[XFS] call common xfs vfs-level helpers directly and remove vfs operations
[powerpc.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
60
61 static struct quotactl_ops xfs_quotactl_operations;
62 static struct super_operations xfs_super_operations;
63 static kmem_zone_t *xfs_vnode_zone;
64 static kmem_zone_t *xfs_ioend_zone;
65 mempool_t *xfs_ioend_pool;
66
67 STATIC struct xfs_mount_args *
68 xfs_args_allocate(
69         struct super_block      *sb,
70         int                     silent)
71 {
72         struct xfs_mount_args   *args;
73
74         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
75         args->logbufs = args->logbufsize = -1;
76         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77
78         /* Copy the already-parsed mount(2) flags we're interested in */
79         if (sb->s_flags & MS_DIRSYNC)
80                 args->flags |= XFSMNT_DIRSYNC;
81         if (sb->s_flags & MS_SYNCHRONOUS)
82                 args->flags |= XFSMNT_WSYNC;
83         if (silent)
84                 args->flags |= XFSMNT_QUIET;
85         args->flags |= XFSMNT_32BITINODES;
86
87         return args;
88 }
89
90 __uint64_t
91 xfs_max_file_offset(
92         unsigned int            blockshift)
93 {
94         unsigned int            pagefactor = 1;
95         unsigned int            bitshift = BITS_PER_LONG - 1;
96
97         /* Figure out maximum filesize, on Linux this can depend on
98          * the filesystem blocksize (on 32 bit platforms).
99          * __block_prepare_write does this in an [unsigned] long...
100          *      page->index << (PAGE_CACHE_SHIFT - bbits)
101          * So, for page sized blocks (4K on 32 bit platforms),
102          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104          * but for smaller blocksizes it is less (bbits = log2 bsize).
105          * Note1: get_block_t takes a long (implicit cast from above)
106          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107          * can optionally convert the [unsigned] long from above into
108          * an [unsigned] long long.
109          */
110
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113         ASSERT(sizeof(sector_t) == 8);
114         pagefactor = PAGE_CACHE_SIZE;
115         bitshift = BITS_PER_LONG;
116 # else
117         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
118 # endif
119 #endif
120
121         return (((__uint64_t)pagefactor) << bitshift) - 1;
122 }
123
124 STATIC_INLINE void
125 xfs_set_inodeops(
126         struct inode            *inode)
127 {
128         switch (inode->i_mode & S_IFMT) {
129         case S_IFREG:
130                 inode->i_op = &xfs_inode_operations;
131                 inode->i_fop = &xfs_file_operations;
132                 inode->i_mapping->a_ops = &xfs_address_space_operations;
133                 break;
134         case S_IFDIR:
135                 inode->i_op = &xfs_dir_inode_operations;
136                 inode->i_fop = &xfs_dir_file_operations;
137                 break;
138         case S_IFLNK:
139                 inode->i_op = &xfs_symlink_inode_operations;
140                 if (inode->i_blocks)
141                         inode->i_mapping->a_ops = &xfs_address_space_operations;
142                 break;
143         default:
144                 inode->i_op = &xfs_inode_operations;
145                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
146                 break;
147         }
148 }
149
150 STATIC_INLINE void
151 xfs_revalidate_inode(
152         xfs_mount_t             *mp,
153         bhv_vnode_t             *vp,
154         xfs_inode_t             *ip)
155 {
156         struct inode            *inode = vn_to_inode(vp);
157
158         inode->i_mode   = ip->i_d.di_mode;
159         inode->i_nlink  = ip->i_d.di_nlink;
160         inode->i_uid    = ip->i_d.di_uid;
161         inode->i_gid    = ip->i_d.di_gid;
162
163         switch (inode->i_mode & S_IFMT) {
164         case S_IFBLK:
165         case S_IFCHR:
166                 inode->i_rdev =
167                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168                               sysv_minor(ip->i_df.if_u2.if_rdev));
169                 break;
170         default:
171                 inode->i_rdev = 0;
172                 break;
173         }
174
175         inode->i_generation = ip->i_d.di_gen;
176         i_size_write(inode, ip->i_d.di_size);
177         inode->i_blocks =
178                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
180         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
181         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
182         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
183         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
184         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
185         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186                 inode->i_flags |= S_IMMUTABLE;
187         else
188                 inode->i_flags &= ~S_IMMUTABLE;
189         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190                 inode->i_flags |= S_APPEND;
191         else
192                 inode->i_flags &= ~S_APPEND;
193         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194                 inode->i_flags |= S_SYNC;
195         else
196                 inode->i_flags &= ~S_SYNC;
197         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198                 inode->i_flags |= S_NOATIME;
199         else
200                 inode->i_flags &= ~S_NOATIME;
201         xfs_iflags_clear(ip, XFS_IMODIFIED);
202 }
203
204 void
205 xfs_initialize_vnode(
206         struct xfs_mount        *mp,
207         bhv_vnode_t             *vp,
208         struct xfs_inode        *ip)
209 {
210         struct inode            *inode = vn_to_inode(vp);
211
212         if (!ip->i_vnode) {
213                 ip->i_vnode = vp;
214                 inode->i_private = ip;
215         }
216
217         /*
218          * We need to set the ops vectors, and unlock the inode, but if
219          * we have been called during the new inode create process, it is
220          * too early to fill in the Linux inode.  We will get called a
221          * second time once the inode is properly set up, and then we can
222          * finish our work.
