Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (transaction_cache)
46                 return 0;
47         return -ENOMEM;
48 }
49
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52         kmem_cache_destroy(transaction_cache);
53         transaction_cache = NULL;
54 }
55
56 void jbd2_journal_free_transaction(transaction_t *transaction)
57 {
58         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
59                 return;
60         kmem_cache_free(transaction_cache, transaction);
61 }
62
63 /*
64  * jbd2_get_transaction: obtain a new transaction_t object.
65  *
66  * Simply allocate and initialise a new transaction.  Create it in
67  * RUNNING state and add it to the current journal (which should not
68  * have an existing running transaction: we only make a new transaction
69  * once we have started to commit the old one).
70  *
71  * Preconditions:
72  *      The journal MUST be locked.  We don't perform atomic mallocs on the
73  *      new transaction and we can't block without protecting against other
74  *      processes trying to touch the journal while it is in transition.
75  *
76  */
77
78 static transaction_t *
79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
80 {
81         transaction->t_journal = journal;
82         transaction->t_state = T_RUNNING;
83         transaction->t_start_time = ktime_get();
84         transaction->t_tid = journal->j_transaction_sequence++;
85         transaction->t_expires = jiffies + journal->j_commit_interval;
86         spin_lock_init(&transaction->t_handle_lock);
87         atomic_set(&transaction->t_updates, 0);
88         atomic_set(&transaction->t_outstanding_credits,
89                    atomic_read(&journal->j_reserved_credits));
90         atomic_set(&transaction->t_handle_count, 0);
91         INIT_LIST_HEAD(&transaction->t_inode_list);
92         INIT_LIST_HEAD(&transaction->t_private_list);
93
94         /* Set up the commit timer for the new transaction. */
95         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
96         add_timer(&journal->j_commit_timer);
97
98         J_ASSERT(journal->j_running_transaction == NULL);
99         journal->j_running_transaction = transaction;
100         transaction->t_max_wait = 0;
101         transaction->t_start = jiffies;
102         transaction->t_requested = 0;
103
104         return transaction;
105 }
106
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126                                      unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129         if (jbd2_journal_enable_debug &&
130             time_after(transaction->t_start, ts)) {
131                 ts = jbd2_time_diff(ts, transaction->t_start);
132                 spin_lock(&transaction->t_handle_lock);
133                 if (ts > transaction->t_max_wait)
134                         transaction->t_max_wait = ts;
135                 spin_unlock(&transaction->t_handle_lock);
136         }
137 #endif
138 }
139
140 /*
141  * Wait until running transaction passes to T_FLUSH state and new transaction
142  * can thus be started. Also starts the commit if needed. The function expects
143  * running transaction to exist and releases j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146         __releases(journal->j_state_lock)
147 {
148         DEFINE_WAIT(wait);
149         int need_to_start;
150         tid_t tid = journal->j_running_transaction->t_tid;
151
152         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153                         TASK_UNINTERRUPTIBLE);
154         need_to_start = !tid_geq(journal->j_commit_request, tid);
155         read_unlock(&journal->j_state_lock);
156         if (need_to_start)
157                 jbd2_log_start_commit(journal, tid);
158         jbd2_might_wait_for_commit(journal);
159         schedule();
160         finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162
163 /*
164  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
165  * state and new transaction can thus be started. The function releases
166  * j_state_lock.
167  */
168 static void wait_transaction_switching(journal_t *journal)
169         __releases(journal->j_state_lock)
170 {
171         DEFINE_WAIT(wait);
172
173         if (WARN_ON(!journal->j_running_transaction ||
174                     journal->j_running_transaction->t_state != T_SWITCH))
175                 return;
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         read_unlock(&journal->j_state_lock);
179         /*
180          * We don't call jbd2_might_wait_for_commit() here as there's no
181          * waiting for outstanding handles happening anymore in T_SWITCH state
182          * and handling of reserved handles actually relies on that for
183          * correctness.
184          */
185         schedule();
186         finish_wait(&journal->j_wait_transaction_locked, &wait);
187 }
188
189 static void sub_reserved_credits(journal_t *journal, int blocks)
190 {
191         atomic_sub(blocks, &journal->j_reserved_credits);
192         wake_up(&journal->j_wait_reserved);
193 }
194
195 /*
196  * Wait until we can add credits for handle to the running transaction.  Called
197  * with j_state_lock held for reading. Returns 0 if handle joined the running
198  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
199  * caller must retry.
200  */
201 static int add_transaction_credits(journal_t *journal, int blocks,
202                                    int rsv_blocks)
203 {
204         transaction_t *t = journal->j_running_transaction;
205         int needed;
206         int total = blocks + rsv_blocks;
207
208         /*
209          * If the current transaction is locked down for commit, wait
210          * for the lock to be released.
211          */
212         if (t->t_state != T_RUNNING) {
213                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
214                 wait_transaction_locked(journal);
215                 return 1;
216         }
217
218         /*
219          * If there is not enough space left in the log to write all
220          * potential buffers requested by this operation, we need to
221          * stall pending a log checkpoint to free some more log space.
222          */
223         needed = atomic_add_return(total, &t->t_outstanding_credits);
224         if (needed > journal->j_max_transaction_buffers) {
225                 /*
226                  * If the current transaction is already too large,
227                  * then start to commit it: we can then go back and
228                  * attach this handle to a new transaction.
229                  */
230                 atomic_sub(total, &t->t_outstanding_credits);
231
232                 /*
233                  * Is the number of reserved credits in the current transaction too
234                  * big to fit this handle? Wait until reserved credits are freed.
235                  */
236                 if (atomic_read(&journal->j_reserved_credits) + total >
237                     journal->j_max_transaction_buffers) {
238                         read_unlock(&journal->j_state_lock);
239                         jbd2_might_wait_for_commit(journal);
240                         wait_event(journal->j_wait_reserved,
241                                    atomic_read(&journal->j_reserved_credits) + total <=
242                                    journal->j_max_transaction_buffers);
243                         return 1;
244                 }
245
246                 wait_transaction_locked(journal);
247                 return 1;
248         }
249
250         /*
251          * The commit code assumes that it can get enough log space
252          * without forcing a checkpoint.  This is *critical* for
253          * correctness: a checkpoint of a buffer which is also
254          * associated with a committing transaction creates a deadlock,
255          * so commit simply cannot force through checkpoints.
256          *
257          * We must therefore ensure the necessary space in the journal
258          * *before* starting to dirty potentially checkpointed buffers
259          * in the new transaction.
260          */
261         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
262                 atomic_sub(total, &t->t_outstanding_credits);
263                 read_unlock(&journal->j_state_lock);
264                 jbd2_might_wait_for_commit(journal);
265                 write_lock(&journal->j_state_lock);
266                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
267                         __jbd2_log_wait_for_space(journal);
268                 write_unlock(&journal->j_state_lock);
269                 return 1;
270         }
271
272         /* No reservation? We are done... */
273         if (!rsv_blocks)
274                 return 0;
275
276         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
277         /* We allow at most half of a transaction to be reserved */
278         if (needed > journal->j_max_transaction_buffers / 2) {
279                 sub_reserved_credits(journal, rsv_blocks);
280                 atomic_sub(total, &t->t_outstanding_credits);
281                 read_unlock(&journal->j_state_lock);
282                 jbd2_might_wait_for_commit(journal);
283                 wait_event(journal->j_wait_reserved,
284                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
285                          <= journal->j_max_transaction_buffers / 2);
286                 return 1;
287         }
288         return 0;
289 }
290
291 /*
292  * start_this_handle: Given a handle, deal with any locking or stalling
293  * needed to make sure that there is enough journal space for the handle
294  * to begin.  Attach the handle to a transaction and set up the
295  * transaction's buffer credits.
296  */
297
298 static int start_this_handle(journal_t *journal, handle_t *handle,
299                              gfp_t gfp_mask)
300 {
301         transaction_t   *transaction, *new_transaction = NULL;
302         int             blocks = handle->h_buffer_credits;
303         int             rsv_blocks = 0;
304         unsigned long ts = jiffies;
305
306         if (handle->h_rsv_handle)
307                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
308
309         /*
310          * Limit the number of reserved credits to 1/2 of maximum transaction
311          * size and limit the number of total credits to not exceed maximum
312          * transaction size per operation.
313          */
314         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
315             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
316                 printk(KERN_ERR "JBD2: %s wants too many credits "
317                        "credits:%d rsv_credits:%d max:%d\n",
318                        current->comm, blocks, rsv_blocks,
319                        journal->j_max_transaction_buffers);
320                 WARN_ON(1);
321                 return -ENOSPC;
322         }
323
324 alloc_transaction:
325         if (!journal->j_running_transaction) {
326                 /*
327                  * If __GFP_FS is not present, then we may be being called from
328                  * inside the fs writeback layer, so we MUST NOT fail.
329                  */
330                 if ((gfp_mask & __GFP_FS) == 0)
331                         gfp_mask |= __GFP_NOFAIL;
332                 new_transaction = kmem_cache_zalloc(transaction_cache,
333                                                     gfp_mask);
334                 if (!new_transaction)
335                         return -ENOMEM;
336         }
337
338         jbd_debug(3, "New handle %p going live.\n", handle);
339
340         /*
341          * We need to hold j_state_lock until t_updates has been incremented,
342          * for proper journal barrier handling
343          */
344 repeat:
345         read_lock(&journal->j_state_lock);
346         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
347         if (is_journal_aborted(journal) ||
348             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
349                 read_unlock(&journal->j_state_lock);
350                 jbd2_journal_free_transaction(new_transaction);
351                 return -EROFS;
352         }
353
354         /*
355          * Wait on the journal's transaction barrier if necessary. Specifically
356          * we allow reserved handles to proceed because otherwise commit could
357          * deadlock on page writeback not being able to complete.
358          */
359         if (!handle->h_reserved && journal->j_barrier_count) {
360                 read_unlock(&journal->j_state_lock);
361                 wait_event(journal->j_wait_transaction_locked,
362                                 journal->j_barrier_count == 0);
363                 goto repeat;
364         }
365
366         if (!journal->j_running_transaction) {
367                 read_unlock(&journal->j_state_lock);
368                 if (!new_transaction)
369                         goto alloc_transaction;
370                 write_lock(&journal->j_state_lock);
371                 if (!journal->j_running_transaction &&
372                     (handle->h_reserved || !journal->j_barrier_count)) {
373                         jbd2_get_transaction(journal, new_transaction);
374                         new_transaction = NULL;
375                 }
376                 write_unlock(&journal->j_state_lock);
377                 goto repeat;
378         }
379
380         transaction = journal->j_running_transaction;
381
382         if (!handle->h_reserved) {
383                 /* We may have dropped j_state_lock - restart in that case */
384                 if (add_transaction_credits(journal, blocks, rsv_blocks))
385                         goto repeat;
386         } else {
387                 /*
388                  * We have handle reserved so we are allowed to join T_LOCKED
389                  * transaction and we don't have to check for transaction size
390                  * and journal space. But we still have to wait while running
391                  * transaction is being switched to a committing one as it
392                  * won't wait for any handles anymore.
