099fb20cd7be9d39d6f3000d528b5c23c0d113e5
[linux] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:      The current cpu state
42  * @target:     The target state
43  * @thread:     Pointer to the hotplug thread
44  * @should_run: Thread should execute
45  * @rollback:   Perform a rollback
46  * @single:     Single callback invocation
47  * @bringup:    Single callback bringup or teardown selector
48  * @cb_state:   The state for a single callback (install/uninstall)
49  * @result:     Result of the operation
50  * @done_up:    Signal completion to the issuer of the task for cpu-up
51  * @done_down:  Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54         enum cpuhp_state        state;
55         enum cpuhp_state        target;
56         enum cpuhp_state        fail;
57 #ifdef CONFIG_SMP
58         struct task_struct      *thread;
59         bool                    should_run;
60         bool                    rollback;
61         bool                    single;
62         bool                    bringup;
63         bool                    booted_once;
64         struct hlist_node       *node;
65         struct hlist_node       *last;
66         enum cpuhp_state        cb_state;
67         int                     result;
68         struct completion       done_up;
69         struct completion       done_down;
70 #endif
71 };
72
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74         .fail = CPUHP_INVALID,
75 };
76
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
82
83
84 static inline void cpuhp_lock_acquire(bool bringup)
85 {
86         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
87 }
88
89 static inline void cpuhp_lock_release(bool bringup)
90 {
91         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 #else
94
95 static inline void cpuhp_lock_acquire(bool bringup) { }
96 static inline void cpuhp_lock_release(bool bringup) { }
97
98 #endif
99
100 /**
101  * cpuhp_step - Hotplug state machine step
102  * @name:       Name of the step
103  * @startup:    Startup function of the step
104  * @teardown:   Teardown function of the step
105  * @skip_onerr: Do not invoke the functions on error rollback
106  *              Will go away once the notifiers are gone
107  * @cant_stop:  Bringup/teardown can't be stopped at this step
108  */
109 struct cpuhp_step {
110         const char              *name;
111         union {
112                 int             (*single)(unsigned int cpu);
113                 int             (*multi)(unsigned int cpu,
114                                          struct hlist_node *node);
115         } startup;
116         union {
117                 int             (*single)(unsigned int cpu);
118                 int             (*multi)(unsigned int cpu,
119                                          struct hlist_node *node);
120         } teardown;
121         struct hlist_head       list;
122         bool                    skip_onerr;
123         bool                    cant_stop;
124         bool                    multi_instance;
125 };
126
127 static DEFINE_MUTEX(cpuhp_state_mutex);
128 static struct cpuhp_step cpuhp_hp_states[];
129
130 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
131 {
132         return cpuhp_hp_states + state;
133 }
134
135 /**
136  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
137  * @cpu:        The cpu for which the callback should be invoked
138  * @state:      The state to do callbacks for
139  * @bringup:    True if the bringup callback should be invoked
140  * @node:       For multi-instance, do a single entry callback for install/remove
141  * @lastp:      For multi-instance rollback, remember how far we got
142  *
143  * Called from cpu hotplug and from the state register machinery.
144  */
145 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
146                                  bool bringup, struct hlist_node *node,
147                                  struct hlist_node **lastp)
148 {
149         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
150         struct cpuhp_step *step = cpuhp_get_step(state);
151         int (*cbm)(unsigned int cpu, struct hlist_node *node);
152         int (*cb)(unsigned int cpu);
153         int ret, cnt;
154
155         if (st->fail == state) {
156                 st->fail = CPUHP_INVALID;
157
158                 if (!(bringup ? step->startup.single : step->teardown.single))
159                         return 0;
160
161                 return -EAGAIN;
162         }
163
164         if (!step->multi_instance) {
165                 WARN_ON_ONCE(lastp && *lastp);
166                 cb = bringup ? step->startup.single : step->teardown.single;
167                 if (!cb)
168                         return 0;
169                 trace_cpuhp_enter(cpu, st->target, state, cb);
170                 ret = cb(cpu);
171                 trace_cpuhp_exit(cpu, st->state, state, ret);
172                 return ret;
173         }
174         cbm = bringup ? step->startup.multi : step->teardown.multi;
175         if (!cbm)
176                 return 0;
177
178         /* Single invocation for instance add/remove */
179         if (node) {
180                 WARN_ON_ONCE(lastp && *lastp);
181                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
182                 ret = cbm(cpu, node);
183                 trace_cpuhp_exit(cpu, st->state, state, ret);
184                 return ret;
185         }
186
187         /* State transition. Invoke on all instances */
188         cnt = 0;
189         hlist_for_each(node, &step->list) {
190                 if (lastp && node == *lastp)
191                         break;
192
193                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194                 ret = cbm(cpu, node);
195                 trace_cpuhp_exit(cpu, st->state, state, ret);
196                 if (ret) {
197                         if (!lastp)
198                                 goto err;
199
200                         *lastp = node;
201                         return ret;
202                 }
203                 cnt++;
204         }
205         if (lastp)
206                 *lastp = NULL;
207         return 0;
208 err:
209         /* Rollback the instances if one failed */
210         cbm = !bringup ? step->startup.multi : step->teardown.multi;
211         if (!cbm)
212                 return ret;
213
214         hlist_for_each(node, &step->list) {
215                 if (!cnt--)
216                         break;
217
218                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
219                 ret = cbm(cpu, node);
220                 trace_cpuhp_exit(cpu, st->state, state, ret);
221                 /*
222                  * Rollback must not fail,
223                  */
224                 WARN_ON_ONCE(ret);
225         }
226         return ret;
227 }
228
229 #ifdef CONFIG_SMP
230 static bool cpuhp_is_ap_state(enum cpuhp_state state)
231 {
232         /*
233          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
234          * purposes as that state is handled explicitly in cpu_down.
235          */
236         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
237 }
238
239 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
240 {
241         struct completion *done = bringup ? &st->done_up : &st->done_down;
242         wait_for_completion(done);
243 }
244
245 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
246 {
247         struct completion *done = bringup ? &st->done_up : &st->done_down;
248         complete(done);
249 }
250
251 /*
252  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
253  */
254 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
255 {
256         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
257 }
258
259 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
260 static DEFINE_MUTEX(cpu_add_remove_lock);
261 bool cpuhp_tasks_frozen;
262 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
263
264 /*
265  * The following two APIs (cpu_maps_update_begin/done) must be used when
266  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
267  */
268 void cpu_maps_update_begin(void)
269 {
270         mutex_lock(&cpu_add_remove_lock);
271 }
272
273 void cpu_maps_update_done(void)
274 {
275         mutex_unlock(&cpu_add_remove_lock);
276 }
277
278 /*
279  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
280  * Should always be manipulated under cpu_add_remove_lock
281  */
282 static int cpu_hotplug_disabled;
283
284 #ifdef CONFIG_HOTPLUG_CPU
285
286 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
287
288 void cpus_read_lock(void)
289 {
290         percpu_down_read(&cpu_hotplug_lock);
291 }
292 EXPORT_SYMBOL_GPL(cpus_read_lock);
293
294 void cpus_read_unlock(void)
295 {
296         percpu_up_read(&cpu_hotplug_lock);
297 }
298 EXPORT_SYMBOL_GPL(cpus_read_unlock);
299
300 void cpus_write_lock(void)
301 {
302         percpu_down_write(&cpu_hotplug_lock);
303 }
304
305 void cpus_write_unlock(void)
306 {
307         percpu_up_write(&cpu_hotplug_lock);
308 }
309
310 void lockdep_assert_cpus_held(void)
311 {
312         percpu_rwsem_assert_held(&cpu_hotplug_lock);
313 }
314
315 /*
316  * Wait for currently running CPU hotplug operations to complete (if any) and
317  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
318  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
319  * hotplug path before performing hotplug operations. So acquiring that lock
320  * guarantees mutual exclusion from any currently running hotplug operations.
