrs_per_blk;
537                 offset[n++] = block / direct_blks;
538                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
539                 offset[n] = block % direct_blks;
540                 level = 2;
541                 goto got;
542         }
543         block -= indirect_blks;
544         if (block < dindirect_blks) {
545                 offset[n++] = NODE_DIND_BLOCK;
546                 noffset[n] = 5 + (dptrs_per_blk * 2);
547                 offset[n++] = block / indirect_blks;
548                 noffset[n] = 6 + (dptrs_per_blk * 2) +
549                               offset[n - 1] * (dptrs_per_blk + 1);
550                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
551                 noffset[n] = 7 + (dptrs_per_blk * 2) +
552                               offset[n - 2] * (dptrs_per_blk + 1) +
553                               offset[n - 1];
554                 offset[n] = block % direct_blks;
555                 level = 3;
556                 goto got;
557         } else {
558                 return -E2BIG;
559         }
560 got:
561         return level;
562 }
563
564 /*
565  * Caller should call f2fs_put_dnode(dn).
566  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
567  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
568  * In the case of RDONLY_NODE, we don't need to care about mutex.
569  */
570 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
571 {
572         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
573         struct page *npage[4];
574         struct page *parent = NULL;
575         int offset[4];
576         unsigned int noffset[4];
577         nid_t nids[4];
578         int level, i = 0;
579         int err = 0;
580
581         level = get_node_path(dn->inode, index, offset, noffset);
582         if (level < 0)
583                 return level;
584
585         nids[0] = dn->inode->i_ino;
586         npage[0] = dn->inode_page;
587
588         if (!npage[0]) {
589                 npage[0] = get_node_page(sbi, nids[0]);
590                 if (IS_ERR(npage[0]))
591                         return PTR_ERR(npage[0]);
592         }
593
594         /* if inline_data is set, should not report any block indices */
595         if (f2fs_has_inline_data(dn->inode) && index) {
596                 err = -ENOENT;
597                 f2fs_put_page(npage[0], 1);
598                 goto release_out;
599         }
600
601         parent = npage[0];
602         if (level != 0)
603                 nids[1] = get_nid(parent, offset[0], true);
604         dn->inode_page = npage[0];
605         dn->inode_page_locked = true;
606
607         /* get indirect or direct nodes */
608         for (i = 1; i <= level; i++) {
609                 bool done = false;
610
611                 if (!nids[i] && mode == ALLOC_NODE) {
612                         /* alloc new node */
613                         if (!alloc_nid(sbi, &(nids[i]))) {
614                                 err = -ENOSPC;
615                                 goto release_pages;
616                         }
617
618                         dn->nid = nids[i];
619                         npage[i] = new_node_page(dn, noffset[i]);
620                         if (IS_ERR(npage[i])) {
621                                 alloc_nid_failed(sbi, nids[i]);
622                                 err = PTR_ERR(npage[i]);
623                                 goto release_pages;
624                         }
625
626                         set_nid(parent, offset[i - 1], nids[i], i == 1);
627                         alloc_nid_done(sbi, nids[i]);
628                         done = true;
629                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
630                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
631                         if (IS_ERR(npage[i])) {
632                                 err = PTR_ERR(npage[i]);
633                                 goto release_pages;
634                         }
635                         done = true;
636                 }
637                 if (i == 1) {
638                         dn->inode_page_locked = false;
639                         unlock_page(parent);
640                 } else {
641                         f2fs_put_page(parent, 1);
642                 }
643
644                 if (!done) {
645                         npage[i] = get_node_page(sbi, nids[i]);
646                         if (IS_ERR(npage[i])) {
647                                 err = PTR_ERR(npage[i]);
648                                 f2fs_put_page(npage[0], 0);
649                                 goto release_out;
650                         }
651                 }
652                 if (i < level) {
653                         parent = npage[i];
654                         nids[i + 1] = get_nid(parent, offset[i], false);
655                 }
656         }
657         dn->nid = nids[level];
658         dn->ofs_in_node = offset[level];
659         dn->node_page = npage[level];
660         dn->data_blkaddr = datablock_addr(dn->inode,
661                                 dn->node_page, dn->ofs_in_node);
662         return 0;
663
664 release_pages:
665         f2fs_put_page(parent, 1);
666         if (i > 1)
667                 f2fs_put_page(npage[0], 0);
668 release_out:
669         dn->inode_page = NULL;
670         dn->node_page = NULL;
671         if (err == -ENOENT) {
672                 dn->cur_level = i;
673                 dn->max_level = level;
674                 dn->ofs_in_node = offset[level];
675         }
676         return err;
677 }
678
679 static void truncate_node(struct dnode_of_data *dn)
680 {
681         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
682         struct node_info ni;
683
684         get_node_info(sbi, dn->nid, &ni);
685         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
686
687         /* Deallocate node address */
688         invalidate_blocks(sbi, ni.blk_addr);
689         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
690         set_node_addr(sbi, &ni, NULL_ADDR, false);
691
692         if (dn->nid == dn->inode->i_ino) {
693                 remove_orphan_inode(sbi, dn->nid);
694                 dec_valid_inode_count(sbi);
695                 f2fs_inode_synced(dn->inode);
696         }
697
698         clear_node_page_dirty(dn->node_page);
699         set_sbi_flag(sbi, SBI_IS_DIRTY);
700
701         f2fs_put_page(dn->node_page, 1);
702
703         invalidate_mapping_pages(NODE_MAPPING(sbi),
704                         dn->node_page->index, dn->node_page->index);
705
706         dn->node_page = NULL;
707         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
708 }
709
710 static int truncate_dnode(struct dnode_of_data *dn)
711 {
712         struct page *page;
713
714         if (dn->nid == 0)
715                 return 1;
716
717         /* get direct node */
718         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
719         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
720                 return 1;
721         else if (IS_ERR(page))
722                 return PTR_ERR(page);
723
724         /* Make dnode_of_data for parameter */
725         dn->node_page = page;
726         dn->ofs_in_node = 0;
727         truncate_data_blocks(dn);
728         truncate_node(dn);
729         return 1;
730 }
731
732 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
733                                                 int ofs, int depth)
734 {
735         struct dnode_of_data rdn = *dn;
736         struct page *page;
737         struct f2fs_node *rn;
738         nid_t child_nid;
739         unsigned int child_nofs;
740         int freed = 0;
741         int i, ret;
742
743         if (dn->nid == 0)
744                 return NIDS_PER_BLOCK + 1;
745
746         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
747
748         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
749         if (IS_ERR(page)) {
750                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
751                 return PTR_ERR(page);
752         }
753
754         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
755
756         rn = F2FS_NODE(page);
757         if (depth < 3) {
758                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
759                         child_nid = le32_to_cpu(rn->in.nid[i]);
760                         if (child_nid == 0)
761                                 continue;
762                         rdn.nid = child_nid;
763                         ret = truncate_dnode(&rdn);
764                         if (ret < 0)
765                                 goto out_err;
766                         if (set_nid(page, i, 0, false))
767                                 dn->node_changed = true;
768                 }
769         } else {
770                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
771                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
772                         child_nid = le32_to_cpu(rn->in.nid[i]);
773                         if (child_nid == 0) {
774                                 child_nofs += NIDS_PER_BLOCK + 1;
775                                 continue;
776                         }
777                         rdn.nid = child_nid;
778                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
779                         if (ret == (NIDS_PER_BLOCK + 1)) {
780                                 if (set_nid(page, i, 0, false))
781                                         dn->node_changed = true;
782                                 child_nofs += ret;
783                         } else if (ret < 0 && ret != -ENOENT) {
784                                 goto out_err;
785                         }
786                 }
787                 freed = child_nofs;
788         }
789
790         if (!ofs) {
791                 /* remove current indirect node */
792                 dn->node_page = page;
793                 truncate_node(dn);
794                 freed++;
795         } else {
796                 f2fs_put_page(page, 1);
797         }
798         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
799         return freed;
800
801 out_err:
802         f2fs_put_page(page, 1);
803         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
804         return ret;
805 }
806
807 static int truncate_partial_nodes(struct dnode_of_data *dn,
808                         struct f2fs_inode *ri, int *offset, int depth)
809 {
810         struct page *pages[2];
811         nid_t nid[3];
812         nid_t child_nid;
813         int err = 0;
814         int i;
815         int idx = depth - 2;
816
817         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
818         if (!nid[0])
819                 return 0;
820
821         /* get indirect nodes in the path */
822         for (i = 0; i < idx + 1; i++) {
823                 /* reference count'll be increased */
824                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
825                 if (IS_ERR(pages[i])) {
826                         err = PTR_ERR(pages[i]);
827                         idx = i - 1;
828                         goto fail;
829                 }
830                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
831         }
832
833         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
834
835         /* free direct nodes linked to a partial indirect node */
836         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
837                 child_nid = get_nid(pages[idx], i, false);
838                 if (!child_nid)
839                         continue;
840                 dn->nid = child_nid;
841                 err = truncate_dnode(dn);
842                 if (err < 0)
843                         goto fail;
844                 if (set_nid(pages[idx], i, 0, false))
845                         dn->node_changed = true;
846         }
847
848         if (offset[idx + 1] == 0) {
849                 dn->node_page = pages[idx];
850                 dn->nid = nid[idx];
851                 truncate_node(dn);
852         } else {
853                 f2fs_put_page(pages[idx], 1);
854         }
855         offset[idx]++;
856         offset[idx + 1] = 0;
857         idx--;
858 fail:
859         for (i = idx; i >= 0; i--)
860                 f2fs_put_page(pages[i], 1);
861
862         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
863
864         return err;
865 }
866
867 /*
868  * All the block addresses of data and nodes should be nullified.