393                  */
394                 if (transaction->t_state == T_SWITCH) {
395                         wait_transaction_switching(journal);
396                         goto repeat;
397                 }
398                 sub_reserved_credits(journal, blocks);
399                 handle->h_reserved = 0;
400         }
401
402         /* OK, account for the buffers that this operation expects to
403          * use and add the handle to the running transaction. 
404          */
405         update_t_max_wait(transaction, ts);
406         handle->h_transaction = transaction;
407         handle->h_requested_credits = blocks;
408         handle->h_start_jiffies = jiffies;
409         atomic_inc(&transaction->t_updates);
410         atomic_inc(&transaction->t_handle_count);
411         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
412                   handle, blocks,
413                   atomic_read(&transaction->t_outstanding_credits),
414                   jbd2_log_space_left(journal));
415         read_unlock(&journal->j_state_lock);
416         current->journal_info = handle;
417
418         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
419         jbd2_journal_free_transaction(new_transaction);
420         /*
421          * Ensure that no allocations done while the transaction is open are
422          * going to recurse back to the fs layer.
423          */
424         handle->saved_alloc_context = memalloc_nofs_save();
425         return 0;
426 }
427
428 /* Allocate a new handle.  This should probably be in a slab... */
429 static handle_t *new_handle(int nblocks)
430 {
431         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
432         if (!handle)
433                 return NULL;
434         handle->h_buffer_credits = nblocks;
435         handle->h_ref = 1;
436
437         return handle;
438 }
439
440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
441                               gfp_t gfp_mask, unsigned int type,
442                               unsigned int line_no)
443 {
444         handle_t *handle = journal_current_handle();
445         int err;
446
447         if (!journal)
448                 return ERR_PTR(-EROFS);
449
450         if (handle) {
451                 J_ASSERT(handle->h_transaction->t_journal == journal);
452                 handle->h_ref++;
453                 return handle;
454         }
455
456         handle = new_handle(nblocks);
457         if (!handle)
458                 return ERR_PTR(-ENOMEM);
459         if (rsv_blocks) {
460                 handle_t *rsv_handle;
461
462                 rsv_handle = new_handle(rsv_blocks);
463                 if (!rsv_handle) {
464                         jbd2_free_handle(handle);
465                         return ERR_PTR(-ENOMEM);
466                 }
467                 rsv_handle->h_reserved = 1;
468                 rsv_handle->h_journal = journal;
469                 handle->h_rsv_handle = rsv_handle;
470         }
471
472         err = start_this_handle(journal, handle, gfp_mask);
473         if (err < 0) {
474                 if (handle->h_rsv_handle)
475                         jbd2_free_handle(handle->h_rsv_handle);
476                 jbd2_free_handle(handle);
477                 return ERR_PTR(err);
478         }
479         handle->h_type = type;
480         handle->h_line_no = line_no;
481         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
482                                 handle->h_transaction->t_tid, type,
483                                 line_no, nblocks);
484
485         return handle;
486 }
487 EXPORT_SYMBOL(jbd2__journal_start);
488
489
490 /**
491  * handle_t *jbd2_journal_start() - Obtain a new handle.
492  * @journal: Journal to start transaction on.
493  * @nblocks: number of block buffer we might modify
494  *
495  * We make sure that the transaction can guarantee at least nblocks of
496  * modified buffers in the log.  We block until the log can guarantee
497  * that much space. Additionally, if rsv_blocks > 0, we also create another
498  * handle with rsv_blocks reserved blocks in the journal. This handle is
499  * is stored in h_rsv_handle. It is not attached to any particular transaction
500  * and thus doesn't block transaction commit. If the caller uses this reserved
501  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
502  * on the parent handle will dispose the reserved one. Reserved handle has to
503  * be converted to a normal handle using jbd2_journal_start_reserved() before
504  * it can be used.
505  *
506  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
507  * on failure.
508  */
509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
510 {
511         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
512 }
513 EXPORT_SYMBOL(jbd2_journal_start);
514
515 void jbd2_journal_free_reserved(handle_t *handle)
516 {
517         journal_t *journal = handle->h_journal;
518
519         WARN_ON(!handle->h_reserved);
520         sub_reserved_credits(journal, handle->h_buffer_credits);
521         jbd2_free_handle(handle);
522 }
523 EXPORT_SYMBOL(jbd2_journal_free_reserved);
524
525 /**
526  * int jbd2_journal_start_reserved() - start reserved handle
527  * @handle: handle to start
528  * @type: for handle statistics
529  * @line_no: for handle statistics
530  *
531  * Start handle that has been previously reserved with jbd2_journal_reserve().
532  * This attaches @handle to the running transaction (or creates one if there's
533  * not transaction running). Unlike jbd2_journal_start() this function cannot
534  * block on journal commit, checkpointing, or similar stuff. It can block on
535  * memory allocation or frozen journal though.
536  *
537  * Return 0 on success, non-zero on error - handle is freed in that case.
538  */
539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
540                                 unsigned int line_no)
541 {
542         journal_t *journal = handle->h_journal;
543         int ret = -EIO;
544
545         if (WARN_ON(!handle->h_reserved)) {
546                 /* Someone passed in normal handle? Just stop it. */
547                 jbd2_journal_stop(handle);
548                 return ret;
549         }
550         /*
551          * Usefulness of mixing of reserved and unreserved handles is
552          * questionable. So far nobody seems to need it so just error out.
553          */
554         if (WARN_ON(current->journal_info)) {
555                 jbd2_journal_free_reserved(handle);
556                 return ret;
557         }
558
559         handle->h_journal = NULL;
560         /*
561          * GFP_NOFS is here because callers are likely from writeback or
562          * similarly constrained call sites
563          */
564         ret = start_this_handle(journal, handle, GFP_NOFS);
565         if (ret < 0) {
566                 handle->h_journal = journal;
567                 jbd2_journal_free_reserved(handle);
568                 return ret;
569         }
570         handle->h_type = type;
571         handle->h_line_no = line_no;
572         return 0;
573 }
574 EXPORT_SYMBOL(jbd2_journal_start_reserved);
575
576 /**
577  * int jbd2_journal_extend() - extend buffer credits.
578  * @handle:  handle to 'extend'
579  * @nblocks: nr blocks to try to extend by.
580  *
581  * Some transactions, such as large extends and truncates, can be done
582  * atomically all at once or in several stages.  The operation requests
583  * a credit for a number of buffer modifications in advance, but can
584  * extend its credit if it needs more.
585  *
586  * jbd2_journal_extend tries to give the running handle more buffer credits.
587  * It does not guarantee that allocation - this is a best-effort only.
588  * The calling process MUST be able to deal cleanly with a failure to
589  * extend here.
590  *
591  * Return 0 on success, non-zero on failure.
592  *
593  * return code < 0 implies an error
594  * return code > 0 implies normal transaction-full status.
595  */
596 int jbd2_journal_extend(handle_t *handle, int nblocks)
597 {
598         transaction_t *transaction = handle->h_transaction;
599         journal_t *journal;
600         int result;
601         int wanted;
602
603         if (is_handle_aborted(handle))
604                 return -EROFS;
605         journal = transaction->t_journal;
606
607         result = 1;
608
609         read_lock(&journal->j_state_lock);
610
611         /* Don't extend a locked-down transaction! */
612         if (transaction->t_state != T_RUNNING) {
613                 jbd_debug(3, "denied handle %p %d blocks: "
614                           "transaction not running\n", handle, nblocks);
615                 goto error_out;
616         }
617
618         spin_lock(&transaction->t_handle_lock);
619         wanted = atomic_add_return(nblocks,
620                                    &transaction->t_outstanding_credits);
621
622         if (wanted > journal->j_max_transaction_buffers) {
623                 jbd_debug(3, "denied handle %p %d blocks: "
624                           "transaction too large\n", handle, nblocks);
625                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
626                 goto unlock;
627         }
628
629         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
630             jbd2_log_space_left(journal)) {
631                 jbd_debug(3, "denied handle %p %d blocks: "
632                           "insufficient log space\n", handle, nblocks);
633                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
634                 goto unlock;
635         }
636
637         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
638                                  transaction->t_tid,
639                                  handle->h_type, handle->h_line_no,
640                                  handle->h_buffer_credits,
641                                  nblocks);
642
643         handle->h_buffer_credits += nblocks;
644         handle->h_requested_credits += nblocks;
645         result = 0;
646
647         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
648 unlock:
649         spin_unlock(&transaction->t_handle_lock);
650 error_out:
651         read_unlock(&journal->j_state_lock);
652         return result;
653 }
654
655
656 /**
657  * int jbd2_journal_restart() - restart a handle .
658  * @handle:  handle to restart
659  * @nblocks: nr credits requested
660  * @gfp_mask: memory allocation flags (for start_this_handle)
661  *
662  * Restart a handle for a multi-transaction filesystem
663  * operation.
664  *
665  * If the jbd2_journal_extend() call above fails to grant new buffer credits
666  * to a running handle, a call to jbd2_journal_restart will commit the
667  * handle's transaction so far and reattach the handle to a new
668  * transaction capable of guaranteeing the requested number of
669  * credits. We preserve reserved handle if there's any attached to the
670  * passed in handle.
671  */
672 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
673 {
674         transaction_t *transaction = handle->h_transaction;
675         journal_t *journal;
676         tid_t           tid;
677         int             need_to_start, ret;
678
679         /* If we've had an abort of any type, don't even think about
680          * actually doing the restart! */
681         if (is_handle_aborted(handle))
682                 return 0;
683         journal = transaction->t_journal;
684
685         /*
686          * First unlink the handle from its current transaction, and start the
687          * commit on that.
688          */
689         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
690         J_ASSERT(journal_current_handle() == handle);
691
692         read_lock(&journal->j_state_lock);
693         spin_lock(&transaction->t_handle_lock);
694         atomic_sub(handle->h_buffer_credits,
695                    &transaction->t_outstanding_credits);
696         if (handle->h_rsv_handle) {
697                 sub_reserved_credits(journal,
698                                      handle->h_rsv_handle->h_buffer_credits);
699         }
700         if (atomic_dec_and_test(&transaction->t_updates))
701                 wake_up(&journal->j_wait_updates);
702         tid = transaction->t_tid;
703         spin_unlock(&transaction->t_handle_lock);
704         handle->h_transaction = NULL;
705         current->journal_info = NULL;
706
707         jbd_debug(2, "restarting handle %p\n", handle);
708         need_to_start = !tid_geq(journal->j_commit_request, tid);
709         read_unlock(&journal->j_state_lock);
710         if (need_to_start)
711                 jbd2_log_start_commit(journal, tid);
712
713         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
714         handle->h_buffer_credits = nblocks;
715         /*
716          * Restore the original nofs context because the journal restart
717          * is basically the same thing as journal stop and start.
718          * start_this_handle will start a new nofs context.
719          */
720         memalloc_nofs_restore(handle->saved_alloc_context);
721         ret = start_this_handle(journal, handle, gfp_mask);
722         return ret;
723 }
724 EXPORT_SYMBOL(jbd2__journal_restart);
725
726
727 int jbd2_journal_restart(handle_t *handle, int nblocks)
728 {
729         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
730 }
731 EXPORT_SYMBOL(jbd2_journal_restart);
732
733 /**
734  * void jbd2_journal_lock_updates () - establish a transaction barrier.
