bpf: dynamically allocate digest scratch buffer
[linux] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31
32 #include <asm/unaligned.h>
33
34 /* Registers */
35 #define BPF_R0  regs[BPF_REG_0]
36 #define BPF_R1  regs[BPF_REG_1]
37 #define BPF_R2  regs[BPF_REG_2]
38 #define BPF_R3  regs[BPF_REG_3]
39 #define BPF_R4  regs[BPF_REG_4]
40 #define BPF_R5  regs[BPF_REG_5]
41 #define BPF_R6  regs[BPF_REG_6]
42 #define BPF_R7  regs[BPF_REG_7]
43 #define BPF_R8  regs[BPF_REG_8]
44 #define BPF_R9  regs[BPF_REG_9]
45 #define BPF_R10 regs[BPF_REG_10]
46
47 /* Named registers */
48 #define DST     regs[insn->dst_reg]
49 #define SRC     regs[insn->src_reg]
50 #define FP      regs[BPF_REG_FP]
51 #define ARG1    regs[BPF_REG_ARG1]
52 #define CTX     regs[BPF_REG_CTX]
53 #define IMM     insn->imm
54
55 /* No hurry in this branch
56  *
57  * Exported for the bpf jit load helper.
58  */
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
60 {
61         u8 *ptr = NULL;
62
63         if (k >= SKF_NET_OFF)
64                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
65         else if (k >= SKF_LL_OFF)
66                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
67
68         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
69                 return ptr;
70
71         return NULL;
72 }
73
74 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
75 {
76         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
77                           gfp_extra_flags;
78         struct bpf_prog_aux *aux;
79         struct bpf_prog *fp;
80
81         size = round_up(size, PAGE_SIZE);
82         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
83         if (fp == NULL)
84                 return NULL;
85
86         kmemcheck_annotate_bitfield(fp, meta);
87
88         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89         if (aux == NULL) {
90                 vfree(fp);
91                 return NULL;
92         }
93
94         fp->pages = size / PAGE_SIZE;
95         fp->aux = aux;
96         fp->aux->prog = fp;
97
98         return fp;
99 }
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101
102 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103                                   gfp_t gfp_extra_flags)
104 {
105         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106                           gfp_extra_flags;
107         struct bpf_prog *fp;
108
109         BUG_ON(fp_old == NULL);
110
111         size = round_up(size, PAGE_SIZE);
112         if (size <= fp_old->pages * PAGE_SIZE)
113                 return fp_old;
114
115         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
116         if (fp != NULL) {
117                 kmemcheck_annotate_bitfield(fp, meta);
118
119                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
120                 fp->pages = size / PAGE_SIZE;
121                 fp->aux->prog = fp;
122
123                 /* We keep fp->aux from fp_old around in the new
124                  * reallocated structure.
125                  */
126                 fp_old->aux = NULL;
127                 __bpf_prog_free(fp_old);
128         }
129
130         return fp;
131 }
132
133 void __bpf_prog_free(struct bpf_prog *fp)
134 {
135         kfree(fp->aux);
136         vfree(fp);
137 }
138
139 int bpf_prog_calc_digest(struct bpf_prog *fp)
140 {
141         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
142         u32 raw_size = bpf_prog_digest_scratch_size(fp);
143         u32 ws[SHA_WORKSPACE_WORDS];
144         u32 i, bsize, psize, blocks;
145         struct bpf_insn *dst;
146         bool was_ld_map;
147         u8 *raw, *todo;
148         __be32 *result;
149         __be64 *bits;
150
151         raw = vmalloc(raw_size);
152         if (!raw)
153                 return -ENOMEM;
154
155         sha_init(fp->digest);
156         memset(ws, 0, sizeof(ws));
157
158         /* We need to take out the map fd for the digest calculation
159          * since they are unstable from user space side.