321  */
322 void cpu_hotplug_disable(void)
323 {
324         cpu_maps_update_begin();
325         cpu_hotplug_disabled++;
326         cpu_maps_update_done();
327 }
328 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
329
330 static void __cpu_hotplug_enable(void)
331 {
332         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
333                 return;
334         cpu_hotplug_disabled--;
335 }
336
337 void cpu_hotplug_enable(void)
338 {
339         cpu_maps_update_begin();
340         __cpu_hotplug_enable();
341         cpu_maps_update_done();
342 }
343 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
344 #endif  /* CONFIG_HOTPLUG_CPU */
345
346 #ifdef CONFIG_HOTPLUG_SMT
347 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
348 EXPORT_SYMBOL_GPL(cpu_smt_control);
349
350 static bool cpu_smt_available __read_mostly;
351
352 void __init cpu_smt_disable(bool force)
353 {
354         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
355                 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
356                 return;
357
358         if (force) {
359                 pr_info("SMT: Force disabled\n");
360                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
361         } else {
362                 cpu_smt_control = CPU_SMT_DISABLED;
363         }
364 }
365
366 /*
367  * The decision whether SMT is supported can only be done after the full
368  * CPU identification. Called from architecture code before non boot CPUs
369  * are brought up.
370  */
371 void __init cpu_smt_check_topology_early(void)
372 {
373         if (!topology_smt_supported())
374                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
375 }
376
377 /*
378  * If SMT was disabled by BIOS, detect it here, after the CPUs have been
379  * brought online. This ensures the smt/l1tf sysfs entries are consistent
380  * with reality. cpu_smt_available is set to true during the bringup of non
381  * boot CPUs when a SMT sibling is detected. Note, this may overwrite
382  * cpu_smt_control's previous setting.
383  */
384 void __init cpu_smt_check_topology(void)
385 {
386         if (!cpu_smt_available)
387                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
388 }
389
390 static int __init smt_cmdline_disable(char *str)
391 {
392         cpu_smt_disable(str && !strcmp(str, "force"));
393         return 0;
394 }
395 early_param("nosmt", smt_cmdline_disable);
396
397 static inline bool cpu_smt_allowed(unsigned int cpu)
398 {
399         if (topology_is_primary_thread(cpu))
400                 return true;
401
402         /*
403          * If the CPU is not a 'primary' thread and the booted_once bit is
404          * set then the processor has SMT support. Store this information
405          * for the late check of SMT support in cpu_smt_check_topology().
406          */
407         if (per_cpu(cpuhp_state, cpu).booted_once)
408                 cpu_smt_available = true;
409
410         if (cpu_smt_control == CPU_SMT_ENABLED)
411                 return true;
412
413         /*
414          * On x86 it's required to boot all logical CPUs at least once so
415          * that the init code can get a chance to set CR4.MCE on each
416          * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
417          * core will shutdown the machine.
418          */
419         return !per_cpu(cpuhp_state, cpu).booted_once;
420 }
421 #else
422 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
423 #endif
424
425 static inline enum cpuhp_state
426 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
427 {
428         enum cpuhp_state prev_state = st->state;
429
430         st->rollback = false;
431         st->last = NULL;
432
433         st->target = target;
434         st->single = false;
435         st->bringup = st->state < target;
436
437         return prev_state;
438 }
439
440 static inline void
441 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
442 {
443         st->rollback = true;
444
445         /*
446          * If we have st->last we need to undo partial multi_instance of this
447          * state first. Otherwise start undo at the previous state.
448          */
449         if (!st->last) {
450                 if (st->bringup)
451                         st->state--;
452                 else
453                         st->state++;
454         }
455
456         st->target = prev_state;
457         st->bringup = !st->bringup;
458 }
459
460 /* Regular hotplug invocation of the AP hotplug thread */
461 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
462 {
463         if (!st->single && st->state == st->target)
464                 return;
465
466         st->result = 0;
467         /*
468          * Make sure the above stores are visible before should_run becomes
469          * true. Paired with the mb() above in cpuhp_thread_fun()
470          */
471         smp_mb();
472         st->should_run = true;
473         wake_up_process(st->thread);
474         wait_for_ap_thread(st, st->bringup);
475 }
476
477 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
478 {
479         enum cpuhp_state prev_state;
480         int ret;
481
482         prev_state = cpuhp_set_state(st, target);
483         __cpuhp_kick_ap(st);
484         if ((ret = st->result)) {
485                 cpuhp_reset_state(st, prev_state);
486                 __cpuhp_kick_ap(st);
487         }
488
489         return ret;
490 }
491
492 static int bringup_wait_for_ap(unsigned int cpu)
493 {
494         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
495
496         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
497         wait_for_ap_thread(st, true);
498         if (WARN_ON_ONCE((!cpu_online(cpu))))
499                 return -ECANCELED;
500
501         /* Unpark the stopper thread and the hotplug thread of the target cpu */
502         stop_machine_unpark(cpu);
503         kthread_unpark(st->thread);
504
505         /*
506          * SMT soft disabling on X86 requires to bring the CPU out of the
507          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
508          * CPU marked itself as booted_once in cpu_notify_starting() so the
509          * cpu_smt_allowed() check will now return false if this is not the
510          * primary sibling.
511          */
512         if (!cpu_smt_allowed(cpu))
513                 return -ECANCELED;
514
515         if (st->target <= CPUHP_AP_ONLINE_IDLE)
516                 return 0;
517
518         return cpuhp_kick_ap(st, st->target);
519 }
520
521 static int bringup_cpu(unsigned int cpu)
522 {
523         struct task_struct *idle = idle_thread_get(cpu);
524         int ret;
525
526         /*
527          * Some architectures have to walk the irq descriptors to
528          * setup the vector space for the cpu which comes online.
529          * Prevent irq alloc/free across the bringup.
530          */
531         irq_lock_sparse();
532
533         /* Arch-specific enabling code. */
534         ret = __cpu_up(cpu, idle);
535         irq_unlock_sparse();
536         if (ret)
537                 return ret;
538         return bringup_wait_for_ap(cpu);
539 }
540
541 /*
542  * Hotplug state machine related functions
543  */
544
545 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
546 {
547         for (st->state--; st->state > st->target; st->state--) {
548                 struct cpuhp_step *step = cpuhp_get_step(st->state);
549
550                 if (!step->skip_onerr)
551                         cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
552         }
553 }
554
555 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
556                               enum cpuhp_state target)
557 {
558         enum cpuhp_state prev_state = st->state;
559         int ret = 0;
560
561         while (st->state < target) {
562                 st->state++;
563                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
564                 if (ret) {
565                         st->target = prev_state;
566                         undo_cpu_up(cpu, st);
567                         break;
568                 }
569         }
570         return ret;
571 }
572
573 /*
574  * The cpu hotplug threads manage the bringup and teardown of the cpus
575  */
576 static void cpuhp_create(unsigned int cpu)
577 {
578         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
579
580         init_completion(&st->done_up);
581         init_completion(&st->done_down);
582 }
583
584 static int cpuhp_should_run(unsigned int cpu)
585 {
586         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
587
588         return st->should_run;
589 }
590
591 /*
592  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
593  * callbacks when a state gets [un]installed at runtime.
594  *
595  * Each invocation of this function by the smpboot thread does a single AP
596  * state callback.
597  *
598  * It has 3 modes of operation:
599  *  - single: runs st->cb_state
600  *  - up:     runs ++st->state, while st->state < st->target
601  *  - down:   runs st->state--, while st->state > st->target
602  *
603  * When complete or on error, should_run is cleared and the completion is fired.
604  */
605 static void cpuhp_thread_fun(unsigned int cpu)
606 {
607         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
608         bool bringup = st->bringup;
609         enum cpuhp_state state;
610
611         /*
612          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
613          * that if we see ->should_run we also see the rest of the state.
614          */
615         smp_mb();
616
617         if (WARN_ON_ONCE(!st->should_run))
618                 return;
619
620         cpuhp_lock_acquire(bringup);
621
622         if (st->single) {
623                 state = st->cb_state;
624                 st->should_run = false;
625         } else {
626                 if (bringup) {
627                         st->state++;
628                         state = st->state;
629                         st->should_run = (st->state < st->target);
630                         WARN_ON_ONCE(st->state > st->target);
631                 } else {
632                         state = st->state;
633                         st->state--;
634                         st->should_run = (st->state > st->target);
635                         WARN_ON_ONCE(st->state < st->target);
636                 }
637         }
638
639         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
640
641         if (st->rollback) {
642                 struct cpuhp_step *step = cpuhp_get_step(state);
643                 if (step->skip_onerr)
644                         goto next;
645         }
646
647         if (cpuhp_is_atomic_state(state)) {
648                 local_irq_disable();
649                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
650                 local_irq_enable();
651
652                 /*
653                  * STARTING/DYING must not fail!