735  * @journal:  Journal to establish a barrier on.
736  *
737  * This locks out any further updates from being started, and blocks
738  * until all existing updates have completed, returning only once the
739  * journal is in a quiescent state with no updates running.
740  *
741  * The journal lock should not be held on entry.
742  */
743 void jbd2_journal_lock_updates(journal_t *journal)
744 {
745         DEFINE_WAIT(wait);
746
747         jbd2_might_wait_for_commit(journal);
748
749         write_lock(&journal->j_state_lock);
750         ++journal->j_barrier_count;
751
752         /* Wait until there are no reserved handles */
753         if (atomic_read(&journal->j_reserved_credits)) {
754                 write_unlock(&journal->j_state_lock);
755                 wait_event(journal->j_wait_reserved,
756                            atomic_read(&journal->j_reserved_credits) == 0);
757                 write_lock(&journal->j_state_lock);
758         }
759
760         /* Wait until there are no running updates */
761         while (1) {
762                 transaction_t *transaction = journal->j_running_transaction;
763
764                 if (!transaction)
765                         break;
766
767                 spin_lock(&transaction->t_handle_lock);
768                 prepare_to_wait(&journal->j_wait_updates, &wait,
769                                 TASK_UNINTERRUPTIBLE);
770                 if (!atomic_read(&transaction->t_updates)) {
771                         spin_unlock(&transaction->t_handle_lock);
772                         finish_wait(&journal->j_wait_updates, &wait);
773                         break;
774                 }
775                 spin_unlock(&transaction->t_handle_lock);
776                 write_unlock(&journal->j_state_lock);
777                 schedule();
778                 finish_wait(&journal->j_wait_updates, &wait);
779                 write_lock(&journal->j_state_lock);
780         }
781         write_unlock(&journal->j_state_lock);
782
783         /*
784          * We have now established a barrier against other normal updates, but
785          * we also need to barrier against other jbd2_journal_lock_updates() calls
786          * to make sure that we serialise special journal-locked operations
787          * too.
788          */
789         mutex_lock(&journal->j_barrier);
790 }
791
792 /**
793  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
794  * @journal:  Journal to release the barrier on.
795  *
796  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
797  *
798  * Should be called without the journal lock held.
799  */
800 void jbd2_journal_unlock_updates (journal_t *journal)
801 {
802         J_ASSERT(journal->j_barrier_count != 0);
803
804         mutex_unlock(&journal->j_barrier);
805         write_lock(&journal->j_state_lock);
806         --journal->j_barrier_count;
807         write_unlock(&journal->j_state_lock);
808         wake_up(&journal->j_wait_transaction_locked);
809 }
810
811 static void warn_dirty_buffer(struct buffer_head *bh)
812 {
813         printk(KERN_WARNING
814                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
815                "There's a risk of filesystem corruption in case of system "
816                "crash.\n",
817                bh->b_bdev, (unsigned long long)bh->b_blocknr);
818 }
819
820 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
821 static void jbd2_freeze_jh_data(struct journal_head *jh)
822 {
823         struct page *page;
824         int offset;
825         char *source;
826         struct buffer_head *bh = jh2bh(jh);
827
828         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
829         page = bh->b_page;
830         offset = offset_in_page(bh->b_data);
831         source = kmap_atomic(page);
832         /* Fire data frozen trigger just before we copy the data */
833         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
834         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
835         kunmap_atomic(source);
836
837         /*
838          * Now that the frozen data is saved off, we need to store any matching
839          * triggers.
840          */
841         jh->b_frozen_triggers = jh->b_triggers;
842 }
843
844 /*
845  * If the buffer is already part of the current transaction, then there
846  * is nothing we need to do.  If it is already part of a prior
847  * transaction which we are still committing to disk, then we need to
848  * make sure that we do not overwrite the old copy: we do copy-out to
849  * preserve the copy going to disk.  We also account the buffer against
850  * the handle's metadata buffer credits (unless the buffer is already
851  * part of the transaction, that is).
852  *
853  */
854 static int
855 do_get_write_access(handle_t *handle, struct journal_head *jh,
856                         int force_copy)
857 {
858         struct buffer_head *bh;
859         transaction_t *transaction = handle->h_transaction;
860         journal_t *journal;
861         int error;
862         char *frozen_buffer = NULL;
863         unsigned long start_lock, time_lock;
864
865         if (is_handle_aborted(handle))
866                 return -EROFS;
867         journal = transaction->t_journal;
868
869         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
870
871         JBUFFER_TRACE(jh, "entry");
872 repeat:
873         bh = jh2bh(jh);
874
875         /* @@@ Need to check for errors here at some point. */
876
877         start_lock = jiffies;
878         lock_buffer(bh);
879         jbd_lock_bh_state(bh);
880
881         /* If it takes too long to lock the buffer, trace it */
882         time_lock = jbd2_time_diff(start_lock, jiffies);
883         if (time_lock > HZ/10)
884                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
885                         jiffies_to_msecs(time_lock));
886
887         /* We now hold the buffer lock so it is safe to query the buffer
888          * state.  Is the buffer dirty?
889          *
890          * If so, there are two possibilities.  The buffer may be
891          * non-journaled, and undergoing a quite legitimate writeback.
892          * Otherwise, it is journaled, and we don't expect dirty buffers
893          * in that state (the buffers should be marked JBD_Dirty
894          * instead.)  So either the IO is being done under our own
895          * control and this is a bug, or it's a third party IO such as
896          * dump(8) (which may leave the buffer scheduled for read ---
897          * ie. locked but not dirty) or tune2fs (which may actually have
898          * the buffer dirtied, ugh.)  */
899
900         if (buffer_dirty(bh)) {
901                 /*
902                  * First question: is this buffer already part of the current
903                  * transaction or the existing committing transaction?
904                  */
905                 if (jh->b_transaction) {
906                         J_ASSERT_JH(jh,
907                                 jh->b_transaction == transaction ||
908                                 jh->b_transaction ==
909                                         journal->j_committing_transaction);
910                         if (jh->b_next_transaction)
911                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
912                                                         transaction);
913                         warn_dirty_buffer(bh);
914                 }
915                 /*
916                  * In any case we need to clean the dirty flag and we must
917                  * do it under the buffer lock to be sure we don't race
918                  * with running write-out.
919                  */
920                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
921                 clear_buffer_dirty(bh);
922                 set_buffer_jbddirty(bh);
923         }
924
925         unlock_buffer(bh);
926
927         error = -EROFS;
928         if (is_handle_aborted(handle)) {
929                 jbd_unlock_bh_state(bh);
930                 goto out;
931         }
932         error = 0;
933
934         /*
935          * The buffer is already part of this transaction if b_transaction or
936          * b_next_transaction points to it
937          */
938         if (jh->b_transaction == transaction ||
939             jh->b_next_transaction == transaction)
940                 goto done;
941
942         /*
943          * this is the first time this transaction is touching this buffer,
944          * reset the modified flag
945          */
946         jh->b_modified = 0;
947
948         /*
949          * If the buffer is not journaled right now, we need to make sure it
950          * doesn't get written to disk before the caller actually commits the
951          * new data
952          */
953         if (!jh->b_transaction) {
954                 JBUFFER_TRACE(jh, "no transaction");
955                 J_ASSERT_JH(jh, !jh->b_next_transaction);
956                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
957                 /*
958                  * Make sure all stores to jh (b_modified, b_frozen_data) are
959                  * visible before attaching it to the running transaction.
960                  * Paired with barrier in jbd2_write_access_granted()
961                  */
962                 smp_wmb();
963                 spin_lock(&journal->j_list_lock);
964                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
965                 spin_unlock(&journal->j_list_lock);
966                 goto done;
967         }
968         /*
969          * If there is already a copy-out version of this buffer, then we don't
970          * need to make another one
971          */
972         if (jh->b_frozen_data) {
973                 JBUFFER_TRACE(jh, "has frozen data");
974                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
975                 goto attach_next;
976         }
977
978         JBUFFER_TRACE(jh, "owned by older transaction");
979         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
980         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
981
982         /*
983          * There is one case we have to be very careful about.  If the
984          * committing transaction is currently writing this buffer out to disk
985          * and has NOT made a copy-out, then we cannot modify the buffer
986          * contents at all right now.  The essence of copy-out is that it is
987          * the extra copy, not the primary copy, which gets journaled.  If the
988          * primary copy is already going to disk then we cannot do copy-out
989          * here.
990          */
991         if (buffer_shadow(bh)) {
992                 JBUFFER_TRACE(jh, "on shadow: sleep");
993                 jbd_unlock_bh_state(bh);
994                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
995                 goto repeat;
996         }
997
998         /*
999          * Only do the copy if the currently-owning transaction still needs it.
1000          * If buffer isn't on BJ_Metadata list, the committing transaction is
1001          * past that stage (here we use the fact that BH_Shadow is set under
1002          * bh_state lock together with refiling to BJ_Shadow list and at this
1003          * point we know the buffer doesn't have BH_Shadow set).
1004          *
1005          * Subtle point, though: if this is a get_undo_access, then we will be
1006          * relying on the frozen_data to contain the new value of the
1007          * committed_data record after the transaction, so we HAVE to force the
1008          * frozen_data copy in that case.
1009          */
1010         if (jh->b_jlist == BJ_Metadata || force_copy) {
1011                 JBUFFER_TRACE(jh, "generate frozen data");
1012                 if (!frozen_buffer) {
1013                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1014                         jbd_unlock_bh_state(bh);
1015                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1016                                                    GFP_NOFS | __GFP_NOFAIL);
1017                         goto repeat;
1018                 }
1019                 jh->b_frozen_data = frozen_buffer;
1020                 frozen_buffer = NULL;
1021                 jbd2_freeze_jh_data(jh);
1022         }
1023 attach_next:
1024         /*
1025          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1026          * before attaching it to the running transaction. Paired with barrier
1027          * in jbd2_write_access_granted()
1028          */
1029         smp_wmb();
1030         jh->b_next_transaction = transaction;
1031
1032 done:
1033         jbd_unlock_bh_state(bh);
1034
1035         /*
1036          * If we are about to journal a buffer, then any revoke pending on it is
1037          * no longer valid
1038          */
1039         jbd2_journal_cancel_revoke(handle, jh);
1040
1041 out:
1042         if (unlikely(frozen_buffer))    /* It's usually NULL */
1043                 jbd2_free(frozen_buffer, bh->b_size);
1044
1045         JBUFFER_TRACE(jh, "exit");
1046         return error;
1047 }
1048
1049 /* Fast check whether buffer is already attached to the required transaction */
1050 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1051                                                         bool undo)
1052 {
1053         struct journal_head *jh;
1054         bool ret = false;
1055
1056         /* Dirty buffers require special handling... */
1057         if (buffer_dirty(bh))
1058                 return false;
1059
1060         /*
1061          * RCU protects us from dereferencing freed pages. So the checks we do
1062          * are guaranteed not to oops. However the jh slab object can get freed
1063          * & reallocated while we work with it. So we have to be careful. When
1064          * we see jh attached to the running transaction, we know it must stay
1065          * so until the transaction is committed. Thus jh won't be freed and
1066          * will be attached to the same bh while we run.  However it can
1067          * happen jh gets freed, reallocated, and attached to the transaction
1068          * just after we get pointer to it from bh. So we have to be careful
1069          * and recheck jh still belongs to our bh before we return success.
