Merge tag 'jfs-4.15' of git://github.com/kleikamp/linux-shaggy
[linux] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110                   unsigned int line, const char *fmt, ...)
111 {
112         struct va_format vaf;
113         va_list args;
114
115         if (level > jbd2_journal_enable_debug)
116                 return;
117         va_start(args, fmt);
118         vaf.fmt = fmt;
119         vaf.va = &args;
120         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121         va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!jbd2_journal_has_csum_v2or3_feature(j))
130                 return 1;
131
132         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137         __u32 csum;
138         __be32 old_csum;
139
140         old_csum = sb->s_checksum;
141         sb->s_checksum = 0;
142         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143         sb->s_checksum = old_csum;
144
145         return cpu_to_be32(csum);
146 }
147
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150         if (!jbd2_journal_has_csum_v2or3(j))
151                 return 1;
152
153         return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158         if (!jbd2_journal_has_csum_v2or3(j))
159                 return;
160
161         sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163
164 /*
165  * Helper function used to manage commit timeouts
166  */
167
168 static void commit_timeout(struct timer_list *t)
169 {
170         journal_t *journal = from_timer(journal, t, j_commit_timer);
171
172         wake_up_process(journal->j_task);
173 }
174
175 /*
176  * kjournald2: The main thread function used to manage a logging device
177  * journal.
178  *
179  * This kernel thread is responsible for two things:
180  *
181  * 1) COMMIT:  Every so often we need to commit the current state of the
182  *    filesystem to disk.  The journal thread is responsible for writing
183  *    all of the metadata buffers to disk.
184  *
185  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186  *    of the data in that part of the log has been rewritten elsewhere on
187  *    the disk.  Flushing these old buffers to reclaim space in the log is
188  *    known as checkpointing, and this thread is responsible for that job.
189  */
190
191 static int kjournald2(void *arg)
192 {
193         journal_t *journal = arg;
194         transaction_t *transaction;
195
196         /*
197          * Set up an interval timer which can be used to trigger a commit wakeup
198          * after the commit interval expires
199          */
200         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
201
202         set_freezable();
203
204         /* Record that the journal thread is running */
205         journal->j_task = current;
206         wake_up(&journal->j_wait_done_commit);
207
208         /*
209          * Make sure that no allocations from this kernel thread will ever
210          * recurse to the fs layer because we are responsible for the
211          * transaction commit and any fs involvement might get stuck waiting for
212          * the trasn. commit.
213          */
214         memalloc_nofs_save();
215
216         /*
217          * And now, wait forever for commit wakeup events.
218          */
219         write_lock(&journal->j_state_lock);
220
221 loop:
222         if (journal->j_flags & JBD2_UNMOUNT)
223                 goto end_loop;
224
225         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
226                 journal->j_commit_sequence, journal->j_commit_request);
227
228         if (journal->j_commit_sequence != journal->j_commit_request) {
229                 jbd_debug(1, "OK, requests differ\n");
230                 write_unlock(&journal->j_state_lock);
231                 del_timer_sync(&journal->j_commit_timer);
232                 jbd2_journal_commit_transaction(journal);
233                 write_lock(&journal->j_state_lock);
234                 goto loop;
235         }
236
237         wake_up(&journal->j_wait_done_commit);
238         if (freezing(current)) {
239                 /*
240                  * The simpler the better. Flushing journal isn't a
241                  * good idea, because that depends on threads that may
242                  * be already stopped.
243                  */
244                 jbd_debug(1, "Now suspending kjournald2\n");
245                 write_unlock(&journal->j_state_lock);
246                 try_to_freeze();
247                 write_lock(&journal->j_state_lock);
248         } else {
249                 /*
250                  * We assume on resume that commits are already there,
251                  * so we don't sleep
252                  */
253                 DEFINE_WAIT(wait);
254                 int should_sleep = 1;
255
256                 prepare_to_wait(&journal->j_wait_commit, &wait,
257                                 TASK_INTERRUPTIBLE);
258                 if (journal->j_commit_sequence != journal->j_commit_request)
259                         should_sleep = 0;
260                 transaction = journal->j_running_transaction;
261                 if (transaction && time_after_eq(jiffies,
262                                                 transaction->t_expires))
263                         should_sleep = 0;
264                 if (journal->j_flags & JBD2_UNMOUNT)
265                         should_sleep = 0;
266                 if (should_sleep) {
267                         write_unlock(&journal->j_state_lock);
268                         schedule();
269                         write_lock(&journal->j_state_lock);
270                 }
271                 finish_wait(&journal->j_wait_commit, &wait);
272         }
273
274         jbd_debug(1, "kjournald2 wakes\n");
275
276         /*
277          * Were we woken up by a commit wakeup event?
278          */
279         transaction = journal->j_running_transaction;
280         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
281                 journal->j_commit_request = transaction->t_tid;
282                 jbd_debug(1, "woke because of timeout\n");
283         }
284         goto loop;
285
286 end_loop:
287         del_timer_sync(&journal->j_commit_timer);
288         journal->j_task = NULL;
289         wake_up(&journal->j_wait_done_commit);
290         jbd_debug(1, "Journal thread exiting.\n");
291         write_unlock(&journal->j_state_lock);
292         return 0;
293 }
294
295 static int jbd2_journal_start_thread(journal_t *journal)
296 {
297         struct task_struct *t;
298
299         t = kthread_run(kjournald2, journal, "jbd2/%s",
300                         journal->j_devname);
301         if (IS_ERR(t))
302                 return PTR_ERR(t);
303
304         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
305         return 0;
306 }
307
308 static void journal_kill_thread(journal_t *journal)
309 {
310         write_lock(&journal->j_state_lock);
311         journal->j_flags |= JBD2_UNMOUNT;
312
313         while (journal->j_task) {
314                 write_unlock(&journal->j_state_lock);
315                 wake_up(&journal->j_wait_commit);
316                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
317                 write_lock(&journal->j_state_lock);
318         }
319         write_unlock(&journal->j_state_lock);
320 }
321
322 /*
323  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
324  *
325  * Writes a metadata buffer to a given disk block.  The actual IO is not
326  * performed but a new buffer_head is constructed which labels the data
327  * to be written with the correct destination disk block.
328  *
329  * Any magic-number escaping which needs to be done will cause a
330  * copy-out here.  If the buffer happens to start with the
331  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
332  * magic number is only written to the log for descripter blocks.  In
333  * this case, we copy the data and replace the first word with 0, and we
334  * return a result code which indicates that this buffer needs to be
335  * marked as an escaped buffer in the corresponding log descriptor
336  * block.  The missing word can then be restored when the block is read
337  * during recovery.
338  *
339  * If the source buffer has already been modified by a new transaction
340  * since we took the last commit snapshot, we use the frozen copy of
341  * that data for IO. If we end up using the existing buffer_head's data
342  * for the write, then we have to make sure nobody modifies it while the
343  * IO is in progress. do_get_write_access() handles this.
344  *
345  * The function returns a pointer to the buffer_head to be used for IO.
346  * 
347  *
348  * Return value:
349  *  <0: Error
350  * >=0: Finished OK
351  *
352  * On success:
353  * Bit 0 set == escape performed on the data
354  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
355  */
356
357 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
358                                   struct journal_head  *jh_in,
359                                   struct buffer_head **bh_out,
360                                   sector_t blocknr)
361 {
362         int need_copy_out = 0;
363         int done_copy_out = 0;
364         int do_escape = 0;
365         char *mapped_data;
366         struct buffer_head *new_bh;
367         struct page *new_page;
368         unsigned int new_offset;
369         struct buffer_head *bh_in = jh2bh(jh_in);
370         journal_t *journal = transaction->t_journal;
371
372         /*
373          * The buffer really shouldn't be locked: only the current committing
374          * transaction is allowed to write it, so nobody else is allowed
375          * to do any IO.
376          *
377          * akpm: except if we're journalling data, and write() output is
378          * also part of a shared mapping, and another thread has
379          * decided to launch a writepage() against this buffer.
380          */
381         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
382
383         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
384
385         /* keep subsequent assertions sane */
386         atomic_set(&new_bh->b_count, 1);
387
388         jbd_lock_bh_state(bh_in);
389 repeat:
390         /*
391          * If a new transaction has already done a buffer copy-out, then
392          * we use that version of the data for the commit.
393          */
394         if (jh_in->b_frozen_data) {
395                 done_copy_out = 1;
396                 new_page = virt_to_page(jh_in->b_frozen_data);
397                 new_offset = offset_in_page(jh_in->b_frozen_data);
398         } else {
399                 new_page = jh2bh(jh_in)->b_page;
400                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401         }
402
403         mapped_data = kmap_atomic(new_page);
404         /*
405          * Fire data frozen trigger if data already wasn't frozen.  Do this
406          * before checking for escaping, as the trigger may modify the magic
407          * offset.  If a copy-out happens afterwards, it will have the correct
408          * data in the buffer.
409          */
410         if (!done_copy_out)
411                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412                                            jh_in->b_triggers);
413
414         /*
415          * Check for escaping
416          */
417         if (*((__be32 *)(mapped_data + new_offset)) ==
418                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419                 need_copy_out = 1;
420                 do_escape = 1;
421         }
422         kunmap_atomic(mapped_data);
423
424         /*
425          * Do we need to do a data copy?
426          */
427         if (need_copy_out && !done_copy_out) {
428                 char *tmp;
429
430                 jbd_unlock_bh_state(bh_in);
431                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432                 if (!tmp) {
433                         brelse(new_bh);
434                         return -ENOMEM;
435                 }
436                 jbd_lock_bh_state(bh_in);
437                 if (jh_in->b_frozen_data) {
438                         jbd2_free(tmp, bh_in->b_size);
439                         goto repeat;
440                 }
441
442                 jh_in->b_frozen_data = tmp;
443                 mapped_data = kmap_atomic(new_page);
444                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445                 kunmap_atomic(mapped_data);
446
447                 new_page = virt_to_page(tmp);
448                 new_offset = offset_in_page(tmp);
449                 done_copy_out = 1;
450
451                 /*
452                  * This isn't strictly necessary, as we're using frozen
453                  * data for the escaping, but it keeps consistency with
454                  * b_frozen_data usage.