654                  */
655                 WARN_ON_ONCE(st->result);
656         } else {
657                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
658         }
659
660         if (st->result) {
661                 /*
662                  * If we fail on a rollback, we're up a creek without no
663                  * paddle, no way forward, no way back. We loose, thanks for
664                  * playing.
665                  */
666                 WARN_ON_ONCE(st->rollback);
667                 st->should_run = false;
668         }
669
670 next:
671         cpuhp_lock_release(bringup);
672
673         if (!st->should_run)
674                 complete_ap_thread(st, bringup);
675 }
676
677 /* Invoke a single callback on a remote cpu */
678 static int
679 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
680                          struct hlist_node *node)
681 {
682         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
683         int ret;
684
685         if (!cpu_online(cpu))
686                 return 0;
687
688         cpuhp_lock_acquire(false);
689         cpuhp_lock_release(false);
690
691         cpuhp_lock_acquire(true);
692         cpuhp_lock_release(true);
693
694         /*
695          * If we are up and running, use the hotplug thread. For early calls
696          * we invoke the thread function directly.
697          */
698         if (!st->thread)
699                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
700
701         st->rollback = false;
702         st->last = NULL;
703
704         st->node = node;
705         st->bringup = bringup;
706         st->cb_state = state;
707         st->single = true;
708
709         __cpuhp_kick_ap(st);
710
711         /*
712          * If we failed and did a partial, do a rollback.
713          */
714         if ((ret = st->result) && st->last) {
715                 st->rollback = true;
716                 st->bringup = !bringup;
717
718                 __cpuhp_kick_ap(st);
719         }
720
721         /*
722          * Clean up the leftovers so the next hotplug operation wont use stale
723          * data.
724          */
725         st->node = st->last = NULL;
726         return ret;
727 }
728
729 static int cpuhp_kick_ap_work(unsigned int cpu)
730 {
731         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
732         enum cpuhp_state prev_state = st->state;
733         int ret;
734
735         cpuhp_lock_acquire(false);
736         cpuhp_lock_release(false);
737
738         cpuhp_lock_acquire(true);
739         cpuhp_lock_release(true);
740
741         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
742         ret = cpuhp_kick_ap(st, st->target);
743         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
744
745         return ret;
746 }
747
748 static struct smp_hotplug_thread cpuhp_threads = {
749         .store                  = &cpuhp_state.thread,
750         .create                 = &cpuhp_create,
751         .thread_should_run      = cpuhp_should_run,
752         .thread_fn              = cpuhp_thread_fun,
753         .thread_comm            = "cpuhp/%u",
754         .selfparking            = true,
755 };
756
757 void __init cpuhp_threads_init(void)
758 {
759         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
760         kthread_unpark(this_cpu_read(cpuhp_state.thread));
761 }
762
763 #ifdef CONFIG_HOTPLUG_CPU
764 /**
765  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
766  * @cpu: a CPU id
767  *
768  * This function walks all processes, finds a valid mm struct for each one and
769  * then clears a corresponding bit in mm's cpumask.  While this all sounds
770  * trivial, there are various non-obvious corner cases, which this function
771  * tries to solve in a safe manner.
772  *
773  * Also note that the function uses a somewhat relaxed locking scheme, so it may
774  * be called only for an already offlined CPU.
775  */
776 void clear_tasks_mm_cpumask(int cpu)
777 {
778         struct task_struct *p;
779
780         /*
781          * This function is called after the cpu is taken down and marked
782          * offline, so its not like new tasks will ever get this cpu set in
783          * their mm mask. -- Peter Zijlstra
784          * Thus, we may use rcu_read_lock() here, instead of grabbing
785          * full-fledged tasklist_lock.
786          */
787         WARN_ON(cpu_online(cpu));
788         rcu_read_lock();
789         for_each_process(p) {
790                 struct task_struct *t;
791
792                 /*
793                  * Main thread might exit, but other threads may still have
794                  * a valid mm. Find one.
795                  */
796                 t = find_lock_task_mm(p);
797                 if (!t)
798                         continue;
799                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
800                 task_unlock(t);
801         }
802         rcu_read_unlock();
803 }
804
805 /* Take this CPU down. */
806 static int take_cpu_down(void *_param)
807 {
808         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
809         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
810         int err, cpu = smp_processor_id();
811         int ret;
812
813         /* Ensure this CPU doesn't handle any more interrupts. */
814         err = __cpu_disable();
815         if (err < 0)
816                 return err;
817
818         /*
819          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
820          * do this step again.
821          */
822         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
823         st->state--;
824         /* Invoke the former CPU_DYING callbacks */
825         for (; st->state > target; st->state--) {
826                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
827                 /*
828                  * DYING must not fail!
829                  */
830                 WARN_ON_ONCE(ret);
831         }
832
833         /* Give up timekeeping duties */
834         tick_handover_do_timer();
835         /* Park the stopper thread */
836         stop_machine_park(cpu);
837         return 0;
838 }
839
840 static int takedown_cpu(unsigned int cpu)
841 {
842         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843         int err;
844
845         /* Park the smpboot threads */
846         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
847
848         /*
849          * Prevent irq alloc/free while the dying cpu reorganizes the
850          * interrupt affinities.
851          */
852         irq_lock_sparse();
853
854         /*
855          * So now all preempt/rcu users must observe !cpu_active().
856          */
857         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
858         if (err) {
859                 /* CPU refused to die */
860                 irq_unlock_sparse();
861                 /* Unpark the hotplug thread so we can rollback there */
862                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
863                 return err;
864         }
865         BUG_ON(cpu_online(cpu));
866
867         /*
868          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
869          * all runnable tasks from the CPU, there's only the idle task left now
870          * that the migration thread is done doing the stop_machine thing.
871          *
872          * Wait for the stop thread to go away.
873          */
874         wait_for_ap_thread(st, false);
875         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
876
877         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
878         irq_unlock_sparse();
879
880         hotplug_cpu__broadcast_tick_pull(cpu);
881         /* This actually kills the CPU. */
882         __cpu_die(cpu);
883
884         tick_cleanup_dead_cpu(cpu);
885         rcutree_migrate_callbacks(cpu);
886         return 0;
887 }
888
889 static void cpuhp_complete_idle_dead(void *arg)
890 {
891         struct cpuhp_cpu_state *st = arg;
892
893         complete_ap_thread(st, false);
894 }
895
896 void cpuhp_report_idle_dead(void)
897 {
898         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
899
900         BUG_ON(st->state != CPUHP_AP_OFFLINE);
901         rcu_report_dead(smp_processor_id());
902         st->state = CPUHP_AP_IDLE_DEAD;
903         /*
904          * We cannot call complete after rcu_report_dead() so we delegate it
905          * to an online cpu.
906          */
907         smp_call_function_single(cpumask_first(cpu_online_mask),
908                                  cpuhp_complete_idle_dead, st, 0);
909 }
910
911 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
912 {
913         for (st->state++; st->state < st->target; st->state++) {
914                 struct cpuhp_step *step = cpuhp_get_step(st->state);
915
916                 if (!step->skip_onerr)
917                         cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
918         }
919 }
920
921 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
922                                 enum cpuhp_state target)
923 {
924         enum cpuhp_state prev_state = st->state;
925         int ret = 0;
926
927         for (; st->state > target; st->state--) {
928                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
929                 if (ret) {
930                         st->target = prev_state;
931                         undo_cpu_down(cpu, st);
932                         break;
933                 }
934         }
935         return ret;
936 }
937
938 /* Requires cpu_add_remove_lock to be held */
939 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
940                            enum cpuhp_state target)
941 {
942         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
943         int prev_state, ret = 0;
944
945         if (num_online_cpus() == 1)
946                 return -EBUSY;
947
948         if (!cpu_present(cpu))
949                 return -EINVAL;
950
951         cpus_write_lock();
952
953         cpuhp_tasks_frozen = tasks_frozen;
954
955         prev_state = cpuhp_set_state(st, target);
956         /*
957          * If the current CPU state is in the range of the AP hotplug thread,
958          * then we need to kick the thread.