1070          */
1071         rcu_read_lock();
1072         if (!buffer_jbd(bh))
1073                 goto out;
1074         /* This should be bh2jh() but that doesn't work with inline functions */
1075         jh = READ_ONCE(bh->b_private);
1076         if (!jh)
1077                 goto out;
1078         /* For undo access buffer must have data copied */
1079         if (undo && !jh->b_committed_data)
1080                 goto out;
1081         if (jh->b_transaction != handle->h_transaction &&
1082             jh->b_next_transaction != handle->h_transaction)
1083                 goto out;
1084         /*
1085          * There are two reasons for the barrier here:
1086          * 1) Make sure to fetch b_bh after we did previous checks so that we
1087          * detect when jh went through free, realloc, attach to transaction
1088          * while we were checking. Paired with implicit barrier in that path.
1089          * 2) So that access to bh done after jbd2_write_access_granted()
1090          * doesn't get reordered and see inconsistent state of concurrent
1091          * do_get_write_access().
1092          */
1093         smp_mb();
1094         if (unlikely(jh->b_bh != bh))
1095                 goto out;
1096         ret = true;
1097 out:
1098         rcu_read_unlock();
1099         return ret;
1100 }
1101
1102 /**
1103  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1104  * @handle: transaction to add buffer modifications to
1105  * @bh:     bh to be used for metadata writes
1106  *
1107  * Returns: error code or 0 on success.
1108  *
1109  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1110  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1111  */
1112
1113 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1114 {
1115         struct journal_head *jh;
1116         int rc;
1117
1118         if (jbd2_write_access_granted(handle, bh, false))
1119                 return 0;
1120
1121         jh = jbd2_journal_add_journal_head(bh);
1122         /* We do not want to get caught playing with fields which the
1123          * log thread also manipulates.  Make sure that the buffer
1124          * completes any outstanding IO before proceeding. */
1125         rc = do_get_write_access(handle, jh, 0);
1126         jbd2_journal_put_journal_head(jh);
1127         return rc;
1128 }
1129
1130
1131 /*
1132  * When the user wants to journal a newly created buffer_head
1133  * (ie. getblk() returned a new buffer and we are going to populate it
1134  * manually rather than reading off disk), then we need to keep the
1135  * buffer_head locked until it has been completely filled with new
1136  * data.  In this case, we should be able to make the assertion that
1137  * the bh is not already part of an existing transaction.
1138  *
1139  * The buffer should already be locked by the caller by this point.
1140  * There is no lock ranking violation: it was a newly created,
1141  * unlocked buffer beforehand. */
1142
1143 /**
1144  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1145  * @handle: transaction to new buffer to
1146  * @bh: new buffer.
1147  *
1148  * Call this if you create a new bh.
1149  */
1150 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1151 {
1152         transaction_t *transaction = handle->h_transaction;
1153         journal_t *journal;
1154         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155         int err;
1156
1157         jbd_debug(5, "journal_head %p\n", jh);
1158         err = -EROFS;
1159         if (is_handle_aborted(handle))
1160                 goto out;
1161         journal = transaction->t_journal;
1162         err = 0;
1163
1164         JBUFFER_TRACE(jh, "entry");
1165         /*
1166          * The buffer may already belong to this transaction due to pre-zeroing
1167          * in the filesystem's new_block code.  It may also be on the previous,
1168          * committing transaction's lists, but it HAS to be in Forget state in
1169          * that case: the transaction must have deleted the buffer for it to be
1170          * reused here.
1171          */
1172         jbd_lock_bh_state(bh);
1173         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1174                 jh->b_transaction == NULL ||
1175                 (jh->b_transaction == journal->j_committing_transaction &&
1176                           jh->b_jlist == BJ_Forget)));
1177
1178         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1179         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1180
1181         if (jh->b_transaction == NULL) {
1182                 /*
1183                  * Previous jbd2_journal_forget() could have left the buffer
1184                  * with jbddirty bit set because it was being committed. When
1185                  * the commit finished, we've filed the buffer for
1186                  * checkpointing and marked it dirty. Now we are reallocating
1187                  * the buffer so the transaction freeing it must have
1188                  * committed and so it's safe to clear the dirty bit.
1189                  */
1190                 clear_buffer_dirty(jh2bh(jh));
1191                 /* first access by this transaction */
1192                 jh->b_modified = 0;
1193
1194                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1195                 spin_lock(&journal->j_list_lock);
1196                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1197                 spin_unlock(&journal->j_list_lock);
1198         } else if (jh->b_transaction == journal->j_committing_transaction) {
1199                 /* first access by this transaction */
1200                 jh->b_modified = 0;
1201
1202                 JBUFFER_TRACE(jh, "set next transaction");
1203                 spin_lock(&journal->j_list_lock);
1204                 jh->b_next_transaction = transaction;
1205                 spin_unlock(&journal->j_list_lock);
1206         }
1207         jbd_unlock_bh_state(bh);
1208
1209         /*
1210          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1211          * blocks which contain freed but then revoked metadata.  We need
1212          * to cancel the revoke in case we end up freeing it yet again
1213          * and the reallocating as data - this would cause a second revoke,
1214          * which hits an assertion error.
1215          */
1216         JBUFFER_TRACE(jh, "cancelling revoke");
1217         jbd2_journal_cancel_revoke(handle, jh);
1218 out:
1219         jbd2_journal_put_journal_head(jh);
1220         return err;
1221 }
1222
1223 /**
1224  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1225  *     non-rewindable consequences
1226  * @handle: transaction
1227  * @bh: buffer to undo
1228  *
1229  * Sometimes there is a need to distinguish between metadata which has
1230  * been committed to disk and that which has not.  The ext3fs code uses
1231  * this for freeing and allocating space, we have to make sure that we
1232  * do not reuse freed space until the deallocation has been committed,
1233  * since if we overwrote that space we would make the delete
1234  * un-rewindable in case of a crash.
1235  *
1236  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1237  * buffer for parts of non-rewindable operations such as delete
1238  * operations on the bitmaps.  The journaling code must keep a copy of
1239  * the buffer's contents prior to the undo_access call until such time
1240  * as we know that the buffer has definitely been committed to disk.
1241  *
1242  * We never need to know which transaction the committed data is part
1243  * of, buffers touched here are guaranteed to be dirtied later and so
1244  * will be committed to a new transaction in due course, at which point
1245  * we can discard the old committed data pointer.
1246  *
1247  * Returns error number or 0 on success.
1248  */
1249 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1250 {
1251         int err;
1252         struct journal_head *jh;
1253         char *committed_data = NULL;
1254
1255         JBUFFER_TRACE(jh, "entry");
1256         if (jbd2_write_access_granted(handle, bh, true))
1257                 return 0;
1258
1259         jh = jbd2_journal_add_journal_head(bh);
1260         /*
1261          * Do this first --- it can drop the journal lock, so we want to
1262          * make sure that obtaining the committed_data is done
1263          * atomically wrt. completion of any outstanding commits.
1264          */
1265         err = do_get_write_access(handle, jh, 1);
1266         if (err)
1267                 goto out;
1268
1269 repeat:
1270         if (!jh->b_committed_data)
1271                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1272                                             GFP_NOFS|__GFP_NOFAIL);
1273
1274         jbd_lock_bh_state(bh);
1275         if (!jh->b_committed_data) {
1276                 /* Copy out the current buffer contents into the
1277                  * preserved, committed copy. */
1278                 JBUFFER_TRACE(jh, "generate b_committed data");
1279                 if (!committed_data) {
1280                         jbd_unlock_bh_state(bh);
1281                         goto repeat;
1282                 }
1283
1284                 jh->b_committed_data = committed_data;
1285                 committed_data = NULL;
1286                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1287         }
1288         jbd_unlock_bh_state(bh);
1289 out:
1290         jbd2_journal_put_journal_head(jh);
1291         if (unlikely(committed_data))
1292                 jbd2_free(committed_data, bh->b_size);
1293         return err;
1294 }
1295
1296 /**
1297  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1298  * @bh: buffer to trigger on
1299  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1300  *
1301  * Set any triggers on this journal_head.  This is always safe, because
1302  * triggers for a committing buffer will be saved off, and triggers for
1303  * a running transaction will match the buffer in that transaction.
1304  *
1305  * Call with NULL to clear the triggers.
1306  */
1307 void jbd2_journal_set_triggers(struct buffer_head *bh,
1308                                struct jbd2_buffer_trigger_type *type)
1309 {
1310         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1311
1312         if (WARN_ON(!jh))
1313                 return;
1314         jh->b_triggers = type;
1315         jbd2_journal_put_journal_head(jh);
1316 }
1317
1318 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1319                                 struct jbd2_buffer_trigger_type *triggers)
1320 {
1321         struct buffer_head *bh = jh2bh(jh);
1322
1323         if (!triggers || !triggers->t_frozen)
1324                 return;
1325
1326         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1327 }
1328
1329 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1330                                struct jbd2_buffer_trigger_type *triggers)
1331 {
1332         if (!triggers || !triggers->t_abort)
1333                 return;
1334
1335         triggers->t_abort(triggers, jh2bh(jh));
1336 }
1337
1338 /**
1339  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1340  * @handle: transaction to add buffer to.
1341  * @bh: buffer to mark
1342  *
1343  * mark dirty metadata which needs to be journaled as part of the current
1344  * transaction.
1345  *
1346  * The buffer must have previously had jbd2_journal_get_write_access()
1347  * called so that it has a valid journal_head attached to the buffer
1348  * head.
1349  *
1350  * The buffer is placed on the transaction's metadata list and is marked
1351  * as belonging to the transaction.
1352  *
1353  * Returns error number or 0 on success.
1354  *
1355  * Special care needs to be taken if the buffer already belongs to the
1356  * current committing transaction (in which case we should have frozen
1357  * data present for that commit).  In that case, we don't relink the
1358  * buffer: that only gets done when the old transaction finally
1359  * completes its commit.
1360  */
1361 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1362 {
1363         transaction_t *transaction = handle->h_transaction;
1364         journal_t *journal;
1365         struct journal_head *jh;
1366         int ret = 0;
1367
1368         if (is_handle_aborted(handle))
1369                 return -EROFS;
1370         if (!buffer_jbd(bh)) {
1371                 ret = -EUCLEAN;
1372                 goto out;
1373         }
1374         /*
1375          * We don't grab jh reference here since the buffer must be part
1376          * of the running transaction.
1377          */
1378         jh = bh2jh(bh);
1379         /*
1380          * This and the following assertions are unreliable since we may see jh
1381          * in inconsistent state unless we grab bh_state lock. But this is
1382          * crucial to catch bugs so let's do a reliable check until the
1383          * lockless handling is fully proven.