455                  */
456                 jh_in->b_frozen_triggers = jh_in->b_triggers;
457         }
458
459         /*
460          * Did we need to do an escaping?  Now we've done all the
461          * copying, we can finally do so.
462          */
463         if (do_escape) {
464                 mapped_data = kmap_atomic(new_page);
465                 *((unsigned int *)(mapped_data + new_offset)) = 0;
466                 kunmap_atomic(mapped_data);
467         }
468
469         set_bh_page(new_bh, new_page, new_offset);
470         new_bh->b_size = bh_in->b_size;
471         new_bh->b_bdev = journal->j_dev;
472         new_bh->b_blocknr = blocknr;
473         new_bh->b_private = bh_in;
474         set_buffer_mapped(new_bh);
475         set_buffer_dirty(new_bh);
476
477         *bh_out = new_bh;
478
479         /*
480          * The to-be-written buffer needs to get moved to the io queue,
481          * and the original buffer whose contents we are shadowing or
482          * copying is moved to the transaction's shadow queue.
483          */
484         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485         spin_lock(&journal->j_list_lock);
486         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487         spin_unlock(&journal->j_list_lock);
488         set_buffer_shadow(bh_in);
489         jbd_unlock_bh_state(bh_in);
490
491         return do_escape | (done_copy_out << 1);
492 }
493
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505         /* Return if the txn has already requested to be committed */
506         if (journal->j_commit_request == target)
507                 return 0;
508
509         /*
510          * The only transaction we can possibly wait upon is the
511          * currently running transaction (if it exists).  Otherwise,
512          * the target tid must be an old one.
513          */
514         if (journal->j_running_transaction &&
515             journal->j_running_transaction->t_tid == target) {
516                 /*
517                  * We want a new commit: OK, mark the request and wakeup the
518                  * commit thread.  We do _not_ do the commit ourselves.
519                  */
520
521                 journal->j_commit_request = target;
522                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523                           journal->j_commit_request,
524                           journal->j_commit_sequence);
525                 journal->j_running_transaction->t_requested = jiffies;
526                 wake_up(&journal->j_wait_commit);
527                 return 1;
528         } else if (!tid_geq(journal->j_commit_request, target))
529                 /* This should never happen, but if it does, preserve
530                    the evidence before kjournald goes into a loop and
531                    increments j_commit_sequence beyond all recognition. */
532                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533                           journal->j_commit_request,
534                           journal->j_commit_sequence,
535                           target, journal->j_running_transaction ? 
536                           journal->j_running_transaction->t_tid : 0);
537         return 0;
538 }
539
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542         int ret;
543
544         write_lock(&journal->j_state_lock);
545         ret = __jbd2_log_start_commit(journal, tid);
546         write_unlock(&journal->j_state_lock);
547         return ret;
548 }
549
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559         transaction_t *transaction = NULL;
560         tid_t tid;
561         int need_to_start = 0, ret = 0;
562
563         read_lock(&journal->j_state_lock);
564         if (journal->j_running_transaction && !current->journal_info) {
565                 transaction = journal->j_running_transaction;
566                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567                         need_to_start = 1;
568         } else if (journal->j_committing_transaction)
569                 transaction = journal->j_committing_transaction;
570
571         if (!transaction) {
572                 /* Nothing to commit */
573                 read_unlock(&journal->j_state_lock);
574                 return 0;
575         }
576         tid = transaction->t_tid;
577         read_unlock(&journal->j_state_lock);
578         if (need_to_start)
579                 jbd2_log_start_commit(journal, tid);
580         ret = jbd2_log_wait_commit(journal, tid);
581         if (!ret)
582                 ret = 1;
583
584         return ret;
585 }
586
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597         int ret;
598
599         ret = __jbd2_journal_force_commit(journal);
600         return ret > 0;
601 }
602
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612         int ret;
613
614         J_ASSERT(!current->journal_info);
615         ret = __jbd2_journal_force_commit(journal);
616         if (ret > 0)
617                 ret = 0;
618         return ret;
619 }
620
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628         int ret = 0;
629
630         write_lock(&journal->j_state_lock);
631         if (journal->j_running_transaction) {
632                 tid_t tid = journal->j_running_transaction->t_tid;
633
634                 __jbd2_log_start_commit(journal, tid);
635                 /* There's a running transaction and we've just made sure
636                  * it's commit has been scheduled. */
637                 if (ptid)
638                         *ptid = tid;
639                 ret = 1;
640         } else if (journal->j_committing_transaction) {
641                 /*
642                  * If commit has been started, then we have to wait for
643                  * completion of that transaction.
644                  */
645                 if (ptid)
646                         *ptid = journal->j_committing_transaction->t_tid;
647                 ret = 1;
648         }
649         write_unlock(&journal->j_state_lock);
650         return ret;
651 }
652
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661         int ret = 0;
662         transaction_t *commit_trans;
663
664         if (!(journal->j_flags & JBD2_BARRIER))
665                 return 0;
666         read_lock(&journal->j_state_lock);
667         /* Transaction already committed? */
668         if (tid_geq(journal->j_commit_sequence, tid))
669                 goto out;
670         commit_trans = journal->j_committing_transaction;
671         if (!commit_trans || commit_trans->t_tid != tid) {
672                 ret = 1;
673                 goto out;
674         }
675         /*
676          * Transaction is being committed and we already proceeded to
677          * submitting a flush to fs partition?
678          */
679         if (journal->j_fs_dev != journal->j_dev) {
680                 if (!commit_trans->t_need_data_flush ||
681                     commit_trans->t_state >= T_COMMIT_DFLUSH)
682                         goto out;
683         } else {
684                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685                         goto out;
686         }
687         ret = 1;
688 out:
689         read_unlock(&journal->j_state_lock);
690         return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700         int err = 0;
701
702         read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_PROVE_LOCKING
704         /*
705          * Some callers make sure transaction is already committing and in that
706          * case we cannot block on open handles anymore. So don't warn in that
707          * case.
708          */
709         if (tid_gt(tid, journal->j_commit_sequence) &&
710             (!journal->j_committing_transaction ||
711              journal->j_committing_transaction->t_tid != tid)) {
712                 read_unlock(&journal->j_state_lock);
713                 jbd2_might_wait_for_commit(journal);
714                 read_lock(&journal->j_state_lock);
715         }
716 #endif
717 #ifdef CONFIG_JBD2_DEBUG
718         if (!tid_geq(journal->j_commit_request, tid)) {
719                 printk(KERN_ERR
720                        "%s: error: j_commit_request=%d, tid=%d\n",
721                        __func__, journal->j_commit_request, tid);
722         }
723 #endif
724         while (tid_gt(tid, journal->j_commit_sequence)) {
725                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
726                                   tid, journal->j_commit_sequence);
727                 read_unlock(&journal->j_state_lock);
728                 wake_up(&journal->j_wait_commit);
729                 wait_event(journal->j_wait_done_commit,
730                                 !tid_gt(tid, journal->j_commit_sequence));
731                 read_lock(&journal->j_state_lock);
732         }
733         read_unlock(&journal->j_state_lock);
734
735         if (unlikely(is_journal_aborted(journal)))
736                 err = -EIO;
737         return err;
738 }
739
740 /*
741  * When this function returns the transaction corresponding to tid
742  * will be completed.  If the transaction has currently running, start
743  * committing that transaction before waiting for it to complete.  If
744  * the transaction id is stale, it is by definition already completed,
745  * so just return SUCCESS.
746  */
747 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
748 {
749         int     need_to_wait = 1;
750
751         read_lock(&journal->j_state_lock);
752         if (journal->j_running_transaction &&
753             journal->j_running_transaction->t_tid == tid) {
754                 if (journal->j_commit_request != tid) {
755                         /* transaction not yet started, so request it */
756                         read_unlock(&journal->j_state_lock);
757                         jbd2_log_start_commit(journal, tid);
758                         goto wait_commit;
759                 }
760         } else if (!(journal->j_committing_transaction &&
761                      journal->j_committing_transaction->t_tid == tid))
762                 need_to_wait = 0;
763         read_unlock(&journal->j_state_lock);
764         if (!need_to_wait)
765                 return 0;
766 wait_commit:
767         return jbd2_log_wait_commit(journal, tid);
768 }
769 EXPORT_SYMBOL(jbd2_complete_transaction);
770
771 /*
772  * Log buffer allocation routines:
773  */
774
775 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
776 {
777         unsigned long blocknr;
778
779         write_lock(&journal->j_state_lock);
780         J_ASSERT(journal->j_free > 1);
781
782         blocknr = journal->j_head;
783         journal->j_head++;
784         journal->j_free--;
785         if (journal->j_head == journal->j_last)
786                 journal->j_head = journal->j_first;
787         write_unlock(&journal->j_state_lock);
788         return jbd2_journal_bmap(journal, blocknr, retp);
789 }
790
791 /*
792  * Conversion of logical to physical block numbers for the journal
793  *
794  * On external journals the journal blocks are identity-mapped, so
795  * this is a no-op.  If needed, we can use j_blk_offset - everything is
796  * ready.
797  */
798 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
799                  unsigned long long *retp)
800 {
801         int err = 0;
802         unsigned long long ret;
803
804         if (journal->j_inode) {
805                 ret = bmap(journal->j_inode, blocknr);
806                 if (ret)
807                         *retp = ret;
808                 else {
809                         printk(KERN_ALERT "%s: journal block not found "
810                                         "at offset %lu on %s\n",
811                                __func__, blocknr, journal->j_devname);
812                         err = -EIO;
813                         __journal_abort_soft(journal, err);
814                 }
815         } else {
816                 *retp = blocknr; /* +journal->j_blk_offset */
817         }
818         return err;
819 }
820
821 /*
822  * We play buffer_head aliasing tricks to write data/metadata blocks to
823  * the journal without copying their contents, but for journal
824  * descriptor blocks we do need to generate bona fide buffers.