223          */
224         if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
225                 xfs_revalidate_inode(mp, vp, ip);
226                 xfs_set_inodeops(inode);
227
228                 xfs_iflags_clear(ip, XFS_INEW);
229                 barrier();
230
231                 unlock_new_inode(inode);
232         }
233 }
234
235 int
236 xfs_blkdev_get(
237         xfs_mount_t             *mp,
238         const char              *name,
239         struct block_device     **bdevp)
240 {
241         int                     error = 0;
242
243         *bdevp = open_bdev_excl(name, 0, mp);
244         if (IS_ERR(*bdevp)) {
245                 error = PTR_ERR(*bdevp);
246                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247         }
248
249         return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254         struct block_device     *bdev)
255 {
256         if (bdev)
257                 close_bdev_excl(bdev);
258 }
259
260 /*
261  * Try to write out the superblock using barriers.
262  */
263 STATIC int
264 xfs_barrier_test(
265         xfs_mount_t     *mp)
266 {
267         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
268         int             error;
269
270         XFS_BUF_UNDONE(sbp);
271         XFS_BUF_UNREAD(sbp);
272         XFS_BUF_UNDELAYWRITE(sbp);
273         XFS_BUF_WRITE(sbp);
274         XFS_BUF_UNASYNC(sbp);
275         XFS_BUF_ORDERED(sbp);
276
277         xfsbdstrat(mp, sbp);
278         error = xfs_iowait(sbp);
279
280         /*
281          * Clear all the flags we set and possible error state in the
282          * buffer.  We only did the write to try out whether barriers
283          * worked and shouldn't leave any traces in the superblock
284          * buffer.
285          */
286         XFS_BUF_DONE(sbp);
287         XFS_BUF_ERROR(sbp, 0);
288         XFS_BUF_UNORDERED(sbp);
289
290         xfs_buf_relse(sbp);
291         return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297         int error;
298
299         if (mp->m_logdev_targp != mp->m_ddev_targp) {
300                 xfs_fs_cmn_err(CE_NOTE, mp,
301                   "Disabling barriers, not supported with external log device");
302                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303                 return;
304         }
305
306         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
307                 xfs_fs_cmn_err(CE_NOTE, mp,
308                   "Disabling barriers, underlying device is readonly");
309                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
310                 return;
311         }
312
313         error = xfs_barrier_test(mp);
314         if (error) {
315                 xfs_fs_cmn_err(CE_NOTE, mp,
316                   "Disabling barriers, trial barrier write failed");
317                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318                 return;
319         }
320 }
321
322 void
323 xfs_blkdev_issue_flush(
324         xfs_buftarg_t           *buftarg)
325 {
326         blkdev_issue_flush(buftarg->bt_bdev, NULL);
327 }
328
329 STATIC struct inode *
330 xfs_fs_alloc_inode(
331         struct super_block      *sb)
332 {
333         bhv_vnode_t             *vp;
334
335         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
336         if (unlikely(!vp))
337                 return NULL;
338         return vn_to_inode(vp);
339 }
340
341 STATIC void
342 xfs_fs_destroy_inode(
343         struct inode            *inode)
344 {
345         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
346 }
347
348 STATIC void
349 xfs_fs_inode_init_once(
350         void                    *vnode,
351         kmem_zone_t             *zonep,
352         unsigned long           flags)
353 {
354         inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
355 }
356
357 STATIC int
358 xfs_init_zones(void)
359 {
360         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
361                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
362                                         KM_ZONE_SPREAD,
363                                         xfs_fs_inode_init_once);
364         if (!xfs_vnode_zone)
365                 goto out;
366
367         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
368         if (!xfs_ioend_zone)
369                 goto out_destroy_vnode_zone;
370
371         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
372                                                   xfs_ioend_zone);
373         if (!xfs_ioend_pool)
374                 goto out_free_ioend_zone;
375         return 0;
376
377  out_free_ioend_zone:
378         kmem_zone_destroy(xfs_ioend_zone);
379  out_destroy_vnode_zone:
380         kmem_zone_destroy(xfs_vnode_zone);
381  out:
382         return -ENOMEM;
383 }
384
385 STATIC void
386 xfs_destroy_zones(void)
387 {
388         mempool_destroy(xfs_ioend_pool);
389         kmem_zone_destroy(xfs_vnode_zone);
390         kmem_zone_destroy(xfs_ioend_zone);
391 }
392
393 /*
394  * Attempt to flush the inode, this will actually fail
395  * if the inode is pinned, but we dirty the inode again
396  * at the point when it is unpinned after a log write,
397  * since this is when the inode itself becomes flushable.