160          */
161         dst = (void *)raw;
162         for (i = 0, was_ld_map = false; i < fp->len; i++) {
163                 dst[i] = fp->insnsi[i];
164                 if (!was_ld_map &&
165                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
166                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
167                         was_ld_map = true;
168                         dst[i].imm = 0;
169                 } else if (was_ld_map &&
170                            dst[i].code == 0 &&
171                            dst[i].dst_reg == 0 &&
172                            dst[i].src_reg == 0 &&
173                            dst[i].off == 0) {
174                         was_ld_map = false;
175                         dst[i].imm = 0;
176                 } else {
177                         was_ld_map = false;
178                 }
179         }
180
181         psize = bpf_prog_insn_size(fp);
182         memset(&raw[psize], 0, raw_size - psize);
183         raw[psize++] = 0x80;
184
185         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
186         blocks = bsize / SHA_MESSAGE_BYTES;
187         todo   = raw;
188         if (bsize - psize >= sizeof(__be64)) {
189                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
190         } else {
191                 bits = (__be64 *)(todo + bsize + bits_offset);
192                 blocks++;
193         }
194         *bits = cpu_to_be64((psize - 1) << 3);
195
196         while (blocks--) {
197                 sha_transform(fp->digest, todo, ws);
198                 todo += SHA_MESSAGE_BYTES;
199         }
200
201         result = (__force __be32 *)fp->digest;
202         for (i = 0; i < SHA_DIGEST_WORDS; i++)
203                 result[i] = cpu_to_be32(fp->digest[i]);
204
205         vfree(raw);
206         return 0;
207 }
208
209 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
210 {
211         return BPF_CLASS(insn->code) == BPF_JMP  &&
212                /* Call and Exit are both special jumps with no
213                 * target inside the BPF instruction image.
214                 */
215                BPF_OP(insn->code) != BPF_CALL &&
216                BPF_OP(insn->code) != BPF_EXIT;
217 }
218
219 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
220 {
221         struct bpf_insn *insn = prog->insnsi;
222         u32 i, insn_cnt = prog->len;
223
224         for (i = 0; i < insn_cnt; i++, insn++) {
225                 if (!bpf_is_jmp_and_has_target(insn))
226                         continue;
227
228                 /* Adjust offset of jmps if we cross boundaries. */
229                 if (i < pos && i + insn->off + 1 > pos)
230                         insn->off += delta;
231                 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
232                         insn->off -= delta;
233         }
234 }
235
236 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
237                                        const struct bpf_insn *patch, u32 len)
238 {
239         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
240         struct bpf_prog *prog_adj;
241
242         /* Since our patchlet doesn't expand the image, we're done. */
243         if (insn_delta == 0) {
244                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
245                 return prog;
246         }
247
248         insn_adj_cnt = prog->len + insn_delta;
249
250         /* Several new instructions need to be inserted. Make room
251          * for them. Likely, there's no need for a new allocation as
252          * last page could have large enough tailroom.
253          */
254         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
255                                     GFP_USER);
256         if (!prog_adj)
257                 return NULL;
258
259         prog_adj->len = insn_adj_cnt;
260
261         /* Patching happens in 3 steps:
262          *
263          * 1) Move over tail of insnsi from next instruction onwards,
264          *    so we can patch the single target insn with one or more
265          *    new ones (patching is always from 1 to n insns, n > 0).
266          * 2) Inject new instructions at the target location.
267          * 3) Adjust branch offsets if necessary.
268          */
269         insn_rest = insn_adj_cnt - off - len;
270
271         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
272                 sizeof(*patch) * insn_rest);
273         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
274
275         bpf_adj_branches(prog_adj, off, insn_delta);
276
277         return prog_adj;
278 }
279
280 #ifdef CONFIG_BPF_JIT
281 struct bpf_binary_header *
282 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
283                      unsigned int alignment,
284                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
285 {
286         struct bpf_binary_header *hdr;
287         unsigned int size, hole, start;
288
289         /* Most of BPF filters are really small, but if some of them
290          * fill a page, allow at least 128 extra bytes to insert a
291          * random section of illegal instructions.