959          */
960         if (st->state > CPUHP_TEARDOWN_CPU) {
961                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
962                 ret = cpuhp_kick_ap_work(cpu);
963                 /*
964                  * The AP side has done the error rollback already. Just
965                  * return the error code..
966                  */
967                 if (ret)
968                         goto out;
969
970                 /*
971                  * We might have stopped still in the range of the AP hotplug
972                  * thread. Nothing to do anymore.
973                  */
974                 if (st->state > CPUHP_TEARDOWN_CPU)
975                         goto out;
976
977                 st->target = target;
978         }
979         /*
980          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
981          * to do the further cleanups.
982          */
983         ret = cpuhp_down_callbacks(cpu, st, target);
984         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
985                 cpuhp_reset_state(st, prev_state);
986                 __cpuhp_kick_ap(st);
987         }
988
989 out:
990         cpus_write_unlock();
991         /*
992          * Do post unplug cleanup. This is still protected against
993          * concurrent CPU hotplug via cpu_add_remove_lock.
994          */
995         lockup_detector_cleanup();
996         return ret;
997 }
998
999 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1000 {
1001         if (cpu_hotplug_disabled)
1002                 return -EBUSY;
1003         return _cpu_down(cpu, 0, target);
1004 }
1005
1006 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1007 {
1008         int err;
1009
1010         cpu_maps_update_begin();
1011         err = cpu_down_maps_locked(cpu, target);
1012         cpu_maps_update_done();
1013         return err;
1014 }
1015
1016 int cpu_down(unsigned int cpu)
1017 {
1018         return do_cpu_down(cpu, CPUHP_OFFLINE);
1019 }
1020 EXPORT_SYMBOL(cpu_down);
1021
1022 #else
1023 #define takedown_cpu            NULL
1024 #endif /*CONFIG_HOTPLUG_CPU*/
1025
1026 /**
1027  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1028  * @cpu: cpu that just started
1029  *
1030  * It must be called by the arch code on the new cpu, before the new cpu
1031  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1032  */
1033 void notify_cpu_starting(unsigned int cpu)
1034 {
1035         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1036         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1037         int ret;
1038
1039         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1040         st->booted_once = true;
1041         while (st->state < target) {
1042                 st->state++;
1043                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1044                 /*
1045                  * STARTING must not fail!
1046                  */
1047                 WARN_ON_ONCE(ret);
1048         }
1049 }
1050
1051 /*
1052  * Called from the idle task. Wake up the controlling task which brings the
1053  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1054  * the rest of the online bringup to the hotplug thread.
1055  */
1056 void cpuhp_online_idle(enum cpuhp_state state)
1057 {
1058         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1059
1060         /* Happens for the boot cpu */
1061         if (state != CPUHP_AP_ONLINE_IDLE)
1062                 return;
1063
1064         st->state = CPUHP_AP_ONLINE_IDLE;
1065         complete_ap_thread(st, true);
1066 }
1067
1068 /* Requires cpu_add_remove_lock to be held */
1069 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1070 {
1071         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1072         struct task_struct *idle;
1073         int ret = 0;
1074
1075         cpus_write_lock();
1076
1077         if (!cpu_present(cpu)) {
1078                 ret = -EINVAL;
1079                 goto out;
1080         }
1081
1082         /*
1083          * The caller of do_cpu_up might have raced with another
1084          * caller. Ignore it for now.
1085          */
1086         if (st->state >= target)
1087                 goto out;
1088
1089         if (st->state == CPUHP_OFFLINE) {
1090                 /* Let it fail before we try to bring the cpu up */
1091                 idle = idle_thread_get(cpu);
1092                 if (IS_ERR(idle)) {
1093                         ret = PTR_ERR(idle);
1094                         goto out;
1095                 }
1096         }
1097
1098         cpuhp_tasks_frozen = tasks_frozen;
1099
1100         cpuhp_set_state(st, target);
1101         /*
1102          * If the current CPU state is in the range of the AP hotplug thread,
1103          * then we need to kick the thread once more.
1104          */
1105         if (st->state > CPUHP_BRINGUP_CPU) {
1106                 ret = cpuhp_kick_ap_work(cpu);
1107                 /*
1108                  * The AP side has done the error rollback already. Just
1109                  * return the error code..
1110                  */
1111                 if (ret)
1112                         goto out;
1113         }
1114
1115         /*
1116          * Try to reach the target state. We max out on the BP at
1117          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1118          * responsible for bringing it up to the target state.
1119          */
1120         target = min((int)target, CPUHP_BRINGUP_CPU);
1121         ret = cpuhp_up_callbacks(cpu, st, target);
1122 out:
1123         cpus_write_unlock();
1124         return ret;
1125 }
1126
1127 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1128 {
1129         int err = 0;
1130
1131         if (!cpu_possible(cpu)) {
1132                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1133                        cpu);
1134 #if defined(CONFIG_IA64)
1135                 pr_err("please check additional_cpus= boot parameter\n");
1136 #endif
1137                 return -EINVAL;
1138         }
1139
1140         err = try_online_node(cpu_to_node(cpu));
1141         if (err)
1142                 return err;
1143
1144         cpu_maps_update_begin();
1145
1146         if (cpu_hotplug_disabled) {
1147                 err = -EBUSY;
1148                 goto out;
1149         }
1150         if (!cpu_smt_allowed(cpu)) {
1151                 err = -EPERM;
1152                 goto out;
1153         }
1154
1155         err = _cpu_up(cpu, 0, target);
1156 out:
1157         cpu_maps_update_done();
1158         return err;
1159 }
1160
1161 int cpu_up(unsigned int cpu)
1162 {
1163         return do_cpu_up(cpu, CPUHP_ONLINE);
1164 }
1165 EXPORT_SYMBOL_GPL(cpu_up);
1166
1167 #ifdef CONFIG_PM_SLEEP_SMP
1168 static cpumask_var_t frozen_cpus;
1169
1170 int freeze_secondary_cpus(int primary)
1171 {
1172         int cpu, error = 0;
1173
1174         cpu_maps_update_begin();
1175         if (!cpu_online(primary))
1176                 primary = cpumask_first(cpu_online_mask);
1177         /*
1178          * We take down all of the non-boot CPUs in one shot to avoid races
1179          * with the userspace trying to use the CPU hotplug at the same time
1180          */
1181         cpumask_clear(frozen_cpus);
1182
1183         pr_info("Disabling non-boot CPUs ...\n");
1184         for_each_online_cpu(cpu) {
1185                 if (cpu == primary)
1186                         continue;
1187                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1188                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1189                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1190                 if (!error)
1191                         cpumask_set_cpu(cpu, frozen_cpus);
1192                 else {
1193                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1194                         break;
1195                 }
1196         }
1197
1198         if (!error)
1199                 BUG_ON(num_online_cpus() > 1);
1200         else
1201                 pr_err("Non-boot CPUs are not disabled\n");
1202
1203         /*
1204          * Make sure the CPUs won't be enabled by someone else. We need to do
1205          * this even in case of failure as all disable_nonboot_cpus() users are
1206          * supposed to do enable_nonboot_cpus() on the failure path.