869  */
870 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
871 {
872         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
873         int err = 0, cont = 1;
874         int level, offset[4], noffset[4];
875         unsigned int nofs = 0;
876         struct f2fs_inode *ri;
877         struct dnode_of_data dn;
878         struct page *page;
879
880         trace_f2fs_truncate_inode_blocks_enter(inode, from);
881
882         level = get_node_path(inode, from, offset, noffset);
883         if (level < 0)
884                 return level;
885
886         page = get_node_page(sbi, inode->i_ino);
887         if (IS_ERR(page)) {
888                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
889                 return PTR_ERR(page);
890         }
891
892         set_new_dnode(&dn, inode, page, NULL, 0);
893         unlock_page(page);
894
895         ri = F2FS_INODE(page);
896         switch (level) {
897         case 0:
898         case 1:
899                 nofs = noffset[1];
900                 break;
901         case 2:
902                 nofs = noffset[1];
903                 if (!offset[level - 1])
904                         goto skip_partial;
905                 err = truncate_partial_nodes(&dn, ri, offset, level);
906                 if (err < 0 && err != -ENOENT)
907                         goto fail;
908                 nofs += 1 + NIDS_PER_BLOCK;
909                 break;
910         case 3:
911                 nofs = 5 + 2 * NIDS_PER_BLOCK;
912                 if (!offset[level - 1])
913                         goto skip_partial;
914                 err = truncate_partial_nodes(&dn, ri, offset, level);
915                 if (err < 0 && err != -ENOENT)
916                         goto fail;
917                 break;
918         default:
919                 BUG();
920         }
921
922 skip_partial:
923         while (cont) {
924                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
925                 switch (offset[0]) {
926                 case NODE_DIR1_BLOCK:
927                 case NODE_DIR2_BLOCK:
928                         err = truncate_dnode(&dn);
929                         break;
930
931                 case NODE_IND1_BLOCK:
932                 case NODE_IND2_BLOCK:
933                         err = truncate_nodes(&dn, nofs, offset[1], 2);
934                         break;
935
936                 case NODE_DIND_BLOCK:
937                         err = truncate_nodes(&dn, nofs, offset[1], 3);
938                         cont = 0;
939                         break;
940
941                 default:
942                         BUG();
943                 }
944                 if (err < 0 && err != -ENOENT)
945                         goto fail;
946                 if (offset[1] == 0 &&
947                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
948                         lock_page(page);
949                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
950                         f2fs_wait_on_page_writeback(page, NODE, true);
951                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
952                         set_page_dirty(page);
953                         unlock_page(page);
954                 }
955                 offset[1] = 0;
956                 offset[0]++;
957                 nofs += err;
958         }
959 fail:
960         f2fs_put_page(page, 0);
961         trace_f2fs_truncate_inode_blocks_exit(inode, err);
962         return err > 0 ? 0 : err;
963 }
964
965 /* caller must lock inode page */
966 int truncate_xattr_node(struct inode *inode)
967 {
968         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
969         nid_t nid = F2FS_I(inode)->i_xattr_nid;
970         struct dnode_of_data dn;
971         struct page *npage;
972
973         if (!nid)
974                 return 0;
975
976         npage = get_node_page(sbi, nid);
977         if (IS_ERR(npage))
978                 return PTR_ERR(npage);
979
980         f2fs_i_xnid_write(inode, 0);
981
982         set_new_dnode(&dn, inode, NULL, npage, nid);
983         truncate_node(&dn);
984         return 0;
985 }
986
987 /*
988  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
989  * f2fs_unlock_op().
990  */
991 int remove_inode_page(struct inode *inode)
992 {
993         struct dnode_of_data dn;
994         int err;
995
996         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
997         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
998         if (err)
999                 return err;
1000
1001         err = truncate_xattr_node(inode);
1002         if (err) {
1003                 f2fs_put_dnode(&dn);
1004                 return err;
1005         }
1006
1007         /* remove potential inline_data blocks */
1008         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1009                                 S_ISLNK(inode->i_mode))
1010                 truncate_data_blocks_range(&dn, 1);
1011
1012         /* 0 is possible, after f2fs_new_inode() has failed */
1013         f2fs_bug_on(F2FS_I_SB(inode),
1014                         inode->i_blocks != 0 && inode->i_blocks != 8);
1015
1016         /* will put inode & node pages */
1017         truncate_node(&dn);
1018         return 0;
1019 }
1020
1021 struct page *new_inode_page(struct inode *inode)
1022 {
1023         struct dnode_of_data dn;
1024
1025         /* allocate inode page for new inode */
1026         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1027
1028         /* caller should f2fs_put_page(page, 1); */
1029         return new_node_page(&dn, 0);
1030 }
1031
1032 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1033 {
1034         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1035         struct node_info new_ni;
1036         struct page *page;
1037         int err;
1038
1039         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1040                 return ERR_PTR(-EPERM);
1041
1042         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1043         if (!page)
1044                 return ERR_PTR(-ENOMEM);
1045
1046         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1047                 goto fail;
1048
1049 #ifdef CONFIG_F2FS_CHECK_FS
1050         get_node_info(sbi, dn->nid, &new_ni);
1051         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1052 #endif
1053         new_ni.nid = dn->nid;
1054         new_ni.ino = dn->inode->i_ino;
1055         new_ni.blk_addr = NULL_ADDR;
1056         new_ni.flag = 0;
1057         new_ni.version = 0;
1058         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1059
1060         f2fs_wait_on_page_writeback(page, NODE, true);
1061         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1062         set_cold_node(dn->inode, page);
1063         if (!PageUptodate(page))
1064                 SetPageUptodate(page);
1065         if (set_page_dirty(page))
1066                 dn->node_changed = true;
1067
1068         if (f2fs_has_xattr_block(ofs))
1069                 f2fs_i_xnid_write(dn->inode, dn->nid);
1070
1071         if (ofs == 0)
1072                 inc_valid_inode_count(sbi);
1073         return page;
1074
1075 fail:
1076         clear_node_page_dirty(page);
1077         f2fs_put_page(page, 1);
1078         return ERR_PTR(err);
1079 }
1080
1081 /*
1082  * Caller should do after getting the following values.
