ocfs2: abstract btree growing calls
[powerpc.git] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54                                          struct ocfs2_extent_block *eb);
55
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64         struct buffer_head              *bh;
65         struct ocfs2_extent_list        *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH    5
69
70 struct ocfs2_path {
71         int                     p_tree_depth;
72         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88         int i, start = 0, depth = 0;
89         struct ocfs2_path_item *node;
90
91         if (keep_root)
92                 start = 1;
93
94         for(i = start; i < path_num_items(path); i++) {
95                 node = &path->p_node[i];
96
97                 brelse(node->bh);
98                 node->bh = NULL;
99                 node->el = NULL;
100         }
101
102         /*
103          * Tree depth may change during truncate, or insert. If we're
104          * keeping the root extent list, then make sure that our path
105          * structure reflects the proper depth.
106          */
107         if (keep_root)
108                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110         path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115         if (path) {
116                 ocfs2_reinit_path(path, 0);
117                 kfree(path);
118         }
119 }
120
121 /*
122  * Make the *dest path the same as src and re-initialize src path to
123  * have a root only.
124  */
125 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
126 {
127         int i;
128
129         BUG_ON(path_root_bh(dest) != path_root_bh(src));
130
131         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
132                 brelse(dest->p_node[i].bh);
133
134                 dest->p_node[i].bh = src->p_node[i].bh;
135                 dest->p_node[i].el = src->p_node[i].el;
136
137                 src->p_node[i].bh = NULL;
138                 src->p_node[i].el = NULL;
139         }
140 }
141
142 /*
143  * Insert an extent block at given index.
144  *
145  * This will not take an additional reference on eb_bh.
146  */
147 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
148                                         struct buffer_head *eb_bh)
149 {
150         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
151
152         /*
153          * Right now, no root bh is an extent block, so this helps
154          * catch code errors with dinode trees. The assertion can be
155          * safely removed if we ever need to insert extent block
156          * structures at the root.
157          */
158         BUG_ON(index == 0);
159
160         path->p_node[index].bh = eb_bh;
161         path->p_node[index].el = &eb->h_list;
162 }
163
164 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
165                                          struct ocfs2_extent_list *root_el)
166 {
167         struct ocfs2_path *path;
168
169         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
170
171         path = kzalloc(sizeof(*path), GFP_NOFS);
172         if (path) {
173                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
174                 get_bh(root_bh);
175                 path_root_bh(path) = root_bh;
176                 path_root_el(path) = root_el;
177         }
178
179         return path;
180 }
181
182 /*
183  * Allocate and initialize a new path based on a disk inode tree.
184  */
185 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
186 {
187         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
188         struct ocfs2_extent_list *el = &di->id2.i_list;
189
190         return ocfs2_new_path(di_bh, el);
191 }
192
193 /*
194  * Convenience function to journal all components in a path.
195  */
196 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
197                                      struct ocfs2_path *path)
198 {
199         int i, ret = 0;
200
201         if (!path)
202                 goto out;
203
204         for(i = 0; i < path_num_items(path); i++) {
205                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
206                                            OCFS2_JOURNAL_ACCESS_WRITE);
207                 if (ret < 0) {
208                         mlog_errno(ret);
209                         goto out;
210                 }
211         }
212
213 out:
214         return ret;
215 }
216
217 enum ocfs2_contig_type {
218         CONTIG_NONE = 0,
219         CONTIG_LEFT,
220         CONTIG_RIGHT
221 };
222
223
224 /*
225  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
226  * ocfs2_extent_contig only work properly against leaf nodes!
227  */
228 static int ocfs2_block_extent_contig(struct super_block *sb,
229                                      struct ocfs2_extent_rec *ext,
230                                      u64 blkno)
231 {
232         u64 blk_end = le64_to_cpu(ext->e_blkno);
233
234         blk_end += ocfs2_clusters_to_blocks(sb,
235                                     le16_to_cpu(ext->e_leaf_clusters));
236
237         return blkno == blk_end;
238 }
239
240 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
241                                   struct ocfs2_extent_rec *right)
242 {
243         u32 left_range;
244
245         left_range = le32_to_cpu(left->e_cpos) +
246                 le16_to_cpu(left->e_leaf_clusters);
247
248         return (left_range == le32_to_cpu(right->e_cpos));
249 }
250
251 static enum ocfs2_contig_type
252         ocfs2_extent_contig(struct inode *inode,
253                             struct ocfs2_extent_rec *ext,
254                             struct ocfs2_extent_rec *insert_rec)
255 {
256         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
257
258         if (ocfs2_extents_adjacent(ext, insert_rec) &&
259             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
260                         return CONTIG_RIGHT;
261
262         blkno = le64_to_cpu(ext->e_blkno);
263         if (ocfs2_extents_adjacent(insert_rec, ext) &&
264             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
265                 return CONTIG_LEFT;
266
267         return CONTIG_NONE;
268 }
269
270 /*
271  * NOTE: We can have pretty much any combination of contiguousness and
272  * appending.
273  *
274  * The usefulness of APPEND_TAIL is more in that it lets us know that
275  * we'll have to update the path to that leaf.
276  */
277 enum ocfs2_append_type {
278         APPEND_NONE = 0,
279         APPEND_TAIL,
280 };
281
282 struct ocfs2_insert_type {
283         enum ocfs2_append_type  ins_appending;
284         enum ocfs2_contig_type  ins_contig;
285         int                     ins_contig_index;
286         int                     ins_free_records;
287         int                     ins_tree_depth;
288 };
289
290 /*
291  * How many free extents have we got before we need more meta data?
292  */
293 int ocfs2_num_free_extents(struct ocfs2_super *osb,
294                            struct inode *inode,
295                            struct ocfs2_dinode *fe)
296 {
297         int retval;
298         struct ocfs2_extent_list *el;
299         struct ocfs2_extent_block *eb;
300         struct buffer_head *eb_bh = NULL;
301
302         mlog_entry_void();
303
304         if (!OCFS2_IS_VALID_DINODE(fe)) {
305                 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
306                 retval = -EIO;
307                 goto bail;
308         }
309
310         if (fe->i_last_eb_blk) {
311                 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
312                                           &eb_bh, OCFS2_BH_CACHED, inode);
313                 if (retval < 0) {
314                         mlog_errno(retval);
315                         goto bail;
316                 }
317                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
318                 el = &eb->h_list;
319         } else
320                 el = &fe->id2.i_list;
321
322         BUG_ON(el->l_tree_depth != 0);
323
324         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
325 bail:
326         if (eb_bh)
327                 brelse(eb_bh);
328
329         mlog_exit(retval);
330         return retval;
331 }
332
333 /* expects array to already be allocated
334  *
335  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
336  * l_count for you
337  */
338 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
339                                      handle_t *handle,
340                                      struct inode *inode,
341                                      int wanted,
342                                      struct ocfs2_alloc_context *meta_ac,
343                                      struct buffer_head *bhs[])
344 {
345         int count, status, i;
346         u16 suballoc_bit_start;
347         u32 num_got;
348         u64 first_blkno;
349         struct ocfs2_extent_block *eb;
350
351         mlog_entry_void();
352
353         count = 0;
354         while (count < wanted) {
355                 status = ocfs2_claim_metadata(osb,
356                                               handle,
357                                               meta_ac,
358                                               wanted - count,
359                                               &suballoc_bit_start,
360                                               &num_got,
361                                               &first_blkno);
362                 if (status < 0) {
363                         mlog_errno(status);
364                         goto bail;
365                 }
366
367                 for(i = count;  i < (num_got + count); i++) {
368                         bhs[i] = sb_getblk(osb->sb, first_blkno);
369                         if (bhs[i] == NULL) {
370                                 status = -EIO;
371                                 mlog_errno(status);
372                                 goto bail;
373                         }
374                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
375
376                         status = ocfs2_journal_access(handle, inode, bhs[i],
377                                                       OCFS2_JOURNAL_ACCESS_CREATE);
378                         if (status < 0) {
379                                 mlog_errno(status);
380                                 goto bail;
381                         }
382
383                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
384                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
385                         /* Ok, setup the minimal stuff here. */
386                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
387                         eb->h_blkno = cpu_to_le64(first_blkno);
388                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
389                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
390                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
391                         eb->h_list.l_count =
392                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
393
394                         suballoc_bit_start++;
395                         first_blkno++;
396
397                         /* We'll also be dirtied by the caller, so
398                          * this isn't absolutely necessary. */
399                         status = ocfs2_journal_dirty(handle, bhs[i]);
400                         if (status < 0) {
401                                 mlog_errno(status);
402                                 goto bail;
403                         }
404                 }
405
406                 count += num_got;
407         }
408
409         status = 0;
410 bail:
411         if (status < 0) {
412                 for(i = 0; i < wanted; i++) {
413                         if (bhs[i])
414                                 brelse(bhs[i]);
415                         bhs[i] = NULL;
416                 }
417         }
418         mlog_exit(status);
419         return status;
420 }
421
422 /*
423  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
424  *
425  * Returns the sum of the rightmost extent rec logical offset and
426  * cluster count.
427  *
428  * ocfs2_add_branch() uses this to determine what logical cluster
429  * value should be populated into the leftmost new branch records.
430  *
431  * ocfs2_shift_tree_depth() uses this to determine the # clusters
432  * value for the new topmost tree record.
433  */
434 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
435 {
436         int i;
437
438         i = le16_to_cpu(el->l_next_free_rec) - 1;
439
440         return le32_to_cpu(el->l_recs[i].e_cpos) +
441                 ocfs2_rec_clusters(el, &el->l_recs[i]);
442 }
443
444 /*
445  * Add an entire tree branch to our inode. eb_bh is the extent block
446  * to start at, if we don't want to start the branch at the dinode
447  * structure.
448  *
449  * last_eb_bh is required as we have to update it's next_leaf pointer
450  * for the new last extent block.
451  *
452  * the new branch will be 'empty' in the sense that every block will
453  * contain a single record with cluster count == 0.
454  */
455 static int ocfs2_add_branch(struct ocfs2_super *osb,
456                             handle_t *handle,
457                             struct inode *inode,
458                             struct buffer_head *fe_bh,
459                             struct buffer_head *eb_bh,
460                             struct buffer_head *last_eb_bh,
461                             struct ocfs2_alloc_context *meta_ac)
462 {
463         int status, new_blocks, i;
464         u64 next_blkno, new_last_eb_blk;
465         struct buffer_head *bh;
466         struct buffer_head **new_eb_bhs = NULL;
467         struct ocfs2_dinode *fe;
468         struct ocfs2_extent_block *eb;
469         struct ocfs2_extent_list  *eb_el;
470         struct ocfs2_extent_list  *el;
471         u32 new_cpos;
472
473         mlog_entry_void();
474
475         BUG_ON(!last_eb_bh);
476
477         fe = (struct ocfs2_dinode *) fe_bh->b_data;
478
479         if (eb_bh) {
480                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
481                 el = &eb->h_list;
482         } else
483                 el = &fe->id2.i_list;
484
485         /* we never add a branch to a leaf. */
486         BUG_ON(!el->l_tree_depth);
487
488         new_blocks = le16_to_cpu(el->l_tree_depth);
489
490         /* allocate the number of new eb blocks we need */
491         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
492                              GFP_KERNEL);
493         if (!new_eb_bhs) {
494                 status = -ENOMEM;
495                 mlog_errno(status);
496                 goto bail;
497         }
498
499         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
500                                            meta_ac, new_eb_bhs);
501         if (status < 0) {
502                 mlog_errno(status);
503                 goto bail;
504         }
505
506         eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
507         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
508
509         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
510          * linked with the rest of the tree.
511          * conversly, new_eb_bhs[0] is the new bottommost leaf.
512          *
513          * when we leave the loop, new_last_eb_blk will point to the
514          * newest leaf, and next_blkno will point to the topmost extent
515          * block. */
516         next_blkno = new_last_eb_blk = 0;
517         for(i = 0; i < new_blocks; i++) {
518                 bh = new_eb_bhs[i];
519                 eb = (struct ocfs2_extent_block *) bh->b_data;
520                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
521                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
522                         status = -EIO;
523                         goto bail;
524                 }
525                 eb_el = &eb->h_list;
526
527                 status = ocfs2_journal_access(handle, inode, bh,
528                                               OCFS2_JOURNAL_ACCESS_CREATE);
529                 if (status < 0) {
530                         mlog_errno(status);
531                         goto bail;
532                 }
533
534                 eb->h_next_leaf_blk = 0;
535                 eb_el->l_tree_depth = cpu_to_le16(i);
536                 eb_el->l_next_free_rec = cpu_to_le16(1);
537                 /*
538                  * This actually counts as an empty extent as
539                  * c_clusters == 0
540                  */
541                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
542                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
543                 /*
544                  * eb_el isn't always an interior node, but even leaf
545                  * nodes want a zero'd flags and reserved field so
546                  * this gets the whole 32 bits regardless of use.
547                  */
548                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
549                 if (!eb_el->l_tree_depth)
550                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
551
552                 status = ocfs2_journal_dirty(handle, bh);
553                 if (status < 0) {
554                         mlog_errno(status);
555                         goto bail;
556                 }
557
558                 next_blkno = le64_to_cpu(eb->h_blkno);
559         }
560
561         /* This is a bit hairy. We want to update up to three blocks
562          * here without leaving any of them in an inconsistent state
563          * in case of error. We don't have to worry about
564          * journal_dirty erroring as it won't unless we've aborted the
565          * handle (in which case we would never be here) so reserving
566          * the write with journal_access is all we need to do. */
567         status = ocfs2_journal_access(handle, inode, last_eb_bh,
568                                       OCFS2_JOURNAL_ACCESS_WRITE);
569         if (status < 0) {
570                 mlog_errno(status);
571                 goto bail;
572         }
573         status = ocfs2_journal_access(handle, inode, fe_bh,
574                                       OCFS2_JOURNAL_ACCESS_WRITE);
575         if (status < 0) {
576                 mlog_errno(status);
577                 goto bail;
578         }
579         if (eb_bh) {
580                 status = ocfs2_journal_access(handle, inode, eb_bh,
581                                               OCFS2_JOURNAL_ACCESS_WRITE);
582                 if (status < 0) {
583                         mlog_errno(status);
584                         goto bail;
585                 }
586         }
587
588         /* Link the new branch into the rest of the tree (el will
589          * either be on the fe, or the extent block passed in. */
590         i = le16_to_cpu(el->l_next_free_rec);
591         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
592         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
593         el->l_recs[i].e_int_clusters = 0;
594         le16_add_cpu(&el->l_next_free_rec, 1);
595
596         /* fe needs a new last extent block pointer, as does the
597          * next_leaf on the previously last-extent-block. */
598         fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
599
600         eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
601         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
602
603         status = ocfs2_journal_dirty(handle, last_eb_bh);
604         if (status < 0)
605                 mlog_errno(status);
606         status = ocfs2_journal_dirty(handle, fe_bh);
607         if (status < 0)
608                 mlog_errno(status);
609         if (eb_bh) {
610                 status = ocfs2_journal_dirty(handle, eb_bh);
611                 if (status < 0)
612                         mlog_errno(status);
613         }
614
615         status = 0;
616 bail:
617         if (new_eb_bhs) {
618                 for (i = 0; i < new_blocks; i++)
619                         if (new_eb_bhs[i])
620                                 brelse(new_eb_bhs[i]);
621                 kfree(new_eb_bhs);
622         }
623
624         mlog_exit(status);
625         return status;
626 }
627
628 /*
629  * adds another level to the allocation tree.