1207          */
1208         cpu_hotplug_disabled++;
1209
1210         cpu_maps_update_done();
1211         return error;
1212 }
1213
1214 void __weak arch_enable_nonboot_cpus_begin(void)
1215 {
1216 }
1217
1218 void __weak arch_enable_nonboot_cpus_end(void)
1219 {
1220 }
1221
1222 void enable_nonboot_cpus(void)
1223 {
1224         int cpu, error;
1225
1226         /* Allow everyone to use the CPU hotplug again */
1227         cpu_maps_update_begin();
1228         __cpu_hotplug_enable();
1229         if (cpumask_empty(frozen_cpus))
1230                 goto out;
1231
1232         pr_info("Enabling non-boot CPUs ...\n");
1233
1234         arch_enable_nonboot_cpus_begin();
1235
1236         for_each_cpu(cpu, frozen_cpus) {
1237                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1238                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1239                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1240                 if (!error) {
1241                         pr_info("CPU%d is up\n", cpu);
1242                         continue;
1243                 }
1244                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1245         }
1246
1247         arch_enable_nonboot_cpus_end();
1248
1249         cpumask_clear(frozen_cpus);
1250 out:
1251         cpu_maps_update_done();
1252 }
1253
1254 static int __init alloc_frozen_cpus(void)
1255 {
1256         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1257                 return -ENOMEM;
1258         return 0;
1259 }
1260 core_initcall(alloc_frozen_cpus);
1261
1262 /*
1263  * When callbacks for CPU hotplug notifications are being executed, we must
1264  * ensure that the state of the system with respect to the tasks being frozen
1265  * or not, as reported by the notification, remains unchanged *throughout the
1266  * duration* of the execution of the callbacks.
1267  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1268  *
1269  * This synchronization is implemented by mutually excluding regular CPU
1270  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1271  * Hibernate notifications.
1272  */
1273 static int
1274 cpu_hotplug_pm_callback(struct notifier_block *nb,
1275                         unsigned long action, void *ptr)
1276 {
1277         switch (action) {
1278
1279         case PM_SUSPEND_PREPARE:
1280         case PM_HIBERNATION_PREPARE:
1281                 cpu_hotplug_disable();
1282                 break;
1283
1284         case PM_POST_SUSPEND:
1285         case PM_POST_HIBERNATION:
1286                 cpu_hotplug_enable();
1287                 break;
1288
1289         default:
1290                 return NOTIFY_DONE;
1291         }
1292
1293         return NOTIFY_OK;
1294 }
1295
1296
1297 static int __init cpu_hotplug_pm_sync_init(void)
1298 {
1299         /*
1300          * cpu_hotplug_pm_callback has higher priority than x86
1301          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1302          * to disable cpu hotplug to avoid cpu hotplug race.
1303          */
1304         pm_notifier(cpu_hotplug_pm_callback, 0);
1305         return 0;
1306 }
1307 core_initcall(cpu_hotplug_pm_sync_init);
1308
1309 #endif /* CONFIG_PM_SLEEP_SMP */
1310
1311 int __boot_cpu_id;
1312
1313 #endif /* CONFIG_SMP */
1314
1315 /* Boot processor state steps */
1316 static struct cpuhp_step cpuhp_hp_states[] = {
1317         [CPUHP_OFFLINE] = {
1318                 .name                   = "offline",
1319                 .startup.single         = NULL,
1320                 .teardown.single        = NULL,
1321         },
1322 #ifdef CONFIG_SMP
1323         [CPUHP_CREATE_THREADS]= {
1324                 .name                   = "threads:prepare",
1325                 .startup.single         = smpboot_create_threads,
1326                 .teardown.single        = NULL,
1327                 .cant_stop              = true,
1328         },
1329         [CPUHP_PERF_PREPARE] = {
1330                 .name                   = "perf:prepare",
1331                 .startup.single         = perf_event_init_cpu,
1332                 .teardown.single        = perf_event_exit_cpu,
1333         },
1334         [CPUHP_WORKQUEUE_PREP] = {
1335                 .name                   = "workqueue:prepare",
1336                 .startup.single         = workqueue_prepare_cpu,
1337                 .teardown.single        = NULL,
1338         },
1339         [CPUHP_HRTIMERS_PREPARE] = {
1340                 .name                   = "hrtimers:prepare",
1341                 .startup.single         = hrtimers_prepare_cpu,
1342                 .teardown.single        = hrtimers_dead_cpu,
1343         },
1344         [CPUHP_SMPCFD_PREPARE] = {
1345                 .name                   = "smpcfd:prepare",
1346                 .startup.single         = smpcfd_prepare_cpu,
1347                 .teardown.single        = smpcfd_dead_cpu,
1348         },
1349         [CPUHP_RELAY_PREPARE] = {
1350                 .name                   = "relay:prepare",
1351                 .startup.single         = relay_prepare_cpu,
1352                 .teardown.single        = NULL,
1353         },
1354         [CPUHP_SLAB_PREPARE] = {
1355                 .name                   = "slab:prepare",
1356                 .startup.single         = slab_prepare_cpu,
1357                 .teardown.single        = slab_dead_cpu,
1358         },
1359         [CPUHP_RCUTREE_PREP] = {
1360                 .name                   = "RCU/tree:prepare",
1361                 .startup.single         = rcutree_prepare_cpu,
1362                 .teardown.single        = rcutree_dead_cpu,
1363         },
1364         /*
1365          * On the tear-down path, timers_dead_cpu() must be invoked
1366          * before blk_mq_queue_reinit_notify() from notify_dead(),
1367          * otherwise a RCU stall occurs.
1368          */
1369         [CPUHP_TIMERS_PREPARE] = {
1370                 .name                   = "timers:prepare",
1371                 .startup.single         = timers_prepare_cpu,
1372                 .teardown.single        = timers_dead_cpu,
1373         },
1374         /* Kicks the plugged cpu into life */
1375         [CPUHP_BRINGUP_CPU] = {
1376                 .name                   = "cpu:bringup",
1377                 .startup.single         = bringup_cpu,
1378                 .teardown.single        = NULL,
1379                 .cant_stop              = true,
1380         },
1381         /* Final state before CPU kills itself */
1382         [CPUHP_AP_IDLE_DEAD] = {
1383                 .name                   = "idle:dead",
1384         },
1385         /*
1386          * Last state before CPU enters the idle loop to die. Transient state
1387          * for synchronization.
1388          */
1389         [CPUHP_AP_OFFLINE] = {
1390                 .name                   = "ap:offline",
1391                 .cant_stop              = true,
1392         },
1393         /* First state is scheduler control. Interrupts are disabled */
1394         [CPUHP_AP_SCHED_STARTING] = {
1395                 .name                   = "sched:starting",
1396                 .startup.single         = sched_cpu_starting,
1397                 .teardown.single        = sched_cpu_dying,
1398         },
1399         [CPUHP_AP_RCUTREE_DYING] = {
1400                 .name                   = "RCU/tree:dying",
1401                 .startup.single         = NULL,
1402                 .teardown.single        = rcutree_dying_cpu,
1403         },
1404         [CPUHP_AP_SMPCFD_DYING] = {
1405                 .name                   = "smpcfd:dying",
1406                 .startup.single         = NULL,
1407                 .teardown.single        = smpcfd_dying_cpu,
1408         },
1409         /* Entry state on starting. Interrupts enabled from here on. Transient
1410          * state for synchronsization */
1411         [CPUHP_AP_ONLINE] = {
1412                 .name                   = "ap:online",
1413         },
1414         /*
1415          * Handled on controll processor until the plugged processor manages
1416          * this itself.