1083  * 0: f2fs_put_page(page, 0)
1084  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1085  */
1086 static int read_node_page(struct page *page, int op_flags)
1087 {
1088         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1089         struct node_info ni;
1090         struct f2fs_io_info fio = {
1091                 .sbi = sbi,
1092                 .type = NODE,
1093                 .op = REQ_OP_READ,
1094                 .op_flags = op_flags,
1095                 .page = page,
1096                 .encrypted_page = NULL,
1097         };
1098
1099         if (PageUptodate(page))
1100                 return LOCKED_PAGE;
1101
1102         get_node_info(sbi, page->index, &ni);
1103
1104         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1105                 ClearPageUptodate(page);
1106                 return -ENOENT;
1107         }
1108
1109         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1110         return f2fs_submit_page_bio(&fio);
1111 }
1112
1113 /*
1114  * Readahead a node page
1115  */
1116 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1117 {
1118         struct page *apage;
1119         int err;
1120
1121         if (!nid)
1122                 return;
1123         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1124
1125         rcu_read_lock();
1126         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1127         rcu_read_unlock();
1128         if (apage)
1129                 return;
1130
1131         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1132         if (!apage)
1133                 return;
1134
1135         err = read_node_page(apage, REQ_RAHEAD);
1136         f2fs_put_page(apage, err ? 1 : 0);
1137 }
1138
1139 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1140                                         struct page *parent, int start)
1141 {
1142         struct page *page;
1143         int err;
1144
1145         if (!nid)
1146                 return ERR_PTR(-ENOENT);
1147         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1148 repeat:
1149         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1150         if (!page)
1151                 return ERR_PTR(-ENOMEM);
1152
1153         err = read_node_page(page, 0);
1154         if (err < 0) {
1155                 f2fs_put_page(page, 1);
1156                 return ERR_PTR(err);
1157         } else if (err == LOCKED_PAGE) {
1158                 err = 0;
1159                 goto page_hit;
1160         }
1161
1162         if (parent)
1163                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1164
1165         lock_page(page);
1166
1167         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1168                 f2fs_put_page(page, 1);
1169                 goto repeat;
1170         }
1171
1172         if (unlikely(!PageUptodate(page))) {
1173                 err = -EIO;
1174                 goto out_err;
1175         }
1176
1177         if (!f2fs_inode_chksum_verify(sbi, page)) {
1178                 err = -EBADMSG;
1179                 goto out_err;
1180         }
1181 page_hit:
1182         if(unlikely(nid != nid_of_node(page))) {
1183                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1184                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1185                         nid, nid_of_node(page), ino_of_node(page),
1186                         ofs_of_node(page), cpver_of_node(page),
1187                         next_blkaddr_of_node(page));
1188                 err = -EINVAL;
1189 out_err:
1190                 ClearPageUptodate(page);
1191                 f2fs_put_page(page, 1);
1192                 return ERR_PTR(err);
1193         }
1194         return page;
1195 }
1196
1197 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1198 {
1199         return __get_node_page(sbi, nid, NULL, 0);
1200 }
1201
1202 struct page *get_node_page_ra(struct page *parent, int start)
1203 {
1204         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1205         nid_t nid = get_nid(parent, start, false);
1206
1207         return __get_node_page(sbi, nid, parent, start);
1208 }
1209
1210 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1211 {
1212         struct inode *inode;
1213         struct page *page;
1214         int ret;
1215
1216         /* should flush inline_data before evict_inode */
1217         inode = ilookup(sbi->sb, ino);
1218         if (!inode)
1219                 return;
1220
1221         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1222                                         FGP_LOCK|FGP_NOWAIT, 0);
1223         if (!page)
1224                 goto iput_out;
1225
1226         if (!PageUptodate(page))
1227                 goto page_out;
1228
1229         if (!PageDirty(page))
1230                 goto page_out;
1231
1232         if (!clear_page_dirty_for_io(page))
1233                 goto page_out;
1234
1235         ret = f2fs_write_inline_data(inode, page);
1236         inode_dec_dirty_pages(inode);
1237         remove_dirty_inode(inode);
1238         if (ret)
1239                 set_page_dirty(page);
1240 page_out:
1241         f2fs_put_page(page, 1);
1242 iput_out:
1243         iput(inode);
1244 }
1245
1246 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1247 {
1248         pgoff_t index, end;
1249         struct pagevec pvec;
1250         struct page *last_page = NULL;
1251
1252         pagevec_init(&pvec, 0);
1253         index = 0;
1254         end = ULONG_MAX;
1255
1256         while (index <= end) {
1257                 int i, nr_pages;
1258                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1259                                 PAGECACHE_TAG_DIRTY,
1260                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1261                 if (nr_pages == 0)
1262                         break;
1263
1264                 for (i = 0; i < nr_pages; i++) {
1265                         struct page *page = pvec.pages[i];
1266
1267                         if (unlikely(f2fs_cp_error(sbi))) {
1268                                 f2fs_put_page(last_page, 0);
1269                                 pagevec_release(&pvec);
1270                                 return ERR_PTR(-EIO);
1271                         }
1272
1273                         if (!IS_DNODE(page) || !is_cold_node(page))
1274                                 continue;
1275                         if (ino_of_node(page) != ino)
1276                                 continue;
1277
1278                         lock_page(page);
1279
1280                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1281 continue_unlock:
1282                                 unlock_page(page);
1283                                 continue;
1284                         }
1285                         if (ino_of_node(page) != ino)
1286                                 goto continue_unlock;
1287
1288                         if (!PageDirty(page)) {
1289                                 /* someone wrote it for us */
1290                                 goto continue_unlock;
1291                         }
1292
1293                         if (last_page)
1294                                 f2fs_put_page(last_page, 0);
1295
1296                         get_page(page);
1297                         last_page = page;
1298                         unlock_page(page);
1299                 }
1300                 pagevec_release(&pvec);
1301                 cond_resched();
1302         }
1303         return last_page;
1304 }
1305
1306 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1307                                 struct writeback_control *wbc, bool do_balance,
1308                                 enum iostat_type io_type)
1309 {
1310         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1311         nid_t nid;
1312         struct node_info ni;
1313         struct f2fs_io_info fio = {
1314                 .sbi = sbi,
1315                 .ino = ino_of_node(page),
1316                 .type = NODE,
1317                 .op = REQ_OP_WRITE,
1318                 .op_flags = wbc_to_write_flags(wbc),
1319                 .page = page,
1320                 .encrypted_page = NULL,
1321                 .submitted = false,
1322                 .io_type = io_type,
1323         };
1324
1325         trace_f2fs_writepage(page, NODE);
1326
1327         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1328                 goto redirty_out;
1329         if (unlikely(f2fs_cp_error(sbi)))
1330                 goto redirty_out;
1331
1332         /* get old block addr of this node page */
1333         nid = nid_of_node(page);
1334         f2fs_bug_on(sbi, page->index != nid);
1335
1336         if (wbc->for_reclaim) {
1337                 if (!down_read_trylock(&sbi->node_write))
1338                         goto redirty_out;
1339         } else {
1340                 down_read(&sbi->node_write);
1341         }
1342
1343         get_node_info(sbi, nid, &ni);
1344
1345         /* This page is already truncated */
1346         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1347                 ClearPageUptodate(page);
1348                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1349                 up_read(&sbi->node_write);
1350                 unlock_page(page);
1351                 return 0;
1352         }
1353
1354         if (atomic && !test_opt(sbi, NOBARRIER))
1355                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1356
1357         set_page_writeback(page);
1358         fio.old_blkaddr = ni.blk_addr;
1359         write_node_page(nid, &fio);
1360         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1361         dec_page_count(sbi, F2FS_DIRTY_NODES);
1362         up_read(&sbi->node_write);
1363
1364         if (wbc->for_reclaim) {
1365                 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1366                                                 page->index, NODE);
1367                 submitted = NULL;
1368         }
1369
1370         unlock_page(page);
1371
1372         if (unlikely(f2fs_cp_error(sbi))) {
1373                 f2fs_submit_merged_write(sbi, NODE);
1374                 submitted = NULL;
1375         }
1376         if (submitted)
1377                 *submitted = fio.submitted;
1378
1379         if (do_balance)
1380                 f2fs_balance_fs(sbi, false);
1381         return 0;
1382
1383 redirty_out:
1384         redirty_page_for_writepage(wbc, page);
1385         return AOP_WRITEPAGE_ACTIVATE;
1386 }
1387
1388 void move_node_page(struct page *node_page, int gc_type)
1389 {
1390         if (gc_type == FG_GC) {
1391                 struct writeback_control wbc = {
1392                         .sync_mode = WB_SYNC_ALL,
1393                         .nr_to_write = 1,
1394                         .for_reclaim = 0,
1395                 };
1396
1397                 set_page_dirty(node_page);
1398                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1399
1400                 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1401                 if (!clear_page_dirty_for_io(node_page))
1402                         goto out_page;
1403
1404                 if (__write_node_page(node_page, false, NULL,
1405                                         &wbc, false, FS_GC_NODE_IO))
1406                         unlock_page(node_page);
1407                 goto release_page;
1408         } else {
1409                 /* set page dirty and write it */
1410                 if (!PageWriteback(node_page))
1411                         set_page_dirty(node_page);
1412         }
1413 out_page:
1414         unlock_page(node_page);
1415 release_page:
1416         f2fs_put_page(node_page, 0);
1417 }
1418
1419 static int f2fs_write_node_page(struct page *page,
1420                                 struct writeback_control *wbc)
1421 {
1422         return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1423 }
1424
1425 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1426                         struct writeback_control *wbc, bool atomic)
1427 {
1428         pgoff_t index, end;
1429         pgoff_t last_idx = ULONG_MAX;
1430         struct pagevec pvec;
1431         int ret = 0;
1432         struct page *last_page = NULL;
1433         bool marked = false;
1434         nid_t ino = inode->i_ino;
1435
1436         if (atomic) {
1437                 last_page = last_fsync_dnode(sbi, ino);