825  *
826  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
827  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
828  * But we don't bother doing that, so there will be coherency problems with
829  * mmaps of blockdevs which hold live JBD-controlled filesystems.
830  */
831 struct buffer_head *
832 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
833 {
834         journal_t *journal = transaction->t_journal;
835         struct buffer_head *bh;
836         unsigned long long blocknr;
837         journal_header_t *header;
838         int err;
839
840         err = jbd2_journal_next_log_block(journal, &blocknr);
841
842         if (err)
843                 return NULL;
844
845         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
846         if (!bh)
847                 return NULL;
848         lock_buffer(bh);
849         memset(bh->b_data, 0, journal->j_blocksize);
850         header = (journal_header_t *)bh->b_data;
851         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
852         header->h_blocktype = cpu_to_be32(type);
853         header->h_sequence = cpu_to_be32(transaction->t_tid);
854         set_buffer_uptodate(bh);
855         unlock_buffer(bh);
856         BUFFER_TRACE(bh, "return this buffer");
857         return bh;
858 }
859
860 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
861 {
862         struct jbd2_journal_block_tail *tail;
863         __u32 csum;
864
865         if (!jbd2_journal_has_csum_v2or3(j))
866                 return;
867
868         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
869                         sizeof(struct jbd2_journal_block_tail));
870         tail->t_checksum = 0;
871         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
872         tail->t_checksum = cpu_to_be32(csum);
873 }
874
875 /*
876  * Return tid of the oldest transaction in the journal and block in the journal
877  * where the transaction starts.
878  *
879  * If the journal is now empty, return which will be the next transaction ID
880  * we will write and where will that transaction start.
881  *
882  * The return value is 0 if journal tail cannot be pushed any further, 1 if
883  * it can.
884  */
885 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
886                               unsigned long *block)
887 {
888         transaction_t *transaction;
889         int ret;
890
891         read_lock(&journal->j_state_lock);
892         spin_lock(&journal->j_list_lock);
893         transaction = journal->j_checkpoint_transactions;
894         if (transaction) {
895                 *tid = transaction->t_tid;
896                 *block = transaction->t_log_start;
897         } else if ((transaction = journal->j_committing_transaction) != NULL) {
898                 *tid = transaction->t_tid;
899                 *block = transaction->t_log_start;
900         } else if ((transaction = journal->j_running_transaction) != NULL) {
901                 *tid = transaction->t_tid;
902                 *block = journal->j_head;
903         } else {
904                 *tid = journal->j_transaction_sequence;
905                 *block = journal->j_head;
906         }
907         ret = tid_gt(*tid, journal->j_tail_sequence);
908         spin_unlock(&journal->j_list_lock);
909         read_unlock(&journal->j_state_lock);
910
911         return ret;
912 }
913
914 /*
915  * Update information in journal structure and in on disk journal superblock
916  * about log tail. This function does not check whether information passed in
917  * really pushes log tail further. It's responsibility of the caller to make
918  * sure provided log tail information is valid (e.g. by holding
919  * j_checkpoint_mutex all the time between computing log tail and calling this
920  * function as is the case with jbd2_cleanup_journal_tail()).
921  *
922  * Requires j_checkpoint_mutex
923  */
924 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 {
926         unsigned long freed;
927         int ret;
928
929         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
930
931         /*
932          * We cannot afford for write to remain in drive's caches since as
933          * soon as we update j_tail, next transaction can start reusing journal
934          * space and if we lose sb update during power failure we'd replay
935          * old transaction with possibly newly overwritten data.
936          */
937         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
938                                               REQ_SYNC | REQ_FUA);
939         if (ret)
940                 goto out;
941
942         write_lock(&journal->j_state_lock);
943         freed = block - journal->j_tail;
944         if (block < journal->j_tail)
945                 freed += journal->j_last - journal->j_first;
946
947         trace_jbd2_update_log_tail(journal, tid, block, freed);
948         jbd_debug(1,
949                   "Cleaning journal tail from %d to %d (offset %lu), "
950                   "freeing %lu\n",
951                   journal->j_tail_sequence, tid, block, freed);
952
953         journal->j_free += freed;
954         journal->j_tail_sequence = tid;
955         journal->j_tail = block;
956         write_unlock(&journal->j_state_lock);
957
958 out:
959         return ret;
960 }
961
962 /*
963  * This is a variaon of __jbd2_update_log_tail which checks for validity of
964  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
965  * with other threads updating log tail.
966  */
967 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
968 {
969         mutex_lock_io(&journal->j_checkpoint_mutex);
970         if (tid_gt(tid, journal->j_tail_sequence))
971                 __jbd2_update_log_tail(journal, tid, block);
972         mutex_unlock(&journal->j_checkpoint_mutex);
973 }
974
975 struct jbd2_stats_proc_session {
976         journal_t *journal;
977         struct transaction_stats_s *stats;
978         int start;
979         int max;
980 };
981
982 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
983 {
984         return *pos ? NULL : SEQ_START_TOKEN;
985 }
986
987 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
988 {
989         return NULL;
990 }
991
992 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
993 {
994         struct jbd2_stats_proc_session *s = seq->private;
995
996         if (v != SEQ_START_TOKEN)
997                 return 0;
998         seq_printf(seq, "%lu transactions (%lu requested), "
999                    "each up to %u blocks\n",
1000                    s->stats->ts_tid, s->stats->ts_requested,
1001                    s->journal->j_max_transaction_buffers);
1002         if (s->stats->ts_tid == 0)
1003                 return 0;
1004         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1005             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006         seq_printf(seq, "  %ums request delay\n",
1007             (s->stats->ts_requested == 0) ? 0 :
1008             jiffies_to_msecs(s->stats->run.rs_request_delay /
1009                              s->stats->ts_requested));
1010         seq_printf(seq, "  %ums running transaction\n",
1011             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012         seq_printf(seq, "  %ums transaction was being locked\n",
1013             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1015             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016         seq_printf(seq, "  %ums logging transaction\n",
1017             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018         seq_printf(seq, "  %lluus average transaction commit time\n",
1019                    div_u64(s->journal->j_average_commit_time, 1000));
1020         seq_printf(seq, "  %lu handles per transaction\n",
1021             s->stats->run.rs_handle_count / s->stats->ts_tid);
1022         seq_printf(seq, "  %lu blocks per transaction\n",
1023             s->stats->run.rs_blocks / s->stats->ts_tid);
1024         seq_printf(seq, "  %lu logged blocks per transaction\n",
1025             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1026         return 0;
1027 }
1028
1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1030 {
1031 }
1032
1033 static const struct seq_operations jbd2_seq_info_ops = {
1034         .start  = jbd2_seq_info_start,
1035         .next   = jbd2_seq_info_next,
1036         .stop   = jbd2_seq_info_stop,
1037         .show   = jbd2_seq_info_show,
1038 };
1039
1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1041 {
1042         journal_t *journal = PDE_DATA(inode);
1043         struct jbd2_stats_proc_session *s;
1044         int rc, size;
1045
1046         s = kmalloc(sizeof(*s), GFP_KERNEL);
1047         if (s == NULL)
1048                 return -ENOMEM;
1049         size = sizeof(struct transaction_stats_s);
1050         s->stats = kmalloc(size, GFP_KERNEL);
1051         if (s->stats == NULL) {
1052                 kfree(s);
1053                 return -ENOMEM;
1054         }
1055         spin_lock(&journal->j_history_lock);
1056         memcpy(s->stats, &journal->j_stats, size);
1057         s->journal = journal;
1058         spin_unlock(&journal->j_history_lock);
1059
1060         rc = seq_open(file, &jbd2_seq_info_ops);
1061         if (rc == 0) {
1062                 struct seq_file *m = file->private_data;
1063                 m->private = s;
1064         } else {
1065                 kfree(s->stats);
1066                 kfree(s);
1067         }
1068         return rc;
1069
1070 }
1071
1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1073 {
1074         struct seq_file *seq = file->private_data;
1075         struct jbd2_stats_proc_session *s = seq->private;
1076         kfree(s->stats);
1077         kfree(s);
1078         return seq_release(inode, file);
1079 }
1080
1081 static const struct file_operations jbd2_seq_info_fops = {
1082         .owner          = THIS_MODULE,
1083         .open           = jbd2_seq_info_open,
1084         .read           = seq_read,
1085         .llseek         = seq_lseek,
1086         .release        = jbd2_seq_info_release,
1087 };
1088
1089 static struct proc_dir_entry *proc_jbd2_stats;
1090
1091 static void jbd2_stats_proc_init(journal_t *journal)
1092 {
1093         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1094         if (journal->j_proc_entry) {
1095                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1096                                  &jbd2_seq_info_fops, journal);
1097         }
1098 }
1099
1100 static void jbd2_stats_proc_exit(journal_t *journal)
1101 {
1102         remove_proc_entry("info", journal->j_proc_entry);
1103         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1104 }
1105
1106 /*
1107  * Management for journal control blocks: functions to create and
1108  * destroy journal_t structures, and to initialise and read existing
1109  * journal blocks from disk.  */
1110
1111 /* First: create and setup a journal_t object in memory.  We initialise
1112  * very few fields yet: that has to wait until we have created the
1113  * journal structures from from scratch, or loaded them from disk. */
1114
1115 static journal_t *journal_init_common(struct block_device *bdev,
1116                         struct block_device *fs_dev,
1117                         unsigned long long start, int len, int blocksize)
1118 {
1119         static struct lock_class_key jbd2_trans_commit_key;
1120         journal_t *journal;
1121         int err;
1122         struct buffer_head *bh;
1123         int n;
1124
1125         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1126         if (!journal)
1127                 return NULL;
1128
1129         init_waitqueue_head(&journal->j_wait_transaction_locked);
1130         init_waitqueue_head(&journal->j_wait_done_commit);
1131         init_waitqueue_head(&journal->j_wait_commit);
1132         init_waitqueue_head(&journal->j_wait_updates);
1133         init_waitqueue_head(&journal->j_wait_reserved);
1134         mutex_init(&journal->j_barrier);
1135         mutex_init(&journal->j_checkpoint_mutex);
1136         spin_lock_init(&journal->j_revoke_lock);
1137         spin_lock_init(&journal->j_list_lock);
1138         rwlock_init(&journal->j_state_lock);
1139
1140         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1141         journal->j_min_batch_time = 0;
1142         journal->j_max_batch_time = 15000; /* 15ms */
1143         atomic_set(&journal->j_reserved_credits, 0);
1144
1145         /* The journal is marked for error until we succeed with recovery! */
1146         journal->j_flags = JBD2_ABORT;
1147
1148         /* Set up a default-sized revoke table for the new mount. */
1149         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1150         if (err)
1151                 goto err_cleanup;
1152
1153         spin_lock_init(&journal->j_history_lock);
1154
1155         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1156                          &jbd2_trans_commit_key, 0);
1157
1158         /* journal descriptor can store up to n blocks -bzzz */
1159         journal->j_blocksize = blocksize;
1160         journal->j_dev = bdev;
1161         journal->j_fs_dev = fs_dev;
1162         journal->j_blk_offset = start;
1163         journal->j_maxlen = len;
1164         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165         journal->j_wbufsize = n;
1166         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1167                                         GFP_KERNEL);
1168         if (!journal->j_wbuf)
1169                 goto err_cleanup;
1170
1171         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1172         if (!bh) {
1173                 pr_err("%s: Cannot get buffer for journal superblock\n",
1174                         __func__);
1175                 goto err_cleanup;
1176         }
1177         journal->j_sb_buffer = bh;
1178         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1179
1180         return journal;
1181
1182 err_cleanup:
1183         kfree(journal->j_wbuf);
1184         jbd2_journal_destroy_revoke(journal);
1185         kfree(journal);
1186         return NULL;
1187 }
1188
1189 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1190  *
1191  * Create a journal structure assigned some fixed set of disk blocks to
1192  * the journal.  We don't actually touch those disk blocks yet, but we
1193  * need to set up all of the mapping information to tell the journaling
1194  * system where the journal blocks are.