292          */
293         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
294         hdr = module_alloc(size);
295         if (hdr == NULL)
296                 return NULL;
297
298         /* Fill space with illegal/arch-dep instructions. */
299         bpf_fill_ill_insns(hdr, size);
300
301         hdr->pages = size / PAGE_SIZE;
302         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
303                      PAGE_SIZE - sizeof(*hdr));
304         start = (get_random_int() % hole) & ~(alignment - 1);
305
306         /* Leave a random number of instructions before BPF code. */
307         *image_ptr = &hdr->image[start];
308
309         return hdr;
310 }
311
312 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
313 {
314         module_memfree(hdr);
315 }
316
317 int bpf_jit_harden __read_mostly;
318
319 static int bpf_jit_blind_insn(const struct bpf_insn *from,
320                               const struct bpf_insn *aux,
321                               struct bpf_insn *to_buff)
322 {
323         struct bpf_insn *to = to_buff;
324         u32 imm_rnd = get_random_int();
325         s16 off;
326
327         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
328         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
329
330         if (from->imm == 0 &&
331             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
332              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
333                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
334                 goto out;
335         }
336
337         switch (from->code) {
338         case BPF_ALU | BPF_ADD | BPF_K:
339         case BPF_ALU | BPF_SUB | BPF_K:
340         case BPF_ALU | BPF_AND | BPF_K:
341         case BPF_ALU | BPF_OR  | BPF_K:
342         case BPF_ALU | BPF_XOR | BPF_K:
343         case BPF_ALU | BPF_MUL | BPF_K:
344         case BPF_ALU | BPF_MOV | BPF_K:
345         case BPF_ALU | BPF_DIV | BPF_K:
346         case BPF_ALU | BPF_MOD | BPF_K:
347                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
348                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
349                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
350                 break;
351
352         case BPF_ALU64 | BPF_ADD | BPF_K:
353         case BPF_ALU64 | BPF_SUB | BPF_K:
354         case BPF_ALU64 | BPF_AND | BPF_K:
355         case BPF_ALU64 | BPF_OR  | BPF_K:
356         case BPF_ALU64 | BPF_XOR | BPF_K:
357         case BPF_ALU64 | BPF_MUL | BPF_K:
358         case BPF_ALU64 | BPF_MOV | BPF_K:
359         case BPF_ALU64 | BPF_DIV | BPF_K:
360         case BPF_ALU64 | BPF_MOD | BPF_K:
361                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
362                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
363                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
364                 break;
365
366         case BPF_JMP | BPF_JEQ  | BPF_K:
367         case BPF_JMP | BPF_JNE  | BPF_K:
368         case BPF_JMP | BPF_JGT  | BPF_K:
369         case BPF_JMP | BPF_JGE  | BPF_K:
370         case BPF_JMP | BPF_JSGT | BPF_K:
371         case BPF_JMP | BPF_JSGE | BPF_K:
372         case BPF_JMP | BPF_JSET | BPF_K:
373                 /* Accommodate for extra offset in case of a backjump. */
374                 off = from->off;
375                 if (off < 0)
376                         off -= 2;
377                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
378                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
379                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
380                 break;
381
382         case BPF_LD | BPF_ABS | BPF_W:
383         case BPF_LD | BPF_ABS | BPF_H:
384         case BPF_LD | BPF_ABS | BPF_B:
385                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
386                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
387                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
388                 break;
389
390         case BPF_LD | BPF_IND | BPF_W:
391         case BPF_LD | BPF_IND | BPF_H:
392         case BPF_LD | BPF_IND | BPF_B:
393                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
394                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
395                 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
396                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
397                 break;
398
399         case BPF_LD | BPF_IMM | BPF_DW:
400                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
401                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
402                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
403                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
404                 break;
405         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
406                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
407                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
408                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
409                 break;
410
411         case BPF_ST | BPF_MEM | BPF_DW:
412         case BPF_ST | BPF_MEM | BPF_W:
413         case BPF_ST | BPF_MEM | BPF_H:
414         case BPF_ST | BPF_MEM | BPF_B:
415                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
416                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
417                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
418                 break;
419         }
420 out:
421         return to - to_buff;
422 }
423
424 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
425                                               gfp_t gfp_extra_flags)
426 {
427         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
428                           gfp_extra_flags;
429         struct bpf_prog *fp;
430
431         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
432         if (fp != NULL) {
433                 kmemcheck_annotate_bitfield(fp, meta);
434
435                 /* aux->prog still points to the fp_other one, so
436                  * when promoting the clone to the real program,
437                  * this still needs to be adapted.