1438                 if (IS_ERR_OR_NULL(last_page))
1439                         return PTR_ERR_OR_ZERO(last_page);
1440         }
1441 retry:
1442         pagevec_init(&pvec, 0);
1443         index = 0;
1444         end = ULONG_MAX;
1445
1446         while (index <= end) {
1447                 int i, nr_pages;
1448                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1449                                 PAGECACHE_TAG_DIRTY,
1450                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1451                 if (nr_pages == 0)
1452                         break;
1453
1454                 for (i = 0; i < nr_pages; i++) {
1455                         struct page *page = pvec.pages[i];
1456                         bool submitted = false;
1457
1458                         if (unlikely(f2fs_cp_error(sbi))) {
1459                                 f2fs_put_page(last_page, 0);
1460                                 pagevec_release(&pvec);
1461                                 ret = -EIO;
1462                                 goto out;
1463                         }
1464
1465                         if (!IS_DNODE(page) || !is_cold_node(page))
1466                                 continue;
1467                         if (ino_of_node(page) != ino)
1468                                 continue;
1469
1470                         lock_page(page);
1471
1472                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474                                 unlock_page(page);
1475                                 continue;
1476                         }
1477                         if (ino_of_node(page) != ino)
1478                                 goto continue_unlock;
1479
1480                         if (!PageDirty(page) && page != last_page) {
1481                                 /* someone wrote it for us */
1482                                 goto continue_unlock;
1483                         }
1484
1485                         f2fs_wait_on_page_writeback(page, NODE, true);
1486                         BUG_ON(PageWriteback(page));
1487
1488                         set_fsync_mark(page, 0);
1489                         set_dentry_mark(page, 0);
1490
1491                         if (!atomic || page == last_page) {
1492                                 set_fsync_mark(page, 1);
1493                                 if (IS_INODE(page)) {
1494                                         if (is_inode_flag_set(inode,
1495                                                                 FI_DIRTY_INODE))
1496                                                 update_inode(inode, page);
1497                                         set_dentry_mark(page,
1498                                                 need_dentry_mark(sbi, ino));
1499                                 }
1500                                 /*  may be written by other thread */
1501                                 if (!PageDirty(page))
1502                                         set_page_dirty(page);
1503                         }
1504
1505                         if (!clear_page_dirty_for_io(page))
1506                                 goto continue_unlock;
1507
1508                         ret = __write_node_page(page, atomic &&
1509                                                 page == last_page,
1510                                                 &submitted, wbc, true,
1511                                                 FS_NODE_IO);
1512                         if (ret) {
1513                                 unlock_page(page);
1514                                 f2fs_put_page(last_page, 0);
1515                                 break;
1516                         } else if (submitted) {
1517                                 last_idx = page->index;
1518                         }
1519
1520                         if (page == last_page) {
1521                                 f2fs_put_page(page, 0);
1522                                 marked = true;
1523                                 break;
1524                         }
1525                 }
1526                 pagevec_release(&pvec);
1527                 cond_resched();
1528
1529                 if (ret || marked)
1530                         break;
1531         }
1532         if (!ret && atomic && !marked) {
1533                 f2fs_msg(sbi->sb, KERN_DEBUG,
1534                         "Retry to write fsync mark: ino=%u, idx=%lx",
1535                                         ino, last_page->index);
1536                 lock_page(last_page);
1537                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1538                 set_page_dirty(last_page);
1539                 unlock_page(last_page);
1540                 goto retry;
1541         }
1542 out:
1543         if (last_idx != ULONG_MAX)
1544                 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1545         return ret ? -EIO: 0;
1546 }
1547
1548 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1549                                 bool do_balance, enum iostat_type io_type)
1550 {
1551         pgoff_t index, end;
1552         struct pagevec pvec;
1553         int step = 0;
1554         int nwritten = 0;
1555         int ret = 0;
1556
1557         pagevec_init(&pvec, 0);
1558
1559 next_step:
1560         index = 0;
1561         end = ULONG_MAX;
1562
1563         while (index <= end) {
1564                 int i, nr_pages;
1565                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1566                                 PAGECACHE_TAG_DIRTY,
1567                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1568                 if (nr_pages == 0)
1569                         break;
1570
1571                 for (i = 0; i < nr_pages; i++) {
1572                         struct page *page = pvec.pages[i];
1573                         bool submitted = false;
1574
1575                         if (unlikely(f2fs_cp_error(sbi))) {
1576                                 pagevec_release(&pvec);
1577                                 ret = -EIO;
1578                                 goto out;
1579                         }
1580
1581                         /*
1582                          * flushing sequence with step:
1583                          * 0. indirect nodes
1584                          * 1. dentry dnodes
1585                          * 2. file dnodes
1586                          */
1587                         if (step == 0 && IS_DNODE(page))
1588                                 continue;
1589                         if (step == 1 && (!IS_DNODE(page) ||
1590                                                 is_cold_node(page)))
1591                                 continue;
1592                         if (step == 2 && (!IS_DNODE(page) ||
1593                                                 !is_cold_node(page)))
1594                                 continue;
1595 lock_node:
1596                         if (!trylock_page(page))
1597                                 continue;
1598
1599                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1600 continue_unlock:
1601                                 unlock_page(page);
1602                                 continue;
1603                         }
1604
1605                         if (!PageDirty(page)) {
1606                                 /* someone wrote it for us */
1607                                 goto continue_unlock;
1608                         }
1609
1610                         /* flush inline_data */
1611                         if (is_inline_node(page)) {
1612                                 clear_inline_node(page);
1613                                 unlock_page(page);
1614                                 flush_inline_data(sbi, ino_of_node(page));
1615                                 goto lock_node;
1616                         }
1617
1618                         f2fs_wait_on_page_writeback(page, NODE, true);
1619
1620                         BUG_ON(PageWriteback(page));
1621                         if (!clear_page_dirty_for_io(page))
1622                                 goto continue_unlock;
1623
1624                         set_fsync_mark(page, 0);
1625                         set_dentry_mark(page, 0);
1626
1627                         ret = __write_node_page(page, false, &submitted,
1628                                                 wbc, do_balance, io_type);
1629                         if (ret)
1630                                 unlock_page(page);
1631                         else if (submitted)
1632                                 nwritten++;
1633
1634                         if (--wbc->nr_to_write == 0)
1635                                 break;
1636                 }
1637                 pagevec_release(&pvec);
1638                 cond_resched();
1639
1640                 if (wbc->nr_to_write == 0) {
1641                         step = 2;
1642                         break;
1643                 }
1644         }
1645
1646         if (step < 2) {
1647                 step++;
1648                 goto next_step;
1649         }
1650 out:
1651         if (nwritten)
1652                 f2fs_submit_merged_write(sbi, NODE);
1653         return ret;
1654 }
1655
1656 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1657 {
1658         pgoff_t index = 0, end = ULONG_MAX;
1659         struct pagevec pvec;
1660         int ret2, ret = 0;
1661
1662         pagevec_init(&pvec, 0);
1663
1664         while (index <= end) {
1665                 int i, nr_pages;
1666                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1667                                 PAGECACHE_TAG_WRITEBACK,
1668                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1669                 if (nr_pages == 0)
1670                         break;
1671
1672                 for (i = 0; i < nr_pages; i++) {
1673                         struct page *page = pvec.pages[i];
1674
1675                         /* until radix tree lookup accepts end_index */
1676                         if (unlikely(page->index > end))
1677                                 continue;
1678
1679                         if (ino && ino_of_node(page) == ino) {
1680                                 f2fs_wait_on_page_writeback(page, NODE, true);
1681                                 if (TestClearPageError(page))
1682                                         ret = -EIO;
1683                         }
1684                 }
1685                 pagevec_release(&pvec);
1686                 cond_resched();
1687         }
1688
1689         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1690         if (!ret)
1691                 ret = ret2;
1692         return ret;
1693 }
1694
1695 static int f2fs_write_node_pages(struct address_space *mapping,
1696                             struct writeback_control *wbc)
1697 {
1698         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1699         struct blk_plug plug;
1700         long diff;
1701
1702         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1703                 goto skip_write;
1704
1705         /* balancing f2fs's metadata in background */
1706         f2fs_balance_fs_bg(sbi);
1707
1708         /* collect a number of dirty node pages and write together */
1709         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1710                 goto skip_write;
1711
1712         trace_f2fs_writepages(mapping->host, wbc, NODE);
1713
1714         diff = nr_pages_to_write(sbi, NODE, wbc);
1715         wbc->sync_mode = WB_SYNC_NONE;
1716         blk_start_plug(&plug);
1717         sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1718         blk_finish_plug(&plug);
1719         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1720         return 0;
1721
1722 skip_write:
1723         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1724         trace_f2fs_writepages(mapping->host, wbc, NODE);
1725         return 0;
1726 }
1727
1728 static int f2fs_set_node_page_dirty(struct page *page)
1729 {
1730         trace_f2fs_set_page_dirty(page, NODE);
1731
1732         if (!PageUptodate(page))
1733                 SetPageUptodate(page);
1734         if (!PageDirty(page)) {
1735                 f2fs_set_page_dirty_nobuffers(page);
1736                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1737                 SetPagePrivate(page);
1738                 f2fs_trace_pid(page);
1739                 return 1;
1740         }