630  * returns back the new extent block so you can add a branch to it
631  * after this call.
632  */
633 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
634                                   handle_t *handle,
635                                   struct inode *inode,
636                                   struct buffer_head *fe_bh,
637                                   struct ocfs2_alloc_context *meta_ac,
638                                   struct buffer_head **ret_new_eb_bh)
639 {
640         int status, i;
641         u32 new_clusters;
642         struct buffer_head *new_eb_bh = NULL;
643         struct ocfs2_dinode *fe;
644         struct ocfs2_extent_block *eb;
645         struct ocfs2_extent_list  *fe_el;
646         struct ocfs2_extent_list  *eb_el;
647
648         mlog_entry_void();
649
650         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
651                                            &new_eb_bh);
652         if (status < 0) {
653                 mlog_errno(status);
654                 goto bail;
655         }
656
657         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
658         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
659                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
660                 status = -EIO;
661                 goto bail;
662         }
663
664         eb_el = &eb->h_list;
665         fe = (struct ocfs2_dinode *) fe_bh->b_data;
666         fe_el = &fe->id2.i_list;
667
668         status = ocfs2_journal_access(handle, inode, new_eb_bh,
669                                       OCFS2_JOURNAL_ACCESS_CREATE);
670         if (status < 0) {
671                 mlog_errno(status);
672                 goto bail;
673         }
674
675         /* copy the fe data into the new extent block */
676         eb_el->l_tree_depth = fe_el->l_tree_depth;
677         eb_el->l_next_free_rec = fe_el->l_next_free_rec;
678         for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
679                 eb_el->l_recs[i] = fe_el->l_recs[i];
680
681         status = ocfs2_journal_dirty(handle, new_eb_bh);
682         if (status < 0) {
683                 mlog_errno(status);
684                 goto bail;
685         }
686
687         status = ocfs2_journal_access(handle, inode, fe_bh,
688                                       OCFS2_JOURNAL_ACCESS_WRITE);
689         if (status < 0) {
690                 mlog_errno(status);
691                 goto bail;
692         }
693
694         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
695
696         /* update fe now */
697         le16_add_cpu(&fe_el->l_tree_depth, 1);
698         fe_el->l_recs[0].e_cpos = 0;
699         fe_el->l_recs[0].e_blkno = eb->h_blkno;
700         fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
701         for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
702                 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
703         fe_el->l_next_free_rec = cpu_to_le16(1);
704
705         /* If this is our 1st tree depth shift, then last_eb_blk
706          * becomes the allocated extent block */
707         if (fe_el->l_tree_depth == cpu_to_le16(1))
708                 fe->i_last_eb_blk = eb->h_blkno;
709
710         status = ocfs2_journal_dirty(handle, fe_bh);
711         if (status < 0) {
712                 mlog_errno(status);
713                 goto bail;
714         }
715
716         *ret_new_eb_bh = new_eb_bh;
717         new_eb_bh = NULL;
718         status = 0;
719 bail:
720         if (new_eb_bh)
721                 brelse(new_eb_bh);
722
723         mlog_exit(status);
724         return status;
725 }
726
727 /*
728  * Should only be called when there is no space left in any of the
729  * leaf nodes. What we want to do is find the lowest tree depth
730  * non-leaf extent block with room for new records. There are three
731  * valid results of this search:
732  *
733  * 1) a lowest extent block is found, then we pass it back in
734  *    *lowest_eb_bh and return '0'
735  *
736  * 2) the search fails to find anything, but the dinode has room. We
737  *    pass NULL back in *lowest_eb_bh, but still return '0'
738  *
739  * 3) the search fails to find anything AND the dinode is full, in
740  *    which case we return > 0
741  *
742  * return status < 0 indicates an error.
743  */
744 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
745                                     struct inode *inode,
746                                     struct buffer_head *fe_bh,
747                                     struct buffer_head **target_bh)
748 {
749         int status = 0, i;
750         u64 blkno;
751         struct ocfs2_dinode *fe;
752         struct ocfs2_extent_block *eb;
753         struct ocfs2_extent_list  *el;
754         struct buffer_head *bh = NULL;
755         struct buffer_head *lowest_bh = NULL;
756
757         mlog_entry_void();
758
759         *target_bh = NULL;
760
761         fe = (struct ocfs2_dinode *) fe_bh->b_data;
762         el = &fe->id2.i_list;
763
764         while(le16_to_cpu(el->l_tree_depth) > 1) {
765                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
766                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
767                                     "extent list (next_free_rec == 0)",
768                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
769                         status = -EIO;
770                         goto bail;
771                 }
772                 i = le16_to_cpu(el->l_next_free_rec) - 1;
773                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
774                 if (!blkno) {
775                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
776                                     "list where extent # %d has no physical "
777                                     "block start",
778                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
779                         status = -EIO;
780                         goto bail;
781                 }
782
783                 if (bh) {
784                         brelse(bh);
785                         bh = NULL;
786                 }
787
788                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
789                                           inode);
790                 if (status < 0) {
791                         mlog_errno(status);
792                         goto bail;
793                 }
794
795                 eb = (struct ocfs2_extent_block *) bh->b_data;
796                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
797                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
798                         status = -EIO;
799                         goto bail;
800                 }
801                 el = &eb->h_list;
802
803                 if (le16_to_cpu(el->l_next_free_rec) <
804                     le16_to_cpu(el->l_count)) {
805                         if (lowest_bh)
806                                 brelse(lowest_bh);
807                         lowest_bh = bh;
808                         get_bh(lowest_bh);
809                 }
810         }
811
812         /* If we didn't find one and the fe doesn't have any room,
813          * then return '1' */
814         if (!lowest_bh
815             && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
816                 status = 1;
817
818         *target_bh = lowest_bh;
819 bail:
820         if (bh)
821                 brelse(bh);
822
823         mlog_exit(status);
824         return status;
825 }
826
827 /*
828  * Grow a b-tree so that it has more records.
829  *
830  * We might shift the tree depth in which case existing paths should
831  * be considered invalid.
832  *
833  * Tree depth after the grow is returned via *final_depth.
834  */
835 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
836                            struct buffer_head *di_bh, int *final_depth,
837                            struct buffer_head *last_eb_bh,
838                            struct ocfs2_alloc_context *meta_ac)
839 {
840         int ret, shift;
841         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
842         int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
843         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
844         struct buffer_head *bh = NULL;
845
846         BUG_ON(meta_ac == NULL);
847
848         shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
849         if (shift < 0) {
850                 ret = shift;
851                 mlog_errno(ret);
852                 goto out;
853         }
854
855         /* We traveled all the way to the bottom of the allocation tree
856          * and didn't find room for any more extents - we need to add
857          * another tree level */
858         if (shift) {
859                 BUG_ON(bh);
860                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
861
862                 /* ocfs2_shift_tree_depth will return us a buffer with
863                  * the new extent block (so we can pass that to
864                  * ocfs2_add_branch). */
865                 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
866                                              meta_ac, &bh);
867                 if (ret < 0) {
868                         mlog_errno(ret);
869                         goto out;
870                 }
871                 depth++;
872                 /* Special case: we have room now if we shifted from
873                  * tree_depth 0 */
874                 if (depth == 1)
875                         goto out;
876         }
877
878         /* call ocfs2_add_branch to add the final part of the tree with
879          * the new data. */
880         mlog(0, "add branch. bh = %p\n", bh);
881         ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
882                                meta_ac);
883         if (ret < 0) {
884                 mlog_errno(ret);
885                 goto out;
886         }
887
888 out:
889         if (final_depth)
890                 *final_depth = depth;
891         brelse(bh);
892         return ret;
893 }
894
895 /*
896  * This is only valid for leaf nodes, which are the only ones that can
897  * have empty extents anyway.
898  */
899 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
900 {
901         return !rec->e_leaf_clusters;
902 }
903
904 /*
905  * This function will discard the rightmost extent record.
906  */
907 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
908 {
909         int next_free = le16_to_cpu(el->l_next_free_rec);
910         int count = le16_to_cpu(el->l_count);
911         unsigned int num_bytes;
912
913         BUG_ON(!next_free);
914         /* This will cause us to go off the end of our extent list. */
915         BUG_ON(next_free >= count);
916
917         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
918
919         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
920 }
921
922 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
923                               struct ocfs2_extent_rec *insert_rec)
924 {
925         int i, insert_index, next_free, has_empty, num_bytes;
926         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
927         struct ocfs2_extent_rec *rec;
928
929         next_free = le16_to_cpu(el->l_next_free_rec);
930         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
931
932         BUG_ON(!next_free);
933
934         /* The tree code before us didn't allow enough room in the leaf. */
935         if (el->l_next_free_rec == el->l_count && !has_empty)
936                 BUG();
937
938         /*
939          * The easiest way to approach this is to just remove the
940          * empty extent and temporarily decrement next_free.
941          */
942         if (has_empty) {
943                 /*
944                  * If next_free was 1 (only an empty extent), this
945                  * loop won't execute, which is fine. We still want
946                  * the decrement above to happen.
947                  */
948                 for(i = 0; i < (next_free - 1); i++)
949                         el->l_recs[i] = el->l_recs[i+1];
950
951                 next_free--;
952         }
953
954         /*
955          * Figure out what the new record index should be.
956          */
957         for(i = 0; i < next_free; i++) {
958                 rec = &el->l_recs[i];
959
960                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
961                         break;
962         }
963         insert_index = i;
964
965         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
966              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
967
968         BUG_ON(insert_index < 0);
969         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
970         BUG_ON(insert_index > next_free);
971
972         /*
973          * No need to memmove if we're just adding to the tail.
974          */
975         if (insert_index != next_free) {
976                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
977
978                 num_bytes = next_free - insert_index;
979                 num_bytes *= sizeof(struct ocfs2_extent_rec);
980                 memmove(&el->l_recs[insert_index + 1],
981                         &el->l_recs[insert_index],
982                         num_bytes);
983         }
984
985         /*
986          * Either we had an empty extent, and need to re-increment or
987          * there was no empty extent on a non full rightmost leaf node,
988          * in which case we still need to increment.
989          */
990         next_free++;
991         el->l_next_free_rec = cpu_to_le16(next_free);
992         /*
993          * Make sure none of the math above just messed up our tree.
994          */
995         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
996
997         el->l_recs[insert_index] = *insert_rec;
998
999 }
1000
1001 /*
1002  * Create an empty extent record .
1003  *
1004  * l_next_free_rec may be updated.
1005  *
1006  * If an empty extent already exists do nothing.
1007  */
1008 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1009 {
1010         int next_free = le16_to_cpu(el->l_next_free_rec);
1011
1012         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1013
1014         if (next_free == 0)
1015                 goto set_and_inc;
1016
1017         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1018                 return;
1019
1020         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1021                         "Asked to create an empty extent in a full list:\n"
1022                         "count = %u, tree depth = %u",
1023                         le16_to_cpu(el->l_count),
1024                         le16_to_cpu(el->l_tree_depth));
1025
1026         ocfs2_shift_records_right(el);
1027
1028 set_and_inc:
1029         le16_add_cpu(&el->l_next_free_rec, 1);
1030         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1031 }
1032
1033 /*
1034  * For a rotation which involves two leaf nodes, the "root node" is
1035  * the lowest level tree node which contains a path to both leafs. This
1036  * resulting set of information can be used to form a complete "subtree"
1037  *
1038  * This function is passed two full paths from the dinode down to a
1039  * pair of adjacent leaves. It's task is to figure out which path
1040  * index contains the subtree root - this can be the root index itself
1041  * in a worst-case rotation.
1042  *
1043  * The array index of the subtree root is passed back.
1044  */
1045 static int ocfs2_find_subtree_root(struct inode *inode,
1046                                    struct ocfs2_path *left,
1047                                    struct ocfs2_path *right)
1048 {
1049         int i = 0;
1050
1051         /*
1052          * Check that the caller passed in two paths from the same tree.
1053          */
1054         BUG_ON(path_root_bh(left) != path_root_bh(right));
1055
1056         do {
1057                 i++;
1058
1059                 /*
1060                  * The caller didn't pass two adjacent paths.
1061                  */
1062                 mlog_bug_on_msg(i > left->p_tree_depth,
1063                                 "Inode %lu, left depth %u, right depth %u\n"
1064                                 "left leaf blk %llu, right leaf blk %llu\n",
1065                                 inode->i_ino, left->p_tree_depth,
1066                                 right->p_tree_depth,
1067                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1068                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1069         } while (left->p_node[i].bh->b_blocknr ==
1070                  right->p_node[i].bh->b_blocknr);
1071
1072         return i - 1;
1073 }
1074
1075 typedef void (path_insert_t)(void *, struct buffer_head *);
1076
1077 /*
1078  * Traverse a btree path in search of cpos, starting at root_el.
1079  *
1080  * This code can be called with a cpos larger than the tree, in which
1081  * case it will return the rightmost path.
1082  */
1083 static int __ocfs2_find_path(struct inode *inode,
1084                              struct ocfs2_extent_list *root_el, u32 cpos,
1085                              path_insert_t *func, void *data)
1086 {
1087         int i, ret = 0;
1088         u32 range;
1089         u64 blkno;
1090         struct buffer_head *bh = NULL;
1091         struct ocfs2_extent_block *eb;
1092         struct ocfs2_extent_list *el;
1093         struct ocfs2_extent_rec *rec;
1094         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1095
1096         el = root_el;
1097         while (el->l_tree_depth) {
1098                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1099                         ocfs2_error(inode->i_sb,
1100                                     "Inode %llu has empty extent list at "
1101                                     "depth %u\n",
1102                                     (unsigned long long)oi->ip_blkno,
1103                                     le16_to_cpu(el->l_tree_depth));
1104                         ret = -EROFS;
1105                         goto out;
1106
1107                 }
1108
1109                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1110                         rec = &el->l_recs[i];
1111
1112                         /*
1113                          * In the case that cpos is off the allocation
1114                          * tree, this should just wind up returning the
1115                          * rightmost record.