398  */
399 STATIC int
400 xfs_fs_write_inode(
401         struct inode            *inode,
402         int                     sync)
403 {
404         int                     error = 0, flags = FLUSH_INODE;
405
406         vn_trace_entry(XFS_I(inode), __FUNCTION__,
407                         (inst_t *)__return_address);
408         if (sync) {
409                 filemap_fdatawait(inode->i_mapping);
410                 flags |= FLUSH_SYNC;
411         }
412         error = xfs_inode_flush(XFS_I(inode), flags);
413         if (error == EAGAIN) {
414                 if (sync)
415                         error = xfs_inode_flush(XFS_I(inode),
416                                                        flags | FLUSH_LOG);
417                 else
418                         error = 0;
419         }
420
421         return -error;
422 }
423
424 STATIC void
425 xfs_fs_clear_inode(
426         struct inode            *inode)
427 {
428         xfs_inode_t             *ip = XFS_I(inode);
429
430         /*
431          * ip can be null when xfs_iget_core calls xfs_idestroy if we
432          * find an inode with di_mode == 0 but without IGET_CREATE set.
433          */
434         if (ip) {
435                 vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
436
437                 XFS_STATS_INC(vn_rele);
438                 XFS_STATS_INC(vn_remove);
439                 XFS_STATS_INC(vn_reclaim);
440                 XFS_STATS_DEC(vn_active);
441
442                 xfs_inactive(ip);
443                 xfs_iflags_clear(ip, XFS_IMODIFIED);
444                 if (xfs_reclaim(ip))
445                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
446         }
447
448         ASSERT(XFS_I(inode) == NULL);
449 }
450
451 /*
452  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
453  * Doing this has two advantages:
454  * - It saves on stack space, which is tight in certain situations
455  * - It can be used (with care) as a mechanism to avoid deadlocks.
456  * Flushing while allocating in a full filesystem requires both.
457  */
458 STATIC void
459 xfs_syncd_queue_work(
460         struct bhv_vfs  *vfs,
461         void            *data,
462         void            (*syncer)(bhv_vfs_t *, void *))
463 {
464         struct bhv_vfs_sync_work *work;
465
466         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
467         INIT_LIST_HEAD(&work->w_list);
468         work->w_syncer = syncer;
469         work->w_data = data;
470         work->w_vfs = vfs;
471         spin_lock(&vfs->vfs_sync_lock);
472         list_add_tail(&work->w_list, &vfs->vfs_sync_list);
473         spin_unlock(&vfs->vfs_sync_lock);
474         wake_up_process(vfs->vfs_sync_task);
475 }
476
477 /*
478  * Flush delayed allocate data, attempting to free up reserved space
479  * from existing allocations.  At this point a new allocation attempt
480  * has failed with ENOSPC and we are in the process of scratching our
481  * heads, looking about for more room...
482  */
483 STATIC void
484 xfs_flush_inode_work(
485         bhv_vfs_t       *vfs,
486         void            *inode)
487 {
488         filemap_flush(((struct inode *)inode)->i_mapping);
489         iput((struct inode *)inode);
490 }
491
492 void
493 xfs_flush_inode(
494         xfs_inode_t     *ip)
495 {
496         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
497         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
498
499         igrab(inode);
500         xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
501         delay(msecs_to_jiffies(500));
502 }
503
504 /*
505  * This is the "bigger hammer" version of xfs_flush_inode_work...