438                  */
439                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
440         }
441
442         return fp;
443 }
444
445 static void bpf_prog_clone_free(struct bpf_prog *fp)
446 {
447         /* aux was stolen by the other clone, so we cannot free
448          * it from this path! It will be freed eventually by the
449          * other program on release.
450          *
451          * At this point, we don't need a deferred release since
452          * clone is guaranteed to not be locked.
453          */
454         fp->aux = NULL;
455         __bpf_prog_free(fp);
456 }
457
458 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
459 {
460         /* We have to repoint aux->prog to self, as we don't
461          * know whether fp here is the clone or the original.
462          */
463         fp->aux->prog = fp;
464         bpf_prog_clone_free(fp_other);
465 }
466
467 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
468 {
469         struct bpf_insn insn_buff[16], aux[2];
470         struct bpf_prog *clone, *tmp;
471         int insn_delta, insn_cnt;
472         struct bpf_insn *insn;
473         int i, rewritten;
474
475         if (!bpf_jit_blinding_enabled())
476                 return prog;
477
478         clone = bpf_prog_clone_create(prog, GFP_USER);
479         if (!clone)
480                 return ERR_PTR(-ENOMEM);
481
482         insn_cnt = clone->len;
483         insn = clone->insnsi;
484
485         for (i = 0; i < insn_cnt; i++, insn++) {
486                 /* We temporarily need to hold the original ld64 insn
487                  * so that we can still access the first part in the
488                  * second blinding run.
489                  */
490                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
491                     insn[1].code == 0)
492                         memcpy(aux, insn, sizeof(aux));
493
494                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
495                 if (!rewritten)
496                         continue;
497
498                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
499                 if (!tmp) {
500                         /* Patching may have repointed aux->prog during
501                          * realloc from the original one, so we need to
502                          * fix it up here on error.
503                          */
504                         bpf_jit_prog_release_other(prog, clone);
505                         return ERR_PTR(-ENOMEM);
506                 }
507
508                 clone = tmp;
509                 insn_delta = rewritten - 1;
510
511                 /* Walk new program and skip insns we just inserted. */
512                 insn = clone->insnsi + i + insn_delta;
513                 insn_cnt += insn_delta;
514                 i        += insn_delta;
515         }
516
517         return clone;
518 }
519 #endif /* CONFIG_BPF_JIT */
520
521 /* Base function for offset calculation. Needs to go into .text section,
522  * therefore keeping it non-static as well; will also be used by JITs
523  * anyway later on, so do not let the compiler omit it.
524  */
525 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
526 {
527         return 0;
528 }
529 EXPORT_SYMBOL_GPL(__bpf_call_base);
530
531 /**
532  *      __bpf_prog_run - run eBPF program on a given context
533  *      @ctx: is the data we are operating on
534  *      @insn: is the array of eBPF instructions
535  *
536  * Decode and execute eBPF instructions.