1116                          */
1117                         range = le32_to_cpu(rec->e_cpos) +
1118                                 ocfs2_rec_clusters(el, rec);
1119                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1120                             break;
1121                 }
1122
1123                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1124                 if (blkno == 0) {
1125                         ocfs2_error(inode->i_sb,
1126                                     "Inode %llu has bad blkno in extent list "
1127                                     "at depth %u (index %d)\n",
1128                                     (unsigned long long)oi->ip_blkno,
1129                                     le16_to_cpu(el->l_tree_depth), i);
1130                         ret = -EROFS;
1131                         goto out;
1132                 }
1133
1134                 brelse(bh);
1135                 bh = NULL;
1136                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1137                                        &bh, OCFS2_BH_CACHED, inode);
1138                 if (ret) {
1139                         mlog_errno(ret);
1140                         goto out;
1141                 }
1142
1143                 eb = (struct ocfs2_extent_block *) bh->b_data;
1144                 el = &eb->h_list;
1145                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1146                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1147                         ret = -EIO;
1148                         goto out;
1149                 }
1150
1151                 if (le16_to_cpu(el->l_next_free_rec) >
1152                     le16_to_cpu(el->l_count)) {
1153                         ocfs2_error(inode->i_sb,
1154                                     "Inode %llu has bad count in extent list "
1155                                     "at block %llu (next free=%u, count=%u)\n",
1156                                     (unsigned long long)oi->ip_blkno,
1157                                     (unsigned long long)bh->b_blocknr,
1158                                     le16_to_cpu(el->l_next_free_rec),
1159                                     le16_to_cpu(el->l_count));
1160                         ret = -EROFS;
1161                         goto out;
1162                 }
1163
1164                 if (func)
1165                         func(data, bh);
1166         }
1167
1168 out:
1169         /*
1170          * Catch any trailing bh that the loop didn't handle.
1171          */
1172         brelse(bh);
1173
1174         return ret;
1175 }
1176
1177 /*
1178  * Given an initialized path (that is, it has a valid root extent
1179  * list), this function will traverse the btree in search of the path
1180  * which would contain cpos.
1181  *
1182  * The path traveled is recorded in the path structure.
1183  *
1184  * Note that this will not do any comparisons on leaf node extent
1185  * records, so it will work fine in the case that we just added a tree
1186  * branch.
1187  */
1188 struct find_path_data {
1189         int index;
1190         struct ocfs2_path *path;
1191 };
1192 static void find_path_ins(void *data, struct buffer_head *bh)
1193 {
1194         struct find_path_data *fp = data;
1195
1196         get_bh(bh);
1197         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1198         fp->index++;
1199 }
1200 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1201                            u32 cpos)
1202 {
1203         struct find_path_data data;
1204
1205         data.index = 1;
1206         data.path = path;
1207         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1208                                  find_path_ins, &data);
1209 }
1210
1211 static void find_leaf_ins(void *data, struct buffer_head *bh)
1212 {
1213         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1214         struct ocfs2_extent_list *el = &eb->h_list;
1215         struct buffer_head **ret = data;
1216
1217         /* We want to retain only the leaf block. */
1218         if (le16_to_cpu(el->l_tree_depth) == 0) {
1219                 get_bh(bh);
1220                 *ret = bh;
1221         }
1222 }
1223 /*
1224  * Find the leaf block in the tree which would contain cpos. No
1225  * checking of the actual leaf is done.
1226  *
1227  * Some paths want to call this instead of allocating a path structure
1228  * and calling ocfs2_find_path().
1229  *
1230  * This function doesn't handle non btree extent lists.
1231  */
1232 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1233                     u32 cpos, struct buffer_head **leaf_bh)
1234 {
1235         int ret;
1236         struct buffer_head *bh = NULL;
1237
1238         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1239         if (ret) {
1240                 mlog_errno(ret);
1241                 goto out;
1242         }
1243
1244         *leaf_bh = bh;
1245 out:
1246         return ret;
1247 }
1248
1249 /*
1250  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1251  *
1252  * Basically, we've moved stuff around at the bottom of the tree and
1253  * we need to fix up the extent records above the changes to reflect
1254  * the new changes.
1255  *
1256  * left_rec: the record on the left.
1257  * left_child_el: is the child list pointed to by left_rec
1258  * right_rec: the record to the right of left_rec
1259  * right_child_el: is the child list pointed to by right_rec
1260  *
1261  * By definition, this only works on interior nodes.
1262  */
1263 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1264                                   struct ocfs2_extent_list *left_child_el,
1265                                   struct ocfs2_extent_rec *right_rec,
1266                                   struct ocfs2_extent_list *right_child_el)
1267 {
1268         u32 left_clusters, right_end;
1269
1270         /*
1271          * Interior nodes never have holes. Their cpos is the cpos of
1272          * the leftmost record in their child list. Their cluster
1273          * count covers the full theoretical range of their child list
1274          * - the range between their cpos and the cpos of the record
1275          * immediately to their right.
1276          */
1277         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1278         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1279         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1280
1281         /*
1282          * Calculate the rightmost cluster count boundary before
1283          * moving cpos - we will need to adjust clusters after
1284          * updating e_cpos to keep the same highest cluster count.
1285          */
1286         right_end = le32_to_cpu(right_rec->e_cpos);
1287         right_end += le32_to_cpu(right_rec->e_int_clusters);
1288
1289         right_rec->e_cpos = left_rec->e_cpos;
1290         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1291
1292         right_end -= le32_to_cpu(right_rec->e_cpos);
1293         right_rec->e_int_clusters = cpu_to_le32(right_end);
1294 }
1295
1296 /*
1297  * Adjust the adjacent root node records involved in a
1298  * rotation. left_el_blkno is passed in as a key so that we can easily
1299  * find it's index in the root list.
1300  */
1301 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1302                                       struct ocfs2_extent_list *left_el,
1303                                       struct ocfs2_extent_list *right_el,
1304                                       u64 left_el_blkno)
1305 {
1306         int i;
1307
1308         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1309                le16_to_cpu(left_el->l_tree_depth));
1310
1311         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1312                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1313                         break;
1314         }
1315
1316         /*
1317          * The path walking code should have never returned a root and
1318          * two paths which are not adjacent.
1319          */
1320         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1321
1322         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1323                                       &root_el->l_recs[i + 1], right_el);
1324 }
1325
1326 /*
1327  * We've changed a leaf block (in right_path) and need to reflect that
1328  * change back up the subtree.
1329  *
1330  * This happens in multiple places:
1331  *   - When we've moved an extent record from the left path leaf to the right
1332  *     path leaf to make room for an empty extent in the left path leaf.
1333  *   - When our insert into the right path leaf is at the leftmost edge
1334  *     and requires an update of the path immediately to it's left. This
1335  *     can occur at the end of some types of rotation and appending inserts.
1336  */
1337 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1338                                        struct ocfs2_path *left_path,
1339                                        struct ocfs2_path *right_path,
1340                                        int subtree_index)
1341 {
1342         int ret, i, idx;
1343         struct ocfs2_extent_list *el, *left_el, *right_el;
1344         struct ocfs2_extent_rec *left_rec, *right_rec;
1345         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1346
1347         /*
1348          * Update the counts and position values within all the
1349          * interior nodes to reflect the leaf rotation we just did.
1350          *
1351          * The root node is handled below the loop.
1352          *
1353          * We begin the loop with right_el and left_el pointing to the
1354          * leaf lists and work our way up.
1355          *
1356          * NOTE: within this loop, left_el and right_el always refer
1357          * to the *child* lists.
1358          */
1359         left_el = path_leaf_el(left_path);
1360         right_el = path_leaf_el(right_path);
1361         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1362                 mlog(0, "Adjust records at index %u\n", i);
1363
1364                 /*
1365                  * One nice property of knowing that all of these
1366                  * nodes are below the root is that we only deal with
1367                  * the leftmost right node record and the rightmost
1368                  * left node record.
1369                  */
1370                 el = left_path->p_node[i].el;
1371                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1372                 left_rec = &el->l_recs[idx];
1373
1374                 el = right_path->p_node[i].el;
1375                 right_rec = &el->l_recs[0];
1376
1377                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1378                                               right_el);
1379
1380                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1381                 if (ret)
1382                         mlog_errno(ret);
1383
1384                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1385                 if (ret)
1386                         mlog_errno(ret);
1387
1388                 /*
1389                  * Setup our list pointers now so that the current
1390                  * parents become children in the next iteration.
1391                  */
1392                 left_el = left_path->p_node[i].el;
1393                 right_el = right_path->p_node[i].el;
1394         }
1395
1396         /*
1397          * At the root node, adjust the two adjacent records which
1398          * begin our path to the leaves.
1399          */
1400
1401         el = left_path->p_node[subtree_index].el;
1402         left_el = left_path->p_node[subtree_index + 1].el;
1403         right_el = right_path->p_node[subtree_index + 1].el;
1404
1405         ocfs2_adjust_root_records(el, left_el, right_el,
1406                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1407
1408         root_bh = left_path->p_node[subtree_index].bh;
1409
1410         ret = ocfs2_journal_dirty(handle, root_bh);
1411         if (ret)
1412                 mlog_errno(ret);
1413 }
1414
1415 static int ocfs2_rotate_subtree_right(struct inode *inode,
1416                                       handle_t *handle,
1417                                       struct ocfs2_path *left_path,
1418                                       struct ocfs2_path *right_path,
1419                                       int subtree_index)
1420 {
1421         int ret, i;
1422         struct buffer_head *right_leaf_bh;
1423         struct buffer_head *left_leaf_bh = NULL;
1424         struct buffer_head *root_bh;
1425         struct ocfs2_extent_list *right_el, *left_el;
1426         struct ocfs2_extent_rec move_rec;
1427
1428         left_leaf_bh = path_leaf_bh(left_path);
1429         left_el = path_leaf_el(left_path);
1430
1431         if (left_el->l_next_free_rec != left_el->l_count) {
1432                 ocfs2_error(inode->i_sb,
1433                             "Inode %llu has non-full interior leaf node %llu"
1434                             "(next free = %u)",
1435                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1436                             (unsigned long long)left_leaf_bh->b_blocknr,
1437                             le16_to_cpu(left_el->l_next_free_rec));
1438                 return -EROFS;
1439         }
1440
1441         /*
1442          * This extent block may already have an empty record, so we
1443          * return early if so.
1444          */
1445         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1446                 return 0;
1447
1448         root_bh = left_path->p_node[subtree_index].bh;
1449         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1450
1451         ret = ocfs2_journal_access(handle, inode, root_bh,
1452                                    OCFS2_JOURNAL_ACCESS_WRITE);
1453         if (ret) {
1454                 mlog_errno(ret);
1455                 goto out;
1456         }
1457
1458         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1459                 ret = ocfs2_journal_access(handle, inode,
1460                                            right_path->p_node[i].bh,
1461                                            OCFS2_JOURNAL_ACCESS_WRITE);
1462                 if (ret) {
1463                         mlog_errno(ret);
1464                         goto out;
1465                 }
1466
1467                 ret = ocfs2_journal_access(handle, inode,
1468                                            left_path->p_node[i].bh,
1469                                            OCFS2_JOURNAL_ACCESS_WRITE);
1470                 if (ret) {
1471                         mlog_errno(ret);
1472                         goto out;
1473                 }
1474         }
1475
1476         right_leaf_bh = path_leaf_bh(right_path);
1477         right_el = path_leaf_el(right_path);
1478
1479         /* This is a code error, not a disk corruption. */
1480         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1481                         "because rightmost leaf block %llu is empty\n",
1482                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1483                         (unsigned long long)right_leaf_bh->b_blocknr);
1484
1485         ocfs2_create_empty_extent(right_el);
1486
1487         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1488         if (ret) {
1489                 mlog_errno(ret);
1490                 goto out;
1491         }
1492
1493         /* Do the copy now. */
1494         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1495         move_rec = left_el->l_recs[i];
1496         right_el->l_recs[0] = move_rec;
1497
1498         /*
1499          * Clear out the record we just copied and shift everything
1500          * over, leaving an empty extent in the left leaf.
1501          *
1502          * We temporarily subtract from next_free_rec so that the
1503          * shift will lose the tail record (which is now defunct).
1504          */
1505         le16_add_cpu(&left_el->l_next_free_rec, -1);
1506         ocfs2_shift_records_right(left_el);
1507         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1508         le16_add_cpu(&left_el->l_next_free_rec, 1);
1509
1510         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1511         if (ret) {
1512                 mlog_errno(ret);
1513                 goto out;
1514         }
1515
1516         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1517                                 subtree_index);
1518
1519 out:
1520         return ret;
1521 }
1522
1523 /*
1524  * Given a full path, determine what cpos value would return us a path
1525  * containing the leaf immediately to the left of the current one.
1526  *
1527  * Will return zero if the path passed in is already the leftmost path.
1528  */
1529 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1530                                          struct ocfs2_path *path, u32 *cpos)
1531 {
1532         int i, j, ret = 0;
1533         u64 blkno;
1534         struct ocfs2_extent_list *el;
1535
1536         BUG_ON(path->p_tree_depth == 0);
1537
1538         *cpos = 0;
1539
1540         blkno = path_leaf_bh(path)->b_blocknr;
1541
1542         /* Start at the tree node just above the leaf and work our way up. */
1543         i = path->p_tree_depth - 1;
1544         while (i >= 0) {
1545                 el = path->p_node[i].el;
1546
1547                 /*
1548                  * Find the extent record just before the one in our
1549                  * path.
1550                  */
1551                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1552                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1553                                 if (j == 0) {
1554                                         if (i == 0) {
1555                                                 /*
1556                                                  * We've determined that the
1557                                                  * path specified is already
1558                                                  * the leftmost one - return a
1559                                                  * cpos of zero.
1560                                                  */
1561                                                 goto out;
1562                                         }
1563                                         /*
1564                                          * The leftmost record points to our
1565                                          * leaf - we need to travel up the
1566                                          * tree one level.
1567                                          */
1568                                         goto next_node;
1569                                 }
1570
1571                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1572                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1573                                                            &el->l_recs[j - 1]);
1574                                 *cpos = *cpos - 1;
1575                                 goto out;
1576                         }
1577                 }
1578
1579                 /*
1580                  * If we got here, we never found a valid node where
1581                  * the tree indicated one should be.
1582                  */
1583                 ocfs2_error(sb,
1584                             "Invalid extent tree at extent block %llu\n",
1585                             (unsigned long long)blkno);
1586                 ret = -EROFS;
1587                 goto out;
1588
1589 next_node:
1590                 blkno = path->p_node[i].bh->b_blocknr;
1591                 i--;
1592         }
1593
1594 out:
1595         return ret;
1596 }
1597
1598 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1599                                            struct ocfs2_path *path)
1600 {
1601         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1;
1602
1603         if (handle->h_buffer_credits < credits)
1604                 return ocfs2_extend_trans(handle, credits);
1605
1606         return 0;
1607 }
1608
1609 /*
1610  * Trap the case where we're inserting into the theoretical range past
1611  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1612  * whose cpos is less than ours into the right leaf.
1613  *
1614  * It's only necessary to look at the rightmost record of the left
1615  * leaf because the logic that calls us should ensure that the
1616  * theoretical ranges in the path components above the leaves are
1617  * correct.
1618  */
1619 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1620                                                  u32 insert_cpos)
1621 {
1622         struct ocfs2_extent_list *left_el;
1623         struct ocfs2_extent_rec *rec;
1624         int next_free;
1625
1626         left_el = path_leaf_el(left_path);
1627         next_free = le16_to_cpu(left_el->l_next_free_rec);
1628         rec = &left_el->l_recs[next_free - 1];
1629
1630         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1631                 return 1;
1632         return 0;
1633 }
1634
1635 /*
1636  * Rotate all the records in a btree right one record, starting at insert_cpos.
1637  *
1638  * The path to the rightmost leaf should be passed in.