1195  *
1196  */
1197
1198 /**
1199  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1200  *  @bdev: Block device on which to create the journal
1201  *  @fs_dev: Device which hold journalled filesystem for this journal.
1202  *  @start: Block nr Start of journal.
1203  *  @len:  Length of the journal in blocks.
1204  *  @blocksize: blocksize of journalling device
1205  *
1206  *  Returns: a newly created journal_t *
1207  *
1208  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1209  *  range of blocks on an arbitrary block device.
1210  *
1211  */
1212 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1213                         struct block_device *fs_dev,
1214                         unsigned long long start, int len, int blocksize)
1215 {
1216         journal_t *journal;
1217
1218         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1219         if (!journal)
1220                 return NULL;
1221
1222         bdevname(journal->j_dev, journal->j_devname);
1223         strreplace(journal->j_devname, '/', '!');
1224         jbd2_stats_proc_init(journal);
1225
1226         return journal;
1227 }
1228
1229 /**
1230  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1231  *  @inode: An inode to create the journal in
1232  *
1233  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1234  * the journal.  The inode must exist already, must support bmap() and
1235  * must have all data blocks preallocated.
1236  */
1237 journal_t *jbd2_journal_init_inode(struct inode *inode)
1238 {
1239         journal_t *journal;
1240         char *p;
1241         unsigned long long blocknr;
1242
1243         blocknr = bmap(inode, 0);
1244         if (!blocknr) {
1245                 pr_err("%s: Cannot locate journal superblock\n",
1246                         __func__);
1247                 return NULL;
1248         }
1249
1250         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1251                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1252                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1253
1254         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1255                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1256                         inode->i_sb->s_blocksize);
1257         if (!journal)
1258                 return NULL;
1259
1260         journal->j_inode = inode;
1261         bdevname(journal->j_dev, journal->j_devname);
1262         p = strreplace(journal->j_devname, '/', '!');
1263         sprintf(p, "-%lu", journal->j_inode->i_ino);
1264         jbd2_stats_proc_init(journal);
1265
1266         return journal;
1267 }
1268
1269 /*
1270  * If the journal init or create aborts, we need to mark the journal
1271  * superblock as being NULL to prevent the journal destroy from writing
1272  * back a bogus superblock.
1273  */
1274 static void journal_fail_superblock (journal_t *journal)
1275 {
1276         struct buffer_head *bh = journal->j_sb_buffer;
1277         brelse(bh);
1278         journal->j_sb_buffer = NULL;
1279 }
1280
1281 /*
1282  * Given a journal_t structure, initialise the various fields for
1283  * startup of a new journaling session.  We use this both when creating
1284  * a journal, and after recovering an old journal to reset it for
1285  * subsequent use.
1286  */
1287
1288 static int journal_reset(journal_t *journal)
1289 {
1290         journal_superblock_t *sb = journal->j_superblock;
1291         unsigned long long first, last;
1292
1293         first = be32_to_cpu(sb->s_first);
1294         last = be32_to_cpu(sb->s_maxlen);
1295         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1296                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1297                        first, last);
1298                 journal_fail_superblock(journal);
1299                 return -EINVAL;
1300         }
1301
1302         journal->j_first = first;
1303         journal->j_last = last;
1304
1305         journal->j_head = first;
1306         journal->j_tail = first;
1307         journal->j_free = last - first;
1308
1309         journal->j_tail_sequence = journal->j_transaction_sequence;
1310         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1311         journal->j_commit_request = journal->j_commit_sequence;
1312
1313         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1314
1315         /*
1316          * As a special case, if the on-disk copy is already marked as needing
1317          * no recovery (s_start == 0), then we can safely defer the superblock
1318          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1319          * attempting a write to a potential-readonly device.
1320          */
1321         if (sb->s_start == 0) {
1322                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1323                         "(start %ld, seq %d, errno %d)\n",
1324                         journal->j_tail, journal->j_tail_sequence,
1325                         journal->j_errno);
1326                 journal->j_flags |= JBD2_FLUSHED;
1327         } else {
1328                 /* Lock here to make assertions happy... */
1329                 mutex_lock_io(&journal->j_checkpoint_mutex);
1330                 /*
1331                  * Update log tail information. We use REQ_FUA since new
1332                  * transaction will start reusing journal space and so we
1333                  * must make sure information about current log tail is on
1334                  * disk before that.
1335                  */
1336                 jbd2_journal_update_sb_log_tail(journal,
1337                                                 journal->j_tail_sequence,
1338                                                 journal->j_tail,
1339                                                 REQ_SYNC | REQ_FUA);
1340                 mutex_unlock(&journal->j_checkpoint_mutex);
1341         }
1342         return jbd2_journal_start_thread(journal);
1343 }
1344
1345 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1346 {
1347         struct buffer_head *bh = journal->j_sb_buffer;
1348         journal_superblock_t *sb = journal->j_superblock;
1349         int ret;
1350
1351         trace_jbd2_write_superblock(journal, write_flags);
1352         if (!(journal->j_flags & JBD2_BARRIER))
1353                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1354         lock_buffer(bh);
1355         if (buffer_write_io_error(bh)) {
1356                 /*
1357                  * Oh, dear.  A previous attempt to write the journal
1358                  * superblock failed.  This could happen because the
1359                  * USB device was yanked out.  Or it could happen to
1360                  * be a transient write error and maybe the block will
1361                  * be remapped.  Nothing we can do but to retry the
1362                  * write and hope for the best.
1363                  */
1364                 printk(KERN_ERR "JBD2: previous I/O error detected "
1365                        "for journal superblock update for %s.\n",
1366                        journal->j_devname);
1367                 clear_buffer_write_io_error(bh);
1368                 set_buffer_uptodate(bh);
1369         }
1370         jbd2_superblock_csum_set(journal, sb);
1371         get_bh(bh);
1372         bh->b_end_io = end_buffer_write_sync;
1373         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1374         wait_on_buffer(bh);
1375         if (buffer_write_io_error(bh)) {
1376                 clear_buffer_write_io_error(bh);
1377                 set_buffer_uptodate(bh);
1378                 ret = -EIO;
1379         }
1380         if (ret) {
1381                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1382                        "journal superblock for %s.\n", ret,
1383                        journal->j_devname);
1384                 jbd2_journal_abort(journal, ret);
1385         }
1386
1387         return ret;
1388 }
1389
1390 /**
1391  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1392  * @journal: The journal to update.
1393  * @tail_tid: TID of the new transaction at the tail of the log
1394  * @tail_block: The first block of the transaction at the tail of the log
1395  * @write_op: With which operation should we write the journal sb
1396  *
1397  * Update a journal's superblock information about log tail and write it to
1398  * disk, waiting for the IO to complete.
1399  */
1400 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1401                                      unsigned long tail_block, int write_op)
1402 {
1403         journal_superblock_t *sb = journal->j_superblock;
1404         int ret;
1405
1406         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1407         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1408                   tail_block, tail_tid);
1409
1410         sb->s_sequence = cpu_to_be32(tail_tid);
1411         sb->s_start    = cpu_to_be32(tail_block);
1412
1413         ret = jbd2_write_superblock(journal, write_op);
1414         if (ret)
1415                 goto out;
1416
1417         /* Log is no longer empty */
1418         write_lock(&journal->j_state_lock);
1419         WARN_ON(!sb->s_sequence);
1420         journal->j_flags &= ~JBD2_FLUSHED;
1421         write_unlock(&journal->j_state_lock);
1422
1423 out:
1424         return ret;
1425 }
1426
1427 /**
1428  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1429  * @journal: The journal to update.