1384          */
1385         if (jh->b_transaction != transaction &&
1386             jh->b_next_transaction != transaction) {
1387                 jbd_lock_bh_state(bh);
1388                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1389                                 jh->b_next_transaction == transaction);
1390                 jbd_unlock_bh_state(bh);
1391         }
1392         if (jh->b_modified == 1) {
1393                 /* If it's in our transaction it must be in BJ_Metadata list. */
1394                 if (jh->b_transaction == transaction &&
1395                     jh->b_jlist != BJ_Metadata) {
1396                         jbd_lock_bh_state(bh);
1397                         if (jh->b_transaction == transaction &&
1398                             jh->b_jlist != BJ_Metadata)
1399                                 pr_err("JBD2: assertion failure: h_type=%u "
1400                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1401                                        handle->h_type, handle->h_line_no,
1402                                        (unsigned long long) bh->b_blocknr,
1403                                        jh->b_jlist);
1404                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1405                                         jh->b_jlist == BJ_Metadata);
1406                         jbd_unlock_bh_state(bh);
1407                 }
1408                 goto out;
1409         }
1410
1411         journal = transaction->t_journal;
1412         jbd_debug(5, "journal_head %p\n", jh);
1413         JBUFFER_TRACE(jh, "entry");
1414
1415         jbd_lock_bh_state(bh);
1416
1417         if (jh->b_modified == 0) {
1418                 /*
1419                  * This buffer's got modified and becoming part
1420                  * of the transaction. This needs to be done
1421                  * once a transaction -bzzz
1422                  */
1423                 if (handle->h_buffer_credits <= 0) {
1424                         ret = -ENOSPC;
1425                         goto out_unlock_bh;
1426                 }
1427                 jh->b_modified = 1;
1428                 handle->h_buffer_credits--;
1429         }
1430
1431         /*
1432          * fastpath, to avoid expensive locking.  If this buffer is already
1433          * on the running transaction's metadata list there is nothing to do.
1434          * Nobody can take it off again because there is a handle open.
1435          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1436          * result in this test being false, so we go in and take the locks.
1437          */
1438         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1439                 JBUFFER_TRACE(jh, "fastpath");
1440                 if (unlikely(jh->b_transaction !=
1441                              journal->j_running_transaction)) {
1442                         printk(KERN_ERR "JBD2: %s: "
1443                                "jh->b_transaction (%llu, %p, %u) != "
1444                                "journal->j_running_transaction (%p, %u)\n",
1445                                journal->j_devname,
1446                                (unsigned long long) bh->b_blocknr,
1447                                jh->b_transaction,
1448                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1449                                journal->j_running_transaction,
1450                                journal->j_running_transaction ?
1451                                journal->j_running_transaction->t_tid : 0);
1452                         ret = -EINVAL;
1453                 }
1454                 goto out_unlock_bh;
1455         }
1456
1457         set_buffer_jbddirty(bh);
1458
1459         /*
1460          * Metadata already on the current transaction list doesn't
1461          * need to be filed.  Metadata on another transaction's list must
1462          * be committing, and will be refiled once the commit completes:
1463          * leave it alone for now.
1464          */
1465         if (jh->b_transaction != transaction) {
1466                 JBUFFER_TRACE(jh, "already on other transaction");
1467                 if (unlikely(((jh->b_transaction !=
1468                                journal->j_committing_transaction)) ||
1469                              (jh->b_next_transaction != transaction))) {
1470                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1471                                "bad jh for block %llu: "
1472                                "transaction (%p, %u), "
1473                                "jh->b_transaction (%p, %u), "
1474                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1475                                journal->j_devname,
1476                                (unsigned long long) bh->b_blocknr,
1477                                transaction, transaction->t_tid,
1478                                jh->b_transaction,
1479                                jh->b_transaction ?
1480                                jh->b_transaction->t_tid : 0,
1481                                jh->b_next_transaction,
1482                                jh->b_next_transaction ?
1483                                jh->b_next_transaction->t_tid : 0,
1484                                jh->b_jlist);
1485                         WARN_ON(1);
1486                         ret = -EINVAL;
1487                 }
1488                 /* And this case is illegal: we can't reuse another
1489                  * transaction's data buffer, ever. */
1490                 goto out_unlock_bh;
1491         }
1492
1493         /* That test should have eliminated the following case: */
1494         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1495
1496         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1497         spin_lock(&journal->j_list_lock);
1498         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1499         spin_unlock(&journal->j_list_lock);
1500 out_unlock_bh:
1501         jbd_unlock_bh_state(bh);
1502 out:
1503         JBUFFER_TRACE(jh, "exit");
1504         return ret;
1505 }
1506
1507 /**
1508  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1509  * @handle: transaction handle
1510  * @bh:     bh to 'forget'
1511  *
1512  * We can only do the bforget if there are no commits pending against the
1513  * buffer.  If the buffer is dirty in the current running transaction we
1514  * can safely unlink it.
1515  *
1516  * bh may not be a journalled buffer at all - it may be a non-JBD
1517  * buffer which came off the hashtable.  Check for this.
1518  *
1519  * Decrements bh->b_count by one.
1520  *
1521  * Allow this call even if the handle has aborted --- it may be part of
1522  * the caller's cleanup after an abort.
1523  */
1524 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1525 {
1526         transaction_t *transaction = handle->h_transaction;
1527         journal_t *journal;
1528         struct journal_head *jh;
1529         int drop_reserve = 0;
1530         int err = 0;
1531         int was_modified = 0;
1532
1533         if (is_handle_aborted(handle))
1534                 return -EROFS;
1535         journal = transaction->t_journal;
1536
1537         BUFFER_TRACE(bh, "entry");
1538
1539         jbd_lock_bh_state(bh);
1540
1541         if (!buffer_jbd(bh))
1542                 goto not_jbd;
1543         jh = bh2jh(bh);
1544
1545         /* Critical error: attempting to delete a bitmap buffer, maybe?
1546          * Don't do any jbd operations, and return an error. */
1547         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1548                          "inconsistent data on disk")) {
1549                 err = -EIO;
1550                 goto not_jbd;
1551         }
1552
1553         /* keep track of whether or not this transaction modified us */
1554         was_modified = jh->b_modified;
1555
1556         /*
1557          * The buffer's going from the transaction, we must drop
1558          * all references -bzzz
1559          */
1560         jh->b_modified = 0;
1561
1562         if (jh->b_transaction == transaction) {
1563                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1564
1565                 /* If we are forgetting a buffer which is already part
1566                  * of this transaction, then we can just drop it from
1567                  * the transaction immediately. */
1568                 clear_buffer_dirty(bh);
1569                 clear_buffer_jbddirty(bh);
1570
1571                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1572
1573                 /*
1574                  * we only want to drop a reference if this transaction
1575                  * modified the buffer
1576                  */
1577                 if (was_modified)
1578                         drop_reserve = 1;
1579
1580                 /*
1581                  * We are no longer going to journal this buffer.
1582                  * However, the commit of this transaction is still
1583                  * important to the buffer: the delete that we are now
1584                  * processing might obsolete an old log entry, so by
1585                  * committing, we can satisfy the buffer's checkpoint.
1586                  *
1587                  * So, if we have a checkpoint on the buffer, we should
1588                  * now refile the buffer on our BJ_Forget list so that
1589                  * we know to remove the checkpoint after we commit.
1590                  */
1591
1592                 spin_lock(&journal->j_list_lock);
1593                 if (jh->b_cp_transaction) {
1594                         __jbd2_journal_temp_unlink_buffer(jh);
1595                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1596                 } else {
1597                         __jbd2_journal_unfile_buffer(jh);
1598                         if (!buffer_jbd(bh)) {
1599                                 spin_unlock(&journal->j_list_lock);
1600                                 jbd_unlock_bh_state(bh);
1601                                 __bforget(bh);
1602                                 goto drop;
1603                         }
1604                 }
1605                 spin_unlock(&journal->j_list_lock);
1606         } else if (jh->b_transaction) {
1607                 J_ASSERT_JH(jh, (jh->b_transaction ==
1608                                  journal->j_committing_transaction));
1609                 /* However, if the buffer is still owned by a prior
1610                  * (committing) transaction, we can't drop it yet... */
1611                 JBUFFER_TRACE(jh, "belongs to older transaction");
1612                 /* ... but we CAN drop it from the new transaction if we
1613                  * have also modified it since the original commit. */
1614
1615                 if (jh->b_next_transaction) {
1616                         J_ASSERT(jh->b_next_transaction == transaction);
1617                         spin_lock(&journal->j_list_lock);
1618                         jh->b_next_transaction = NULL;
1619                         spin_unlock(&journal->j_list_lock);
1620
1621                         /*
1622                          * only drop a reference if this transaction modified
1623                          * the buffer
1624                          */
1625                         if (was_modified)
1626                                 drop_reserve = 1;
1627                 }
1628         }
1629
1630 not_jbd:
1631         jbd_unlock_bh_state(bh);
1632         __brelse(bh);
1633 drop:
1634         if (drop_reserve) {
1635                 /* no need to reserve log space for this block -bzzz */
1636                 handle->h_buffer_credits++;
1637         }
1638         return err;
1639 }
1640
1641 /**
1642  * int jbd2_journal_stop() - complete a transaction
1643  * @handle: transaction to complete.
1644  *
1645  * All done for a particular handle.
1646  *
1647  * There is not much action needed here.  We just return any remaining
1648  * buffer credits to the transaction and remove the handle.  The only
1649  * complication is that we need to start a commit operation if the
1650  * filesystem is marked for synchronous update.
1651  *
1652  * jbd2_journal_stop itself will not usually return an error, but it may
1653  * do so in unusual circumstances.  In particular, expect it to
1654  * return -EIO if a jbd2_journal_abort has been executed since the
1655  * transaction began.
1656  */
1657 int jbd2_journal_stop(handle_t *handle)
1658 {
1659         transaction_t *transaction = handle->h_transaction;
1660         journal_t *journal;
1661         int err = 0, wait_for_commit = 0;
1662         tid_t tid;
1663         pid_t pid;
1664
1665         if (!transaction) {
1666                 /*
1667                  * Handle is already detached from the transaction so
1668                  * there is nothing to do other than decrease a refcount,
1669                  * or free the handle if refcount drops to zero
1670                  */
1671                 if (--handle->h_ref > 0) {
1672                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1673                                                          handle->h_ref);
1674                         return err;
1675                 } else {
1676                         if (handle->h_rsv_handle)
1677                                 jbd2_free_handle(handle->h_rsv_handle);
1678                         goto free_and_exit;
1679                 }
1680         }
1681         journal = transaction->t_journal;
1682
1683         J_ASSERT(journal_current_handle() == handle);
1684
1685         if (is_handle_aborted(handle))
1686                 err = -EIO;
1687         else
1688                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1689
1690         if (--handle->h_ref > 0) {
1691                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1692                           handle->h_ref);
1693                 return err;
1694         }
1695
1696         jbd_debug(4, "Handle %p going down\n", handle);
1697         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1698                                 transaction->t_tid,
1699                                 handle->h_type, handle->h_line_no,
1700                                 jiffies - handle->h_start_jiffies,
1701                                 handle->h_sync, handle->h_requested_credits,
1702                                 (handle->h_requested_credits -
1703                                  handle->h_buffer_credits));
1704
1705         /*
1706          * Implement synchronous transaction batching.  If the handle
1707          * was synchronous, don't force a commit immediately.  Let's
1708          * yield and let another thread piggyback onto this
1709          * transaction.  Keep doing that while new threads continue to
1710          * arrive.  It doesn't cost much - we're about to run a commit
1711          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1712          * operations by 30x or more...