1639  *
1640  * The array is assumed to be large enough to hold an entire path (tree depth).
1641  *
1642  * Upon succesful return from this function:
1643  *
1644  * - The 'right_path' array will contain a path to the leaf block
1645  *   whose range contains e_cpos.
1646  * - That leaf block will have a single empty extent in list index 0.
1647  * - In the case that the rotation requires a post-insert update,
1648  *   *ret_left_path will contain a valid path which can be passed to
1649  *   ocfs2_insert_path().
1650  */
1651 static int ocfs2_rotate_tree_right(struct inode *inode,
1652                                    handle_t *handle,
1653                                    u32 insert_cpos,
1654                                    struct ocfs2_path *right_path,
1655                                    struct ocfs2_path **ret_left_path)
1656 {
1657         int ret, start;
1658         u32 cpos;
1659         struct ocfs2_path *left_path = NULL;
1660
1661         *ret_left_path = NULL;
1662
1663         left_path = ocfs2_new_path(path_root_bh(right_path),
1664                                    path_root_el(right_path));
1665         if (!left_path) {
1666                 ret = -ENOMEM;
1667                 mlog_errno(ret);
1668                 goto out;
1669         }
1670
1671         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1672         if (ret) {
1673                 mlog_errno(ret);
1674                 goto out;
1675         }
1676
1677         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1678
1679         /*
1680          * What we want to do here is:
1681          *
1682          * 1) Start with the rightmost path.
1683          *
1684          * 2) Determine a path to the leaf block directly to the left
1685          *    of that leaf.
1686          *
1687          * 3) Determine the 'subtree root' - the lowest level tree node
1688          *    which contains a path to both leaves.
1689          *
1690          * 4) Rotate the subtree.
1691          *
1692          * 5) Find the next subtree by considering the left path to be
1693          *    the new right path.
1694          *
1695          * The check at the top of this while loop also accepts
1696          * insert_cpos == cpos because cpos is only a _theoretical_
1697          * value to get us the left path - insert_cpos might very well
1698          * be filling that hole.
1699          *
1700          * Stop at a cpos of '0' because we either started at the
1701          * leftmost branch (i.e., a tree with one branch and a
1702          * rotation inside of it), or we've gone as far as we can in
1703          * rotating subtrees.
1704          */
1705         while (cpos && insert_cpos <= cpos) {
1706                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1707                      insert_cpos, cpos);
1708
1709                 ret = ocfs2_find_path(inode, left_path, cpos);
1710                 if (ret) {
1711                         mlog_errno(ret);
1712                         goto out;
1713                 }
1714
1715                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1716                                 path_leaf_bh(right_path),
1717                                 "Inode %lu: error during insert of %u "
1718                                 "(left path cpos %u) results in two identical "
1719                                 "paths ending at %llu\n",
1720                                 inode->i_ino, insert_cpos, cpos,
1721                                 (unsigned long long)
1722                                 path_leaf_bh(left_path)->b_blocknr);
1723
1724                 if (ocfs2_rotate_requires_path_adjustment(left_path,
1725                                                           insert_cpos)) {
1726                         mlog(0, "Path adjustment required\n");
1727
1728                         /*
1729                          * We've rotated the tree as much as we
1730                          * should. The rest is up to
1731                          * ocfs2_insert_path() to complete, after the
1732                          * record insertion. We indicate this
1733                          * situation by returning the left path.
1734                          *
1735                          * The reason we don't adjust the records here
1736                          * before the record insert is that an error
1737                          * later might break the rule where a parent
1738                          * record e_cpos will reflect the actual
1739                          * e_cpos of the 1st nonempty record of the
1740                          * child list.
1741                          */
1742                         *ret_left_path = left_path;
1743                         goto out_ret_path;
1744                 }
1745
1746                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1747
1748                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1749                      start,
1750                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1751                      right_path->p_tree_depth);
1752
1753                 ret = ocfs2_extend_rotate_transaction(handle, start,
1754                                                       right_path);
1755                 if (ret) {
1756                         mlog_errno(ret);
1757                         goto out;
1758                 }
1759
1760                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1761                                                  right_path, start);
1762                 if (ret) {
1763                         mlog_errno(ret);
1764                         goto out;
1765                 }
1766
1767                 /*
1768                  * There is no need to re-read the next right path
1769                  * as we know that it'll be our current left
1770                  * path. Optimize by copying values instead.
1771                  */
1772                 ocfs2_mv_path(right_path, left_path);
1773
1774                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1775                                                     &cpos);
1776                 if (ret) {
1777                         mlog_errno(ret);
1778                         goto out;
1779                 }
1780         }
1781
1782 out:
1783         ocfs2_free_path(left_path);
1784
1785 out_ret_path:
1786         return ret;
1787 }
1788
1789 /*
1790  * Do the final bits of extent record insertion at the target leaf
1791  * list. If this leaf is part of an allocation tree, it is assumed
1792  * that the tree above has been prepared.
1793  */
1794 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
1795                                  struct ocfs2_extent_list *el,
1796                                  struct ocfs2_insert_type *insert,
1797                                  struct inode *inode)
1798 {
1799         int i = insert->ins_contig_index;
1800         unsigned int range;
1801         struct ocfs2_extent_rec *rec;
1802
1803         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1804
1805         /*
1806          * Contiguous insert - either left or right.
1807          */
1808         if (insert->ins_contig != CONTIG_NONE) {
1809                 rec = &el->l_recs[i];
1810                 if (insert->ins_contig == CONTIG_LEFT) {
1811                         rec->e_blkno = insert_rec->e_blkno;
1812                         rec->e_cpos = insert_rec->e_cpos;
1813                 }
1814                 le16_add_cpu(&rec->e_leaf_clusters,
1815                              le16_to_cpu(insert_rec->e_leaf_clusters));
1816                 return;
1817         }
1818
1819         /*
1820          * Handle insert into an empty leaf.
1821          */
1822         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
1823             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
1824              ocfs2_is_empty_extent(&el->l_recs[0]))) {
1825                 el->l_recs[0] = *insert_rec;
1826                 el->l_next_free_rec = cpu_to_le16(1);
1827                 return;
1828         }
1829
1830         /*
1831          * Appending insert.
1832          */
1833         if (insert->ins_appending == APPEND_TAIL) {
1834                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1835                 rec = &el->l_recs[i];
1836                 range = le32_to_cpu(rec->e_cpos)
1837                         + le16_to_cpu(rec->e_leaf_clusters);
1838                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
1839
1840                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
1841                                 le16_to_cpu(el->l_count),
1842                                 "inode %lu, depth %u, count %u, next free %u, "
1843                                 "rec.cpos %u, rec.clusters %u, "
1844                                 "insert.cpos %u, insert.clusters %u\n",
1845                                 inode->i_ino,
1846                                 le16_to_cpu(el->l_tree_depth),
1847                                 le16_to_cpu(el->l_count),
1848                                 le16_to_cpu(el->l_next_free_rec),
1849                                 le32_to_cpu(el->l_recs[i].e_cpos),
1850                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
1851                                 le32_to_cpu(insert_rec->e_cpos),
1852                                 le16_to_cpu(insert_rec->e_leaf_clusters));
1853                 i++;
1854                 el->l_recs[i] = *insert_rec;
1855                 le16_add_cpu(&el->l_next_free_rec, 1);
1856                 return;
1857         }
1858
1859         /*
1860          * Ok, we have to rotate.
1861          *
1862          * At this point, it is safe to assume that inserting into an
1863          * empty leaf and appending to a leaf have both been handled
1864          * above.
1865          *
1866          * This leaf needs to have space, either by the empty 1st
1867          * extent record, or by virtue of an l_next_rec < l_count.
1868          */
1869         ocfs2_rotate_leaf(el, insert_rec);
1870 }
1871
1872 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
1873                                                 struct ocfs2_dinode *di,
1874                                                 u32 clusters)
1875 {
1876         le32_add_cpu(&di->i_clusters, clusters);
1877         spin_lock(&OCFS2_I(inode)->ip_lock);
1878         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
1879         spin_unlock(&OCFS2_I(inode)->ip_lock);
1880 }
1881
1882 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
1883                                     struct ocfs2_extent_rec *insert_rec,
1884                                     struct ocfs2_path *right_path,
1885                                     struct ocfs2_path **ret_left_path)
1886 {
1887         int ret, i, next_free;
1888         struct buffer_head *bh;
1889         struct ocfs2_extent_list *el;
1890         struct ocfs2_path *left_path = NULL;
1891
1892         *ret_left_path = NULL;
1893
1894         /*
1895          * This shouldn't happen for non-trees. The extent rec cluster
1896          * count manipulation below only works for interior nodes.
1897          */
1898         BUG_ON(right_path->p_tree_depth == 0);
1899
1900         /*
1901          * If our appending insert is at the leftmost edge of a leaf,
1902          * then we might need to update the rightmost records of the
1903          * neighboring path.
1904          */
1905         el = path_leaf_el(right_path);
1906         next_free = le16_to_cpu(el->l_next_free_rec);
1907         if (next_free == 0 ||
1908             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
1909                 u32 left_cpos;
1910
1911                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1912                                                     &left_cpos);
1913                 if (ret) {
1914                         mlog_errno(ret);
1915                         goto out;
1916                 }
1917
1918                 mlog(0, "Append may need a left path update. cpos: %u, "
1919                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
1920                      left_cpos);
1921
1922                 /*
1923                  * No need to worry if the append is already in the
1924                  * leftmost leaf.
1925                  */
1926                 if (left_cpos) {
1927                         left_path = ocfs2_new_path(path_root_bh(right_path),
1928                                                    path_root_el(right_path));
1929                         if (!left_path) {
1930                                 ret = -ENOMEM;
1931                                 mlog_errno(ret);
1932                                 goto out;
1933                         }
1934
1935                         ret = ocfs2_find_path(inode, left_path, left_cpos);
1936                         if (ret) {
1937                                 mlog_errno(ret);
1938                                 goto out;
1939                         }
1940
1941                         /*
1942                          * ocfs2_insert_path() will pass the left_path to the
1943                          * journal for us.
1944                          */
1945                 }
1946         }
1947
1948         ret = ocfs2_journal_access_path(inode, handle, right_path);
1949         if (ret) {
1950                 mlog_errno(ret);
1951                 goto out;
1952         }
1953
1954         el = path_root_el(right_path);
1955         bh = path_root_bh(right_path);
1956         i = 0;
1957         while (1) {
1958                 struct ocfs2_extent_rec *rec;
1959
1960                 next_free = le16_to_cpu(el->l_next_free_rec);
1961                 if (next_free == 0) {
1962                         ocfs2_error(inode->i_sb,
1963                                     "Dinode %llu has a bad extent list",
1964                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1965                         ret = -EIO;
1966                         goto out;
1967                 }
1968
1969                 rec = &el->l_recs[next_free - 1];
1970
1971                 rec->e_int_clusters = insert_rec->e_cpos;
1972                 le32_add_cpu(&rec->e_int_clusters,
1973                              le16_to_cpu(insert_rec->e_leaf_clusters));
1974                 le32_add_cpu(&rec->e_int_clusters,
1975                              -le32_to_cpu(rec->e_cpos));
1976
1977                 ret = ocfs2_journal_dirty(handle, bh);
1978                 if (ret)
1979                         mlog_errno(ret);
1980
1981                 /* Don't touch the leaf node */
1982                 if (++i >= right_path->p_tree_depth)
1983                         break;
1984
1985                 bh = right_path->p_node[i].bh;
1986                 el = right_path->p_node[i].el;
1987         }
1988
1989         *ret_left_path = left_path;
1990         ret = 0;
1991 out:
1992         if (ret != 0)
1993                 ocfs2_free_path(left_path);
1994
1995         return ret;
1996 }
1997
1998 /*
1999  * This function only does inserts on an allocation b-tree. For dinode
2000  * lists, ocfs2_insert_at_leaf() is called directly.
2001  *
2002  * right_path is the path we want to do the actual insert
2003  * in. left_path should only be passed in if we need to update that
2004  * portion of the tree after an edge insert.
2005  */
2006 static int ocfs2_insert_path(struct inode *inode,
2007                              handle_t *handle,
2008                              struct ocfs2_path *left_path,
2009                              struct ocfs2_path *right_path,
2010                              struct ocfs2_extent_rec *insert_rec,
2011                              struct ocfs2_insert_type *insert)
2012 {
2013         int ret, subtree_index;
2014         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
2015         struct ocfs2_extent_list *el;
2016
2017         /*
2018          * Pass both paths to the journal. The majority of inserts
2019          * will be touching all components anyway.
2020          */
2021         ret = ocfs2_journal_access_path(inode, handle, right_path);
2022         if (ret < 0) {
2023                 mlog_errno(ret);
2024                 goto out;
2025         }
2026
2027         if (left_path) {
2028                 int credits = handle->h_buffer_credits;
2029
2030                 /*
2031                  * There's a chance that left_path got passed back to
2032                  * us without being accounted for in the
2033                  * journal. Extend our transaction here to be sure we
2034                  * can change those blocks.
2035                  */
2036                 credits += left_path->p_tree_depth;
2037
2038                 ret = ocfs2_extend_trans(handle, credits);
2039                 if (ret < 0) {
2040                         mlog_errno(ret);
2041                         goto out;
2042                 }
2043
2044                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2045                 if (ret < 0) {
2046                         mlog_errno(ret);
2047                         goto out;
2048                 }
2049         }
2050
2051         el = path_leaf_el(right_path);
2052
2053         ocfs2_insert_at_leaf(insert_rec, el, insert, inode);
2054         ret = ocfs2_journal_dirty(handle, leaf_bh);
2055         if (ret)
2056                 mlog_errno(ret);
2057
2058         if (left_path) {
2059                 /*
2060                  * The rotate code has indicated that we need to fix
2061                  * up portions of the tree after the insert.
2062                  *
2063                  * XXX: Should we extend the transaction here?
2064                  */
2065                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
2066                                                         right_path);
2067                 ocfs2_complete_edge_insert(inode, handle, left_path,
2068                                            right_path, subtree_index);
2069         }
2070
2071         ret = 0;
2072 out:
2073         return ret;
2074 }
2075
2076 static int ocfs2_do_insert_extent(struct inode *inode,
2077                                   handle_t *handle,
2078                                   struct buffer_head *di_bh,
2079                                   struct ocfs2_extent_rec *insert_rec,
2080                                   struct ocfs2_insert_type *type)
2081 {
2082         int ret, rotate = 0;
2083         u32 cpos;
2084         struct ocfs2_path *right_path = NULL;
2085         struct ocfs2_path *left_path = NULL;
2086         struct ocfs2_dinode *di;
2087         struct ocfs2_extent_list *el;
2088
2089         di = (struct ocfs2_dinode *) di_bh->b_data;
2090         el = &di->id2.i_list;
2091
2092         ret = ocfs2_journal_access(handle, inode, di_bh,
2093                                    OCFS2_JOURNAL_ACCESS_WRITE);
2094         if (ret) {
2095                 mlog_errno(ret);
2096                 goto out;
2097         }
2098
2099         if (le16_to_cpu(el->l_tree_depth) == 0) {
2100                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
2101                 goto out_update_clusters;
2102         }
2103
2104         right_path = ocfs2_new_inode_path(di_bh);
2105         if (!right_path) {
2106                 ret = -ENOMEM;
2107                 mlog_errno(ret);
2108                 goto out;
2109         }
2110
2111         /*
2112          * Determine the path to start with. Rotations need the
2113          * rightmost path, everything else can go directly to the
2114          * target leaf.