537  */
538 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
539 {
540         u64 stack[MAX_BPF_STACK / sizeof(u64)];
541         u64 regs[MAX_BPF_REG], tmp;
542         static const void *jumptable[256] = {
543                 [0 ... 255] = &&default_label,
544                 /* Now overwrite non-defaults ... */
545                 /* 32 bit ALU operations */
546                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
547                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
548                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
549                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
550                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
551                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
552                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
553                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
554                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
555                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
556                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
557                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
558                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
559                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
560                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
561                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
562                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
563                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
564                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
565                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
566                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
567                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
568                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
569                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
570                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
571                 /* 64 bit ALU operations */
572                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
573                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
574                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
575                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
576                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
577                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
578                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
579                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
580                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
581                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
582                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
583                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
584                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
585                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
586                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
587                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
588                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
589                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
590                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
591                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
592                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
593                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
594                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
595                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
596                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
597                 /* Call instruction */
598                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
599                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
600                 /* Jumps */
601                 [BPF_JMP | BPF_JA] = &&JMP_JA,
602                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
603                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
604                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
605                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
606                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
607                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
608                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
609                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
610                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
611                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
612                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
613                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
614                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
615                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
616                 /* Program return */
617                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
618                 /* Store instructions */
619                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
620                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
621                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
622                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
623                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
624                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
625                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
626                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
627                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
628                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
629                 /* Load instructions */
630                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
631                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
632                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
633                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
634                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
635                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
636                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
637                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