1417          */
1418         [CPUHP_TEARDOWN_CPU] = {
1419                 .name                   = "cpu:teardown",
1420                 .startup.single         = NULL,
1421                 .teardown.single        = takedown_cpu,
1422                 .cant_stop              = true,
1423         },
1424         /* Handle smpboot threads park/unpark */
1425         [CPUHP_AP_SMPBOOT_THREADS] = {
1426                 .name                   = "smpboot/threads:online",
1427                 .startup.single         = smpboot_unpark_threads,
1428                 .teardown.single        = smpboot_park_threads,
1429         },
1430         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1431                 .name                   = "irq/affinity:online",
1432                 .startup.single         = irq_affinity_online_cpu,
1433                 .teardown.single        = NULL,
1434         },
1435         [CPUHP_AP_PERF_ONLINE] = {
1436                 .name                   = "perf:online",
1437                 .startup.single         = perf_event_init_cpu,
1438                 .teardown.single        = perf_event_exit_cpu,
1439         },
1440         [CPUHP_AP_WATCHDOG_ONLINE] = {
1441                 .name                   = "lockup_detector:online",
1442                 .startup.single         = lockup_detector_online_cpu,
1443                 .teardown.single        = lockup_detector_offline_cpu,
1444         },
1445         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1446                 .name                   = "workqueue:online",
1447                 .startup.single         = workqueue_online_cpu,
1448                 .teardown.single        = workqueue_offline_cpu,
1449         },
1450         [CPUHP_AP_RCUTREE_ONLINE] = {
1451                 .name                   = "RCU/tree:online",
1452                 .startup.single         = rcutree_online_cpu,
1453                 .teardown.single        = rcutree_offline_cpu,
1454         },
1455 #endif
1456         /*
1457          * The dynamically registered state space is here
1458          */
1459
1460 #ifdef CONFIG_SMP
1461         /* Last state is scheduler control setting the cpu active */
1462         [CPUHP_AP_ACTIVE] = {
1463                 .name                   = "sched:active",
1464                 .startup.single         = sched_cpu_activate,
1465                 .teardown.single        = sched_cpu_deactivate,
1466         },
1467 #endif
1468
1469         /* CPU is fully up and running. */
1470         [CPUHP_ONLINE] = {
1471                 .name                   = "online",
1472                 .startup.single         = NULL,
1473                 .teardown.single        = NULL,
1474         },
1475 };
1476
1477 /* Sanity check for callbacks */
1478 static int cpuhp_cb_check(enum cpuhp_state state)
1479 {
1480         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1481                 return -EINVAL;
1482         return 0;
1483 }
1484
1485 /*
1486  * Returns a free for dynamic slot assignment of the Online state. The states
1487  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1488  * by having no name assigned.
1489  */
1490 static int cpuhp_reserve_state(enum cpuhp_state state)
1491 {
1492         enum cpuhp_state i, end;
1493         struct cpuhp_step *step;
1494
1495         switch (state) {
1496         case CPUHP_AP_ONLINE_DYN:
1497                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1498                 end = CPUHP_AP_ONLINE_DYN_END;
1499                 break;
1500         case CPUHP_BP_PREPARE_DYN:
1501                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1502                 end = CPUHP_BP_PREPARE_DYN_END;
1503                 break;
1504         default:
1505                 return -EINVAL;
1506         }
1507
1508         for (i = state; i <= end; i++, step++) {
1509                 if (!step->name)
1510                         return i;
1511         }
1512         WARN(1, "No more dynamic states available for CPU hotplug\n");
1513         return -ENOSPC;
1514 }
1515
1516 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1517                                  int (*startup)(unsigned int cpu),
1518                                  int (*teardown)(unsigned int cpu),
1519                                  bool multi_instance)
1520 {
1521         /* (Un)Install the callbacks for further cpu hotplug operations */
1522         struct cpuhp_step *sp;
1523         int ret = 0;
1524
1525         /*
1526          * If name is NULL, then the state gets removed.
1527          *
1528          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1529          * the first allocation from these dynamic ranges, so the removal
1530          * would trigger a new allocation and clear the wrong (already
1531          * empty) state, leaving the callbacks of the to be cleared state
1532          * dangling, which causes wreckage on the next hotplug operation.
1533          */
1534         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1535                      state == CPUHP_BP_PREPARE_DYN)) {
1536                 ret = cpuhp_reserve_state(state);
1537                 if (ret < 0)
1538                         return ret;
1539                 state = ret;
1540         }
1541         sp = cpuhp_get_step(state);
1542         if (name && sp->name)
1543                 return -EBUSY;
1544
1545         sp->startup.single = startup;
1546         sp->teardown.single = teardown;
1547         sp->name = name;
1548         sp->multi_instance = multi_instance;
1549         INIT_HLIST_HEAD(&sp->list);
1550         return ret;
1551 }
1552
1553 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1554 {
1555         return cpuhp_get_step(state)->teardown.single;
1556 }
1557
1558 /*
1559  * Call the startup/teardown function for a step either on the AP or
1560  * on the current CPU.
1561  */
1562 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1563                             struct hlist_node *node)
1564 {
1565         struct cpuhp_step *sp = cpuhp_get_step(state);
1566         int ret;
1567
1568         /*
1569          * If there's nothing to do, we done.
1570          * Relies on the union for multi_instance.
1571          */
1572         if ((bringup && !sp->startup.single) ||
1573             (!bringup && !sp->teardown.single))
1574                 return 0;
1575         /*
1576          * The non AP bound callbacks can fail on bringup. On teardown
1577          * e.g. module removal we crash for now.
1578          */
1579 #ifdef CONFIG_SMP
1580         if (cpuhp_is_ap_state(state))
1581                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1582         else
1583                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1584 #else
1585         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1586 #endif
1587         BUG_ON(ret && !bringup);
1588         return ret;
1589 }
1590
1591 /*
1592  * Called from __cpuhp_setup_state on a recoverable failure.
1593  *
1594  * Note: The teardown callbacks for rollback are not allowed to fail!
1595  */
1596 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1597                                    struct hlist_node *node)
1598 {
1599         int cpu;
1600
1601         /* Roll back the already executed steps on the other cpus */
1602         for_each_present_cpu(cpu) {
1603                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1604                 int cpustate = st->state;
1605
1606                 if (cpu >= failedcpu)
1607                         break;
1608
1609                 /* Did we invoke the startup call on that cpu ? */
1610                 if (cpustate >= state)
1611                         cpuhp_issue_call(cpu, state, false, node);
1612         }
1613 }
1614
1615 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1616                                           struct hlist_node *node,
1617                                           bool invoke)
1618 {
1619         struct cpuhp_step *sp;
1620         int cpu;
1621         int ret;
1622
1623         lockdep_assert_cpus_held();
1624
1625         sp = cpuhp_get_step(state);
1626         if (sp->multi_instance == false)
1627                 return -EINVAL;
1628
1629         mutex_lock(&cpuhp_state_mutex);
1630
1631         if (!invoke || !sp->startup.multi)
1632                 goto add_node;
1633
1634         /*
1635          * Try to call the startup callback for each present cpu
1636          * depending on the hotplug state of the cpu.
1637          */
1638         for_each_present_cpu(cpu) {
1639                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1640                 int cpustate = st->state;
1641
1642                 if (cpustate < state)
1643                         continue;
1644
1645                 ret = cpuhp_issue_call(cpu, state, true, node);
1646                 if (ret) {
1647                         if (sp->teardown.multi)
1648                                 cpuhp_rollback_install(cpu, state, node);
1649                         goto unlock;
1650                 }
1651         }
1652 add_node:
1653         ret = 0;
1654         hlist_add_head(node, &sp->list);
1655 unlock:
1656         mutex_unlock(&cpuhp_state_mutex);
1657         return ret;
1658 }
1659
1660 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1661                                bool invoke)
1662 {
1663         int ret;
1664
1665         cpus_read_lock();
1666         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1667         cpus_read_unlock();
1668         return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1671
1672 /**
1673  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1674  * @state:              The state to setup
1675  * @invoke:             If true, the startup function is invoked for cpus where
1676  *                      cpu state >= @state
1677  * @startup:            startup callback function
1678  * @teardown:           teardown callback function
1679  * @multi_instance:     State is set up for multiple instances which get
1680  *                      added afterwards.
1681  *
1682  * The caller needs to hold cpus read locked while calling this function.
1683  * Returns:
1684  *   On success:
1685  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1686  *      0 for all other states
1687  *   On failure: proper (negative) error code
1688  */
1689 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1690                                    const char *name, bool invoke,
1691                                    int (*startup)(unsigned int cpu),
1692                                    int (*teardown)(unsigned int cpu),
1693                                    bool multi_instance)
1694 {
1695         int cpu, ret = 0;
1696         bool dynstate;
1697
1698         lockdep_assert_cpus_held();
1699
1700         if (cpuhp_cb_check(state) || !name)
1701                 return -EINVAL;
1702
1703         mutex_lock(&cpuhp_state_mutex);
1704
1705         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1706                                     multi_instance);
1707
1708         dynstate = state == CPUHP_AP_ONLINE_DYN;
1709         if (ret > 0 && dynstate) {
1710                 state = ret;
1711                 ret = 0;
1712         }
1713
1714         if (ret || !invoke || !startup)
1715                 goto out;
1716
1717         /*
1718          * Try to call the startup callback for each present cpu
1719          * depending on the hotplug state of the cpu.