1741         return 0;
1742 }
1743
1744 /*
1745  * Structure of the f2fs node operations
1746  */
1747 const struct address_space_operations f2fs_node_aops = {
1748         .writepage      = f2fs_write_node_page,
1749         .writepages     = f2fs_write_node_pages,
1750         .set_page_dirty = f2fs_set_node_page_dirty,
1751         .invalidatepage = f2fs_invalidate_page,
1752         .releasepage    = f2fs_release_page,
1753 #ifdef CONFIG_MIGRATION
1754         .migratepage    = f2fs_migrate_page,
1755 #endif
1756 };
1757
1758 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1759                                                 nid_t n)
1760 {
1761         return radix_tree_lookup(&nm_i->free_nid_root, n);
1762 }
1763
1764 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1765                         struct free_nid *i, enum nid_state state)
1766 {
1767         struct f2fs_nm_info *nm_i = NM_I(sbi);
1768
1769         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1770         if (err)
1771                 return err;
1772
1773         f2fs_bug_on(sbi, state != i->state);
1774         nm_i->nid_cnt[state]++;
1775         if (state == FREE_NID)
1776                 list_add_tail(&i->list, &nm_i->free_nid_list);
1777         return 0;
1778 }
1779
1780 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1781                         struct free_nid *i, enum nid_state state)
1782 {
1783         struct f2fs_nm_info *nm_i = NM_I(sbi);
1784
1785         f2fs_bug_on(sbi, state != i->state);
1786         nm_i->nid_cnt[state]--;
1787         if (state == FREE_NID)
1788                 list_del(&i->list);
1789         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1790 }
1791
1792 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1793                         enum nid_state org_state, enum nid_state dst_state)
1794 {
1795         struct f2fs_nm_info *nm_i = NM_I(sbi);
1796
1797         f2fs_bug_on(sbi, org_state != i->state);
1798         i->state = dst_state;
1799         nm_i->nid_cnt[org_state]--;
1800         nm_i->nid_cnt[dst_state]++;
1801
1802         switch (dst_state) {
1803         case PREALLOC_NID:
1804                 list_del(&i->list);
1805                 break;
1806         case FREE_NID:
1807                 list_add_tail(&i->list, &nm_i->free_nid_list);
1808                 break;
1809         default:
1810                 BUG_ON(1);
1811         }
1812 }
1813
1814 /* return if the nid is recognized as free */
1815 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1816 {
1817         struct f2fs_nm_info *nm_i = NM_I(sbi);
1818         struct free_nid *i, *e;
1819         struct nat_entry *ne;
1820         int err = -EINVAL;
1821         bool ret = false;
1822
1823         /* 0 nid should not be used */
1824         if (unlikely(nid == 0))
1825                 return false;
1826
1827         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1828         i->nid = nid;
1829         i->state = FREE_NID;
1830
1831         if (radix_tree_preload(GFP_NOFS))
1832                 goto err;
1833
1834         spin_lock(&nm_i->nid_list_lock);
1835
1836         if (build) {
1837                 /*
1838                  *   Thread A             Thread B
1839                  *  - f2fs_create
1840                  *   - f2fs_new_inode
1841                  *    - alloc_nid
1842                  *     - __insert_nid_to_list(PREALLOC_NID)
1843                  *                     - f2fs_balance_fs_bg
1844                  *                      - build_free_nids
1845                  *                       - __build_free_nids
1846                  *                        - scan_nat_page
1847                  *                         - add_free_nid
1848                  *                          - __lookup_nat_cache
1849                  *  - f2fs_add_link
1850                  *   - init_inode_metadata
1851                  *    - new_inode_page
1852                  *     - new_node_page
1853                  *      - set_node_addr
1854                  *  - alloc_nid_done
1855                  *   - __remove_nid_from_list(PREALLOC_NID)
1856                  *                         - __insert_nid_to_list(FREE_NID)
1857                  */
1858                 ne = __lookup_nat_cache(nm_i, nid);
1859                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1860                                 nat_get_blkaddr(ne) != NULL_ADDR))
1861                         goto err_out;
1862
1863                 e = __lookup_free_nid_list(nm_i, nid);
1864                 if (e) {
1865                         if (e->state == FREE_NID)
1866                                 ret = true;
1867                         goto err_out;
1868                 }
1869         }
1870         ret = true;
1871         err = __insert_free_nid(sbi, i, FREE_NID);
1872 err_out:
1873         spin_unlock(&nm_i->nid_list_lock);
1874         radix_tree_preload_end();
1875 err:
1876         if (err)
1877                 kmem_cache_free(free_nid_slab, i);
1878         return ret;
1879 }
1880
1881 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1882 {
1883         struct f2fs_nm_info *nm_i = NM_I(sbi);
1884         struct free_nid *i;
1885         bool need_free = false;
1886
1887         spin_lock(&nm_i->nid_list_lock);
1888         i = __lookup_free_nid_list(nm_i, nid);
1889         if (i && i->state == FREE_NID) {
1890                 __remove_free_nid(sbi, i, FREE_NID);
1891                 need_free = true;
1892         }
1893         spin_unlock(&nm_i->nid_list_lock);
1894
1895         if (need_free)
1896                 kmem_cache_free(free_nid_slab, i);
1897 }
1898
1899 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1900                                                         bool set, bool build)
1901 {
1902         struct f2fs_nm_info *nm_i = NM_I(sbi);
1903         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1904         unsigned int nid_ofs = nid - START_NID(nid);
1905
1906         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1907                 return;
1908
1909         if (set)
1910                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1911         else
1912                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1913
1914         if (set)
1915                 nm_i->free_nid_count[nat_ofs]++;
1916         else if (!build)
1917                 nm_i->free_nid_count[nat_ofs]--;
1918 }
1919
1920 static void scan_nat_page(struct f2fs_sb_info *sbi,
1921                         struct page *nat_page, nid_t start_nid)
1922 {
1923         struct f2fs_nm_info *nm_i = NM_I(sbi);
1924         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1925         block_t blk_addr;
1926         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1927         int i;
1928
1929         if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1930                 return;
1931
1932         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1933
1934         i = start_nid % NAT_ENTRY_PER_BLOCK;
1935
1936         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1937                 bool freed = false;
1938
1939                 if (unlikely(start_nid >= nm_i->max_nid))
1940                         break;
1941
1942                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1943                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1944                 if (blk_addr == NULL_ADDR)
1945                         freed = add_free_nid(sbi, start_nid, true);
1946                 spin_lock(&NM_I(sbi)->nid_list_lock);
1947                 update_free_nid_bitmap(sbi, start_nid, freed, true);
1948                 spin_unlock(&NM_I(sbi)->nid_list_lock);
1949         }
1950 }
1951
1952 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1953 {
1954         struct f2fs_nm_info *nm_i = NM_I(sbi);
1955         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1956         struct f2fs_journal *journal = curseg->journal;
1957         unsigned int i, idx;
1958
1959         down_read(&nm_i->nat_tree_lock);
1960
1961         for (i = 0; i < nm_i->nat_blocks; i++) {
1962                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1963                         continue;
1964                 if (!nm_i->free_nid_count[i])
1965                         continue;
1966                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1967                         nid_t nid;
1968
1969                         if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1970                                 continue;
1971
1972                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
1973                         add_free_nid(sbi, nid, true);
1974
1975                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
1976                                 goto out;
1977                 }
1978         }
1979 out:
1980         down_read(&curseg->journal_rwsem);
1981         for (i = 0; i < nats_in_cursum(journal); i++) {
1982                 block_t addr;
1983                 nid_t nid;
1984
1985                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1986                 nid = le32_to_cpu(nid_in_journal(journal, i));
1987                 if (addr == NULL_ADDR)
1988                         add_free_nid(sbi, nid, true);
1989                 else
1990                         remove_free_nid(sbi, nid);
1991         }
1992         up_read(&curseg->journal_rwsem);
1993         up_read(&nm_i->nat_tree_lock);
1994 }
1995
1996 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1997 {
1998         struct f2fs_nm_info *nm_i = NM_I(sbi);
1999         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2000         struct f2fs_journal *journal = curseg->journal;
2001         int i = 0;
2002         nid_t nid = nm_i->next_scan_nid;
2003
2004         if (unlikely(nid >= nm_i->max_nid))
2005                 nid = 0;
2006
2007         /* Enough entries */
2008         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2009                 return;
2010
2011         if (!sync && !available_free_memory(sbi, FREE_NIDS))
2012                 return;
2013
2014         if (!mount) {
2015                 /* try to find free nids in free_nid_bitmap */
2016                 scan_free_nid_bits(sbi);
2017
2018                 if (nm_i->nid_cnt[FREE_NID])
2019                         return;
2020         }
2021
2022         /* readahead nat pages to be scanned */
2023         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2024                                                         META_NAT, true);
2025
2026         down_read(&nm_i->nat_tree_lock);
2027
2028         while (1) {
2029                 struct page *page = get_current_nat_page(sbi, nid);
2030
2031                 scan_nat_page(sbi, page, nid);
2032                 f2fs_put_page(page, 1);
2033
2034                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2035                 if (unlikely(nid >= nm_i->max_nid))
2036                         nid = 0;
2037
2038                 if (++i >= FREE_NID_PAGES)
2039                         break;
2040         }
2041
2042         /* go to the next free nat pages to find free nids abundantly */
2043         nm_i->next_scan_nid = nid;
2044
2045         /* find free nids from current sum_pages */
2046         down_read(&curseg->journal_rwsem);
2047         for (i = 0; i < nats_in_cursum(journal); i++) {
2048                 block_t addr;
2049
2050                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2051                 nid = le32_to_cpu(nid_in_journal(journal, i));
2052                 if (addr == NULL_ADDR)
2053                         add_free_nid(sbi, nid, true);
2054                 else
2055                         remove_free_nid(sbi, nid);
2056         }
2057         up_read(&curseg->journal_rwsem);
2058         up_read(&nm_i->nat_tree_lock);
2059
2060         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2061                                         nm_i->ra_nid_pages, META_NAT, false);
2062 }
2063
2064 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2065 {
2066         mutex_lock(&NM_I(sbi)->build_lock);
2067         __build_free_nids(sbi, sync, mount);
2068         mutex_unlock(&NM_I(sbi)->build_lock);
2069 }
2070
2071 /*
2072  * If this function returns success, caller can obtain a new nid
2073  * from second parameter of this function.