1430  * @write_op: With which operation should we write the journal sb
1431  *
1432  * Update a journal's dynamic superblock fields to show that journal is empty.
1433  * Write updated superblock to disk waiting for IO to complete.
1434  */
1435 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1436 {
1437         journal_superblock_t *sb = journal->j_superblock;
1438
1439         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1440         read_lock(&journal->j_state_lock);
1441         /* Is it already empty? */
1442         if (sb->s_start == 0) {
1443                 read_unlock(&journal->j_state_lock);
1444                 return;
1445         }
1446         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1447                   journal->j_tail_sequence);
1448
1449         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1450         sb->s_start    = cpu_to_be32(0);
1451         read_unlock(&journal->j_state_lock);
1452
1453         jbd2_write_superblock(journal, write_op);
1454
1455         /* Log is no longer empty */
1456         write_lock(&journal->j_state_lock);
1457         journal->j_flags |= JBD2_FLUSHED;
1458         write_unlock(&journal->j_state_lock);
1459 }
1460
1461
1462 /**
1463  * jbd2_journal_update_sb_errno() - Update error in the journal.
1464  * @journal: The journal to update.
1465  *
1466  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1467  * to complete.
1468  */
1469 void jbd2_journal_update_sb_errno(journal_t *journal)
1470 {
1471         journal_superblock_t *sb = journal->j_superblock;
1472
1473         read_lock(&journal->j_state_lock);
1474         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1475                   journal->j_errno);
1476         sb->s_errno    = cpu_to_be32(journal->j_errno);
1477         read_unlock(&journal->j_state_lock);
1478
1479         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1480 }
1481 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1482
1483 /*
1484  * Read the superblock for a given journal, performing initial
1485  * validation of the format.
1486  */
1487 static int journal_get_superblock(journal_t *journal)
1488 {
1489         struct buffer_head *bh;
1490         journal_superblock_t *sb;
1491         int err = -EIO;
1492
1493         bh = journal->j_sb_buffer;
1494
1495         J_ASSERT(bh != NULL);
1496         if (!buffer_uptodate(bh)) {
1497                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1498                 wait_on_buffer(bh);
1499                 if (!buffer_uptodate(bh)) {
1500                         printk(KERN_ERR
1501                                 "JBD2: IO error reading journal superblock\n");
1502                         goto out;
1503                 }
1504         }
1505
1506         if (buffer_verified(bh))
1507                 return 0;
1508
1509         sb = journal->j_superblock;
1510
1511         err = -EINVAL;
1512
1513         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1514             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1515                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1516                 goto out;
1517         }
1518
1519         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1520         case JBD2_SUPERBLOCK_V1:
1521                 journal->j_format_version = 1;
1522                 break;
1523         case JBD2_SUPERBLOCK_V2:
1524                 journal->j_format_version = 2;
1525                 break;
1526         default:
1527                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1528                 goto out;
1529         }
1530
1531         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1532                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1533         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1534                 printk(KERN_WARNING "JBD2: journal file too short\n");
1535                 goto out;
1536         }
1537
1538         if (be32_to_cpu(sb->s_first) == 0 ||
1539             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1540                 printk(KERN_WARNING
1541                         "JBD2: Invalid start block of journal: %u\n",
1542                         be32_to_cpu(sb->s_first));
1543                 goto out;
1544         }
1545
1546         if (jbd2_has_feature_csum2(journal) &&
1547             jbd2_has_feature_csum3(journal)) {
1548                 /* Can't have checksum v2 and v3 at the same time! */
1549                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1550                        "at the same time!\n");
1551                 goto out;
1552         }
1553
1554         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1555             jbd2_has_feature_checksum(journal)) {
1556                 /* Can't have checksum v1 and v2 on at the same time! */
1557                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1558                        "at the same time!\n");
1559                 goto out;
1560         }
1561
1562         if (!jbd2_verify_csum_type(journal, sb)) {
1563                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1564                 goto out;
1565         }
1566
1567         /* Load the checksum driver */
1568         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1569                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1570                 if (IS_ERR(journal->j_chksum_driver)) {
1571                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1572                         err = PTR_ERR(journal->j_chksum_driver);
1573                         journal->j_chksum_driver = NULL;
1574                         goto out;
1575                 }
1576         }
1577
1578         /* Check superblock checksum */
1579         if (!jbd2_superblock_csum_verify(journal, sb)) {
1580                 printk(KERN_ERR "JBD2: journal checksum error\n");
1581                 err = -EFSBADCRC;
1582                 goto out;
1583         }
1584
1585         /* Precompute checksum seed for all metadata */
1586         if (jbd2_journal_has_csum_v2or3(journal))
1587                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1588                                                    sizeof(sb->s_uuid));
1589
1590         set_buffer_verified(bh);
1591
1592         return 0;
1593
1594 out:
1595         journal_fail_superblock(journal);
1596         return err;
1597 }
1598
1599 /*
1600  * Load the on-disk journal superblock and read the key fields into the
1601  * journal_t.
1602  */
1603
1604 static int load_superblock(journal_t *journal)
1605 {
1606         int err;
1607         journal_superblock_t *sb;
1608
1609         err = journal_get_superblock(journal);
1610         if (err)
1611                 return err;
1612
1613         sb = journal->j_superblock;
1614
1615         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1616         journal->j_tail = be32_to_cpu(sb->s_start);
1617         journal->j_first = be32_to_cpu(sb->s_first);
1618         journal->j_last = be32_to_cpu(sb->s_maxlen);
1619         journal->j_errno = be32_to_cpu(sb->s_errno);
1620
1621         return 0;
1622 }
1623
1624
1625 /**
1626  * int jbd2_journal_load() - Read journal from disk.
1627  * @journal: Journal to act on.
1628  *
1629  * Given a journal_t structure which tells us which disk blocks contain
1630  * a journal, read the journal from disk to initialise the in-memory
1631  * structures.
1632  */
1633 int jbd2_journal_load(journal_t *journal)
1634 {
1635         int err;
1636         journal_superblock_t *sb;
1637
1638         err = load_superblock(journal);
1639         if (err)
1640                 return err;
1641
1642         sb = journal->j_superblock;
1643         /* If this is a V2 superblock, then we have to check the
1644          * features flags on it. */
1645
1646         if (journal->j_format_version >= 2) {
1647                 if ((sb->s_feature_ro_compat &
1648                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1649                     (sb->s_feature_incompat &
1650                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1651                         printk(KERN_WARNING
1652                                 "JBD2: Unrecognised features on journal\n");
1653                         return -EINVAL;
1654                 }
1655         }
1656
1657         /*
1658          * Create a slab for this blocksize
1659          */
1660         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1661         if (err)
1662                 return err;
1663
1664         /* Let the recovery code check whether it needs to recover any
1665          * data from the journal. */
1666         if (jbd2_journal_recover(journal))
1667                 goto recovery_error;
1668
1669         if (journal->j_failed_commit) {
1670                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1671                        "is corrupt.\n", journal->j_failed_commit,
1672                        journal->j_devname);
1673                 return -EFSCORRUPTED;
1674         }
1675
1676         /* OK, we've finished with the dynamic journal bits:
1677          * reinitialise the dynamic contents of the superblock in memory
1678          * and reset them on disk. */
1679         if (journal_reset(journal))
1680                 goto recovery_error;
1681
1682         journal->j_flags &= ~JBD2_ABORT;
1683         journal->j_flags |= JBD2_LOADED;
1684         return 0;
1685
1686 recovery_error:
1687         printk(KERN_WARNING "JBD2: recovery failed\n");
1688         return -EIO;
1689 }
1690
1691 /**
1692  * void jbd2_journal_destroy() - Release a journal_t structure.
1693  * @journal: Journal to act on.
1694  *
1695  * Release a journal_t structure once it is no longer in use by the
1696  * journaled object.
1697  * Return <0 if we couldn't clean up the journal.
1698  */
1699 int jbd2_journal_destroy(journal_t *journal)
1700 {
1701         int err = 0;
1702
1703         /* Wait for the commit thread to wake up and die. */
1704         journal_kill_thread(journal);
1705
1706         /* Force a final log commit */
1707         if (journal->j_running_transaction)
1708                 jbd2_journal_commit_transaction(journal);
1709
1710         /* Force any old transactions to disk */
1711
1712         /* Totally anal locking here... */
1713         spin_lock(&journal->j_list_lock);
1714         while (journal->j_checkpoint_transactions != NULL) {
1715                 spin_unlock(&journal->j_list_lock);
1716                 mutex_lock_io(&journal->j_checkpoint_mutex);
1717                 err = jbd2_log_do_checkpoint(journal);
1718                 mutex_unlock(&journal->j_checkpoint_mutex);
1719                 /*
1720                  * If checkpointing failed, just free the buffers to avoid
1721                  * looping forever
1722                  */
1723                 if (err) {
1724                         jbd2_journal_destroy_checkpoint(journal);
1725                         spin_lock(&journal->j_list_lock);
1726                         break;
1727                 }
1728                 spin_lock(&journal->j_list_lock);
1729         }
1730
1731         J_ASSERT(journal->j_running_transaction == NULL);
1732         J_ASSERT(journal->j_committing_transaction == NULL);
1733         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1734         spin_unlock(&journal->j_list_lock);
1735
1736         if (journal->j_sb_buffer) {
1737                 if (!is_journal_aborted(journal)) {
1738                         mutex_lock_io(&journal->j_checkpoint_mutex);
1739
1740                         write_lock(&journal->j_state_lock);
1741                         journal->j_tail_sequence =
1742                                 ++journal->j_transaction_sequence;
1743                         write_unlock(&journal->j_state_lock);
1744
1745                         jbd2_mark_journal_empty(journal,
1746                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1747                         mutex_unlock(&journal->j_checkpoint_mutex);
1748                 } else
1749                         err = -EIO;
1750                 brelse(journal->j_sb_buffer);
1751         }
1752
1753         if (journal->j_proc_entry)
1754                 jbd2_stats_proc_exit(journal);
1755         iput(journal->j_inode);
1756         if (journal->j_revoke)
1757                 jbd2_journal_destroy_revoke(journal);
1758         if (journal->j_chksum_driver)
1759                 crypto_free_shash(journal->j_chksum_driver);
1760         kfree(journal->j_wbuf);
1761         kfree(journal);
1762
1763         return err;
1764 }
1765
1766
1767 /**
1768  *int jbd2_journal_check_used_features () - Check if features specified are used.