638                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
639                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
640                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
641         };
642         u32 tail_call_cnt = 0;
643         void *ptr;
644         int off;
645
646 #define CONT     ({ insn++; goto select_insn; })
647 #define CONT_JMP ({ insn++; goto select_insn; })
648
649         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
650         ARG1 = (u64) (unsigned long) ctx;
651
652 select_insn:
653         goto *jumptable[insn->code];
654
655         /* ALU */
656 #define ALU(OPCODE, OP)                 \
657         ALU64_##OPCODE##_X:             \
658                 DST = DST OP SRC;       \
659                 CONT;                   \
660         ALU_##OPCODE##_X:               \
661                 DST = (u32) DST OP (u32) SRC;   \
662                 CONT;                   \
663         ALU64_##OPCODE##_K:             \
664                 DST = DST OP IMM;               \
665                 CONT;                   \
666         ALU_##OPCODE##_K:               \
667                 DST = (u32) DST OP (u32) IMM;   \
668                 CONT;
669
670         ALU(ADD,  +)
671         ALU(SUB,  -)
672         ALU(AND,  &)
673         ALU(OR,   |)
674         ALU(LSH, <<)
675         ALU(RSH, >>)
676         ALU(XOR,  ^)
677         ALU(MUL,  *)
678 #undef ALU
679         ALU_NEG:
680                 DST = (u32) -DST;
681                 CONT;
682         ALU64_NEG:
683                 DST = -DST;
684                 CONT;
685         ALU_MOV_X:
686                 DST = (u32) SRC;
687                 CONT;
688         ALU_MOV_K:
689                 DST = (u32) IMM;
690                 CONT;
691         ALU64_MOV_X:
692                 DST = SRC;
693                 CONT;
694         ALU64_MOV_K:
695                 DST = IMM;
696                 CONT;
697         LD_IMM_DW:
698                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
699                 insn++;
700                 CONT;
701         ALU64_ARSH_X:
702                 (*(s64 *) &DST) >>= SRC;
703                 CONT;
704         ALU64_ARSH_K:
705                 (*(s64 *) &DST) >>= IMM;
706                 CONT;
707         ALU64_MOD_X:
708                 if (unlikely(SRC == 0))
709                         return 0;
710                 div64_u64_rem(DST, SRC, &tmp);
711                 DST = tmp;
712                 CONT;
713         ALU_MOD_X:
714                 if (unlikely(SRC == 0))
715                         return 0;
716                 tmp = (u32) DST;
717                 DST = do_div(tmp, (u32) SRC);
718                 CONT;
719         ALU64_MOD_K:
720                 div64_u64_rem(DST, IMM, &tmp);
721                 DST = tmp;
722                 CONT;
723         ALU_MOD_K:
724                 tmp = (u32) DST;
725                 DST = do_div(tmp, (u32) IMM);
726                 CONT;
727         ALU64_DIV_X:
728                 if (unlikely(SRC == 0))
729                         return 0;
730                 DST = div64_u64(DST, SRC);
731                 CONT;
732         ALU_DIV_X:
733                 if (unlikely(SRC == 0))
734                         return 0;
735                 tmp = (u32) DST;
736                 do_div(tmp, (u32) SRC);
737                 DST = (u32) tmp;
738                 CONT;
739         ALU64_DIV_K:
740                 DST = div64_u64(DST, IMM);
741                 CONT;
742         ALU_DIV_K:
743                 tmp = (u32) DST;
744                 do_div(tmp, (u32) IMM);
745                 DST = (u32) tmp;
746                 CONT;
747         ALU_END_TO_BE:
748                 switch (IMM) {
749                 case 16:
750                         DST = (__force u16) cpu_to_be16(DST);
751                         break;
752                 case 32:
753                         DST = (__force u32) cpu_to_be32(DST);
754                         break;
755                 case 64:
756                         DST = (__force u64) cpu_to_be64(DST);
757                         break;
758                 }
759                 CONT;
760         ALU_END_TO_LE:
761                 switch (IMM) {
762                 case 16:
763                         DST = (__force u16) cpu_to_le16(DST);
764                         break;
765                 case 32:
766                         DST = (__force u32) cpu_to_le32(DST);
767                         break;
768                 case 64:
769                         DST = (__force u64) cpu_to_le64(DST);
770                         break;
771                 }
772                 CONT;
773
774         /* CALL */
775         JMP_CALL:
776                 /* Function call scratches BPF_R1-BPF_R5 registers,
777                  * preserves BPF_R6-BPF_R9, and stores return value
778                  * into BPF_R0.
779                  */
780                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
781                                                        BPF_R4, BPF_R5);
782                 CONT;
783
784         JMP_TAIL_CALL: {
785                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
786                 struct bpf_array *array = container_of(map, struct bpf_array, map);
787                 struct bpf_prog *prog;
788                 u64 index = BPF_R3;
789
790                 if (unlikely(index >= array->map.max_entries))
791                         goto out;
792                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
793                         goto out;
794
795                 tail_call_cnt++;
796
797                 prog = READ_ONCE(array->ptrs[index]);
798                 if (!prog)
799                         goto out;
800
801                 /* ARG1 at this point is guaranteed to point to CTX from
802                  * the verifier side due to the fact that the tail call is
803                  * handeled like a helper, that is, bpf_tail_call_proto,
804                  * where arg1_type is ARG_PTR_TO_CTX.
805                  */
806                 insn = prog->insnsi;
807                 goto select_insn;
808 out:
809                 CONT;
810         }
811         /* JMP */
812         JMP_JA:
813                 insn += insn->off;
814                 CONT;
815         JMP_JEQ_X:
816                 if (DST == SRC) {
817                         insn += insn->off;
818                         CONT_JMP;
819                 }
820                 CONT;
821         JMP_JEQ_K:
822                 if (DST == IMM) {
823                         insn += insn->off;
824                         CONT_JMP;
825                 }
826                 CONT;
827         JMP_JNE_X:
828                 if (DST != SRC) {