2074  * The returned nid could be used ino as well as nid when inode is created.
2075  */
2076 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2077 {
2078         struct f2fs_nm_info *nm_i = NM_I(sbi);
2079         struct free_nid *i = NULL;
2080 retry:
2081 #ifdef CONFIG_F2FS_FAULT_INJECTION
2082         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2083                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2084                 return false;
2085         }
2086 #endif
2087         spin_lock(&nm_i->nid_list_lock);
2088
2089         if (unlikely(nm_i->available_nids == 0)) {
2090                 spin_unlock(&nm_i->nid_list_lock);
2091                 return false;
2092         }
2093
2094         /* We should not use stale free nids created by build_free_nids */
2095         if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2096                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2097                 i = list_first_entry(&nm_i->free_nid_list,
2098                                         struct free_nid, list);
2099                 *nid = i->nid;
2100
2101                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2102                 nm_i->available_nids--;
2103
2104                 update_free_nid_bitmap(sbi, *nid, false, false);
2105
2106                 spin_unlock(&nm_i->nid_list_lock);
2107                 return true;
2108         }
2109         spin_unlock(&nm_i->nid_list_lock);
2110
2111         /* Let's scan nat pages and its caches to get free nids */
2112         build_free_nids(sbi, true, false);
2113         goto retry;
2114 }
2115
2116 /*
2117  * alloc_nid() should be called prior to this function.
2118  */
2119 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2120 {
2121         struct f2fs_nm_info *nm_i = NM_I(sbi);
2122         struct free_nid *i;
2123
2124         spin_lock(&nm_i->nid_list_lock);
2125         i = __lookup_free_nid_list(nm_i, nid);
2126         f2fs_bug_on(sbi, !i);
2127         __remove_free_nid(sbi, i, PREALLOC_NID);
2128         spin_unlock(&nm_i->nid_list_lock);
2129
2130         kmem_cache_free(free_nid_slab, i);
2131 }
2132
2133 /*
2134  * alloc_nid() should be called prior to this function.
2135  */
2136 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2137 {
2138         struct f2fs_nm_info *nm_i = NM_I(sbi);
2139         struct free_nid *i;
2140         bool need_free = false;
2141
2142         if (!nid)
2143                 return;
2144
2145         spin_lock(&nm_i->nid_list_lock);
2146         i = __lookup_free_nid_list(nm_i, nid);
2147         f2fs_bug_on(sbi, !i);
2148
2149         if (!available_free_memory(sbi, FREE_NIDS)) {
2150                 __remove_free_nid(sbi, i, PREALLOC_NID);
2151                 need_free = true;
2152         } else {
2153                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2154         }
2155
2156         nm_i->available_nids++;
2157
2158         update_free_nid_bitmap(sbi, nid, true, false);
2159
2160         spin_unlock(&nm_i->nid_list_lock);
2161
2162         if (need_free)
2163                 kmem_cache_free(free_nid_slab, i);
2164 }
2165
2166 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2167 {
2168         struct f2fs_nm_info *nm_i = NM_I(sbi);
2169         struct free_nid *i, *next;
2170         int nr = nr_shrink;
2171
2172         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2173                 return 0;
2174
2175         if (!mutex_trylock(&nm_i->build_lock))
2176                 return 0;
2177
2178         spin_lock(&nm_i->nid_list_lock);
2179         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2180                 if (nr_shrink <= 0 ||
2181                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2182                         break;
2183
2184                 __remove_free_nid(sbi, i, FREE_NID);
2185                 kmem_cache_free(free_nid_slab, i);
2186                 nr_shrink--;
2187         }
2188         spin_unlock(&nm_i->nid_list_lock);
2189         mutex_unlock(&nm_i->build_lock);
2190
2191         return nr - nr_shrink;
2192 }
2193
2194 void recover_inline_xattr(struct inode *inode, struct page *page)
2195 {
2196         void *src_addr, *dst_addr;
2197         size_t inline_size;
2198         struct page *ipage;
2199         struct f2fs_inode *ri;
2200
2201         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2202         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2203
2204         ri = F2FS_INODE(page);
2205         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2206                 clear_inode_flag(inode, FI_INLINE_XATTR);
2207                 goto update_inode;
2208         }
2209
2210         dst_addr = inline_xattr_addr(inode, ipage);
2211         src_addr = inline_xattr_addr(inode, page);
2212         inline_size = inline_xattr_size(inode);
2213
2214         f2fs_wait_on_page_writeback(ipage, NODE, true);
2215         memcpy(dst_addr, src_addr, inline_size);
2216 update_inode:
2217         update_inode(inode, ipage);
2218         f2fs_put_page(ipage, 1);
2219 }
2220
2221 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2222 {
2223         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2224         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2225         nid_t new_xnid;
2226         struct dnode_of_data dn;
2227         struct node_info ni;
2228         struct page *xpage;
2229
2230         if (!prev_xnid)
2231                 goto recover_xnid;
2232
2233         /* 1: invalidate the previous xattr nid */
2234         get_node_info(sbi, prev_xnid, &ni);
2235         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2236         invalidate_blocks(sbi, ni.blk_addr);
2237         dec_valid_node_count(sbi, inode, false);
2238         set_node_addr(sbi, &ni, NULL_ADDR, false);
2239
2240 recover_xnid:
2241         /* 2: update xattr nid in inode */
2242         if (!alloc_nid(sbi, &new_xnid))
2243                 return -ENOSPC;
2244
2245         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2246         xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2247         if (IS_ERR(xpage)) {
2248                 alloc_nid_failed(sbi, new_xnid);
2249                 return PTR_ERR(xpage);
2250         }
2251
2252         alloc_nid_done(sbi, new_xnid);
2253         update_inode_page(inode);
2254
2255         /* 3: update and set xattr node page dirty */
2256         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2257
2258         set_page_dirty(xpage);
2259         f2fs_put_page(xpage, 1);
2260
2261         return 0;
2262 }
2263
2264 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2265 {
2266         struct f2fs_inode *src, *dst;
2267         nid_t ino = ino_of_node(page);
2268         struct node_info old_ni, new_ni;
2269         struct page *ipage;
2270
2271         get_node_info(sbi, ino, &old_ni);
2272
2273         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2274                 return -EINVAL;
2275 retry:
2276         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2277         if (!ipage) {
2278                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2279                 goto retry;
2280         }
2281
2282         /* Should not use this inode from free nid list */
2283         remove_free_nid(sbi, ino);
2284
2285         if (!PageUptodate(ipage))
2286                 SetPageUptodate(ipage);
2287         fill_node_footer(ipage, ino, ino, 0, true);
2288
2289         src = F2FS_INODE(page);
2290         dst = F2FS_INODE(ipage);
2291
2292         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2293         dst->i_size = 0;
2294         dst->i_blocks = cpu_to_le64(1);
2295         dst->i_links = cpu_to_le32(1);
2296         dst->i_xattr_nid = 0;
2297         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2298         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2299                 dst->i_extra_isize = src->i_extra_isize;
2300
2301                 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2302                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2303                                                         i_inline_xattr_size))
2304                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2305
2306                 if (f2fs_sb_has_project_quota(sbi->sb) &&
2307                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2308                                                                 i_projid))
2309                         dst->i_projid = src->i_projid;
2310         }
2311
2312         new_ni = old_ni;
2313         new_ni.ino = ino;
2314
2315         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2316                 WARN_ON(1);
2317         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2318         inc_valid_inode_count(sbi);
2319         set_page_dirty(ipage);
2320         f2fs_put_page(ipage, 1);
2321         return 0;
2322 }
2323
2324 int restore_node_summary(struct f2fs_sb_info *sbi,
2325                         unsigned int segno, struct f2fs_summary_block *sum)