1713          *
1714          * We try and optimize the sleep time against what the
1715          * underlying disk can do, instead of having a static sleep
1716          * time.  This is useful for the case where our storage is so
1717          * fast that it is more optimal to go ahead and force a flush
1718          * and wait for the transaction to be committed than it is to
1719          * wait for an arbitrary amount of time for new writers to
1720          * join the transaction.  We achieve this by measuring how
1721          * long it takes to commit a transaction, and compare it with
1722          * how long this transaction has been running, and if run time
1723          * < commit time then we sleep for the delta and commit.  This
1724          * greatly helps super fast disks that would see slowdowns as
1725          * more threads started doing fsyncs.
1726          *
1727          * But don't do this if this process was the most recent one
1728          * to perform a synchronous write.  We do this to detect the
1729          * case where a single process is doing a stream of sync
1730          * writes.  No point in waiting for joiners in that case.
1731          *
1732          * Setting max_batch_time to 0 disables this completely.
1733          */
1734         pid = current->pid;
1735         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1736             journal->j_max_batch_time) {
1737                 u64 commit_time, trans_time;
1738
1739                 journal->j_last_sync_writer = pid;
1740
1741                 read_lock(&journal->j_state_lock);
1742                 commit_time = journal->j_average_commit_time;
1743                 read_unlock(&journal->j_state_lock);
1744
1745                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1746                                                    transaction->t_start_time));
1747
1748                 commit_time = max_t(u64, commit_time,
1749                                     1000*journal->j_min_batch_time);
1750                 commit_time = min_t(u64, commit_time,
1751                                     1000*journal->j_max_batch_time);
1752
1753                 if (trans_time < commit_time) {
1754                         ktime_t expires = ktime_add_ns(ktime_get(),
1755                                                        commit_time);
1756                         set_current_state(TASK_UNINTERRUPTIBLE);
1757                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1758                 }
1759         }
1760
1761         if (handle->h_sync)
1762                 transaction->t_synchronous_commit = 1;
1763         current->journal_info = NULL;
1764         atomic_sub(handle->h_buffer_credits,
1765                    &transaction->t_outstanding_credits);
1766
1767         /*
1768          * If the handle is marked SYNC, we need to set another commit
1769          * going!  We also want to force a commit if the current
1770          * transaction is occupying too much of the log, or if the
1771          * transaction is too old now.
1772          */
1773         if (handle->h_sync ||
1774             (atomic_read(&transaction->t_outstanding_credits) >
1775              journal->j_max_transaction_buffers) ||
1776             time_after_eq(jiffies, transaction->t_expires)) {
1777                 /* Do this even for aborted journals: an abort still
1778                  * completes the commit thread, it just doesn't write
1779                  * anything to disk. */
1780
1781                 jbd_debug(2, "transaction too old, requesting commit for "
1782                                         "handle %p\n", handle);
1783                 /* This is non-blocking */
1784                 jbd2_log_start_commit(journal, transaction->t_tid);
1785
1786                 /*
1787                  * Special case: JBD2_SYNC synchronous updates require us
1788                  * to wait for the commit to complete.
1789                  */
1790                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1791                         wait_for_commit = 1;
1792         }
1793
1794         /*
1795          * Once we drop t_updates, if it goes to zero the transaction
1796          * could start committing on us and eventually disappear.  So
1797          * once we do this, we must not dereference transaction
1798          * pointer again.
1799          */
1800         tid = transaction->t_tid;
1801         if (atomic_dec_and_test(&transaction->t_updates)) {
1802                 wake_up(&journal->j_wait_updates);
1803                 if (journal->j_barrier_count)
1804                         wake_up(&journal->j_wait_transaction_locked);
1805         }
1806
1807         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1808
1809         if (wait_for_commit)
1810                 err = jbd2_log_wait_commit(journal, tid);
1811
1812         if (handle->h_rsv_handle)
1813                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1814 free_and_exit:
1815         /*
1816          * Scope of the GFP_NOFS context is over here and so we can restore the
1817          * original alloc context.
1818          */
1819         memalloc_nofs_restore(handle->saved_alloc_context);
1820         jbd2_free_handle(handle);
1821         return err;
1822 }
1823
1824 /*
1825  *
1826  * List management code snippets: various functions for manipulating the
1827  * transaction buffer lists.
1828  *
1829  */
1830
1831 /*
1832  * Append a buffer to a transaction list, given the transaction's list head
1833  * pointer.
1834  *
1835  * j_list_lock is held.
1836  *
1837  * jbd_lock_bh_state(jh2bh(jh)) is held.
1838  */
1839
1840 static inline void
1841 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1842 {
1843         if (!*list) {
1844                 jh->b_tnext = jh->b_tprev = jh;
1845                 *list = jh;
1846         } else {
1847                 /* Insert at the tail of the list to preserve order */
1848                 struct journal_head *first = *list, *last = first->b_tprev;
1849                 jh->b_tprev = last;
1850                 jh->b_tnext = first;
1851                 last->b_tnext = first->b_tprev = jh;
1852         }
1853 }
1854
1855 /*
1856  * Remove a buffer from a transaction list, given the transaction's list
1857  * head pointer.
1858  *
1859  * Called with j_list_lock held, and the journal may not be locked.
1860  *
1861  * jbd_lock_bh_state(jh2bh(jh)) is held.
1862  */
1863
1864 static inline void
1865 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1866 {
1867         if (*list == jh) {
1868                 *list = jh->b_tnext;
1869                 if (*list == jh)
1870                         *list = NULL;
1871         }
1872         jh->b_tprev->b_tnext = jh->b_tnext;
1873         jh->b_tnext->b_tprev = jh->b_tprev;
1874 }
1875
1876 /*
1877  * Remove a buffer from the appropriate transaction list.
1878  *
1879  * Note that this function can *change* the value of
1880  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1881  * t_reserved_list.  If the caller is holding onto a copy of one of these
1882  * pointers, it could go bad.  Generally the caller needs to re-read the
1883  * pointer from the transaction_t.
1884  *
1885  * Called under j_list_lock.
1886  */
1887 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1888 {
1889         struct journal_head **list = NULL;
1890         transaction_t *transaction;
1891         struct buffer_head *bh = jh2bh(jh);
1892
1893         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1894         transaction = jh->b_transaction;
1895         if (transaction)
1896                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1897
1898         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1899         if (jh->b_jlist != BJ_None)
1900                 J_ASSERT_JH(jh, transaction != NULL);
1901
1902         switch (jh->b_jlist) {
1903         case BJ_None:
1904                 return;
1905         case BJ_Metadata:
1906                 transaction->t_nr_buffers--;
1907                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1908                 list = &transaction->t_buffers;
1909                 break;
1910         case BJ_Forget:
1911                 list = &transaction->t_forget;
1912                 break;
1913         case BJ_Shadow:
1914                 list = &transaction->t_shadow_list;
1915                 break;
1916         case BJ_Reserved:
1917                 list = &transaction->t_reserved_list;
1918                 break;
1919         }
1920
1921         __blist_del_buffer(list, jh);
1922         jh->b_jlist = BJ_None;
1923         if (transaction && is_journal_aborted(transaction->t_journal))
1924                 clear_buffer_jbddirty(bh);
1925         else if (test_clear_buffer_jbddirty(bh))
1926                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1927 }
1928
1929 /*
1930  * Remove buffer from all transactions.
1931  *
1932  * Called with bh_state lock and j_list_lock
1933  *
1934  * jh and bh may be already freed when this function returns.
1935  */
1936 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1937 {
1938         __jbd2_journal_temp_unlink_buffer(jh);
1939         jh->b_transaction = NULL;
1940         jbd2_journal_put_journal_head(jh);
1941 }
1942
1943 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1944 {
1945         struct buffer_head *bh = jh2bh(jh);
1946
1947         /* Get reference so that buffer cannot be freed before we unlock it */
1948         get_bh(bh);
1949         jbd_lock_bh_state(bh);
1950         spin_lock(&journal->j_list_lock);
1951         __jbd2_journal_unfile_buffer(jh);
1952         spin_unlock(&journal->j_list_lock);
1953         jbd_unlock_bh_state(bh);
1954         __brelse(bh);
1955 }
1956
1957 /*
1958  * Called from jbd2_journal_try_to_free_buffers().
1959  *
1960  * Called under jbd_lock_bh_state(bh)
1961  */
1962 static void
1963 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1964 {
1965         struct journal_head *jh;
1966
1967         jh = bh2jh(bh);
1968
1969         if (buffer_locked(bh) || buffer_dirty(bh))
1970                 goto out;
1971
1972         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1973                 goto out;
1974
1975         spin_lock(&journal->j_list_lock);
1976         if (jh->b_cp_transaction != NULL) {
1977                 /* written-back checkpointed metadata buffer */
1978                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1979                 __jbd2_journal_remove_checkpoint(jh);
1980         }
1981         spin_unlock(&journal->j_list_lock);
1982 out:
1983         return;
1984 }
1985
1986 /**
1987  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1988  * @journal: journal for operation
1989  * @page: to try and free
1990  * @gfp_mask: we use the mask to detect how hard should we try to release
1991  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1992  * code to release the buffers.
1993  *
1994  *
1995  * For all the buffers on this page,
1996  * if they are fully written out ordered data, move them onto BUF_CLEAN
1997  * so try_to_free_buffers() can reap them.
1998  *
1999  * This function returns non-zero if we wish try_to_free_buffers()
2000  * to be called. We do this if the page is releasable by try_to_free_buffers().
2001  * We also do it if the page has locked or dirty buffers and the caller wants
2002  * us to perform sync or async writeout.
2003  *
2004  * This complicates JBD locking somewhat.  We aren't protected by the
2005  * BKL here.  We wish to remove the buffer from its committing or
2006  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2007  *
2008  * This may *change* the value of transaction_t->t_datalist, so anyone
2009  * who looks at t_datalist needs to lock against this function.
2010  *
2011  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2012  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2013  * will come out of the lock with the buffer dirty, which makes it
2014  * ineligible for release here.
2015  *
2016  * Who else is affected by this?  hmm...  Really the only contender
2017  * is do_get_write_access() - it could be looking at the buffer while
2018  * journal_try_to_free_buffer() is changing its state.  But that
2019  * cannot happen because we never reallocate freed data as metadata
2020  * while the data is part of a transaction.  Yes?
2021  *
2022  * Return 0 on failure, 1 on success
2023  */
2024 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2025                                 struct page *page, gfp_t gfp_mask)
2026 {
2027         struct buffer_head *head;
2028         struct buffer_head *bh;
2029         int ret = 0;
2030
2031         J_ASSERT(PageLocked(page));
2032
2033         head = page_buffers(page);
2034         bh = head;
2035         do {
2036                 struct journal_head *jh;
2037
2038                 /*
2039                  * We take our own ref against the journal_head here to avoid
2040                  * having to add tons of locking around each instance of
2041                  * jbd2_journal_put_journal_head().