1720          */
1721         for_each_present_cpu(cpu) {
1722                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1723                 int cpustate = st->state;
1724
1725                 if (cpustate < state)
1726                         continue;
1727
1728                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1729                 if (ret) {
1730                         if (teardown)
1731                                 cpuhp_rollback_install(cpu, state, NULL);
1732                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1733                         goto out;
1734                 }
1735         }
1736 out:
1737         mutex_unlock(&cpuhp_state_mutex);
1738         /*
1739          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1740          * dynamically allocated state in case of success.
1741          */
1742         if (!ret && dynstate)
1743                 return state;
1744         return ret;
1745 }
1746 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1747
1748 int __cpuhp_setup_state(enum cpuhp_state state,
1749                         const char *name, bool invoke,
1750                         int (*startup)(unsigned int cpu),
1751                         int (*teardown)(unsigned int cpu),
1752                         bool multi_instance)
1753 {
1754         int ret;
1755
1756         cpus_read_lock();
1757         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1758                                              teardown, multi_instance);
1759         cpus_read_unlock();
1760         return ret;
1761 }
1762 EXPORT_SYMBOL(__cpuhp_setup_state);
1763
1764 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1765                                   struct hlist_node *node, bool invoke)
1766 {
1767         struct cpuhp_step *sp = cpuhp_get_step(state);
1768         int cpu;
1769
1770         BUG_ON(cpuhp_cb_check(state));
1771
1772         if (!sp->multi_instance)
1773                 return -EINVAL;
1774
1775         cpus_read_lock();
1776         mutex_lock(&cpuhp_state_mutex);
1777
1778         if (!invoke || !cpuhp_get_teardown_cb(state))
1779                 goto remove;
1780         /*
1781          * Call the teardown callback for each present cpu depending
1782          * on the hotplug state of the cpu. This function is not
1783          * allowed to fail currently!
1784          */
1785         for_each_present_cpu(cpu) {
1786                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1787                 int cpustate = st->state;
1788
1789                 if (cpustate >= state)
1790                         cpuhp_issue_call(cpu, state, false, node);
1791         }
1792
1793 remove:
1794         hlist_del(node);
1795         mutex_unlock(&cpuhp_state_mutex);
1796         cpus_read_unlock();
1797
1798         return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1801
1802 /**
1803  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1804  * @state:      The state to remove
1805  * @invoke:     If true, the teardown function is invoked for cpus where
1806  *              cpu state >= @state
1807  *
1808  * The caller needs to hold cpus read locked while calling this function.
1809  * The teardown callback is currently not allowed to fail. Think
1810  * about module removal!
1811  */
1812 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1813 {
1814         struct cpuhp_step *sp = cpuhp_get_step(state);
1815         int cpu;
1816
1817         BUG_ON(cpuhp_cb_check(state));
1818
1819         lockdep_assert_cpus_held();
1820
1821         mutex_lock(&cpuhp_state_mutex);
1822         if (sp->multi_instance) {
1823                 WARN(!hlist_empty(&sp->list),
1824                      "Error: Removing state %d which has instances left.\n",
1825                      state);
1826                 goto remove;
1827         }
1828
1829         if (!invoke || !cpuhp_get_teardown_cb(state))
1830                 goto remove;
1831
1832         /*
1833          * Call the teardown callback for each present cpu depending
1834          * on the hotplug state of the cpu. This function is not
1835          * allowed to fail currently!
1836          */
1837         for_each_present_cpu(cpu) {
1838                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1839                 int cpustate = st->state;
1840
1841                 if (cpustate >= state)
1842                         cpuhp_issue_call(cpu, state, false, NULL);
1843         }
1844 remove:
1845         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1846         mutex_unlock(&cpuhp_state_mutex);
1847 }
1848 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1849
1850 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1851 {
1852         cpus_read_lock();
1853         __cpuhp_remove_state_cpuslocked(state, invoke);
1854         cpus_read_unlock();
1855 }
1856 EXPORT_SYMBOL(__cpuhp_remove_state);
1857
1858 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1859 static ssize_t show_cpuhp_state(struct device *dev,
1860                                 struct device_attribute *attr, char *buf)
1861 {
1862         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1863
1864         return sprintf(buf, "%d\n", st->state);
1865 }
1866 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1867
1868 static ssize_t write_cpuhp_target(struct device *dev,
1869                                   struct device_attribute *attr,
1870                                   const char *buf, size_t count)
1871 {
1872         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1873         struct cpuhp_step *sp;
1874         int target, ret;
1875
1876         ret = kstrtoint(buf, 10, &target);
1877         if (ret)
1878                 return ret;
1879
1880 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1881         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1882                 return -EINVAL;
1883 #else
1884         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1885                 return -EINVAL;
1886 #endif
1887
1888         ret = lock_device_hotplug_sysfs();
1889         if (ret)
1890                 return ret;
1891
1892         mutex_lock(&cpuhp_state_mutex);
1893         sp = cpuhp_get_step(target);
1894         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1895         mutex_unlock(&cpuhp_state_mutex);
1896         if (ret)
1897                 goto out;
1898
1899         if (st->state < target)
1900                 ret = do_cpu_up(dev->id, target);
1901         else
1902                 ret = do_cpu_down(dev->id, target);
1903 out:
1904         unlock_device_hotplug();
1905         return ret ? ret : count;
1906 }
1907
1908 static ssize_t show_cpuhp_target(struct device *dev,
1909                                  struct device_attribute *attr, char *buf)
1910 {
1911         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1912
1913         return sprintf(buf, "%d\n", st->target);
1914 }
1915 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1916
1917
1918 static ssize_t write_cpuhp_fail(struct device *dev,
1919                                 struct device_attribute *attr,
1920                                 const char *buf, size_t count)
1921 {
1922         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1923         struct cpuhp_step *sp;
1924         int fail, ret;
1925
1926         ret = kstrtoint(buf, 10, &fail);
1927         if (ret)
1928                 return ret;
1929
1930         /*
1931          * Cannot fail STARTING/DYING callbacks.
1932          */
1933         if (cpuhp_is_atomic_state(fail))
1934                 return -EINVAL;
1935
1936         /*
1937          * Cannot fail anything that doesn't have callbacks.
1938          */
1939         mutex_lock(&cpuhp_state_mutex);
1940         sp = cpuhp_get_step(fail);
1941         if (!sp->startup.single && !sp->teardown.single)
1942                 ret = -EINVAL;
1943         mutex_unlock(&cpuhp_state_mutex);
1944         if (ret)
1945                 return ret;
1946
1947         st->fail = fail;
1948
1949         return count;
1950 }
1951
1952 static ssize_t show_cpuhp_fail(struct device *dev,
1953                                struct device_attribute *attr, char *buf)
1954 {
1955         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1956
1957         return sprintf(buf, "%d\n", st->fail);
1958 }
1959
1960 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1961
1962 static struct attribute *cpuhp_cpu_attrs[] = {
1963         &dev_attr_state.attr,
1964         &dev_attr_target.attr,
1965         &dev_attr_fail.attr,
1966         NULL
1967 };
1968
1969 static const struct attribute_group cpuhp_cpu_attr_group = {
1970         .attrs = cpuhp_cpu_attrs,
1971         .name = "hotplug",
1972         NULL
1973 };
1974
1975 static ssize_t show_cpuhp_states(struct device *dev,
1976                                  struct device_attribute *attr, char *buf)
1977 {
1978         ssize_t cur, res = 0;
1979         int i;
1980
1981         mutex_lock(&cpuhp_state_mutex);
1982         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1983                 struct cpuhp_step *sp = cpuhp_get_step(i);
1984
1985                 if (sp->name) {
1986                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1987                         buf += cur;
1988                         res += cur;
1989                 }
1990         }
1991         mutex_unlock(&cpuhp_state_mutex);
1992         return res;
1993 }
1994 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1995
1996 static struct attribute *cpuhp_cpu_root_attrs[] = {
1997         &dev_attr_states.attr,
1998         NULL
1999 };
2000
2001 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2002         .attrs = cpuhp_cpu_root_attrs,
2003         .name = "hotplug",
2004         NULL
2005 };
2006
2007 #ifdef CONFIG_HOTPLUG_SMT
2008
2009 static const char *smt_states[] = {
2010         [CPU_SMT_ENABLED]               = "on",
2011         [CPU_SMT_DISABLED]              = "off",
2012         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2013         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2014 };
2015
2016 static ssize_t
2017 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2018 {
2019         return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2020 }
2021
2022 static void cpuhp_offline_cpu_device(unsigned int cpu)
2023 {
2024         struct device *dev = get_cpu_device(cpu);
2025
2026         dev->offline = true;
2027         /* Tell user space about the state change */
2028         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2029 }
2030
2031 static void cpuhp_online_cpu_device(unsigned int cpu)
2032 {
2033         struct device *dev = get_cpu_device(cpu);
2034
2035         dev->offline = false;
2036         /* Tell user space about the state change */
2037         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2038 }
2039
2040 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2041 {
2042         int cpu, ret = 0;
2043
2044         cpu_maps_update_begin();
2045         for_each_online_cpu(cpu) {
2046                 if (topology_is_primary_thread(cpu))
2047                         continue;
2048                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2049                 if (ret)
2050                         break;
2051                 /*
2052                  * As this needs to hold the cpu maps lock it's impossible
2053                  * to call device_offline() because that ends up calling
2054                  * cpu_down() which takes cpu maps lock. cpu maps lock
2055                  * needs to be held as this might race against in kernel
2056                  * abusers of the hotplug machinery (thermal management).