506  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
507  */
508 STATIC void
509 xfs_flush_device_work(
510         bhv_vfs_t       *vfs,
511         void            *inode)
512 {
513         sync_blockdev(vfs->vfs_super->s_bdev);
514         iput((struct inode *)inode);
515 }
516
517 void
518 xfs_flush_device(
519         xfs_inode_t     *ip)
520 {
521         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
522         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
523
524         igrab(inode);
525         xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
526         delay(msecs_to_jiffies(500));
527         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
528 }
529
530 STATIC void
531 vfs_sync_worker(
532         bhv_vfs_t       *vfsp,
533         void            *unused)
534 {
535         int             error;
536
537         if (!(vfsp->vfs_flag & VFS_RDONLY))
538                 error = xfs_sync(XFS_VFSTOM(vfsp), SYNC_FSDATA | SYNC_BDFLUSH | \
539                                         SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER);
540         vfsp->vfs_sync_seq++;
541         wake_up(&vfsp->vfs_wait_single_sync_task);
542 }
543
544 STATIC int
545 xfssyncd(
546         void                    *arg)
547 {
548         long                    timeleft;
549         bhv_vfs_t               *vfsp = (bhv_vfs_t *) arg;
550         bhv_vfs_sync_work_t     *work, *n;
551         LIST_HEAD               (tmp);
552
553         set_freezable();
554         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
555         for (;;) {
556                 timeleft = schedule_timeout_interruptible(timeleft);
557                 /* swsusp */
558                 try_to_freeze();
559                 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
560                         break;
561
562                 spin_lock(&vfsp->vfs_sync_lock);
563                 /*
564                  * We can get woken by laptop mode, to do a sync -
565                  * that's the (only!) case where the list would be
566                  * empty with time remaining.
567                  */
568                 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
569                         if (!timeleft)
570                                 timeleft = xfs_syncd_centisecs *
571                                                         msecs_to_jiffies(10);
572                         INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
573                         list_add_tail(&vfsp->vfs_sync_work.w_list,
574                                         &vfsp->vfs_sync_list);
575                 }
576                 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
577                         list_move(&work->w_list, &tmp);
578                 spin_unlock(&vfsp->vfs_sync_lock);
579
580                 list_for_each_entry_safe(work, n, &tmp, w_list) {
581                         (*work->w_syncer)(vfsp, work->w_data);
582                         list_del(&work->w_list);
583                         if (work == &vfsp->vfs_sync_work)
584                                 continue;
585                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
586                 }
587         }
588
589         return 0;
590 }
591
592 STATIC int
593 xfs_fs_start_syncd(
594         bhv_vfs_t               *vfsp)
595 {
596         vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
597         vfsp->vfs_sync_work.w_vfs = vfsp;
598         vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
599         if (IS_ERR(vfsp->vfs_sync_task))
600                 return -PTR_ERR(vfsp->vfs_sync_task);
601         return 0;
602 }
603
604 STATIC void
605 xfs_fs_stop_syncd(
606         bhv_vfs_t               *vfsp)
607 {
608         kthread_stop(vfsp->vfs_sync_task);
609 }
610
611 STATIC void
612 xfs_fs_put_super(
613         struct super_block      *sb)
614 {
615         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
616         struct xfs_mount        *mp = XFS_M(sb);
617         int                     error;
618
619         xfs_fs_stop_syncd(vfsp);
620         xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
621         error = xfs_unmount(mp, 0, NULL);
622         if (error) {
623                 printk("XFS: unmount got error=%d\n", error);
624                 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
625         } else {
626                 vfs_deallocate(vfsp);
627         }
628 }
629
630 STATIC void
631 xfs_fs_write_super(
632         struct super_block      *sb)
633 {
634         if (!(sb->s_flags & MS_RDONLY))
635                 xfs_sync(XFS_M(sb), SYNC_FSDATA);
636         sb->s_dirt = 0;
637 }
638
639 STATIC int
640 xfs_fs_sync_super(
641         struct super_block      *sb,
642         int                     wait)
643 {
644         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
645         struct xfs_mount        *mp = XFS_M(sb);
646         int                     error;
647         int                     flags;
648
649         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
650                 /*
651                  * First stage of freeze - no more writers will make progress
652                  * now we are here, so we flush delwri and delalloc buffers
653                  * here, then wait for all I/O to complete.  Data is frozen at
654                  * that point. Metadata is not frozen, transactions can still
655                  * occur here so don't bother flushing the buftarg (i.e
656                  * SYNC_QUIESCE) because it'll just get dirty again.