2115          */
2116         cpos = le32_to_cpu(insert_rec->e_cpos);
2117         if (type->ins_appending == APPEND_NONE &&
2118             type->ins_contig == CONTIG_NONE) {
2119                 rotate = 1;
2120                 cpos = UINT_MAX;
2121         }
2122
2123         ret = ocfs2_find_path(inode, right_path, cpos);
2124         if (ret) {
2125                 mlog_errno(ret);
2126                 goto out;
2127         }
2128
2129         /*
2130          * Rotations and appends need special treatment - they modify
2131          * parts of the tree's above them.
2132          *
2133          * Both might pass back a path immediate to the left of the
2134          * one being inserted to. This will be cause
2135          * ocfs2_insert_path() to modify the rightmost records of
2136          * left_path to account for an edge insert.
2137          *
2138          * XXX: When modifying this code, keep in mind that an insert
2139          * can wind up skipping both of these two special cases...
2140          */
2141         if (rotate) {
2142                 ret = ocfs2_rotate_tree_right(inode, handle,
2143                                               le32_to_cpu(insert_rec->e_cpos),
2144                                               right_path, &left_path);
2145                 if (ret) {
2146                         mlog_errno(ret);
2147                         goto out;
2148                 }
2149         } else if (type->ins_appending == APPEND_TAIL
2150                    && type->ins_contig != CONTIG_LEFT) {
2151                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
2152                                                right_path, &left_path);
2153                 if (ret) {
2154                         mlog_errno(ret);
2155                         goto out;
2156                 }
2157         }
2158
2159         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
2160                                 insert_rec, type);
2161         if (ret) {
2162                 mlog_errno(ret);
2163                 goto out;
2164         }
2165
2166 out_update_clusters:
2167         ocfs2_update_dinode_clusters(inode, di,
2168                                      le16_to_cpu(insert_rec->e_leaf_clusters));
2169
2170         ret = ocfs2_journal_dirty(handle, di_bh);
2171         if (ret)
2172                 mlog_errno(ret);
2173
2174 out:
2175         ocfs2_free_path(left_path);
2176         ocfs2_free_path(right_path);
2177
2178         return ret;
2179 }
2180
2181 static void ocfs2_figure_contig_type(struct inode *inode,
2182                                      struct ocfs2_insert_type *insert,
2183                                      struct ocfs2_extent_list *el,
2184                                      struct ocfs2_extent_rec *insert_rec)
2185 {
2186         int i;
2187         enum ocfs2_contig_type contig_type = CONTIG_NONE;
2188
2189         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2190
2191         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
2192                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
2193                                                   insert_rec);
2194                 if (contig_type != CONTIG_NONE) {
2195                         insert->ins_contig_index = i;
2196                         break;
2197                 }
2198         }
2199         insert->ins_contig = contig_type;
2200 }
2201
2202 /*
2203  * This should only be called against the righmost leaf extent list.
2204  *
2205  * ocfs2_figure_appending_type() will figure out whether we'll have to
2206  * insert at the tail of the rightmost leaf.
2207  *
2208  * This should also work against the dinode list for tree's with 0
2209  * depth. If we consider the dinode list to be the rightmost leaf node
2210  * then the logic here makes sense.
2211  */
2212 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
2213                                         struct ocfs2_extent_list *el,
2214                                         struct ocfs2_extent_rec *insert_rec)
2215 {
2216         int i;
2217         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
2218         struct ocfs2_extent_rec *rec;
2219
2220         insert->ins_appending = APPEND_NONE;
2221
2222         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2223
2224         if (!el->l_next_free_rec)
2225                 goto set_tail_append;
2226
2227         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
2228                 /* Were all records empty? */
2229                 if (le16_to_cpu(el->l_next_free_rec) == 1)
2230                         goto set_tail_append;
2231         }
2232
2233         i = le16_to_cpu(el->l_next_free_rec) - 1;
2234         rec = &el->l_recs[i];
2235
2236         if (cpos >=
2237             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
2238                 goto set_tail_append;
2239
2240         return;
2241
2242 set_tail_append:
2243         insert->ins_appending = APPEND_TAIL;
2244 }
2245
2246 /*
2247  * Helper function called at the begining of an insert.
2248  *
2249  * This computes a few things that are commonly used in the process of
2250  * inserting into the btree:
2251  *   - Whether the new extent is contiguous with an existing one.
2252  *   - The current tree depth.
2253  *   - Whether the insert is an appending one.
2254  *   - The total # of free records in the tree.
2255  *
2256  * All of the information is stored on the ocfs2_insert_type
2257  * structure.
2258  */
2259 static int ocfs2_figure_insert_type(struct inode *inode,
2260                                     struct buffer_head *di_bh,
2261                                     struct buffer_head **last_eb_bh,
2262                                     struct ocfs2_extent_rec *insert_rec,
2263                                     struct ocfs2_insert_type *insert)
2264 {
2265         int ret;
2266         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2267         struct ocfs2_extent_block *eb;
2268         struct ocfs2_extent_list *el;
2269         struct ocfs2_path *path = NULL;
2270         struct buffer_head *bh = NULL;
2271
2272         el = &di->id2.i_list;
2273         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
2274
2275         if (el->l_tree_depth) {
2276                 /*
2277                  * If we have tree depth, we read in the
2278                  * rightmost extent block ahead of time as
2279                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
2280                  * may want it later.
2281                  */
2282                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
2283                                        le64_to_cpu(di->i_last_eb_blk), &bh,
2284                                        OCFS2_BH_CACHED, inode);
2285                 if (ret) {
2286                         mlog_exit(ret);
2287                         goto out;
2288                 }
2289                 eb = (struct ocfs2_extent_block *) bh->b_data;
2290                 el = &eb->h_list;
2291         }
2292
2293         /*
2294          * Unless we have a contiguous insert, we'll need to know if
2295          * there is room left in our allocation tree for another
2296          * extent record.
2297          *
2298          * XXX: This test is simplistic, we can search for empty
2299          * extent records too.
2300          */
2301         insert->ins_free_records = le16_to_cpu(el->l_count) -
2302                 le16_to_cpu(el->l_next_free_rec);
2303
2304         if (!insert->ins_tree_depth) {
2305                 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
2306                 ocfs2_figure_appending_type(insert, el, insert_rec);
2307                 return 0;
2308         }
2309
2310         path = ocfs2_new_inode_path(di_bh);
2311         if (!path) {
2312                 ret = -ENOMEM;
2313                 mlog_errno(ret);
2314                 goto out;
2315         }
2316
2317         /*
2318          * In the case that we're inserting past what the tree
2319          * currently accounts for, ocfs2_find_path() will return for
2320          * us the rightmost tree path. This is accounted for below in
2321          * the appending code.
2322          */
2323         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
2324         if (ret) {
2325                 mlog_errno(ret);
2326                 goto out;
2327         }
2328
2329         el = path_leaf_el(path);
2330
2331         /*
2332          * Now that we have the path, there's two things we want to determine:
2333          * 1) Contiguousness (also set contig_index if this is so)
2334          *
2335          * 2) Are we doing an append? We can trivially break this up
2336          *     into two types of appends: simple record append, or a
2337          *     rotate inside the tail leaf.
2338          */
2339         ocfs2_figure_contig_type(inode, insert, el, insert_rec);
2340
2341         /*
2342          * The insert code isn't quite ready to deal with all cases of
2343          * left contiguousness. Specifically, if it's an insert into
2344          * the 1st record in a leaf, it will require the adjustment of
2345          * cluster count on the last record of the path directly to it's
2346          * left. For now, just catch that case and fool the layers
2347          * above us. This works just fine for tree_depth == 0, which
2348          * is why we allow that above.
2349          */
2350         if (insert->ins_contig == CONTIG_LEFT &&
2351             insert->ins_contig_index == 0)
2352                 insert->ins_contig = CONTIG_NONE;
2353
2354         /*
2355          * Ok, so we can simply compare against last_eb to figure out
2356          * whether the path doesn't exist. This will only happen in
2357          * the case that we're doing a tail append, so maybe we can
2358          * take advantage of that information somehow.
2359          */
2360         if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
2361                 /*
2362                  * Ok, ocfs2_find_path() returned us the rightmost
2363                  * tree path. This might be an appending insert. There are
2364                  * two cases:
2365                  *    1) We're doing a true append at the tail:
2366                  *      -This might even be off the end of the leaf
2367                  *    2) We're "appending" by rotating in the tail
2368                  */
2369                 ocfs2_figure_appending_type(insert, el, insert_rec);
2370         }
2371
2372 out:
2373         ocfs2_free_path(path);
2374
2375         if (ret == 0)
2376                 *last_eb_bh = bh;
2377         else
2378                 brelse(bh);
2379         return ret;
2380 }
2381
2382 /*
2383  * Insert an extent into an inode btree.
2384  *
2385  * The caller needs to update fe->i_clusters
2386  */
2387 int ocfs2_insert_extent(struct ocfs2_super *osb,
2388                         handle_t *handle,
2389                         struct inode *inode,
2390                         struct buffer_head *fe_bh,
2391                         u32 cpos,
2392                         u64 start_blk,
2393                         u32 new_clusters,
2394                         struct ocfs2_alloc_context *meta_ac)
2395 {
2396         int status;
2397         struct buffer_head *last_eb_bh = NULL;
2398         struct buffer_head *bh = NULL;
2399         struct ocfs2_insert_type insert = {0, };
2400         struct ocfs2_extent_rec rec;
2401
2402         mlog(0, "add %u clusters at position %u to inode %llu\n",
2403              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
2404
2405         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
2406                         (OCFS2_I(inode)->ip_clusters != cpos),
2407                         "Device %s, asking for sparse allocation: inode %llu, "
2408                         "cpos %u, clusters %u\n",
2409                         osb->dev_str,
2410                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
2411                         OCFS2_I(inode)->ip_clusters);
2412
2413         memset(&rec, 0, sizeof(rec));
2414         rec.e_cpos = cpu_to_le32(cpos);
2415         rec.e_blkno = cpu_to_le64(start_blk);
2416         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
2417
2418         status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
2419                                           &insert);
2420         if (status < 0) {
2421                 mlog_errno(status);
2422                 goto bail;
2423         }
2424
2425         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
2426              "Insert.contig_index: %d, Insert.free_records: %d, "
2427              "Insert.tree_depth: %d\n",
2428              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
2429              insert.ins_free_records, insert.ins_tree_depth);
2430
2431         if (insert.ins_contig == CONTIG_NONE && insert.ins_free_records == 0) {
2432                 status = ocfs2_grow_tree(inode, handle, fe_bh,
2433                                          &insert.ins_tree_depth, last_eb_bh,
2434                                          meta_ac);
2435                 if (status) {
2436                         mlog_errno(status);
2437                         goto bail;
2438                 }
2439         }
2440
2441         /* Finally, we can add clusters. This might rotate the tree for us. */
2442         status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
2443         if (status < 0)
2444                 mlog_errno(status);
2445         else
2446                 ocfs2_extent_map_insert_rec(inode, &rec);
2447
2448 bail:
2449         if (bh)
2450                 brelse(bh);
2451
2452         if (last_eb_bh)
2453                 brelse(last_eb_bh);
2454
2455         mlog_exit(status);
2456         return status;
2457 }
2458
2459 static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
2460 {
2461         struct buffer_head *tl_bh = osb->osb_tl_bh;
2462         struct ocfs2_dinode *di;
2463         struct ocfs2_truncate_log *tl;
2464
2465         di = (struct ocfs2_dinode *) tl_bh->b_data;
2466         tl = &di->id2.i_dealloc;
2467
2468         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
2469                         "slot %d, invalid truncate log parameters: used = "
2470                         "%u, count = %u\n", osb->slot_num,
2471                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
2472         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
2473 }
2474
2475 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
2476                                            unsigned int new_start)
2477 {
2478         unsigned int tail_index;
2479         unsigned int current_tail;
2480
2481         /* No records, nothing to coalesce */
2482         if (!le16_to_cpu(tl->tl_used))
2483                 return 0;
2484
2485         tail_index = le16_to_cpu(tl->tl_used) - 1;
2486         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
2487         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
2488
2489         return current_tail == new_start;
2490 }
2491
2492 static int ocfs2_truncate_log_append(struct ocfs2_super *osb,
2493                                      handle_t *handle,
2494                                      u64 start_blk,
2495                                      unsigned int num_clusters)
2496 {
2497         int status, index;
2498         unsigned int start_cluster, tl_count;
2499         struct inode *tl_inode = osb->osb_tl_inode;
2500         struct buffer_head *tl_bh = osb->osb_tl_bh;
2501         struct ocfs2_dinode *di;
2502         struct ocfs2_truncate_log *tl;
2503
2504         mlog_entry("start_blk = %llu, num_clusters = %u\n",
2505                    (unsigned long long)start_blk, num_clusters);
2506
2507         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
2508
2509         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
2510
2511         di = (struct ocfs2_dinode *) tl_bh->b_data;
2512         tl = &di->id2.i_dealloc;
2513         if (!OCFS2_IS_VALID_DINODE(di)) {
2514                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
2515                 status = -EIO;
2516                 goto bail;
2517         }
2518
2519         tl_count = le16_to_cpu(tl->tl_count);
2520         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
2521                         tl_count == 0,
2522                         "Truncate record count on #%llu invalid "
2523                         "wanted %u, actual %u\n",
2524                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
2525                         ocfs2_truncate_recs_per_inode(osb->sb),
2526                         le16_to_cpu(tl->tl_count));
2527
2528         /* Caller should have known to flush before calling us. */
2529         index = le16_to_cpu(tl->tl_used);
2530         if (index >= tl_count) {
2531                 status = -ENOSPC;
2532                 mlog_errno(status);
2533                 goto bail;
2534         }
2535
2536         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
2537                                       OCFS2_JOURNAL_ACCESS_WRITE);
2538         if (status < 0) {
2539                 mlog_errno(status);
2540                 goto bail;
2541         }
2542
2543         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
2544              "%llu (index = %d)\n", num_clusters, start_cluster,
2545              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
2546
2547         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
2548                 /*
2549                  * Move index back to the record we are coalescing with.