829                         insn += insn->off;
830                         CONT_JMP;
831                 }
832                 CONT;
833         JMP_JNE_K:
834                 if (DST != IMM) {
835                         insn += insn->off;
836                         CONT_JMP;
837                 }
838                 CONT;
839         JMP_JGT_X:
840                 if (DST > SRC) {
841                         insn += insn->off;
842                         CONT_JMP;
843                 }
844                 CONT;
845         JMP_JGT_K:
846                 if (DST > IMM) {
847                         insn += insn->off;
848                         CONT_JMP;
849                 }
850                 CONT;
851         JMP_JGE_X:
852                 if (DST >= SRC) {
853                         insn += insn->off;
854                         CONT_JMP;
855                 }
856                 CONT;
857         JMP_JGE_K:
858                 if (DST >= IMM) {
859                         insn += insn->off;
860                         CONT_JMP;
861                 }
862                 CONT;
863         JMP_JSGT_X:
864                 if (((s64) DST) > ((s64) SRC)) {
865                         insn += insn->off;
866                         CONT_JMP;
867                 }
868                 CONT;
869         JMP_JSGT_K:
870                 if (((s64) DST) > ((s64) IMM)) {
871                         insn += insn->off;
872                         CONT_JMP;
873                 }
874                 CONT;
875         JMP_JSGE_X:
876                 if (((s64) DST) >= ((s64) SRC)) {
877                         insn += insn->off;
878                         CONT_JMP;
879                 }
880                 CONT;
881         JMP_JSGE_K:
882                 if (((s64) DST) >= ((s64) IMM)) {
883                         insn += insn->off;
884                         CONT_JMP;
885                 }
886                 CONT;
887         JMP_JSET_X:
888                 if (DST & SRC) {
889                         insn += insn->off;
890                         CONT_JMP;
891                 }
892                 CONT;
893         JMP_JSET_K:
894                 if (DST & IMM) {
895                         insn += insn->off;
896                         CONT_JMP;
897                 }
898                 CONT;
899         JMP_EXIT:
900                 return BPF_R0;
901
902         /* STX and ST and LDX*/
903 #define LDST(SIZEOP, SIZE)                                              \
904         STX_MEM_##SIZEOP:                                               \
905                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
906                 CONT;                                                   \
907         ST_MEM_##SIZEOP:                                                \
908                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
909                 CONT;                                                   \
910         LDX_MEM_##SIZEOP:                                               \
911                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
912                 CONT;
913
914         LDST(B,   u8)
915         LDST(H,  u16)
916         LDST(W,  u32)
917         LDST(DW, u64)
918 #undef LDST
919         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
920                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
921                            (DST + insn->off));
922                 CONT;
923         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
924                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
925                              (DST + insn->off));
926                 CONT;
927         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
928                 off = IMM;
929 load_word:
930                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
931                  * only appearing in the programs where ctx ==
932                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
933                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
934                  * internal BPF verifier will check that BPF_R6 ==
935                  * ctx.
936                  *
937                  * BPF_ABS and BPF_IND are wrappers of function calls,
938                  * so they scratch BPF_R1-BPF_R5 registers, preserve
939                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
940                  *
941                  * Implicit input:
942                  *   ctx == skb == BPF_R6 == CTX
943                  *
944                  * Explicit input:
945                  *   SRC == any register
946                  *   IMM == 32-bit immediate
947                  *
948                  * Output:
949                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
950                  */
951
952                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
953                 if (likely(ptr != NULL)) {
954                         BPF_R0 = get_unaligned_be32(ptr);
955                         CONT;
956                 }
957
958                 return 0;
959         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
960                 off = IMM;
961 load_half:
962                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
963                 if (likely(ptr != NULL)) {
964                         BPF_R0 = get_unaligned_be16(ptr);
965                         CONT;
966                 }
967
968                 return 0;
969         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
970                 off = IMM;
971 load_byte:
972                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
973                 if (likely(ptr != NULL)) {
974                         BPF_R0 = *(u8 *)ptr;
975                         CONT;
976                 }
977
978                 return 0;
979         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
980                 off = IMM + SRC;
981                 goto load_word;
982         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
983                 off = IMM + SRC;
984                 goto load_half;
985         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
986                 off = IMM + SRC;
987                 goto load_byte;
988
989         default_label:
990                 /* If we ever reach this, we have a bug somewhere. */
991                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
992                 return 0;
993 }
994 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
995
996 bool bpf_prog_array_compatible(struct bpf_array *array,
997                                const struct bpf_prog *fp)
998 {
999         if (!array->owner_prog_type) {
1000                 /* There's no owner yet where we could check for
1001                  * compatibility.