657                  */
658                 flags = SYNC_DATA_QUIESCE;
659         } else
660                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
661
662         error = xfs_sync(mp, flags);
663         sb->s_dirt = 0;
664
665         if (unlikely(laptop_mode)) {
666                 int     prev_sync_seq = vfsp->vfs_sync_seq;
667
668                 /*
669                  * The disk must be active because we're syncing.
670                  * We schedule xfssyncd now (now that the disk is
671                  * active) instead of later (when it might not be).
672                  */
673                 wake_up_process(vfsp->vfs_sync_task);
674                 /*
675                  * We have to wait for the sync iteration to complete.
676                  * If we don't, the disk activity caused by the sync
677                  * will come after the sync is completed, and that
678                  * triggers another sync from laptop mode.
679                  */
680                 wait_event(vfsp->vfs_wait_single_sync_task,
681                                 vfsp->vfs_sync_seq != prev_sync_seq);
682         }
683
684         return -error;
685 }
686
687 STATIC int
688 xfs_fs_statfs(
689         struct dentry           *dentry,
690         struct kstatfs          *statp)
691 {
692         return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
693                                 vn_from_inode(dentry->d_inode));
694 }
695
696 STATIC int
697 xfs_fs_remount(
698         struct super_block      *sb,
699         int                     *flags,
700         char                    *options)
701 {
702         struct xfs_mount        *mp = XFS_M(sb);
703         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
704         int                     error;
705
706         error = xfs_parseargs(mp, options, args, 1);
707         if (!error)
708                 error = xfs_mntupdate(mp, flags, args);
709         kmem_free(args, sizeof(*args));
710         return -error;
711 }
712
713 STATIC void
714 xfs_fs_lockfs(
715         struct super_block      *sb)
716 {
717         xfs_freeze(XFS_M(sb));
718 }
719
720 STATIC int
721 xfs_fs_show_options(
722         struct seq_file         *m,
723         struct vfsmount         *mnt)
724 {
725         return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
726 }
727
728 STATIC int
729 xfs_fs_quotasync(
730         struct super_block      *sb,
731         int                     type)
732 {
733         return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
734 }
735
736 STATIC int
737 xfs_fs_getxstate(
738         struct super_block      *sb,
739         struct fs_quota_stat    *fqs)
740 {
741         return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
742 }
743
744 STATIC int
745 xfs_fs_setxstate(
746         struct super_block      *sb,
747         unsigned int            flags,
748         int                     op)
749 {
750         return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
751 }
752
753 STATIC int
754 xfs_fs_getxquota(
755         struct super_block      *sb,
756         int                     type,
757         qid_t                   id,
758         struct fs_disk_quota    *fdq)
759 {
760         return -XFS_QM_QUOTACTL(XFS_M(sb),
761                                  (type == USRQUOTA) ? Q_XGETQUOTA :
762                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
763                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
764 }
765
766 STATIC int
767 xfs_fs_setxquota(
768         struct super_block      *sb,
769         int                     type,
770         qid_t                   id,
771         struct fs_disk_quota    *fdq)
772 {
773         return -XFS_QM_QUOTACTL(XFS_M(sb),
774                                  (type == USRQUOTA) ? Q_XSETQLIM :
775                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
776                                    Q_XSETPQLIM), id, (caddr_t)fdq);
777 }
778
779 STATIC int
780 xfs_fs_fill_super(
781         struct super_block      *sb,
782         void                    *data,
783         int                     silent)
784 {
785         struct inode            *rootvp;
786         struct bhv_vfs          *vfsp = vfs_allocate(sb);
787         struct xfs_mount        *mp = NULL;
788         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
789         struct kstatfs          statvfs;
790         int                     error;
791
792         mp = xfs_mount_init();
793         mp->m_vfsp = vfsp;
794         vfsp->vfs_mount = mp;
795
796         error = xfs_parseargs(mp, (char *)data, args, 0);
797         if (error)
798                 goto fail_vfsop;
799
800         sb_min_blocksize(sb, BBSIZE);
801         sb->s_export_op = &xfs_export_operations;
802         sb->s_qcop = &xfs_quotactl_operations;