1769  * @journal: Journal to check.
1770  * @compat: bitmask of compatible features
1771  * @ro: bitmask of features that force read-only mount
1772  * @incompat: bitmask of incompatible features
1773  *
1774  * Check whether the journal uses all of a given set of
1775  * features.  Return true (non-zero) if it does.
1776  **/
1777
1778 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1779                                  unsigned long ro, unsigned long incompat)
1780 {
1781         journal_superblock_t *sb;
1782
1783         if (!compat && !ro && !incompat)
1784                 return 1;
1785         /* Load journal superblock if it is not loaded yet. */
1786         if (journal->j_format_version == 0 &&
1787             journal_get_superblock(journal) != 0)
1788                 return 0;
1789         if (journal->j_format_version == 1)
1790                 return 0;
1791
1792         sb = journal->j_superblock;
1793
1794         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1795             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1796             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1797                 return 1;
1798
1799         return 0;
1800 }
1801
1802 /**
1803  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1804  * @journal: Journal to check.
1805  * @compat: bitmask of compatible features
1806  * @ro: bitmask of features that force read-only mount
1807  * @incompat: bitmask of incompatible features
1808  *
1809  * Check whether the journaling code supports the use of
1810  * all of a given set of features on this journal.  Return true
1811  * (non-zero) if it can. */
1812
1813 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1814                                       unsigned long ro, unsigned long incompat)
1815 {
1816         if (!compat && !ro && !incompat)
1817                 return 1;
1818
1819         /* We can support any known requested features iff the
1820          * superblock is in version 2.  Otherwise we fail to support any
1821          * extended sb features. */
1822
1823         if (journal->j_format_version != 2)
1824                 return 0;
1825
1826         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1827             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1828             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1829                 return 1;
1830
1831         return 0;
1832 }
1833
1834 /**
1835  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1836  * @journal: Journal to act on.
1837  * @compat: bitmask of compatible features
1838  * @ro: bitmask of features that force read-only mount
1839  * @incompat: bitmask of incompatible features
1840  *
1841  * Mark a given journal feature as present on the
1842  * superblock.  Returns true if the requested features could be set.
1843  *
1844  */
1845
1846 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1847                           unsigned long ro, unsigned long incompat)
1848 {
1849 #define INCOMPAT_FEATURE_ON(f) \
1850                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1851 #define COMPAT_FEATURE_ON(f) \
1852                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1853         journal_superblock_t *sb;
1854
1855         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1856                 return 1;
1857
1858         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1859                 return 0;
1860
1861         /* If enabling v2 checksums, turn on v3 instead */
1862         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1863                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1864                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1865         }
1866
1867         /* Asking for checksumming v3 and v1?  Only give them v3. */
1868         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1869             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1870                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1871
1872         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1873                   compat, ro, incompat);
1874
1875         sb = journal->j_superblock;
1876
1877         /* If enabling v3 checksums, update superblock */
1878         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1879                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1880                 sb->s_feature_compat &=
1881                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1882
1883                 /* Load the checksum driver */
1884                 if (journal->j_chksum_driver == NULL) {
1885                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1886                                                                       0, 0);
1887                         if (IS_ERR(journal->j_chksum_driver)) {
1888                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1889                                        "driver.\n");
1890                                 journal->j_chksum_driver = NULL;
1891                                 return 0;
1892                         }
1893
1894                         /* Precompute checksum seed for all metadata */
1895                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1896                                                            sb->s_uuid,
1897                                                            sizeof(sb->s_uuid));
1898                 }
1899         }
1900
1901         /* If enabling v1 checksums, downgrade superblock */
1902         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1903                 sb->s_feature_incompat &=
1904                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1905                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1906
1907         sb->s_feature_compat    |= cpu_to_be32(compat);
1908         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1909         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1910
1911         return 1;
1912 #undef COMPAT_FEATURE_ON
1913 #undef INCOMPAT_FEATURE_ON
1914 }
1915
1916 /*
1917  * jbd2_journal_clear_features () - Clear a given journal feature in the
1918  *                                  superblock
1919  * @journal: Journal to act on.
1920  * @compat: bitmask of compatible features
1921  * @ro: bitmask of features that force read-only mount
1922  * @incompat: bitmask of incompatible features
1923  *
1924  * Clear a given journal feature as present on the
1925  * superblock.
1926  */
1927 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1928                                 unsigned long ro, unsigned long incompat)
1929 {
1930         journal_superblock_t *sb;
1931
1932         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1933                   compat, ro, incompat);
1934
1935         sb = journal->j_superblock;
1936
1937         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1938         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1939         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1940 }
1941 EXPORT_SYMBOL(jbd2_journal_clear_features);
1942
1943 /**
1944  * int jbd2_journal_flush () - Flush journal
1945  * @journal: Journal to act on.
1946  *
1947  * Flush all data for a given journal to disk and empty the journal.
1948  * Filesystems can use this when remounting readonly to ensure that
1949  * recovery does not need to happen on remount.
1950  */
1951
1952 int jbd2_journal_flush(journal_t *journal)
1953 {
1954         int err = 0;
1955         transaction_t *transaction = NULL;
1956
1957         write_lock(&journal->j_state_lock);
1958
1959         /* Force everything buffered to the log... */
1960         if (journal->j_running_transaction) {
1961                 transaction = journal->j_running_transaction;
1962                 __jbd2_log_start_commit(journal, transaction->t_tid);
1963         } else if (journal->j_committing_transaction)
1964                 transaction = journal->j_committing_transaction;
1965
1966         /* Wait for the log commit to complete... */
1967         if (transaction) {
1968                 tid_t tid = transaction->t_tid;
1969
1970                 write_unlock(&journal->j_state_lock);
1971                 jbd2_log_wait_commit(journal, tid);
1972         } else {
1973                 write_unlock(&journal->j_state_lock);
1974         }
1975
1976         /* ...and flush everything in the log out to disk. */
1977         spin_lock(&journal->j_list_lock);
1978         while (!err && journal->j_checkpoint_transactions != NULL) {
1979                 spin_unlock(&journal->j_list_lock);
1980                 mutex_lock_io(&journal->j_checkpoint_mutex);
1981                 err = jbd2_log_do_checkpoint(journal);
1982                 mutex_unlock(&journal->j_checkpoint_mutex);
1983                 spin_lock(&journal->j_list_lock);
1984         }
1985         spin_unlock(&journal->j_list_lock);
1986
1987         if (is_journal_aborted(journal))
1988                 return -EIO;
1989
1990         mutex_lock_io(&journal->j_checkpoint_mutex);
1991         if (!err) {
1992                 err = jbd2_cleanup_journal_tail(journal);
1993                 if (err < 0) {
1994                         mutex_unlock(&journal->j_checkpoint_mutex);
1995                         goto out;
1996                 }
1997                 err = 0;
1998         }
1999
2000         /* Finally, mark the journal as really needing no recovery.
2001          * This sets s_start==0 in the underlying superblock, which is
2002          * the magic code for a fully-recovered superblock.  Any future
2003          * commits of data to the journal will restore the current
2004          * s_start value. */
2005         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2006         mutex_unlock(&journal->j_checkpoint_mutex);
2007         write_lock(&journal->j_state_lock);
2008         J_ASSERT(!journal->j_running_transaction);
2009         J_ASSERT(!journal->j_committing_transaction);
2010         J_ASSERT(!journal->j_checkpoint_transactions);
2011         J_ASSERT(journal->j_head == journal->j_tail);
2012         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2013         write_unlock(&journal->j_state_lock);
2014 out:
2015         return err;
2016 }
2017
2018 /**
2019  * int jbd2_journal_wipe() - Wipe journal contents
2020  * @journal: Journal to act on.
2021  * @write: flag (see below)
2022  *
2023  * Wipe out all of the contents of a journal, safely.  This will produce
2024  * a warning if the journal contains any valid recovery information.
2025  * Must be called between journal_init_*() and jbd2_journal_load().
2026  *
2027  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2028  * we merely suppress recovery.
2029  */
2030
2031 int jbd2_journal_wipe(journal_t *journal, int write)
2032 {
2033         int err = 0;
2034
2035         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2036
2037         err = load_superblock(journal);
2038         if (err)
2039                 return err;
2040
2041         if (!journal->j_tail)
2042                 goto no_recovery;
2043
2044         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2045                 write ? "Clearing" : "Ignoring");
2046
2047         err = jbd2_journal_skip_recovery(journal);
2048         if (write) {
2049                 /* Lock to make assertions happy... */
2050                 mutex_lock(&journal->j_checkpoint_mutex);
2051                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2052                 mutex_unlock(&journal->j_checkpoint_mutex);
2053         }
2054
2055  no_recovery:
2056         return err;
2057 }
2058
2059 /*
2060  * Journal abort has very specific semantics, which we describe
2061  * for journal abort.
2062  *
2063  * Two internal functions, which provide abort to the jbd layer
2064  * itself are here.
2065  */
2066
2067 /*
2068  * Quick version for internal journal use (doesn't lock the journal).
2069  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2070  * and don't attempt to make any other journal updates.