2550                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
2551                  */
2552                 index--;
2553
2554                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
2555                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
2556                      index, le32_to_cpu(tl->tl_recs[index].t_start),
2557                      num_clusters);
2558         } else {
2559                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
2560                 tl->tl_used = cpu_to_le16(index + 1);
2561         }
2562         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
2563
2564         status = ocfs2_journal_dirty(handle, tl_bh);
2565         if (status < 0) {
2566                 mlog_errno(status);
2567                 goto bail;
2568         }
2569
2570 bail:
2571         mlog_exit(status);
2572         return status;
2573 }
2574
2575 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
2576                                          handle_t *handle,
2577                                          struct inode *data_alloc_inode,
2578                                          struct buffer_head *data_alloc_bh)
2579 {
2580         int status = 0;
2581         int i;
2582         unsigned int num_clusters;
2583         u64 start_blk;
2584         struct ocfs2_truncate_rec rec;
2585         struct ocfs2_dinode *di;
2586         struct ocfs2_truncate_log *tl;
2587         struct inode *tl_inode = osb->osb_tl_inode;
2588         struct buffer_head *tl_bh = osb->osb_tl_bh;
2589
2590         mlog_entry_void();
2591
2592         di = (struct ocfs2_dinode *) tl_bh->b_data;
2593         tl = &di->id2.i_dealloc;
2594         i = le16_to_cpu(tl->tl_used) - 1;
2595         while (i >= 0) {
2596                 /* Caller has given us at least enough credits to
2597                  * update the truncate log dinode */
2598                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
2599                                               OCFS2_JOURNAL_ACCESS_WRITE);
2600                 if (status < 0) {
2601                         mlog_errno(status);
2602                         goto bail;
2603                 }
2604
2605                 tl->tl_used = cpu_to_le16(i);
2606
2607                 status = ocfs2_journal_dirty(handle, tl_bh);
2608                 if (status < 0) {
2609                         mlog_errno(status);
2610                         goto bail;
2611                 }
2612
2613                 /* TODO: Perhaps we can calculate the bulk of the
2614                  * credits up front rather than extending like
2615                  * this. */
2616                 status = ocfs2_extend_trans(handle,
2617                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
2618                 if (status < 0) {
2619                         mlog_errno(status);
2620                         goto bail;
2621                 }
2622
2623                 rec = tl->tl_recs[i];
2624                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
2625                                                     le32_to_cpu(rec.t_start));
2626                 num_clusters = le32_to_cpu(rec.t_clusters);
2627
2628                 /* if start_blk is not set, we ignore the record as
2629                  * invalid. */
2630                 if (start_blk) {
2631                         mlog(0, "free record %d, start = %u, clusters = %u\n",
2632                              i, le32_to_cpu(rec.t_start), num_clusters);
2633
2634                         status = ocfs2_free_clusters(handle, data_alloc_inode,
2635                                                      data_alloc_bh, start_blk,
2636                                                      num_clusters);
2637                         if (status < 0) {
2638                                 mlog_errno(status);
2639                                 goto bail;
2640                         }
2641                 }
2642                 i--;
2643         }
2644
2645 bail:
2646         mlog_exit(status);
2647         return status;
2648 }
2649
2650 /* Expects you to already be holding tl_inode->i_mutex */
2651 static int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
2652 {
2653         int status;
2654         unsigned int num_to_flush;
2655         handle_t *handle;
2656         struct inode *tl_inode = osb->osb_tl_inode;
2657         struct inode *data_alloc_inode = NULL;
2658         struct buffer_head *tl_bh = osb->osb_tl_bh;
2659         struct buffer_head *data_alloc_bh = NULL;
2660         struct ocfs2_dinode *di;
2661         struct ocfs2_truncate_log *tl;
2662
2663         mlog_entry_void();
2664
2665         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
2666
2667         di = (struct ocfs2_dinode *) tl_bh->b_data;
2668         tl = &di->id2.i_dealloc;
2669         if (!OCFS2_IS_VALID_DINODE(di)) {
2670                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
2671                 status = -EIO;
2672                 goto out;
2673         }
2674
2675         num_to_flush = le16_to_cpu(tl->tl_used);
2676         mlog(0, "Flush %u records from truncate log #%llu\n",
2677              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
2678         if (!num_to_flush) {
2679                 status = 0;
2680                 goto out;
2681         }
2682
2683         data_alloc_inode = ocfs2_get_system_file_inode(osb,
2684                                                        GLOBAL_BITMAP_SYSTEM_INODE,
2685                                                        OCFS2_INVALID_SLOT);
2686         if (!data_alloc_inode) {
2687                 status = -EINVAL;
2688                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
2689                 goto out;
2690         }
2691
2692         mutex_lock(&data_alloc_inode->i_mutex);
2693
2694         status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
2695         if (status < 0) {
2696                 mlog_errno(status);
2697                 goto out_mutex;
2698         }
2699
2700         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
2701         if (IS_ERR(handle)) {
2702                 status = PTR_ERR(handle);
2703                 mlog_errno(status);
2704                 goto out_unlock;
2705         }
2706
2707         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
2708                                                data_alloc_bh);
2709         if (status < 0)
2710                 mlog_errno(status);
2711
2712         ocfs2_commit_trans(osb, handle);
2713
2714 out_unlock:
2715         brelse(data_alloc_bh);
2716         ocfs2_meta_unlock(data_alloc_inode, 1);
2717
2718 out_mutex:
2719         mutex_unlock(&data_alloc_inode->i_mutex);
2720         iput(data_alloc_inode);
2721
2722 out:
2723         mlog_exit(status);
2724         return status;
2725 }
2726
2727 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
2728 {
2729         int status;
2730         struct inode *tl_inode = osb->osb_tl_inode;
2731
2732         mutex_lock(&tl_inode->i_mutex);
2733         status = __ocfs2_flush_truncate_log(osb);
2734         mutex_unlock(&tl_inode->i_mutex);
2735
2736         return status;
2737 }
2738
2739 static void ocfs2_truncate_log_worker(struct work_struct *work)
2740 {
2741         int status;
2742         struct ocfs2_super *osb =
2743                 container_of(work, struct ocfs2_super,
2744                              osb_truncate_log_wq.work);
2745
2746         mlog_entry_void();
2747
2748         status = ocfs2_flush_truncate_log(osb);
2749         if (status < 0)
2750                 mlog_errno(status);
2751
2752         mlog_exit(status);
2753 }
2754
2755 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
2756 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
2757                                        int cancel)
2758 {
2759         if (osb->osb_tl_inode) {
2760                 /* We want to push off log flushes while truncates are
2761                  * still running. */
2762                 if (cancel)
2763                         cancel_delayed_work(&osb->osb_truncate_log_wq);
2764
2765                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
2766                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
2767         }
2768 }
2769
2770 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
2771                                        int slot_num,
2772                                        struct inode **tl_inode,
2773                                        struct buffer_head **tl_bh)
2774 {
2775         int status;
2776         struct inode *inode = NULL;
2777         struct buffer_head *bh = NULL;
2778
2779         inode = ocfs2_get_system_file_inode(osb,
2780                                            TRUNCATE_LOG_SYSTEM_INODE,
2781                                            slot_num);
2782         if (!inode) {
2783                 status = -EINVAL;
2784                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
2785                 goto bail;
2786         }
2787
2788         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
2789                                   OCFS2_BH_CACHED, inode);
2790         if (status < 0) {
2791                 iput(inode);
2792                 mlog_errno(status);
2793                 goto bail;
2794         }
2795
2796         *tl_inode = inode;
2797         *tl_bh    = bh;
2798 bail:
2799         mlog_exit(status);
2800         return status;
2801 }
2802
2803 /* called during the 1st stage of node recovery. we stamp a clean
2804  * truncate log and pass back a copy for processing later. if the
2805  * truncate log does not require processing, a *tl_copy is set to
2806  * NULL. */
2807 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
2808                                       int slot_num,
2809                                       struct ocfs2_dinode **tl_copy)
2810 {
2811         int status;
2812         struct inode *tl_inode = NULL;
2813         struct buffer_head *tl_bh = NULL;
2814         struct ocfs2_dinode *di;
2815         struct ocfs2_truncate_log *tl;
2816
2817         *tl_copy = NULL;
2818
2819         mlog(0, "recover truncate log from slot %d\n", slot_num);
2820
2821         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
2822         if (status < 0) {
2823                 mlog_errno(status);
2824                 goto bail;
2825         }
2826
2827         di = (struct ocfs2_dinode *) tl_bh->b_data;
2828         tl = &di->id2.i_dealloc;
2829         if (!OCFS2_IS_VALID_DINODE(di)) {
2830                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
2831                 status = -EIO;
2832                 goto bail;
2833         }
2834
2835         if (le16_to_cpu(tl->tl_used)) {
2836                 mlog(0, "We'll have %u logs to recover\n",
2837                      le16_to_cpu(tl->tl_used));
2838
2839                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
2840                 if (!(*tl_copy)) {
2841                         status = -ENOMEM;
2842                         mlog_errno(status);
2843                         goto bail;
2844                 }
2845
2846                 /* Assuming the write-out below goes well, this copy
2847                  * will be passed back to recovery for processing. */
2848                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
2849
2850                 /* All we need to do to clear the truncate log is set
2851                  * tl_used. */
2852                 tl->tl_used = 0;
2853
2854                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
2855                 if (status < 0) {
2856                         mlog_errno(status);
2857                         goto bail;
2858                 }
2859         }
2860
2861 bail:
2862         if (tl_inode)
2863                 iput(tl_inode);
2864         if (tl_bh)
2865                 brelse(tl_bh);
2866
2867         if (status < 0 && (*tl_copy)) {
2868                 kfree(*tl_copy);
2869                 *tl_copy = NULL;
2870         }
2871
2872         mlog_exit(status);
2873         return status;
2874 }
2875
2876 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
2877                                          struct ocfs2_dinode *tl_copy)
2878 {
2879         int status = 0;
2880         int i;
2881         unsigned int clusters, num_recs, start_cluster;
2882         u64 start_blk;
2883         handle_t *handle;
2884         struct inode *tl_inode = osb->osb_tl_inode;
2885         struct ocfs2_truncate_log *tl;
2886
2887         mlog_entry_void();
2888
2889         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
2890                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
2891                 return -EINVAL;
2892         }
2893
2894         tl = &tl_copy->id2.i_dealloc;
2895         num_recs = le16_to_cpu(tl->tl_used);
2896         mlog(0, "cleanup %u records from %llu\n", num_recs,
2897              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
2898
2899         mutex_lock(&tl_inode->i_mutex);
2900         for(i = 0; i < num_recs; i++) {
2901                 if (ocfs2_truncate_log_needs_flush(osb)) {
2902                         status = __ocfs2_flush_truncate_log(osb);
2903                         if (status < 0) {
2904                                 mlog_errno(status);
2905                                 goto bail_up;
2906                         }
2907                 }
2908
2909                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
2910                 if (IS_ERR(handle)) {
2911                         status = PTR_ERR(handle);
2912                         mlog_errno(status);
2913                         goto bail_up;
2914                 }
2915
2916                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
2917                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
2918                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
2919
2920                 status = ocfs2_truncate_log_append(osb, handle,
2921                                                    start_blk, clusters);
2922                 ocfs2_commit_trans(osb, handle);
2923                 if (status < 0) {
2924                         mlog_errno(status);
2925                         goto bail_up;
2926                 }
2927         }
2928
2929 bail_up:
2930         mutex_unlock(&tl_inode->i_mutex);
2931
2932         mlog_exit(status);
2933         return status;
2934 }
2935
2936 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
2937 {
2938         int status;
2939         struct inode *tl_inode = osb->osb_tl_inode;
2940
2941         mlog_entry_void();
2942
2943         if (tl_inode) {
2944                 cancel_delayed_work(&osb->osb_truncate_log_wq);
2945                 flush_workqueue(ocfs2_wq);
2946
2947                 status = ocfs2_flush_truncate_log(osb);
2948                 if (status < 0)
2949                         mlog_errno(status);
2950
2951                 brelse(osb->osb_tl_bh);
2952                 iput(osb->osb_tl_inode);
2953         }
2954
2955         mlog_exit_void();
2956 }
2957
2958 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
2959 {
2960         int status;
2961         struct inode *tl_inode = NULL;
2962         struct buffer_head *tl_bh = NULL;
2963
2964         mlog_entry_void();
2965
2966         status = ocfs2_get_truncate_log_info(osb,
2967                                              osb->slot_num,
2968                                              &tl_inode,
2969                                              &tl_bh);
2970         if (status < 0)
2971                 mlog_errno(status);
2972
2973         /* ocfs2_truncate_log_shutdown keys on the existence of
2974          * osb->osb_tl_inode so we don't set any of the osb variables
2975          * until we're sure all is well. */
2976         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
2977                           ocfs2_truncate_log_worker);
2978         osb->osb_tl_bh    = tl_bh;
2979         osb->osb_tl_inode = tl_inode;
2980
2981         mlog_exit(status);
2982         return status;
2983 }
2984
2985 /*
2986  * Delayed de-allocation of suballocator blocks.
2987  *
2988  * Some sets of block de-allocations might involve multiple suballocator inodes.
2989  *
2990  * The locking for this can get extremely complicated, especially when
2991  * the suballocator inodes to delete from aren't known until deep
2992  * within an unrelated codepath.
2993  *
2994  * ocfs2_extent_block structures are a good example of this - an inode
2995  * btree could have been grown by any number of nodes each allocating
2996  * out of their own suballoc inode.
2997  *
2998  * These structures allow the delay of block de-allocation until a
2999  * later time, when locking of multiple cluster inodes won't cause
3000  * deadlock.