2057                  *
2058                  * So nothing would update device:offline state. That would
2059                  * leave the sysfs entry stale and prevent onlining after
2060                  * smt control has been changed to 'off' again. This is
2061                  * called under the sysfs hotplug lock, so it is properly
2062                  * serialized against the regular offline usage.
2063                  */
2064                 cpuhp_offline_cpu_device(cpu);
2065         }
2066         if (!ret)
2067                 cpu_smt_control = ctrlval;
2068         cpu_maps_update_done();
2069         return ret;
2070 }
2071
2072 static int cpuhp_smt_enable(void)
2073 {
2074         int cpu, ret = 0;
2075
2076         cpu_maps_update_begin();
2077         cpu_smt_control = CPU_SMT_ENABLED;
2078         for_each_present_cpu(cpu) {
2079                 /* Skip online CPUs and CPUs on offline nodes */
2080                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2081                         continue;
2082                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2083                 if (ret)
2084                         break;
2085                 /* See comment in cpuhp_smt_disable() */
2086                 cpuhp_online_cpu_device(cpu);
2087         }
2088         cpu_maps_update_done();
2089         return ret;
2090 }
2091
2092 static ssize_t
2093 store_smt_control(struct device *dev, struct device_attribute *attr,
2094                   const char *buf, size_t count)
2095 {
2096         int ctrlval, ret;
2097
2098         if (sysfs_streq(buf, "on"))
2099                 ctrlval = CPU_SMT_ENABLED;
2100         else if (sysfs_streq(buf, "off"))
2101                 ctrlval = CPU_SMT_DISABLED;
2102         else if (sysfs_streq(buf, "forceoff"))
2103                 ctrlval = CPU_SMT_FORCE_DISABLED;
2104         else
2105                 return -EINVAL;
2106
2107         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2108                 return -EPERM;
2109
2110         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2111                 return -ENODEV;
2112
2113         ret = lock_device_hotplug_sysfs();
2114         if (ret)
2115                 return ret;
2116
2117         if (ctrlval != cpu_smt_control) {
2118                 switch (ctrlval) {
2119                 case CPU_SMT_ENABLED:
2120                         ret = cpuhp_smt_enable();
2121                         break;
2122                 case CPU_SMT_DISABLED:
2123                 case CPU_SMT_FORCE_DISABLED:
2124                         ret = cpuhp_smt_disable(ctrlval);
2125                         break;
2126                 }
2127         }
2128
2129         unlock_device_hotplug();
2130         return ret ? ret : count;
2131 }
2132 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2133
2134 static ssize_t
2135 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2136 {
2137         bool active = topology_max_smt_threads() > 1;
2138
2139         return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2140 }
2141 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2142
2143 static struct attribute *cpuhp_smt_attrs[] = {
2144         &dev_attr_control.attr,
2145         &dev_attr_active.attr,
2146         NULL
2147 };
2148
2149 static const struct attribute_group cpuhp_smt_attr_group = {
2150         .attrs = cpuhp_smt_attrs,
2151         .name = "smt",
2152         NULL
2153 };
2154
2155 static int __init cpu_smt_state_init(void)
2156 {
2157         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2158                                   &cpuhp_smt_attr_group);
2159 }
2160
2161 #else
2162 static inline int cpu_smt_state_init(void) { return 0; }
2163 #endif
2164
2165 static int __init cpuhp_sysfs_init(void)
2166 {
2167         int cpu, ret;
2168
2169         ret = cpu_smt_state_init();
2170         if (ret)
2171                 return ret;
2172
2173         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2174                                  &cpuhp_cpu_root_attr_group);
2175         if (ret)
2176                 return ret;
2177
2178         for_each_possible_cpu(cpu) {
2179                 struct device *dev = get_cpu_device(cpu);
2180
2181                 if (!dev)
2182                         continue;
2183                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2184                 if (ret)
2185                         return ret;
2186         }
2187         return 0;
2188 }
2189 device_initcall(cpuhp_sysfs_init);
2190 #endif
2191
2192 /*
2193  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2194  * represents all NR_CPUS bits binary values of 1<<nr.
2195  *
2196  * It is used by cpumask_of() to get a constant address to a CPU
2197  * mask value that has a single bit set only.
2198  */
2199
2200 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2201 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2202 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2203 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2204 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2205
2206 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2207
2208         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2209         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2210 #if BITS_PER_LONG > 32
2211         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2212         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2213 #endif
2214 };
2215 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2216
2217 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2218 EXPORT_SYMBOL(cpu_all_bits);
2219
2220 #ifdef CONFIG_INIT_ALL_POSSIBLE
2221 struct cpumask __cpu_possible_mask __read_mostly
2222         = {CPU_BITS_ALL};
2223 #else
2224 struct cpumask __cpu_possible_mask __read_mostly;
2225 #endif
2226 EXPORT_SYMBOL(__cpu_possible_mask);
2227
2228 struct cpumask __cpu_online_mask __read_mostly;
2229 EXPORT_SYMBOL(__cpu_online_mask);
2230
2231 struct cpumask __cpu_present_mask __read_mostly;
2232 EXPORT_SYMBOL(__cpu_present_mask);
2233
2234 struct cpumask __cpu_active_mask __read_mostly;
2235 EXPORT_SYMBOL(__cpu_active_mask);
2236
2237 void init_cpu_present(const struct cpumask *src)
2238 {
2239         cpumask_copy(&__cpu_present_mask, src);
2240 }
2241
2242 void init_cpu_possible(const struct cpumask *src)
2243 {
2244         cpumask_copy(&__cpu_possible_mask, src);
2245 }
2246
2247 void init_cpu_online(const struct cpumask *src)
2248 {
2249         cpumask_copy(&__cpu_online_mask, src);
2250 }
2251
2252 /*
2253  * Activate the first processor.
2254  */
2255 void __init boot_cpu_init(void)
2256 {
2257         int cpu = smp_processor_id();
2258
2259         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2260         set_cpu_online(cpu, true);
2261         set_cpu_active(cpu, true);
2262         set_cpu_present(cpu, true);
2263         set_cpu_possible(cpu, true);
2264
2265 #ifdef CONFIG_SMP
2266         __boot_cpu_id = cpu;
2267 #endif
2268 }
2269
2270 /*
2271  * Must be called _AFTER_ setting up the per_cpu areas
2272  */
2273 void __init boot_cpu_hotplug_init(void)
2274 {
2275         this_cpu_write(cpuhp_state.booted_once, true);
2276         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2277 }