803         sb->s_op = &xfs_super_operations;
804
805         error = xfs_mount(mp, args, NULL);
806         if (error)
807                 goto fail_vfsop;
808
809         error = xfs_statvfs(mp, &statvfs, NULL);
810         if (error)
811                 goto fail_unmount;
812
813         sb->s_dirt = 1;
814         sb->s_magic = statvfs.f_type;
815         sb->s_blocksize = statvfs.f_bsize;
816         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
817         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
818         sb->s_time_gran = 1;
819         set_posix_acl_flag(sb);
820
821         error = xfs_root(mp, &rootvp);
822         if (error)
823                 goto fail_unmount;
824
825         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
826         if (!sb->s_root) {
827                 error = ENOMEM;
828                 goto fail_vnrele;
829         }
830         if (is_bad_inode(sb->s_root->d_inode)) {
831                 error = EINVAL;
832                 goto fail_vnrele;
833         }
834         if ((error = xfs_fs_start_syncd(vfsp)))
835                 goto fail_vnrele;
836         vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
837                         (inst_t *)__return_address);
838
839         kmem_free(args, sizeof(*args));
840         return 0;
841
842 fail_vnrele:
843         if (sb->s_root) {
844                 dput(sb->s_root);
845                 sb->s_root = NULL;
846         } else {
847                 VN_RELE(rootvp);
848         }
849
850 fail_unmount:
851         xfs_unmount(mp, 0, NULL);
852
853 fail_vfsop:
854         vfs_deallocate(vfsp);
855         kmem_free(args, sizeof(*args));
856         return -error;
857 }
858
859 STATIC int
860 xfs_fs_get_sb(
861         struct file_system_type *fs_type,
862         int                     flags,
863         const char              *dev_name,
864         void                    *data,
865         struct vfsmount         *mnt)
866 {
867         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
868                            mnt);
869 }
870
871 static struct super_operations xfs_super_operations = {
872         .alloc_inode            = xfs_fs_alloc_inode,
873         .destroy_inode          = xfs_fs_destroy_inode,
874         .write_inode            = xfs_fs_write_inode,
875         .clear_inode            = xfs_fs_clear_inode,
876         .put_super              = xfs_fs_put_super,
877         .write_super            = xfs_fs_write_super,
878         .sync_fs                = xfs_fs_sync_super,
879         .write_super_lockfs     = xfs_fs_lockfs,
880         .statfs                 = xfs_fs_statfs,
881         .remount_fs             = xfs_fs_remount,
882         .show_options           = xfs_fs_show_options,
883 };
884
885 static struct quotactl_ops xfs_quotactl_operations = {
886         .quota_sync             = xfs_fs_quotasync,
887         .get_xstate             = xfs_fs_getxstate,
888         .set_xstate             = xfs_fs_setxstate,
889         .get_xquota             = xfs_fs_getxquota,
890         .set_xquota             = xfs_fs_setxquota,
891 };
892
893 static struct file_system_type xfs_fs_type = {
894         .owner                  = THIS_MODULE,
895         .name                   = "xfs",
896         .get_sb                 = xfs_fs_get_sb,
897         .kill_sb                = kill_block_super,
898         .fs_flags               = FS_REQUIRES_DEV,
899 };
900
901
902 STATIC int __init
903 init_xfs_fs( void )
904 {
905         int                     error;
906         static char             message[] __initdata = KERN_INFO \
907                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
908
909         printk(message);
910
911         ktrace_init(64);
912
913         error = xfs_init_zones();
914         if (error < 0)
915                 goto undo_zones;
916
917         error = xfs_buf_init();
918         if (error < 0)
919                 goto undo_buffers;
920
921         vn_init();
922         xfs_init();
923         uuid_init();
924         vfs_initquota();
925
926         error = register_filesystem(&xfs_fs_type);
927         if (error)
928                 goto undo_register;
929         return 0;
930
931 undo_register:
932         xfs_buf_terminate();
933
934 undo_buffers:
935         xfs_destroy_zones();
936
937 undo_zones:
938         return error;
939 }
940
941 STATIC void __exit
942 exit_xfs_fs( void )
943 {
944         vfs_exitquota();
945         unregister_filesystem(&xfs_fs_type);
946         xfs_cleanup();
947         xfs_buf_terminate();
948         xfs_destroy_zones();
949         ktrace_uninit();
950 }
951
952 module_init(init_xfs_fs);
953 module_exit(exit_xfs_fs);
954
955 MODULE_AUTHOR("Silicon Graphics, Inc.");
956 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
957 MODULE_LICENSE("GPL");