3001  */
3002
3003 /*
3004  * Describes a single block free from a suballocator
3005  */
3006 struct ocfs2_cached_block_free {
3007         struct ocfs2_cached_block_free          *free_next;
3008         u64                                     free_blk;
3009         unsigned int                            free_bit;
3010 };
3011
3012 struct ocfs2_per_slot_free_list {
3013         struct ocfs2_per_slot_free_list         *f_next_suballocator;
3014         int                                     f_inode_type;
3015         int                                     f_slot;
3016         struct ocfs2_cached_block_free          *f_first;
3017 };
3018
3019 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
3020                                    int sysfile_type,
3021                                    int slot,
3022                                    struct ocfs2_cached_block_free *head)
3023 {
3024         int ret;
3025         u64 bg_blkno;
3026         handle_t *handle;
3027         struct inode *inode;
3028         struct buffer_head *di_bh = NULL;
3029         struct ocfs2_cached_block_free *tmp;
3030
3031         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
3032         if (!inode) {
3033                 ret = -EINVAL;
3034                 mlog_errno(ret);
3035                 goto out;
3036         }
3037
3038         mutex_lock(&inode->i_mutex);
3039
3040         ret = ocfs2_meta_lock(inode, &di_bh, 1);
3041         if (ret) {
3042                 mlog_errno(ret);
3043                 goto out_mutex;
3044         }
3045
3046         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
3047         if (IS_ERR(handle)) {
3048                 ret = PTR_ERR(handle);
3049                 mlog_errno(ret);
3050                 goto out_unlock;
3051         }
3052
3053         while (head) {
3054                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
3055                                                       head->free_bit);
3056                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
3057                      head->free_bit, (unsigned long long)head->free_blk);
3058
3059                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
3060                                                head->free_bit, bg_blkno, 1);
3061                 if (ret) {
3062                         mlog_errno(ret);
3063                         goto out_journal;
3064                 }
3065
3066                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
3067                 if (ret) {
3068                         mlog_errno(ret);
3069                         goto out_journal;
3070                 }
3071
3072                 tmp = head;
3073                 head = head->free_next;
3074                 kfree(tmp);
3075         }
3076
3077 out_journal:
3078         ocfs2_commit_trans(osb, handle);
3079
3080 out_unlock:
3081         ocfs2_meta_unlock(inode, 1);
3082         brelse(di_bh);
3083 out_mutex:
3084         mutex_unlock(&inode->i_mutex);
3085         iput(inode);
3086 out:
3087         while(head) {
3088                 /* Premature exit may have left some dangling items. */
3089                 tmp = head;
3090                 head = head->free_next;
3091                 kfree(tmp);
3092         }
3093
3094         return ret;
3095 }
3096
3097 int ocfs2_run_deallocs(struct ocfs2_super *osb,
3098                        struct ocfs2_cached_dealloc_ctxt *ctxt)
3099 {
3100         int ret = 0, ret2;
3101         struct ocfs2_per_slot_free_list *fl;
3102
3103         if (!ctxt)
3104                 return 0;
3105
3106         while (ctxt->c_first_suballocator) {
3107                 fl = ctxt->c_first_suballocator;
3108
3109                 if (fl->f_first) {
3110                         mlog(0, "Free items: (type %u, slot %d)\n",
3111                              fl->f_inode_type, fl->f_slot);
3112                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
3113                                                        fl->f_slot, fl->f_first);
3114                         if (ret2)
3115                                 mlog_errno(ret2);
3116                         if (!ret)
3117                                 ret = ret2;
3118                 }
3119
3120                 ctxt->c_first_suballocator = fl->f_next_suballocator;
3121                 kfree(fl);
3122         }
3123
3124         return ret;
3125 }
3126
3127 static struct ocfs2_per_slot_free_list *
3128 ocfs2_find_per_slot_free_list(int type,
3129                               int slot,
3130                               struct ocfs2_cached_dealloc_ctxt *ctxt)
3131 {
3132         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
3133
3134         while (fl) {
3135                 if (fl->f_inode_type == type && fl->f_slot == slot)
3136                         return fl;
3137
3138                 fl = fl->f_next_suballocator;
3139         }
3140
3141         fl = kmalloc(sizeof(*fl), GFP_NOFS);
3142         if (fl) {
3143                 fl->f_inode_type = type;
3144                 fl->f_slot = slot;
3145                 fl->f_first = NULL;
3146                 fl->f_next_suballocator = ctxt->c_first_suballocator;
3147
3148                 ctxt->c_first_suballocator = fl;
3149         }
3150         return fl;
3151 }
3152
3153 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
3154                                      int type, int slot, u64 blkno,
3155                                      unsigned int bit)
3156 {
3157         int ret;
3158         struct ocfs2_per_slot_free_list *fl;
3159         struct ocfs2_cached_block_free *item;
3160
3161         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
3162         if (fl == NULL) {
3163                 ret = -ENOMEM;
3164                 mlog_errno(ret);
3165                 goto out;
3166         }
3167
3168         item = kmalloc(sizeof(*item), GFP_NOFS);
3169         if (item == NULL) {
3170                 ret = -ENOMEM;
3171                 mlog_errno(ret);
3172                 goto out;
3173         }
3174
3175         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
3176              type, slot, bit, (unsigned long long)blkno);
3177
3178         item->free_blk = blkno;
3179         item->free_bit = bit;
3180         item->free_next = fl->f_first;
3181
3182         fl->f_first = item;
3183
3184         ret = 0;
3185 out:
3186         return ret;
3187 }
3188
3189 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
3190                                          struct ocfs2_extent_block *eb)
3191 {
3192         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
3193                                          le16_to_cpu(eb->h_suballoc_slot),
3194                                          le64_to_cpu(eb->h_blkno),
3195                                          le16_to_cpu(eb->h_suballoc_bit));
3196 }
3197
3198 /* This function will figure out whether the currently last extent
3199  * block will be deleted, and if it will, what the new last extent
3200  * block will be so we can update his h_next_leaf_blk field, as well
3201  * as the dinodes i_last_eb_blk */
3202 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
3203                                        unsigned int clusters_to_del,
3204                                        struct ocfs2_path *path,
3205                                        struct buffer_head **new_last_eb)
3206 {
3207         int next_free, ret = 0;
3208         u32 cpos;
3209         struct ocfs2_extent_rec *rec;
3210         struct ocfs2_extent_block *eb;
3211         struct ocfs2_extent_list *el;
3212         struct buffer_head *bh = NULL;
3213
3214         *new_last_eb = NULL;
3215
3216         /* we have no tree, so of course, no last_eb. */
3217         if (!path->p_tree_depth)
3218                 goto out;
3219
3220         /* trunc to zero special case - this makes tree_depth = 0
3221          * regardless of what it is.  */
3222         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
3223                 goto out;
3224
3225         el = path_leaf_el(path);
3226         BUG_ON(!el->l_next_free_rec);
3227
3228         /*
3229          * Make sure that this extent list will actually be empty
3230          * after we clear away the data. We can shortcut out if
3231          * there's more than one non-empty extent in the
3232          * list. Otherwise, a check of the remaining extent is
3233          * necessary.
3234          */
3235         next_free = le16_to_cpu(el->l_next_free_rec);
3236         rec = NULL;
3237         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3238                 if (next_free > 2)
3239                         goto out;
3240
3241                 /* We may have a valid extent in index 1, check it. */
3242                 if (next_free == 2)
3243                         rec = &el->l_recs[1];
3244
3245                 /*
3246                  * Fall through - no more nonempty extents, so we want
3247                  * to delete this leaf.
3248                  */
3249         } else {
3250                 if (next_free > 1)
3251                         goto out;
3252
3253                 rec = &el->l_recs[0];
3254         }
3255
3256         if (rec) {
3257                 /*
3258                  * Check it we'll only be trimming off the end of this
3259                  * cluster.
3260                  */
3261                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
3262                         goto out;
3263         }
3264
3265         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3266         if (ret) {
3267                 mlog_errno(ret);
3268                 goto out;
3269         }
3270
3271         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
3272         if (ret) {
3273                 mlog_errno(ret);
3274                 goto out;
3275         }
3276
3277         eb = (struct ocfs2_extent_block *) bh->b_data;
3278         el = &eb->h_list;
3279         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
3280                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
3281                 ret = -EROFS;
3282                 goto out;
3283         }
3284
3285         *new_last_eb = bh;
3286         get_bh(*new_last_eb);
3287         mlog(0, "returning block %llu, (cpos: %u)\n",
3288              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
3289 out:
3290         brelse(bh);
3291
3292         return ret;
3293 }
3294
3295 /*
3296  * Trim some clusters off the rightmost edge of a tree. Only called
3297  * during truncate.
3298  *
3299  * The caller needs to:
3300  *   - start journaling of each path component.
3301  *   - compute and fully set up any new last ext block
3302  */
3303 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
3304                            handle_t *handle, struct ocfs2_truncate_context *tc,
3305                            u32 clusters_to_del, u64 *delete_start)
3306 {
3307         int ret, i, index = path->p_tree_depth;
3308         u32 new_edge = 0;
3309         u64 deleted_eb = 0;
3310         struct buffer_head *bh;
3311         struct ocfs2_extent_list *el;
3312         struct ocfs2_extent_rec *rec;
3313
3314         *delete_start = 0;
3315
3316         while (index >= 0) {
3317                 bh = path->p_node[index].bh;
3318                 el = path->p_node[index].el;
3319
3320                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
3321                      index,  (unsigned long long)bh->b_blocknr);
3322
3323                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
3324
3325                 if (index !=
3326                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
3327                         ocfs2_error(inode->i_sb,
3328                                     "Inode %lu has invalid ext. block %llu",
3329                                     inode->i_ino,
3330                                     (unsigned long long)bh->b_blocknr);
3331                         ret = -EROFS;
3332                         goto out;
3333                 }
3334
3335 find_tail_record:
3336                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3337                 rec = &el->l_recs[i];
3338
3339                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
3340                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
3341                      ocfs2_rec_clusters(el, rec),
3342                      (unsigned long long)le64_to_cpu(rec->e_blkno),
3343                      le16_to_cpu(el->l_next_free_rec));
3344
3345                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
3346
3347                 if (le16_to_cpu(el->l_tree_depth) == 0) {
3348                         /*
3349                          * If the leaf block contains a single empty
3350                          * extent and no records, we can just remove
3351                          * the block.
3352                          */
3353                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
3354                                 memset(rec, 0,
3355                                        sizeof(struct ocfs2_extent_rec));
3356                                 el->l_next_free_rec = cpu_to_le16(0);
3357
3358                                 goto delete;
3359                         }
3360
3361                         /*
3362                          * Remove any empty extents by shifting things
3363                          * left. That should make life much easier on
3364                          * the code below. This condition is rare
3365                          * enough that we shouldn't see a performance
3366                          * hit.
3367                          */
3368                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3369                                 le16_add_cpu(&el->l_next_free_rec, -1);
3370
3371                                 for(i = 0;
3372                                     i < le16_to_cpu(el->l_next_free_rec); i++)
3373                                         el->l_recs[i] = el->l_recs[i + 1];
3374
3375                                 memset(&el->l_recs[i], 0,
3376                                        sizeof(struct ocfs2_extent_rec));
3377
3378                                 /*
3379                                  * We've modified our extent list. The
3380                                  * simplest way to handle this change
3381                                  * is to being the search from the
3382                                  * start again.
3383                                  */
3384                                 goto find_tail_record;
3385                         }
3386
3387                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
3388
3389                         /*
3390                          * We'll use "new_edge" on our way back up the
3391                          * tree to know what our rightmost cpos is.
3392                          */
3393                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
3394                         new_edge += le32_to_cpu(rec->e_cpos);
3395
3396                         /*
3397                          * The caller will use this to delete data blocks.
3398                          */
3399                         *delete_start = le64_to_cpu(rec->e_blkno)
3400                                 + ocfs2_clusters_to_blocks(inode->i_sb,
3401                                         le16_to_cpu(rec->e_leaf_clusters));
3402
3403                         /*
3404                          * If it's now empty, remove this record.
3405                          */
3406                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
3407                                 memset(rec, 0,
3408                                        sizeof(struct ocfs2_extent_rec));
3409                                 le16_add_cpu(&el->l_next_free_rec, -1);
3410                         }
3411                 } else {
3412                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
3413                                 memset(rec, 0,
3414                                        sizeof(struct ocfs2_extent_rec));
3415                                 le16_add_cpu(&el->l_next_free_rec, -1);
3416
3417                                 goto delete;
3418                         }
3419
3420                         /* Can this actually happen? */
3421                         if (le16_to_cpu(el->l_next_free_rec) == 0)
3422                                 goto delete;
3423
3424                         /*
3425                          * We never actually deleted any clusters
3426                          * because our leaf was empty. There's no
3427                          * reason to adjust the rightmost edge then.
3428                          */
3429                         if (new_edge == 0)
3430                                 goto delete;
3431
3432                         rec->e_int_clusters = cpu_to_le32(new_edge);
3433                         le32_add_cpu(&rec->e_int_clusters,
3434                                      -le32_to_cpu(rec->e_cpos));
3435
3436                          /*
3437                           * A deleted child record should have been
3438                           * caught above.
3439                           */
3440                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
3441                 }
3442
3443 delete:
3444                 ret = ocfs2_journal_dirty(handle, bh);
3445                 if (ret) {
3446                         mlog_errno(ret);
3447                         goto out;
3448                 }
3449
3450                 mlog(0, "extent list container %llu, after: record %d: "
3451                      "(%u, %u, %llu), next = %u.\n",
3452                      (unsigned long long)bh->b_blocknr, i,
3453                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
3454                      (unsigned long long)le64_to_cpu(rec->e_blkno),
3455                      le16_to_cpu(el->l_next_free_rec));
3456
3457                 /*
3458                  * We must be careful to only attempt delete of an
3459                  * extent block (and not the root inode block).
3460                  */
3461                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
3462                         struct ocfs2_extent_block *eb =
3463                                 (struct ocfs2_extent_block *)bh->b_data;
3464
3465                         /*
3466                          * Save this for use when processing the
3467                          * parent block.
3468                          */
3469                         deleted_eb = le64_to_cpu(eb->h_blkno);
3470
3471                         mlog(0, "deleting this extent block.\n");
3472
3473                         ocfs2_remove_from_cache(inode, bh);
3474
3475                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
3476                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
3477                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
3478
3479                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
3480                         /* An error here is not fatal. */
3481                         if (ret < 0)
3482                                 mlog_errno(ret);
3483                 } else {
3484                         deleted_eb = 0;
3485                 }
3486
3487                 index--;
3488         }
3489
3490         ret = 0;
3491 out:
3492         return ret;
3493 }
3494
3495 static int ocfs2_do_truncate(struct ocfs2_super *osb,
3496                              unsigned int clusters_to_del,
3497                              struct inode *inode,
3498                              struct buffer_head *fe_bh,
3499                              handle_t *handle,
3500                              struct ocfs2_truncate_context *tc,
3501                              struct ocfs2_path *path)
3502 {
3503         int status;
3504         struct ocfs2_dinode *fe;
3505         struct ocfs2_extent_block *last_eb = NULL;
3506         struct ocfs2_extent_list *el;
3507         struct buffer_head *last_eb_bh = NULL;
3508         u64 delete_blk = 0;
3509
3510         fe = (struct ocfs2_dinode *) fe_bh->b_data;
3511
3512         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
3513                                              path, &last_eb_bh);
3514         if (status < 0) {
3515                 mlog_errno(status);
3516                 goto bail;
3517         }
3518
3519         /*
3520          * Each component will be touched, so we might as well journal
3521          * here to avoid having to handle errors later.
3522          */
3523         status = ocfs2_journal_access_path(inode, handle, path);
3524         if (status < 0) {
3525                 mlog_errno(status);
3526                 goto bail;
3527         }
3528
3529         if (last_eb_bh) {
3530                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
3531                                               OCFS2_JOURNAL_ACCESS_WRITE);
3532                 if (status < 0) {
3533                         mlog_errno(status);
3534                         goto bail;
3535                 }
3536
3537                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
3538         }
3539
3540         el = &(fe->id2.i_list);
3541
3542         /*
3543          * Lower levels depend on this never happening, but it's best
3544          * to check it up here before changing the tree.