2326 {
2327         struct f2fs_node *rn;
2328         struct f2fs_summary *sum_entry;
2329         block_t addr;
2330         int i, idx, last_offset, nrpages;
2331
2332         /* scan the node segment */
2333         last_offset = sbi->blocks_per_seg;
2334         addr = START_BLOCK(sbi, segno);
2335         sum_entry = &sum->entries[0];
2336
2337         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2338                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2339
2340                 /* readahead node pages */
2341                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2342
2343                 for (idx = addr; idx < addr + nrpages; idx++) {
2344                         struct page *page = get_tmp_page(sbi, idx);
2345
2346                         rn = F2FS_NODE(page);
2347                         sum_entry->nid = rn->footer.nid;
2348                         sum_entry->version = 0;
2349                         sum_entry->ofs_in_node = 0;
2350                         sum_entry++;
2351                         f2fs_put_page(page, 1);
2352                 }
2353
2354                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2355                                                         addr + nrpages);
2356         }
2357         return 0;
2358 }
2359
2360 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2361 {
2362         struct f2fs_nm_info *nm_i = NM_I(sbi);
2363         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2364         struct f2fs_journal *journal = curseg->journal;
2365         int i;
2366
2367         down_write(&curseg->journal_rwsem);
2368         for (i = 0; i < nats_in_cursum(journal); i++) {
2369                 struct nat_entry *ne;
2370                 struct f2fs_nat_entry raw_ne;
2371                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2372
2373                 raw_ne = nat_in_journal(journal, i);
2374
2375                 ne = __lookup_nat_cache(nm_i, nid);
2376                 if (!ne) {
2377                         ne = grab_nat_entry(nm_i, nid, true);
2378                         node_info_from_raw_nat(&ne->ni, &raw_ne);
2379                 }
2380
2381                 /*
2382                  * if a free nat in journal has not been used after last
2383                  * checkpoint, we should remove it from available nids,
2384                  * since later we will add it again.
2385                  */
2386                 if (!get_nat_flag(ne, IS_DIRTY) &&
2387                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2388                         spin_lock(&nm_i->nid_list_lock);
2389                         nm_i->available_nids--;
2390                         spin_unlock(&nm_i->nid_list_lock);
2391                 }
2392
2393                 __set_nat_cache_dirty(nm_i, ne);
2394         }
2395         update_nats_in_cursum(journal, -i);
2396         up_write(&curseg->journal_rwsem);
2397 }
2398
2399 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2400                                                 struct list_head *head, int max)
2401 {
2402         struct nat_entry_set *cur;
2403
2404         if (nes->entry_cnt >= max)
2405                 goto add_out;
2406
2407         list_for_each_entry(cur, head, set_list) {
2408                 if (cur->entry_cnt >= nes->entry_cnt) {
2409                         list_add(&nes->set_list, cur->set_list.prev);
2410                         return;
2411                 }
2412         }
2413 add_out:
2414         list_add_tail(&nes->set_list, head);
2415 }
2416
2417 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2418                                                 struct page *page)
2419 {
2420         struct f2fs_nm_info *nm_i = NM_I(sbi);
2421         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2422         struct f2fs_nat_block *nat_blk = page_address(page);
2423         int valid = 0;
2424         int i;
2425
2426         if (!enabled_nat_bits(sbi, NULL))
2427                 return;
2428
2429         for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2430                 if (start_nid == 0 && i == 0)
2431                         valid++;
2432                 if (nat_blk->entries[i].block_addr)
2433                         valid++;
2434         }
2435         if (valid == 0) {
2436                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2437                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2438                 return;
2439         }
2440
2441         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2442         if (valid == NAT_ENTRY_PER_BLOCK)
2443                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2444         else
2445                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2446 }
2447
2448 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2449                 struct nat_entry_set *set, struct cp_control *cpc)
2450 {
2451         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2452         struct f2fs_journal *journal = curseg->journal;
2453         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2454         bool to_journal = true;
2455         struct f2fs_nat_block *nat_blk;
2456         struct nat_entry *ne, *cur;
2457         struct page *page = NULL;
2458
2459         /*
2460          * there are two steps to flush nat entries:
2461          * #1, flush nat entries to journal in current hot data summary block.
2462          * #2, flush nat entries to nat page.
2463          */
2464         if (enabled_nat_bits(sbi, cpc) ||
2465                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2466                 to_journal = false;
2467
2468         if (to_journal) {
2469                 down_write(&curseg->journal_rwsem);
2470         } else {
2471                 page = get_next_nat_page(sbi, start_nid);
2472                 nat_blk = page_address(page);
2473                 f2fs_bug_on(sbi, !nat_blk);
2474         }
2475
2476         /* flush dirty nats in nat entry set */
2477         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2478                 struct f2fs_nat_entry *raw_ne;
2479                 nid_t nid = nat_get_nid(ne);
2480                 int offset;
2481
2482                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2483
2484                 if (to_journal) {
2485                         offset = lookup_journal_in_cursum(journal,
2486                                                         NAT_JOURNAL, nid, 1);
2487                         f2fs_bug_on(sbi, offset < 0);
2488                         raw_ne = &nat_in_journal(journal, offset);
2489                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2490                 } else {
2491                         raw_ne = &nat_blk->entries[nid - start_nid];
2492                 }
2493                 raw_nat_from_node_info(raw_ne, &ne->ni);
2494                 nat_reset_flag(ne);
2495                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2496                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2497                         add_free_nid(sbi, nid, false);
2498                         spin_lock(&NM_I(sbi)->nid_list_lock);
2499                         NM_I(sbi)->available_nids++;
2500                         update_free_nid_bitmap(sbi, nid, true, false);
2501                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2502                 } else {
2503                         spin_lock(&NM_I(sbi)->nid_list_lock);
2504                         update_free_nid_bitmap(sbi, nid, false, false);
2505                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2506                 }
2507         }
2508
2509         if (to_journal) {
2510                 up_write(&curseg->journal_rwsem);
2511         } else {
2512                 __update_nat_bits(sbi, start_nid, page);
2513                 f2fs_put_page(page, 1);
2514         }
2515
2516         /* Allow dirty nats by node block allocation in write_begin */
2517         if (!set->entry_cnt) {
2518                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2519                 kmem_cache_free(nat_entry_set_slab, set);
2520         }
2521 }
2522
2523 /*
2524  * This function is called during the checkpointing process.
2525  */
2526 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2527 {
2528         struct f2fs_nm_info *nm_i = NM_I(sbi);
2529         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2530         struct f2fs_journal *journal = curseg->journal;
2531         struct nat_entry_set *setvec[SETVEC_SIZE];
2532         struct nat_entry_set *set, *tmp;
2533         unsigned int found;
2534         nid_t set_idx = 0;
2535         LIST_HEAD(sets);
2536
2537         if (!nm_i->dirty_nat_cnt)
2538                 return;
2539
2540         down_write(&nm_i->nat_tree_lock);
2541
2542         /*
2543          * if there are no enough space in journal to store dirty nat
2544          * entries, remove all entries from journal and merge them
2545          * into nat entry set.