2071  */
2072 void __jbd2_journal_abort_hard(journal_t *journal)
2073 {
2074         transaction_t *transaction;
2075
2076         if (journal->j_flags & JBD2_ABORT)
2077                 return;
2078
2079         printk(KERN_ERR "Aborting journal on device %s.\n",
2080                journal->j_devname);
2081
2082         write_lock(&journal->j_state_lock);
2083         journal->j_flags |= JBD2_ABORT;
2084         transaction = journal->j_running_transaction;
2085         if (transaction)
2086                 __jbd2_log_start_commit(journal, transaction->t_tid);
2087         write_unlock(&journal->j_state_lock);
2088 }
2089
2090 /* Soft abort: record the abort error status in the journal superblock,
2091  * but don't do any other IO. */
2092 static void __journal_abort_soft (journal_t *journal, int errno)
2093 {
2094         if (journal->j_flags & JBD2_ABORT)
2095                 return;
2096
2097         if (!journal->j_errno)
2098                 journal->j_errno = errno;
2099
2100         __jbd2_journal_abort_hard(journal);
2101
2102         if (errno) {
2103                 jbd2_journal_update_sb_errno(journal);
2104                 write_lock(&journal->j_state_lock);
2105                 journal->j_flags |= JBD2_REC_ERR;
2106                 write_unlock(&journal->j_state_lock);
2107         }
2108 }
2109
2110 /**
2111  * void jbd2_journal_abort () - Shutdown the journal immediately.
2112  * @journal: the journal to shutdown.
2113  * @errno:   an error number to record in the journal indicating
2114  *           the reason for the shutdown.
2115  *
2116  * Perform a complete, immediate shutdown of the ENTIRE
2117  * journal (not of a single transaction).  This operation cannot be
2118  * undone without closing and reopening the journal.
2119  *
2120  * The jbd2_journal_abort function is intended to support higher level error
2121  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2122  * mode.
2123  *
2124  * Journal abort has very specific semantics.  Any existing dirty,
2125  * unjournaled buffers in the main filesystem will still be written to
2126  * disk by bdflush, but the journaling mechanism will be suspended
2127  * immediately and no further transaction commits will be honoured.
2128  *
2129  * Any dirty, journaled buffers will be written back to disk without
2130  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2131  * filesystem, but we _do_ attempt to leave as much data as possible
2132  * behind for fsck to use for cleanup.
2133  *
2134  * Any attempt to get a new transaction handle on a journal which is in
2135  * ABORT state will just result in an -EROFS error return.  A
2136  * jbd2_journal_stop on an existing handle will return -EIO if we have
2137  * entered abort state during the update.
2138  *
2139  * Recursive transactions are not disturbed by journal abort until the
2140  * final jbd2_journal_stop, which will receive the -EIO error.
2141  *
2142  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2143  * which will be recorded (if possible) in the journal superblock.  This
2144  * allows a client to record failure conditions in the middle of a
2145  * transaction without having to complete the transaction to record the
2146  * failure to disk.  ext3_error, for example, now uses this
2147  * functionality.
2148  *
2149  * Errors which originate from within the journaling layer will NOT
2150  * supply an errno; a null errno implies that absolutely no further
2151  * writes are done to the journal (unless there are any already in
2152  * progress).
2153  *
2154  */
2155
2156 void jbd2_journal_abort(journal_t *journal, int errno)
2157 {
2158         __journal_abort_soft(journal, errno);
2159 }
2160
2161 /**
2162  * int jbd2_journal_errno () - returns the journal's error state.
2163  * @journal: journal to examine.
2164  *
2165  * This is the errno number set with jbd2_journal_abort(), the last
2166  * time the journal was mounted - if the journal was stopped
2167  * without calling abort this will be 0.
2168  *
2169  * If the journal has been aborted on this mount time -EROFS will
2170  * be returned.
2171  */
2172 int jbd2_journal_errno(journal_t *journal)
2173 {
2174         int err;
2175
2176         read_lock(&journal->j_state_lock);
2177         if (journal->j_flags & JBD2_ABORT)
2178                 err = -EROFS;
2179         else
2180                 err = journal->j_errno;
2181         read_unlock(&journal->j_state_lock);
2182         return err;
2183 }
2184
2185 /**
2186  * int jbd2_journal_clear_err () - clears the journal's error state
2187  * @journal: journal to act on.
2188  *
2189  * An error must be cleared or acked to take a FS out of readonly
2190  * mode.
2191  */
2192 int jbd2_journal_clear_err(journal_t *journal)
2193 {
2194         int err = 0;
2195
2196         write_lock(&journal->j_state_lock);
2197         if (journal->j_flags & JBD2_ABORT)
2198                 err = -EROFS;
2199         else
2200                 journal->j_errno = 0;
2201         write_unlock(&journal->j_state_lock);
2202         return err;
2203 }
2204
2205 /**
2206  * void jbd2_journal_ack_err() - Ack journal err.
2207  * @journal: journal to act on.
2208  *
2209  * An error must be cleared or acked to take a FS out of readonly
2210  * mode.
2211  */
2212 void jbd2_journal_ack_err(journal_t *journal)
2213 {
2214         write_lock(&journal->j_state_lock);
2215         if (journal->j_errno)
2216                 journal->j_flags |= JBD2_ACK_ERR;
2217         write_unlock(&journal->j_state_lock);
2218 }
2219
2220 int jbd2_journal_blocks_per_page(struct inode *inode)
2221 {
2222         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2223 }
2224
2225 /*
2226  * helper functions to deal with 32 or 64bit block numbers.
2227  */
2228 size_t journal_tag_bytes(journal_t *journal)
2229 {
2230         size_t sz;
2231
2232         if (jbd2_has_feature_csum3(journal))
2233                 return sizeof(journal_block_tag3_t);
2234
2235         sz = sizeof(journal_block_tag_t);
2236
2237         if (jbd2_has_feature_csum2(journal))
2238                 sz += sizeof(__u16);
2239
2240         if (jbd2_has_feature_64bit(journal))
2241                 return sz;
2242         else
2243                 return sz - sizeof(__u32);
2244 }
2245
2246 /*
2247  * JBD memory management
2248  *
2249  * These functions are used to allocate block-sized chunks of memory
2250  * used for making copies of buffer_head data.  Very often it will be
2251  * page-sized chunks of data, but sometimes it will be in
2252  * sub-page-size chunks.  (For example, 16k pages on Power systems
2253  * with a 4k block file system.)  For blocks smaller than a page, we
2254  * use a SLAB allocator.  There are slab caches for each block size,
2255  * which are allocated at mount time, if necessary, and we only free
2256  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2257  * this reason we don't need to a mutex to protect access to
2258  * jbd2_slab[] allocating or releasing memory; only in
2259  * jbd2_journal_create_slab().
2260  */
2261 #define JBD2_MAX_SLABS 8
2262 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2263
2264 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2265         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2266         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2267 };
2268
2269
2270 static void jbd2_journal_destroy_slabs(void)
2271 {
2272         int i;
2273
2274         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2275                 if (jbd2_slab[i])
2276                         kmem_cache_destroy(jbd2_slab[i]);
2277                 jbd2_slab[i] = NULL;
2278         }
2279 }
2280
2281 static int jbd2_journal_create_slab(size_t size)
2282 {
2283         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2284         int i = order_base_2(size) - 10;
2285         size_t slab_size;
2286
2287         if (size == PAGE_SIZE)
2288                 return 0;
2289
2290         if (i >= JBD2_MAX_SLABS)
2291                 return -EINVAL;
2292
2293         if (unlikely(i < 0))
2294                 i = 0;
2295         mutex_lock(&jbd2_slab_create_mutex);
2296         if (jbd2_slab[i]) {
2297                 mutex_unlock(&jbd2_slab_create_mutex);
2298                 return 0;       /* Already created */
2299         }
2300
2301         slab_size = 1 << (i+10);
2302         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2303                                          slab_size, 0, NULL);
2304         mutex_unlock(&jbd2_slab_create_mutex);
2305         if (!jbd2_slab[i]) {
2306                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2307                 return -ENOMEM;
2308         }
2309         return 0;
2310 }
2311
2312 static struct kmem_cache *get_slab(size_t size)
2313 {
2314         int i = order_base_2(size) - 10;
2315
2316         BUG_ON(i >= JBD2_MAX_SLABS);
2317         if (unlikely(i < 0))
2318                 i = 0;
2319         BUG_ON(jbd2_slab[i] == NULL);
2320         return jbd2_slab[i];
2321 }
2322
2323 void *jbd2_alloc(size_t size, gfp_t flags)
2324 {
2325         void *ptr;
2326
2327         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2328
2329         if (size < PAGE_SIZE)
2330                 ptr = kmem_cache_alloc(get_slab(size), flags);
2331         else
2332                 ptr = (void *)__get_free_pages(flags, get_order(size));
2333
2334         /* Check alignment; SLUB has gotten this wrong in the past,
2335          * and this can lead to user data corruption! */
2336         BUG_ON(((unsigned long) ptr) & (size-1));
2337
2338         return ptr;
2339 }
2340
2341 void jbd2_free(void *ptr, size_t size)
2342 {
2343         if (size < PAGE_SIZE)
2344                 kmem_cache_free(get_slab(size), ptr);
2345         else
2346                 free_pages((unsigned long)ptr, get_order(size));
2347 };
2348
2349 /*
2350  * Journal_head storage management
2351  */
2352 static struct kmem_cache *jbd2_journal_head_cache;
2353 #ifdef CONFIG_JBD2_DEBUG
2354 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2355 #endif
2356
2357 static int jbd2_journal_init_journal_head_cache(void)
2358 {
2359         int retval;
2360
2361         J_ASSERT(jbd2_journal_head_cache == NULL);
2362         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2363                                 sizeof(struct journal_head),
2364                                 0,              /* offset */
2365                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2366                                 NULL);          /* ctor */
2367         retval = 0;
2368         if (!jbd2_journal_head_cache) {
2369                 retval = -ENOMEM;
2370                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2371         }
2372         return retval;
2373 }
2374
2375 static void jbd2_journal_destroy_journal_head_cache(void)
2376 {
2377         if (jbd2_journal_head_cache) {
2378                 kmem_cache_destroy(jbd2_journal_head_cache);
2379                 jbd2_journal_head_cache = NULL;
2380         }
2381 }
2382
2383 /*
2384  * journal_head splicing and dicing
2385  */
2386 static struct journal_head *journal_alloc_journal_head(void)
2387 {
2388         struct journal_head *ret;
2389
2390 #ifdef CONFIG_JBD2_DEBUG
2391         atomic_inc(&nr_journal_heads);
2392 #endif
2393         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2394         if (!ret) {
2395                 jbd_debug(1, "out of memory for journal_head\n");
2396                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2397                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2398                                 GFP_NOFS | __GFP_NOFAIL);
2399         }
2400         return ret;
2401 }
2402
2403 static void journal_free_journal_head(struct journal_head *jh)
2404 {
2405 #ifdef CONFIG_JBD2_DEBUG
2406         atomic_dec(&nr_journal_heads);
2407         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2408 #endif
2409         kmem_cache_free(jbd2_journal_head_cache, jh);
2410 }
2411
2412 /*
2413  * A journal_head is attached to a buffer_head whenever JBD has an
2414  * interest in the buffer.