3545          */
3546         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
3547                 ocfs2_error(inode->i_sb,
3548                             "Inode %lu has an empty extent record, depth %u\n",
3549                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
3550                 status = -EROFS;
3551                 goto bail;
3552         }
3553
3554         spin_lock(&OCFS2_I(inode)->ip_lock);
3555         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
3556                                       clusters_to_del;
3557         spin_unlock(&OCFS2_I(inode)->ip_lock);
3558         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
3559
3560         status = ocfs2_trim_tree(inode, path, handle, tc,
3561                                  clusters_to_del, &delete_blk);
3562         if (status) {
3563                 mlog_errno(status);
3564                 goto bail;
3565         }
3566
3567         if (le32_to_cpu(fe->i_clusters) == 0) {
3568                 /* trunc to zero is a special case. */
3569                 el->l_tree_depth = 0;
3570                 fe->i_last_eb_blk = 0;
3571         } else if (last_eb)
3572                 fe->i_last_eb_blk = last_eb->h_blkno;
3573
3574         status = ocfs2_journal_dirty(handle, fe_bh);
3575         if (status < 0) {
3576                 mlog_errno(status);
3577                 goto bail;
3578         }
3579
3580         if (last_eb) {
3581                 /* If there will be a new last extent block, then by
3582                  * definition, there cannot be any leaves to the right of
3583                  * him. */
3584                 last_eb->h_next_leaf_blk = 0;
3585                 status = ocfs2_journal_dirty(handle, last_eb_bh);
3586                 if (status < 0) {
3587                         mlog_errno(status);
3588                         goto bail;
3589                 }
3590         }
3591
3592         if (delete_blk) {
3593                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
3594                                                    clusters_to_del);
3595                 if (status < 0) {
3596                         mlog_errno(status);
3597                         goto bail;
3598                 }
3599         }
3600         status = 0;
3601 bail:
3602
3603         mlog_exit(status);
3604         return status;
3605 }
3606
3607 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
3608 {
3609         set_buffer_uptodate(bh);
3610         mark_buffer_dirty(bh);
3611         return 0;
3612 }
3613
3614 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
3615 {
3616         set_buffer_uptodate(bh);
3617         mark_buffer_dirty(bh);
3618         return ocfs2_journal_dirty_data(handle, bh);
3619 }
3620
3621 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t isize,
3622                                      struct page **pages, int numpages,
3623                                      u64 phys, handle_t *handle)
3624 {
3625         int i, ret, partial = 0;
3626         void *kaddr;
3627         struct page *page;
3628         unsigned int from, to = PAGE_CACHE_SIZE;
3629         struct super_block *sb = inode->i_sb;
3630
3631         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
3632
3633         if (numpages == 0)
3634                 goto out;
3635
3636         from = isize & (PAGE_CACHE_SIZE - 1); /* 1st page offset */
3637         if (PAGE_CACHE_SHIFT > OCFS2_SB(sb)->s_clustersize_bits) {
3638                 /*
3639                  * Since 'from' has been capped to a value below page
3640                  * size, this calculation won't be able to overflow
3641                  * 'to'
3642                  */
3643                 to = ocfs2_align_bytes_to_clusters(sb, from);
3644
3645                 /*
3646                  * The truncate tail in this case should never contain
3647                  * more than one page at maximum. The loop below also
3648                  * assumes this.
3649                  */
3650                 BUG_ON(numpages != 1);
3651         }
3652
3653         for(i = 0; i < numpages; i++) {
3654                 page = pages[i];
3655
3656                 BUG_ON(from > PAGE_CACHE_SIZE);
3657                 BUG_ON(to > PAGE_CACHE_SIZE);
3658
3659                 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
3660                 if (ret)
3661                         mlog_errno(ret);
3662
3663                 kaddr = kmap_atomic(page, KM_USER0);
3664                 memset(kaddr + from, 0, to - from);
3665                 kunmap_atomic(kaddr, KM_USER0);
3666
3667                 /*
3668                  * Need to set the buffers we zero'd into uptodate
3669                  * here if they aren't - ocfs2_map_page_blocks()
3670                  * might've skipped some
3671                  */
3672                 if (ocfs2_should_order_data(inode)) {
3673                         ret = walk_page_buffers(handle,
3674                                                 page_buffers(page),
3675                                                 from, to, &partial,
3676                                                 ocfs2_ordered_zero_func);
3677                         if (ret < 0)
3678                                 mlog_errno(ret);
3679                 } else {
3680                         ret = walk_page_buffers(handle, page_buffers(page),
3681                                                 from, to, &partial,
3682                                                 ocfs2_writeback_zero_func);
3683                         if (ret < 0)
3684                                 mlog_errno(ret);
3685                 }
3686
3687                 if (!partial)
3688                         SetPageUptodate(page);
3689
3690                 flush_dcache_page(page);
3691
3692                 /*
3693                  * Every page after the 1st one should be completely zero'd.
3694                  */
3695                 from = 0;
3696         }
3697 out:
3698         if (pages) {
3699                 for (i = 0; i < numpages; i++) {
3700                         page = pages[i];
3701                         unlock_page(page);
3702                         mark_page_accessed(page);
3703                         page_cache_release(page);
3704                 }
3705         }
3706 }
3707
3708 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t isize, struct page **pages,
3709                                 int *num, u64 *phys)
3710 {
3711         int i, numpages = 0, ret = 0;
3712         unsigned int csize = OCFS2_SB(inode->i_sb)->s_clustersize;
3713         unsigned int ext_flags;
3714         struct super_block *sb = inode->i_sb;
3715         struct address_space *mapping = inode->i_mapping;
3716         unsigned long index;
3717         u64 next_cluster_bytes;
3718
3719         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
3720
3721         /* Cluster boundary, so we don't need to grab any pages. */
3722         if ((isize & (csize - 1)) == 0)
3723                 goto out;
3724
3725         ret = ocfs2_extent_map_get_blocks(inode, isize >> sb->s_blocksize_bits,
3726                                           phys, NULL, &ext_flags);
3727         if (ret) {
3728                 mlog_errno(ret);
3729                 goto out;
3730         }
3731
3732         /* Tail is a hole. */
3733         if (*phys == 0)
3734                 goto out;
3735
3736         /* Tail is marked as unwritten, we can count on write to zero
3737          * in that case. */
3738         if (ext_flags & OCFS2_EXT_UNWRITTEN)
3739                 goto out;
3740
3741         next_cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, isize);
3742         index = isize >> PAGE_CACHE_SHIFT;
3743         do {
3744                 pages[numpages] = grab_cache_page(mapping, index);
3745                 if (!pages[numpages]) {
3746                         ret = -ENOMEM;
3747                         mlog_errno(ret);
3748                         goto out;
3749                 }
3750
3751                 numpages++;
3752                 index++;
3753         } while (index < (next_cluster_bytes >> PAGE_CACHE_SHIFT));
3754
3755 out:
3756         if (ret != 0) {
3757                 if (pages) {
3758                         for (i = 0; i < numpages; i++) {
3759                                 if (pages[i]) {
3760                                         unlock_page(pages[i]);
3761                                         page_cache_release(pages[i]);
3762                                 }
3763                         }
3764                 }
3765                 numpages = 0;
3766         }
3767
3768         *num = numpages;
3769
3770         return ret;
3771 }
3772
3773 /*
3774  * Zero the area past i_size but still within an allocated
3775  * cluster. This avoids exposing nonzero data on subsequent file
3776  * extends.
3777  *
3778  * We need to call this before i_size is updated on the inode because
3779  * otherwise block_write_full_page() will skip writeout of pages past
3780  * i_size. The new_i_size parameter is passed for this reason.
3781  */
3782 int ocfs2_zero_tail_for_truncate(struct inode *inode, handle_t *handle,
3783                                  u64 new_i_size)
3784 {
3785         int ret, numpages;
3786         loff_t endbyte;
3787         struct page **pages = NULL;
3788         u64 phys;
3789
3790         /*
3791          * File systems which don't support sparse files zero on every
3792          * extend.
3793          */
3794         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
3795                 return 0;
3796
3797         pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
3798                         sizeof(struct page *), GFP_NOFS);
3799         if (pages == NULL) {
3800                 ret = -ENOMEM;
3801                 mlog_errno(ret);
3802                 goto out;
3803         }
3804
3805         ret = ocfs2_grab_eof_pages(inode, new_i_size, pages, &numpages, &phys);
3806         if (ret) {
3807                 mlog_errno(ret);
3808                 goto out;
3809         }
3810
3811         if (numpages == 0)
3812                 goto out;
3813
3814         ocfs2_zero_cluster_pages(inode, new_i_size, pages, numpages, phys,
3815                                  handle);
3816
3817         /*
3818          * Initiate writeout of the pages we zero'd here. We don't
3819          * wait on them - the truncate_inode_pages() call later will
3820          * do that for us.
3821          */
3822         endbyte = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
3823         ret = do_sync_mapping_range(inode->i_mapping, new_i_size,
3824                                     endbyte - 1, SYNC_FILE_RANGE_WRITE);
3825         if (ret)
3826                 mlog_errno(ret);
3827
3828 out:
3829         if (pages)
3830                 kfree(pages);
3831
3832         return ret;
3833 }
3834
3835 /*
3836  * It is expected, that by the time you call this function,
3837  * inode->i_size and fe->i_size have been adjusted.
3838  *
3839  * WARNING: This will kfree the truncate context
3840  */
3841 int ocfs2_commit_truncate(struct ocfs2_super *osb,
3842                           struct inode *inode,
3843                           struct buffer_head *fe_bh,
3844                           struct ocfs2_truncate_context *tc)
3845 {
3846         int status, i, credits, tl_sem = 0;
3847         u32 clusters_to_del, new_highest_cpos, range;
3848         struct ocfs2_extent_list *el;
3849         handle_t *handle = NULL;
3850         struct inode *tl_inode = osb->osb_tl_inode;
3851         struct ocfs2_path *path = NULL;
3852
3853         mlog_entry_void();
3854
3855         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
3856                                                      i_size_read(inode));
3857
3858         path = ocfs2_new_inode_path(fe_bh);
3859         if (!path) {
3860                 status = -ENOMEM;
3861                 mlog_errno(status);
3862                 goto bail;
3863         }
3864
3865         ocfs2_extent_map_trunc(inode, new_highest_cpos);
3866
3867 start:
3868         /*
3869          * Check that we still have allocation to delete.
3870          */
3871         if (OCFS2_I(inode)->ip_clusters == 0) {
3872                 status = 0;
3873                 goto bail;
3874         }
3875
3876         /*
3877          * Truncate always works against the rightmost tree branch.
3878          */
3879         status = ocfs2_find_path(inode, path, UINT_MAX);
3880         if (status) {
3881                 mlog_errno(status);
3882                 goto bail;
3883         }
3884
3885         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
3886              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
3887
3888         /*
3889          * By now, el will point to the extent list on the bottom most
3890          * portion of this tree. Only the tail record is considered in
3891          * each pass.
3892          *
3893          * We handle the following cases, in order:
3894          * - empty extent: delete the remaining branch
3895          * - remove the entire record
3896          * - remove a partial record
3897          * - no record needs to be removed (truncate has completed)
3898          */
3899         el = path_leaf_el(path);
3900         if (le16_to_cpu(el->l_next_free_rec) == 0) {
3901                 ocfs2_error(inode->i_sb,
3902                             "Inode %llu has empty extent block at %llu\n",
3903                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
3904                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
3905                 status = -EROFS;
3906                 goto bail;
3907         }
3908
3909         i = le16_to_cpu(el->l_next_free_rec) - 1;
3910         range = le32_to_cpu(el->l_recs[i].e_cpos) +
3911                 ocfs2_rec_clusters(el, &el->l_recs[i]);
3912         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
3913                 clusters_to_del = 0;
3914         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
3915                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
3916         } else if (range > new_highest_cpos) {
3917                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
3918                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
3919                                   new_highest_cpos;
3920         } else {
3921                 status = 0;
3922                 goto bail;
3923         }
3924
3925         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
3926              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
3927
3928         BUG_ON(clusters_to_del == 0);
3929
3930         mutex_lock(&tl_inode->i_mutex);
3931         tl_sem = 1;
3932         /* ocfs2_truncate_log_needs_flush guarantees us at least one
3933          * record is free for use. If there isn't any, we flush to get
3934          * an empty truncate log.  */
3935         if (ocfs2_truncate_log_needs_flush(osb)) {
3936                 status = __ocfs2_flush_truncate_log(osb);
3937                 if (status < 0) {
3938                         mlog_errno(status);
3939                         goto bail;
3940                 }
3941         }
3942
3943         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
3944                                                 (struct ocfs2_dinode *)fe_bh->b_data,
3945                                                 el);
3946         handle = ocfs2_start_trans(osb, credits);
3947         if (IS_ERR(handle)) {
3948                 status = PTR_ERR(handle);
3949                 handle = NULL;
3950                 mlog_errno(status);
3951                 goto bail;
3952         }
3953
3954         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
3955                                    tc, path);
3956         if (status < 0) {
3957                 mlog_errno(status);
3958                 goto bail;
3959         }
3960
3961         mutex_unlock(&tl_inode->i_mutex);
3962         tl_sem = 0;
3963
3964         ocfs2_commit_trans(osb, handle);
3965         handle = NULL;
3966
3967         ocfs2_reinit_path(path, 1);
3968
3969         /*
3970          * The check above will catch the case where we've truncated
3971          * away all allocation.
3972          */
3973         goto start;
3974
3975 bail:
3976
3977         ocfs2_schedule_truncate_log_flush(osb, 1);
3978
3979         if (tl_sem)
3980                 mutex_unlock(&tl_inode->i_mutex);
3981
3982         if (handle)
3983                 ocfs2_commit_trans(osb, handle);
3984
3985         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
3986
3987         ocfs2_free_path(path);
3988
3989         /* This will drop the ext_alloc cluster lock for us */
3990         ocfs2_free_truncate_context(tc);
3991
3992         mlog_exit(status);
3993         return status;
3994 }
3995
3996 /*
3997  * Expects the inode to already be locked.
3998  */
3999 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
4000                            struct inode *inode,
4001                            struct buffer_head *fe_bh,
4002                            struct ocfs2_truncate_context **tc)
4003 {
4004         int status;
4005         unsigned int new_i_clusters;
4006         struct ocfs2_dinode *fe;
4007         struct ocfs2_extent_block *eb;
4008         struct buffer_head *last_eb_bh = NULL;
4009
4010         mlog_entry_void();
4011
4012         *tc = NULL;
4013
4014         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
4015                                                   i_size_read(inode));
4016         fe = (struct ocfs2_dinode *) fe_bh->b_data;
4017
4018         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
4019              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
4020              (unsigned long long)le64_to_cpu(fe->i_size));
4021
4022         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
4023         if (!(*tc)) {
4024                 status = -ENOMEM;
4025                 mlog_errno(status);
4026                 goto bail;
4027         }
4028         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
4029
4030         if (fe->id2.i_list.l_tree_depth) {
4031                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
4032                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
4033                 if (status < 0) {
4034                         mlog_errno(status);
4035                         goto bail;
4036                 }
4037                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4038                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4039                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4040
4041                         brelse(last_eb_bh);
4042                         status = -EIO;
4043                         goto bail;
4044                 }
4045         }
4046
4047         (*tc)->tc_last_eb_bh = last_eb_bh;
4048
4049         status = 0;
4050 bail:
4051         if (status < 0) {
4052                 if (*tc)
4053                         ocfs2_free_truncate_context(*tc);
4054                 *tc = NULL;
4055         }
4056         mlog_exit_void();
4057         return status;
4058 }
4059
4060 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
4061 {
4062         /*
4063          * The caller is responsible for completing deallocation
4064          * before freeing the context.
4065          */
4066         if (tc->tc_dealloc.c_first_suballocator != NULL)
4067                 mlog(ML_NOTICE,
4068                      "Truncate completion has non-empty dealloc context\n");
4069
4070         if (tc->tc_last_eb_bh)
4071                 brelse(tc->tc_last_eb_bh);
4072
4073         kfree(tc);
4074 }