1002                  */
1003                 array->owner_prog_type = fp->type;
1004                 array->owner_jited = fp->jited;
1005
1006                 return true;
1007         }
1008
1009         return array->owner_prog_type == fp->type &&
1010                array->owner_jited == fp->jited;
1011 }
1012
1013 static int bpf_check_tail_call(const struct bpf_prog *fp)
1014 {
1015         struct bpf_prog_aux *aux = fp->aux;
1016         int i;
1017
1018         for (i = 0; i < aux->used_map_cnt; i++) {
1019                 struct bpf_map *map = aux->used_maps[i];
1020                 struct bpf_array *array;
1021
1022                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1023                         continue;
1024
1025                 array = container_of(map, struct bpf_array, map);
1026                 if (!bpf_prog_array_compatible(array, fp))
1027                         return -EINVAL;
1028         }
1029
1030         return 0;
1031 }
1032
1033 /**
1034  *      bpf_prog_select_runtime - select exec runtime for BPF program
1035  *      @fp: bpf_prog populated with internal BPF program
1036  *      @err: pointer to error variable
1037  *
1038  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1039  * The BPF program will be executed via BPF_PROG_RUN() macro.
1040  */
1041 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1042 {
1043         fp->bpf_func = (void *) __bpf_prog_run;
1044
1045         /* eBPF JITs can rewrite the program in case constant
1046          * blinding is active. However, in case of error during
1047          * blinding, bpf_int_jit_compile() must always return a
1048          * valid program, which in this case would simply not
1049          * be JITed, but falls back to the interpreter.
1050          */
1051         fp = bpf_int_jit_compile(fp);
1052         bpf_prog_lock_ro(fp);
1053
1054         /* The tail call compatibility check can only be done at
1055          * this late stage as we need to determine, if we deal
1056          * with JITed or non JITed program concatenations and not
1057          * all eBPF JITs might immediately support all features.
1058          */
1059         *err = bpf_check_tail_call(fp);
1060
1061         return fp;
1062 }
1063 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1064
1065 static void bpf_prog_free_deferred(struct work_struct *work)
1066 {
1067         struct bpf_prog_aux *aux;
1068
1069         aux = container_of(work, struct bpf_prog_aux, work);
1070         bpf_jit_free(aux->prog);
1071 }
1072
1073 /* Free internal BPF program */
1074 void bpf_prog_free(struct bpf_prog *fp)
1075 {
1076         struct bpf_prog_aux *aux = fp->aux;
1077
1078         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1079         schedule_work(&aux->work);
1080 }
1081 EXPORT_SYMBOL_GPL(bpf_prog_free);
1082
1083 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1084 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1085
1086 void bpf_user_rnd_init_once(void)
1087 {
1088         prandom_init_once(&bpf_user_rnd_state);
1089 }
1090
1091 BPF_CALL_0(bpf_user_rnd_u32)
1092 {
1093         /* Should someone ever have the rather unwise idea to use some
1094          * of the registers passed into this function, then note that
1095          * this function is called from native eBPF and classic-to-eBPF
1096          * transformations. Register assignments from both sides are
1097          * different, f.e. classic always sets fn(ctx, A, X) here.
1098          */
1099         struct rnd_state *state;
1100         u32 res;
1101
1102         state = &get_cpu_var(bpf_user_rnd_state);
1103         res = prandom_u32_state(state);
1104         put_cpu_var(bpf_user_rnd_state);
1105
1106         return res;
1107 }
1108
1109 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1110 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1111 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1112 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1113
1114 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1115 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1116 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1117 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1118
1119 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1120 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1121 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1122
1123 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1124 {
1125         return NULL;
1126 }
1127
1128 u64 __weak
1129 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1130                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1131 {
1132         return -ENOTSUPP;
1133 }
1134
1135 /* Always built-in helper functions. */
1136 const struct bpf_func_proto bpf_tail_call_proto = {
1137         .func           = NULL,
1138         .gpl_only       = false,
1139         .ret_type       = RET_VOID,
1140         .arg1_type      = ARG_PTR_TO_CTX,
1141         .arg2_type      = ARG_CONST_MAP_PTR,
1142         .arg3_type      = ARG_ANYTHING,
1143 };
1144
1145 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1146 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1147 {
1148         return prog;
1149 }
1150
1151 bool __weak bpf_helper_changes_pkt_data(void *func)
1152 {
1153         return false;
1154 }
1155
1156 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1157  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1158  */
1159 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1160                          int len)
1161 {
1162         return -EFAULT;
1163 }