2415  *
2416  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2417  * is set.  This bit is tested in core kernel code where we need to take
2418  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2419  * there.
2420  *
2421  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2422  *
2423  * When a buffer has its BH_JBD bit set it is immune from being released by
2424  * core kernel code, mainly via ->b_count.
2425  *
2426  * A journal_head is detached from its buffer_head when the journal_head's
2427  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2428  * transaction (b_cp_transaction) hold their references to b_jcount.
2429  *
2430  * Various places in the kernel want to attach a journal_head to a buffer_head
2431  * _before_ attaching the journal_head to a transaction.  To protect the
2432  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2433  * journal_head's b_jcount refcount by one.  The caller must call
2434  * jbd2_journal_put_journal_head() to undo this.
2435  *
2436  * So the typical usage would be:
2437  *
2438  *      (Attach a journal_head if needed.  Increments b_jcount)
2439  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2440  *      ...
2441  *      (Get another reference for transaction)
2442  *      jbd2_journal_grab_journal_head(bh);
2443  *      jh->b_transaction = xxx;
2444  *      (Put original reference)
2445  *      jbd2_journal_put_journal_head(jh);
2446  */
2447
2448 /*
2449  * Give a buffer_head a journal_head.
2450  *
2451  * May sleep.
2452  */
2453 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2454 {
2455         struct journal_head *jh;
2456         struct journal_head *new_jh = NULL;
2457
2458 repeat:
2459         if (!buffer_jbd(bh))
2460                 new_jh = journal_alloc_journal_head();
2461
2462         jbd_lock_bh_journal_head(bh);
2463         if (buffer_jbd(bh)) {
2464                 jh = bh2jh(bh);
2465         } else {
2466                 J_ASSERT_BH(bh,
2467                         (atomic_read(&bh->b_count) > 0) ||
2468                         (bh->b_page && bh->b_page->mapping));
2469
2470                 if (!new_jh) {
2471                         jbd_unlock_bh_journal_head(bh);
2472                         goto repeat;
2473                 }
2474
2475                 jh = new_jh;
2476                 new_jh = NULL;          /* We consumed it */
2477                 set_buffer_jbd(bh);
2478                 bh->b_private = jh;
2479                 jh->b_bh = bh;
2480                 get_bh(bh);
2481                 BUFFER_TRACE(bh, "added journal_head");
2482         }
2483         jh->b_jcount++;
2484         jbd_unlock_bh_journal_head(bh);
2485         if (new_jh)
2486                 journal_free_journal_head(new_jh);
2487         return bh->b_private;
2488 }
2489
2490 /*
2491  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2492  * having a journal_head, return NULL
2493  */
2494 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2495 {
2496         struct journal_head *jh = NULL;
2497
2498         jbd_lock_bh_journal_head(bh);
2499         if (buffer_jbd(bh)) {
2500                 jh = bh2jh(bh);
2501                 jh->b_jcount++;
2502         }
2503         jbd_unlock_bh_journal_head(bh);
2504         return jh;
2505 }
2506
2507 static void __journal_remove_journal_head(struct buffer_head *bh)
2508 {
2509         struct journal_head *jh = bh2jh(bh);
2510
2511         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2512         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2513         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2514         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2515         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2516         J_ASSERT_BH(bh, buffer_jbd(bh));
2517         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2518         BUFFER_TRACE(bh, "remove journal_head");
2519         if (jh->b_frozen_data) {
2520                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2521                 jbd2_free(jh->b_frozen_data, bh->b_size);
2522         }
2523         if (jh->b_committed_data) {
2524                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2525                 jbd2_free(jh->b_committed_data, bh->b_size);
2526         }
2527         bh->b_private = NULL;
2528         jh->b_bh = NULL;        /* debug, really */
2529         clear_buffer_jbd(bh);
2530         journal_free_journal_head(jh);
2531 }
2532
2533 /*
2534  * Drop a reference on the passed journal_head.  If it fell to zero then
2535  * release the journal_head from the buffer_head.
2536  */
2537 void jbd2_journal_put_journal_head(struct journal_head *jh)
2538 {
2539         struct buffer_head *bh = jh2bh(jh);
2540
2541         jbd_lock_bh_journal_head(bh);
2542         J_ASSERT_JH(jh, jh->b_jcount > 0);
2543         --jh->b_jcount;
2544         if (!jh->b_jcount) {
2545                 __journal_remove_journal_head(bh);
2546                 jbd_unlock_bh_journal_head(bh);
2547                 __brelse(bh);
2548         } else
2549                 jbd_unlock_bh_journal_head(bh);
2550 }
2551
2552 /*
2553  * Initialize jbd inode head
2554  */
2555 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2556 {
2557         jinode->i_transaction = NULL;
2558         jinode->i_next_transaction = NULL;
2559         jinode->i_vfs_inode = inode;
2560         jinode->i_flags = 0;
2561         INIT_LIST_HEAD(&jinode->i_list);
2562 }
2563
2564 /*
2565  * Function to be called before we start removing inode from memory (i.e.,
2566  * clear_inode() is a fine place to be called from). It removes inode from
2567  * transaction's lists.
2568  */
2569 void jbd2_journal_release_jbd_inode(journal_t *journal,
2570                                     struct jbd2_inode *jinode)
2571 {
2572         if (!journal)
2573                 return;
2574 restart:
2575         spin_lock(&journal->j_list_lock);
2576         /* Is commit writing out inode - we have to wait */
2577         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2578                 wait_queue_head_t *wq;
2579                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2580                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2581                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2582                 spin_unlock(&journal->j_list_lock);
2583                 schedule();
2584                 finish_wait(wq, &wait.wq_entry);
2585                 goto restart;
2586         }
2587
2588         if (jinode->i_transaction) {
2589                 list_del(&jinode->i_list);
2590                 jinode->i_transaction = NULL;
2591         }
2592         spin_unlock(&journal->j_list_lock);
2593 }
2594
2595
2596 #ifdef CONFIG_PROC_FS
2597
2598 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2599
2600 static void __init jbd2_create_jbd_stats_proc_entry(void)
2601 {
2602         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2603 }
2604
2605 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2606 {
2607         if (proc_jbd2_stats)
2608                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2609 }
2610
2611 #else
2612
2613 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2614 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2615
2616 #endif
2617
2618 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2619
2620 static int __init jbd2_journal_init_handle_cache(void)
2621 {
2622         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2623         if (jbd2_handle_cache == NULL) {
2624                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2625                 return -ENOMEM;
2626         }
2627         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2628         if (jbd2_inode_cache == NULL) {
2629                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2630                 kmem_cache_destroy(jbd2_handle_cache);
2631                 return -ENOMEM;
2632         }
2633         return 0;
2634 }
2635
2636 static void jbd2_journal_destroy_handle_cache(void)
2637 {
2638         if (jbd2_handle_cache)
2639                 kmem_cache_destroy(jbd2_handle_cache);
2640         if (jbd2_inode_cache)
2641                 kmem_cache_destroy(jbd2_inode_cache);
2642
2643 }
2644
2645 /*
2646  * Module startup and shutdown
2647  */
2648
2649 static int __init journal_init_caches(void)
2650 {
2651         int ret;
2652
2653         ret = jbd2_journal_init_revoke_caches();
2654         if (ret == 0)
2655                 ret = jbd2_journal_init_journal_head_cache();
2656         if (ret == 0)
2657                 ret = jbd2_journal_init_handle_cache();
2658         if (ret == 0)
2659                 ret = jbd2_journal_init_transaction_cache();
2660         return ret;
2661 }
2662
2663 static void jbd2_journal_destroy_caches(void)
2664 {
2665         jbd2_journal_destroy_revoke_caches();
2666         jbd2_journal_destroy_journal_head_cache();
2667         jbd2_journal_destroy_handle_cache();
2668         jbd2_journal_destroy_transaction_cache();
2669         jbd2_journal_destroy_slabs();
2670 }
2671
2672 static int __init journal_init(void)
2673 {
2674         int ret;
2675
2676         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2677
2678         ret = journal_init_caches();
2679         if (ret == 0) {
2680                 jbd2_create_jbd_stats_proc_entry();
2681         } else {
2682                 jbd2_journal_destroy_caches();
2683         }
2684         return ret;
2685 }
2686
2687 static void __exit journal_exit(void)
2688 {
2689 #ifdef CONFIG_JBD2_DEBUG
2690         int n = atomic_read(&nr_journal_heads);
2691         if (n)
2692                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2693 #endif
2694         jbd2_remove_jbd_stats_proc_entry();
2695         jbd2_journal_destroy_caches();
2696 }
2697
2698 MODULE_LICENSE("GPL");
2699 module_init(journal_init);
2700 module_exit(journal_exit);
2701