2042                  */
2043                 jh = jbd2_journal_grab_journal_head(bh);
2044                 if (!jh)
2045                         continue;
2046
2047                 jbd_lock_bh_state(bh);
2048                 __journal_try_to_free_buffer(journal, bh);
2049                 jbd2_journal_put_journal_head(jh);
2050                 jbd_unlock_bh_state(bh);
2051                 if (buffer_jbd(bh))
2052                         goto busy;
2053         } while ((bh = bh->b_this_page) != head);
2054
2055         ret = try_to_free_buffers(page);
2056
2057 busy:
2058         return ret;
2059 }
2060
2061 /*
2062  * This buffer is no longer needed.  If it is on an older transaction's
2063  * checkpoint list we need to record it on this transaction's forget list
2064  * to pin this buffer (and hence its checkpointing transaction) down until
2065  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2066  * release it.
2067  * Returns non-zero if JBD no longer has an interest in the buffer.
2068  *
2069  * Called under j_list_lock.
2070  *
2071  * Called under jbd_lock_bh_state(bh).
2072  */
2073 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2074 {
2075         int may_free = 1;
2076         struct buffer_head *bh = jh2bh(jh);
2077
2078         if (jh->b_cp_transaction) {
2079                 JBUFFER_TRACE(jh, "on running+cp transaction");
2080                 __jbd2_journal_temp_unlink_buffer(jh);
2081                 /*
2082                  * We don't want to write the buffer anymore, clear the
2083                  * bit so that we don't confuse checks in
2084                  * __journal_file_buffer
2085                  */
2086                 clear_buffer_dirty(bh);
2087                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2088                 may_free = 0;
2089         } else {
2090                 JBUFFER_TRACE(jh, "on running transaction");
2091                 __jbd2_journal_unfile_buffer(jh);
2092         }
2093         return may_free;
2094 }
2095
2096 /*
2097  * jbd2_journal_invalidatepage
2098  *
2099  * This code is tricky.  It has a number of cases to deal with.
2100  *
2101  * There are two invariants which this code relies on:
2102  *
2103  * i_size must be updated on disk before we start calling invalidatepage on the
2104  * data.
2105  *
2106  *  This is done in ext3 by defining an ext3_setattr method which
2107  *  updates i_size before truncate gets going.  By maintaining this
2108  *  invariant, we can be sure that it is safe to throw away any buffers
2109  *  attached to the current transaction: once the transaction commits,
2110  *  we know that the data will not be needed.
2111  *
2112  *  Note however that we can *not* throw away data belonging to the
2113  *  previous, committing transaction!
2114  *
2115  * Any disk blocks which *are* part of the previous, committing
2116  * transaction (and which therefore cannot be discarded immediately) are
2117  * not going to be reused in the new running transaction
2118  *
2119  *  The bitmap committed_data images guarantee this: any block which is
2120  *  allocated in one transaction and removed in the next will be marked
2121  *  as in-use in the committed_data bitmap, so cannot be reused until
2122  *  the next transaction to delete the block commits.  This means that
2123  *  leaving committing buffers dirty is quite safe: the disk blocks
2124  *  cannot be reallocated to a different file and so buffer aliasing is
2125  *  not possible.
2126  *
2127  *
2128  * The above applies mainly to ordered data mode.  In writeback mode we
2129  * don't make guarantees about the order in which data hits disk --- in
2130  * particular we don't guarantee that new dirty data is flushed before
2131  * transaction commit --- so it is always safe just to discard data
2132  * immediately in that mode.  --sct
2133  */
2134
2135 /*
2136  * The journal_unmap_buffer helper function returns zero if the buffer
2137  * concerned remains pinned as an anonymous buffer belonging to an older
2138  * transaction.
2139  *
2140  * We're outside-transaction here.  Either or both of j_running_transaction
2141  * and j_committing_transaction may be NULL.
2142  */
2143 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2144                                 int partial_page)
2145 {
2146         transaction_t *transaction;
2147         struct journal_head *jh;
2148         int may_free = 1;
2149
2150         BUFFER_TRACE(bh, "entry");
2151
2152         /*
2153          * It is safe to proceed here without the j_list_lock because the
2154          * buffers cannot be stolen by try_to_free_buffers as long as we are
2155          * holding the page lock. --sct
2156          */
2157
2158         if (!buffer_jbd(bh))
2159                 goto zap_buffer_unlocked;
2160
2161         /* OK, we have data buffer in journaled mode */
2162         write_lock(&journal->j_state_lock);
2163         jbd_lock_bh_state(bh);
2164         spin_lock(&journal->j_list_lock);
2165
2166         jh = jbd2_journal_grab_journal_head(bh);
2167         if (!jh)
2168                 goto zap_buffer_no_jh;
2169
2170         /*
2171          * We cannot remove the buffer from checkpoint lists until the
2172          * transaction adding inode to orphan list (let's call it T)
2173          * is committed.  Otherwise if the transaction changing the
2174          * buffer would be cleaned from the journal before T is
2175          * committed, a crash will cause that the correct contents of
2176          * the buffer will be lost.  On the other hand we have to
2177          * clear the buffer dirty bit at latest at the moment when the
2178          * transaction marking the buffer as freed in the filesystem
2179          * structures is committed because from that moment on the
2180          * block can be reallocated and used by a different page.
2181          * Since the block hasn't been freed yet but the inode has
2182          * already been added to orphan list, it is safe for us to add
2183          * the buffer to BJ_Forget list of the newest transaction.
2184          *
2185          * Also we have to clear buffer_mapped flag of a truncated buffer
2186          * because the buffer_head may be attached to the page straddling
2187          * i_size (can happen only when blocksize < pagesize) and thus the
2188          * buffer_head can be reused when the file is extended again. So we end
2189          * up keeping around invalidated buffers attached to transactions'
2190          * BJ_Forget list just to stop checkpointing code from cleaning up
2191          * the transaction this buffer was modified in.
2192          */
2193         transaction = jh->b_transaction;
2194         if (transaction == NULL) {
2195                 /* First case: not on any transaction.  If it
2196                  * has no checkpoint link, then we can zap it:
2197                  * it's a writeback-mode buffer so we don't care
2198                  * if it hits disk safely. */
2199                 if (!jh->b_cp_transaction) {
2200                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2201                         goto zap_buffer;
2202                 }
2203
2204                 if (!buffer_dirty(bh)) {
2205                         /* bdflush has written it.  We can drop it now */
2206                         __jbd2_journal_remove_checkpoint(jh);
2207                         goto zap_buffer;
2208                 }
2209
2210                 /* OK, it must be in the journal but still not
2211                  * written fully to disk: it's metadata or
2212                  * journaled data... */
2213
2214                 if (journal->j_running_transaction) {
2215                         /* ... and once the current transaction has
2216                          * committed, the buffer won't be needed any
2217                          * longer. */
2218                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2219                         may_free = __dispose_buffer(jh,
2220                                         journal->j_running_transaction);
2221                         goto zap_buffer;
2222                 } else {
2223                         /* There is no currently-running transaction. So the
2224                          * orphan record which we wrote for this file must have
2225                          * passed into commit.  We must attach this buffer to
2226                          * the committing transaction, if it exists. */
2227                         if (journal->j_committing_transaction) {
2228                                 JBUFFER_TRACE(jh, "give to committing trans");
2229                                 may_free = __dispose_buffer(jh,
2230                                         journal->j_committing_transaction);
2231                                 goto zap_buffer;
2232                         } else {
2233                                 /* The orphan record's transaction has
2234                                  * committed.  We can cleanse this buffer */
2235                                 clear_buffer_jbddirty(bh);
2236                                 __jbd2_journal_remove_checkpoint(jh);
2237                                 goto zap_buffer;
2238                         }
2239                 }
2240         } else if (transaction == journal->j_committing_transaction) {
2241                 JBUFFER_TRACE(jh, "on committing transaction");
2242                 /*
2243                  * The buffer is committing, we simply cannot touch
2244                  * it. If the page is straddling i_size we have to wait
2245                  * for commit and try again.
2246                  */
2247                 if (partial_page) {
2248                         jbd2_journal_put_journal_head(jh);
2249                         spin_unlock(&journal->j_list_lock);
2250                         jbd_unlock_bh_state(bh);
2251                         write_unlock(&journal->j_state_lock);
2252                         return -EBUSY;
2253                 }
2254                 /*
2255                  * OK, buffer won't be reachable after truncate. We just set
2256                  * j_next_transaction to the running transaction (if there is
2257                  * one) and mark buffer as freed so that commit code knows it
2258                  * should clear dirty bits when it is done with the buffer.
2259                  */
2260                 set_buffer_freed(bh);
2261                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2262                         jh->b_next_transaction = journal->j_running_transaction;
2263                 jbd2_journal_put_journal_head(jh);
2264                 spin_unlock(&journal->j_list_lock);
2265                 jbd_unlock_bh_state(bh);
2266                 write_unlock(&journal->j_state_lock);
2267                 return 0;
2268         } else {
2269                 /* Good, the buffer belongs to the running transaction.
2270                  * We are writing our own transaction's data, not any
2271                  * previous one's, so it is safe to throw it away
2272                  * (remember that we expect the filesystem to have set
2273                  * i_size already for this truncate so recovery will not
2274                  * expose the disk blocks we are discarding here.) */
2275                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2276                 JBUFFER_TRACE(jh, "on running transaction");
2277                 may_free = __dispose_buffer(jh, transaction);
2278         }
2279
2280 zap_buffer:
2281         /*
2282          * This is tricky. Although the buffer is truncated, it may be reused
2283          * if blocksize < pagesize and it is attached to the page straddling
2284          * EOF. Since the buffer might have been added to BJ_Forget list of the
2285          * running transaction, journal_get_write_access() won't clear
2286          * b_modified and credit accounting gets confused. So clear b_modified
2287          * here.
2288          */
2289         jh->b_modified = 0;
2290         jbd2_journal_put_journal_head(jh);
2291 zap_buffer_no_jh:
2292         spin_unlock(&journal->j_list_lock);
2293         jbd_unlock_bh_state(bh);
2294         write_unlock(&journal->j_state_lock);
2295 zap_buffer_unlocked:
2296         clear_buffer_dirty(bh);
2297         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2298         clear_buffer_mapped(bh);
2299         clear_buffer_req(bh);
2300         clear_buffer_new(bh);
2301         clear_buffer_delay(bh);
2302         clear_buffer_unwritten(bh);
2303         bh->b_bdev = NULL;
2304         return may_free;
2305 }
2306
2307 /**
2308  * void jbd2_journal_invalidatepage()
2309  * @journal: journal to use for flush...
2310  * @page:    page to flush
2311  * @offset:  start of the range to invalidate
2312  * @length:  length of the range to invalidate
2313  *
2314  * Reap page buffers containing data after in the specified range in page.
2315  * Can return -EBUSY if buffers are part of the committing transaction and
2316  * the page is straddling i_size. Caller then has to wait for current commit
2317  * and try again.