2546          */
2547         if (enabled_nat_bits(sbi, cpc) ||
2548                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2549                 remove_nats_in_journal(sbi);
2550
2551         while ((found = __gang_lookup_nat_set(nm_i,
2552                                         set_idx, SETVEC_SIZE, setvec))) {
2553                 unsigned idx;
2554                 set_idx = setvec[found - 1]->set + 1;
2555                 for (idx = 0; idx < found; idx++)
2556                         __adjust_nat_entry_set(setvec[idx], &sets,
2557                                                 MAX_NAT_JENTRIES(journal));
2558         }
2559
2560         /* flush dirty nats in nat entry set */
2561         list_for_each_entry_safe(set, tmp, &sets, set_list)
2562                 __flush_nat_entry_set(sbi, set, cpc);
2563
2564         up_write(&nm_i->nat_tree_lock);
2565         /* Allow dirty nats by node block allocation in write_begin */
2566 }
2567
2568 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2569 {
2570         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2571         struct f2fs_nm_info *nm_i = NM_I(sbi);
2572         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2573         unsigned int i;
2574         __u64 cp_ver = cur_cp_version(ckpt);
2575         block_t nat_bits_addr;
2576
2577         if (!enabled_nat_bits(sbi, NULL))
2578                 return 0;
2579
2580         nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2581                                                 F2FS_BLKSIZE - 1);
2582         nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2583                                                 GFP_KERNEL);
2584         if (!nm_i->nat_bits)
2585                 return -ENOMEM;
2586
2587         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2588                                                 nm_i->nat_bits_blocks;
2589         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2590                 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2591
2592                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2593                                         page_address(page), F2FS_BLKSIZE);
2594                 f2fs_put_page(page, 1);
2595         }
2596
2597         cp_ver |= (cur_cp_crc(ckpt) << 32);
2598         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2599                 disable_nat_bits(sbi, true);
2600                 return 0;
2601         }
2602
2603         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2604         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2605
2606         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2607         return 0;
2608 }
2609
2610 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2611 {
2612         struct f2fs_nm_info *nm_i = NM_I(sbi);
2613         unsigned int i = 0;
2614         nid_t nid, last_nid;
2615
2616         if (!enabled_nat_bits(sbi, NULL))
2617                 return;
2618
2619         for (i = 0; i < nm_i->nat_blocks; i++) {
2620                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2621                 if (i >= nm_i->nat_blocks)
2622                         break;
2623
2624                 __set_bit_le(i, nm_i->nat_block_bitmap);
2625
2626                 nid = i * NAT_ENTRY_PER_BLOCK;
2627                 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2628
2629                 spin_lock(&NM_I(sbi)->nid_list_lock);
2630                 for (; nid < last_nid; nid++)
2631                         update_free_nid_bitmap(sbi, nid, true, true);
2632                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2633         }
2634
2635         for (i = 0; i < nm_i->nat_blocks; i++) {
2636                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2637                 if (i >= nm_i->nat_blocks)
2638                         break;
2639
2640                 __set_bit_le(i, nm_i->nat_block_bitmap);
2641         }
2642 }
2643
2644 static int init_node_manager(struct f2fs_sb_info *sbi)
2645 {
2646         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2647         struct f2fs_nm_info *nm_i = NM_I(sbi);
2648         unsigned char *version_bitmap;
2649         unsigned int nat_segs;
2650         int err;
2651
2652         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2653
2654         /* segment_count_nat includes pair segment so divide to 2. */
2655         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2656         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2657         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2658
2659         /* not used nids: 0, node, meta, (and root counted as valid node) */
2660         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2661                                                         F2FS_RESERVED_NODE_NUM;
2662         nm_i->nid_cnt[FREE_NID] = 0;
2663         nm_i->nid_cnt[PREALLOC_NID] = 0;
2664         nm_i->nat_cnt = 0;
2665         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2666         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2667         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2668
2669         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2670         INIT_LIST_HEAD(&nm_i->free_nid_list);
2671         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2672         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2673         INIT_LIST_HEAD(&nm_i->nat_entries);
2674
2675         mutex_init(&nm_i->build_lock);
2676         spin_lock_init(&nm_i->nid_list_lock);
2677         init_rwsem(&nm_i->nat_tree_lock);
2678
2679         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2680         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2681         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2682         if (!version_bitmap)
2683                 return -EFAULT;
2684
2685         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2686                                         GFP_KERNEL);
2687         if (!nm_i->nat_bitmap)
2688                 return -ENOMEM;
2689
2690         err = __get_nat_bitmaps(sbi);
2691         if (err)
2692                 return err;
2693
2694 #ifdef CONFIG_F2FS_CHECK_FS
2695         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2696                                         GFP_KERNEL);
2697         if (!nm_i->nat_bitmap_mir)
2698                 return -ENOMEM;
2699 #endif
2700
2701         return 0;
2702 }
2703
2704 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2705 {
2706         struct f2fs_nm_info *nm_i = NM_I(sbi);
2707
2708         nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
2709                                         NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2710         if (!nm_i->free_nid_bitmap)
2711                 return -ENOMEM;
2712
2713         nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
2714                                                                 GFP_KERNEL);
2715         if (!nm_i->nat_block_bitmap)
2716                 return -ENOMEM;
2717
2718         nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
2719                                         sizeof(unsigned short), GFP_KERNEL);
2720         if (!nm_i->free_nid_count)
2721                 return -ENOMEM;
2722         return 0;
2723 }
2724
2725 int build_node_manager(struct f2fs_sb_info *sbi)
2726 {
2727         int err;
2728
2729         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2730         if (!sbi->nm_info)
2731                 return -ENOMEM;
2732
2733         err = init_node_manager(sbi);
2734         if (err)
2735                 return err;
2736
2737         err = init_free_nid_cache(sbi);
2738         if (err)
2739                 return err;
2740
2741         /* load free nid status from nat_bits table */
2742         load_free_nid_bitmap(sbi);
2743
2744         build_free_nids(sbi, true, true);
2745         return 0;
2746 }
2747
2748 void destroy_node_manager(struct f2fs_sb_info *sbi)
2749 {
2750         struct f2fs_nm_info *nm_i = NM_I(sbi);
2751         struct free_nid *i, *next_i;
2752         struct nat_entry *natvec[NATVEC_SIZE];
2753         struct nat_entry_set *setvec[SETVEC_SIZE];
2754         nid_t nid = 0;
2755         unsigned int found;
2756
2757         if (!nm_i)
2758                 return;
2759
2760         /* destroy free nid list */
2761         spin_lock(&nm_i->nid_list_lock);
2762         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2763                 __remove_free_nid(sbi, i, FREE_NID);
2764                 spin_unlock(&nm_i->nid_list_lock);
2765                 kmem_cache_free(free_nid_slab, i);
2766                 spin_lock(&nm_i->nid_list_lock);
2767         }
2768         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2769         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2770         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2771         spin_unlock(&nm_i->nid_list_lock);
2772
2773         /* destroy nat cache */
2774         down_write(&nm_i->nat_tree_lock);
2775         while ((found = __gang_lookup_nat_cache(nm_i,
2776                                         nid, NATVEC_SIZE, natvec))) {
2777                 unsigned idx;
2778
2779                 nid = nat_get_nid(natvec[found - 1]) + 1;
2780                 for (idx = 0; idx < found; idx++)
2781                         __del_from_nat_cache(nm_i, natvec[idx]);
2782         }
2783         f2fs_bug_on(sbi, nm_i->nat_cnt);
2784
2785         /* destroy nat set cache */
2786         nid = 0;
2787         while ((found = __gang_lookup_nat_set(nm_i,
2788                                         nid, SETVEC_SIZE, setvec))) {
2789                 unsigned idx;
2790
2791                 nid = setvec[found - 1]->set + 1;
2792                 for (idx = 0; idx < found; idx++) {
2793                         /* entry_cnt is not zero, when cp_error was occurred */
2794                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2795                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2796                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2797                 }
2798         }
2799         up_write(&nm_i->nat_tree_lock);
2800
2801         kvfree(nm_i->nat_block_bitmap);
2802         kvfree(nm_i->free_nid_bitmap);
2803         kvfree(nm_i->free_nid_count);
2804
2805         kfree(nm_i->nat_bitmap);
2806         kfree(nm_i->nat_bits);
2807 #ifdef CONFIG_F2FS_CHECK_FS
2808         kfree(nm_i->nat_bitmap_mir);
2809 #endif
2810         sbi->nm_info = NULL;
2811         kfree(nm_i);
2812 }
2813
2814 int __init create_node_manager_caches(void)
2815 {
2816         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2817                         sizeof(struct nat_entry));
2818         if (!nat_entry_slab)
2819                 goto fail;
2820
2821         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2822                         sizeof(struct free_nid));
2823         if (!free_nid_slab)
2824                 goto destroy_nat_entry;
2825
2826         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2827                         sizeof(struct nat_entry_set));
2828         if (!nat_entry_set_slab)
2829                 goto destroy_free_nid;
2830         return 0;
2831
2832 destroy_free_nid:
2833         kmem_cache_destroy(free_nid_slab);
2834 destroy_nat_entry:
2835         kmem_cache_destroy(nat_entry_slab);
2836 fail:
2837         return -ENOMEM;
2838 }
2839
2840 void destroy_node_manager_caches(void)
2841 {
2842         kmem_cache_destroy(nat_entry_set_slab);
2843         kmem_cache_destroy(free_nid_slab);
2844         kmem_cache_destroy(nat_entry_slab);
2845 }