2318  */
2319 int jbd2_journal_invalidatepage(journal_t *journal,
2320                                 struct page *page,
2321                                 unsigned int offset,
2322                                 unsigned int length)
2323 {
2324         struct buffer_head *head, *bh, *next;
2325         unsigned int stop = offset + length;
2326         unsigned int curr_off = 0;
2327         int partial_page = (offset || length < PAGE_SIZE);
2328         int may_free = 1;
2329         int ret = 0;
2330
2331         if (!PageLocked(page))
2332                 BUG();
2333         if (!page_has_buffers(page))
2334                 return 0;
2335
2336         BUG_ON(stop > PAGE_SIZE || stop < length);
2337
2338         /* We will potentially be playing with lists other than just the
2339          * data lists (especially for journaled data mode), so be
2340          * cautious in our locking. */
2341
2342         head = bh = page_buffers(page);
2343         do {
2344                 unsigned int next_off = curr_off + bh->b_size;
2345                 next = bh->b_this_page;
2346
2347                 if (next_off > stop)
2348                         return 0;
2349
2350                 if (offset <= curr_off) {
2351                         /* This block is wholly outside the truncation point */
2352                         lock_buffer(bh);
2353                         ret = journal_unmap_buffer(journal, bh, partial_page);
2354                         unlock_buffer(bh);
2355                         if (ret < 0)
2356                                 return ret;
2357                         may_free &= ret;
2358                 }
2359                 curr_off = next_off;
2360                 bh = next;
2361
2362         } while (bh != head);
2363
2364         if (!partial_page) {
2365                 if (may_free && try_to_free_buffers(page))
2366                         J_ASSERT(!page_has_buffers(page));
2367         }
2368         return 0;
2369 }
2370
2371 /*
2372  * File a buffer on the given transaction list.
2373  */
2374 void __jbd2_journal_file_buffer(struct journal_head *jh,
2375                         transaction_t *transaction, int jlist)
2376 {
2377         struct journal_head **list = NULL;
2378         int was_dirty = 0;
2379         struct buffer_head *bh = jh2bh(jh);
2380
2381         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2382         assert_spin_locked(&transaction->t_journal->j_list_lock);
2383
2384         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2385         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2386                                 jh->b_transaction == NULL);
2387
2388         if (jh->b_transaction && jh->b_jlist == jlist)
2389                 return;
2390
2391         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2392             jlist == BJ_Shadow || jlist == BJ_Forget) {
2393                 /*
2394                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2395                  * instead of buffer_dirty. We should not see a dirty bit set
2396                  * here because we clear it in do_get_write_access but e.g.
2397                  * tune2fs can modify the sb and set the dirty bit at any time
2398                  * so we try to gracefully handle that.
2399                  */
2400                 if (buffer_dirty(bh))
2401                         warn_dirty_buffer(bh);
2402                 if (test_clear_buffer_dirty(bh) ||
2403                     test_clear_buffer_jbddirty(bh))
2404                         was_dirty = 1;
2405         }
2406
2407         if (jh->b_transaction)
2408                 __jbd2_journal_temp_unlink_buffer(jh);
2409         else
2410                 jbd2_journal_grab_journal_head(bh);
2411         jh->b_transaction = transaction;
2412
2413         switch (jlist) {
2414         case BJ_None:
2415                 J_ASSERT_JH(jh, !jh->b_committed_data);
2416                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2417                 return;
2418         case BJ_Metadata:
2419                 transaction->t_nr_buffers++;
2420                 list = &transaction->t_buffers;
2421                 break;
2422         case BJ_Forget:
2423                 list = &transaction->t_forget;
2424                 break;
2425         case BJ_Shadow:
2426                 list = &transaction->t_shadow_list;
2427                 break;
2428         case BJ_Reserved:
2429                 list = &transaction->t_reserved_list;
2430                 break;
2431         }
2432
2433         __blist_add_buffer(list, jh);
2434         jh->b_jlist = jlist;
2435
2436         if (was_dirty)
2437                 set_buffer_jbddirty(bh);
2438 }
2439
2440 void jbd2_journal_file_buffer(struct journal_head *jh,
2441                                 transaction_t *transaction, int jlist)
2442 {
2443         jbd_lock_bh_state(jh2bh(jh));
2444         spin_lock(&transaction->t_journal->j_list_lock);
2445         __jbd2_journal_file_buffer(jh, transaction, jlist);
2446         spin_unlock(&transaction->t_journal->j_list_lock);
2447         jbd_unlock_bh_state(jh2bh(jh));
2448 }
2449
2450 /*
2451  * Remove a buffer from its current buffer list in preparation for
2452  * dropping it from its current transaction entirely.  If the buffer has
2453  * already started to be used by a subsequent transaction, refile the
2454  * buffer on that transaction's metadata list.
2455  *
2456  * Called under j_list_lock
2457  * Called under jbd_lock_bh_state(jh2bh(jh))
2458  *
2459  * jh and bh may be already free when this function returns
2460  */
2461 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2462 {
2463         int was_dirty, jlist;
2464         struct buffer_head *bh = jh2bh(jh);
2465
2466         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2467         if (jh->b_transaction)
2468                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2469
2470         /* If the buffer is now unused, just drop it. */
2471         if (jh->b_next_transaction == NULL) {
2472                 __jbd2_journal_unfile_buffer(jh);
2473                 return;
2474         }
2475
2476         /*
2477          * It has been modified by a later transaction: add it to the new
2478          * transaction's metadata list.
2479          */
2480
2481         was_dirty = test_clear_buffer_jbddirty(bh);
2482         __jbd2_journal_temp_unlink_buffer(jh);
2483         /*
2484          * We set b_transaction here because b_next_transaction will inherit
2485          * our jh reference and thus __jbd2_journal_file_buffer() must not
2486          * take a new one.
2487          */
2488         jh->b_transaction = jh->b_next_transaction;
2489         jh->b_next_transaction = NULL;
2490         if (buffer_freed(bh))
2491                 jlist = BJ_Forget;
2492         else if (jh->b_modified)
2493                 jlist = BJ_Metadata;
2494         else
2495                 jlist = BJ_Reserved;
2496         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2497         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2498
2499         if (was_dirty)
2500                 set_buffer_jbddirty(bh);
2501 }
2502
2503 /*
2504  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2505  * bh reference so that we can safely unlock bh.
2506  *
2507  * The jh and bh may be freed by this call.
2508  */
2509 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2510 {
2511         struct buffer_head *bh = jh2bh(jh);
2512
2513         /* Get reference so that buffer cannot be freed before we unlock it */
2514         get_bh(bh);
2515         jbd_lock_bh_state(bh);
2516         spin_lock(&journal->j_list_lock);
2517         __jbd2_journal_refile_buffer(jh);
2518         jbd_unlock_bh_state(bh);
2519         spin_unlock(&journal->j_list_lock);
2520         __brelse(bh);
2521 }
2522
2523 /*
2524  * File inode in the inode list of the handle's transaction
2525  */
2526 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2527                                    unsigned long flags)
2528 {
2529         transaction_t *transaction = handle->h_transaction;
2530         journal_t *journal;
2531
2532         if (is_handle_aborted(handle))
2533                 return -EROFS;
2534         journal = transaction->t_journal;
2535
2536         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2537                         transaction->t_tid);
2538
2539         /*
2540          * First check whether inode isn't already on the transaction's
2541          * lists without taking the lock. Note that this check is safe
2542          * without the lock as we cannot race with somebody removing inode
2543          * from the transaction. The reason is that we remove inode from the
2544          * transaction only in journal_release_jbd_inode() and when we commit
2545          * the transaction. We are guarded from the first case by holding
2546          * a reference to the inode. We are safe against the second case
2547          * because if jinode->i_transaction == transaction, commit code
2548          * cannot touch the transaction because we hold reference to it,
2549          * and if jinode->i_next_transaction == transaction, commit code
2550          * will only file the inode where we want it.
2551          */
2552         if ((jinode->i_transaction == transaction ||
2553             jinode->i_next_transaction == transaction) &&
2554             (jinode->i_flags & flags) == flags)
2555                 return 0;
2556
2557         spin_lock(&journal->j_list_lock);
2558         jinode->i_flags |= flags;
2559         /* Is inode already attached where we need it? */
2560         if (jinode->i_transaction == transaction ||
2561             jinode->i_next_transaction == transaction)
2562                 goto done;
2563
2564         /*
2565          * We only ever set this variable to 1 so the test is safe. Since
2566          * t_need_data_flush is likely to be set, we do the test to save some
2567          * cacheline bouncing
2568          */
2569         if (!transaction->t_need_data_flush)
2570                 transaction->t_need_data_flush = 1;
2571         /* On some different transaction's list - should be
2572          * the committing one */
2573         if (jinode->i_transaction) {
2574                 J_ASSERT(jinode->i_next_transaction == NULL);
2575                 J_ASSERT(jinode->i_transaction ==
2576                                         journal->j_committing_transaction);
2577                 jinode->i_next_transaction = transaction;
2578                 goto done;
2579         }
2580         /* Not on any transaction list... */
2581         J_ASSERT(!jinode->i_next_transaction);
2582         jinode->i_transaction = transaction;
2583         list_add(&jinode->i_list, &transaction->t_inode_list);
2584 done:
2585         spin_unlock(&journal->j_list_lock);
2586
2587         return 0;
2588 }
2589
2590 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2591 {
2592         return jbd2_journal_file_inode(handle, jinode,
2593                                        JI_WRITE_DATA | JI_WAIT_DATA);
2594 }
2595
2596 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2597 {
2598         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2599 }
2600
2601 /*
2602  * File truncate and transaction commit interact with each other in a
2603  * non-trivial way.  If a transaction writing data block A is
2604  * committing, we cannot discard the data by truncate until we have
2605  * written them.  Otherwise if we crashed after the transaction with
2606  * write has committed but before the transaction with truncate has
2607  * committed, we could see stale data in block A.  This function is a
2608  * helper to solve this problem.  It starts writeout of the truncated
2609  * part in case it is in the committing transaction.
2610  *
2611  * Filesystem code must call this function when inode is journaled in
2612  * ordered mode before truncation happens and after the inode has been
2613  * placed on orphan list with the new inode size. The second condition
2614  * avoids the race that someone writes new data and we start
2615  * committing the transaction after this function has been called but
2616  * before a transaction for truncate is started (and furthermore it
2617  * allows us to optimize the case where the addition to orphan list
2618  * happens in the same transaction as write --- we don't have to write
2619  * any data in such case).
2620  */
2621 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2622                                         struct jbd2_inode *jinode,
2623                                         loff_t new_size)
2624 {
2625         transaction_t *inode_trans, *commit_trans;
2626         int ret = 0;
2627
2628         /* This is a quick check to avoid locking if not necessary */
2629         if (!jinode->i_transaction)
2630                 goto out;
2631         /* Locks are here just to force reading of recent values, it is
2632          * enough that the transaction was not committing before we started
2633          * a transaction adding the inode to orphan list */
2634         read_lock(&journal->j_state_lock);
2635         commit_trans = journal->j_committing_transaction;
2636         read_unlock(&journal->j_state_lock);
2637         spin_lock(&journal->j_list_lock);
2638         inode_trans = jinode->i_transaction;
2639         spin_unlock(&journal->j_list_lock);
2640         if (inode_trans == commit_trans) {
2641                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2642                         new_size, LLONG_MAX);
2643                 if (ret)
2644                         jbd2_journal_abort(journal, ret);
2645         }
2646 out:
2647         return ret;
2648 }