mm: make mm->pinned_vm an atomic64 counter
[linux] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
102
103 #include <trace/events/sched.h>
104
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
107
108 /*
109  * Minimum number of threads to boot the kernel
110  */
111 #define MIN_THREADS 20
112
113 /*
114  * Maximum number of threads
115  */
116 #define MAX_THREADS FUTEX_TID_MASK
117
118 /*
119  * Protected counters by write_lock_irq(&tasklist_lock)
120  */
121 unsigned long total_forks;      /* Handle normal Linux uptimes. */
122 int nr_threads;                 /* The idle threads do not count.. */
123
124 int max_threads;                /* tunable limit on nr_threads */
125
126 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
127
128 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
129
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
132 {
133         return lockdep_is_held(&tasklist_lock);
134 }
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
137
138 int nr_processes(void)
139 {
140         int cpu;
141         int total = 0;
142
143         for_each_possible_cpu(cpu)
144                 total += per_cpu(process_counts, cpu);
145
146         return total;
147 }
148
149 void __weak arch_release_task_struct(struct task_struct *tsk)
150 {
151 }
152
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache *task_struct_cachep;
155
156 static inline struct task_struct *alloc_task_struct_node(int node)
157 {
158         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
159 }
160
161 static inline void free_task_struct(struct task_struct *tsk)
162 {
163         kmem_cache_free(task_struct_cachep, tsk);
164 }
165 #endif
166
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168
169 /*
170  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171  * kmemcache based allocator.
172  */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174
175 #ifdef CONFIG_VMAP_STACK
176 /*
177  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178  * flush.  Try to minimize the number of calls by caching stacks.
179  */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182
183 static int free_vm_stack_cache(unsigned int cpu)
184 {
185         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
186         int i;
187
188         for (i = 0; i < NR_CACHED_STACKS; i++) {
189                 struct vm_struct *vm_stack = cached_vm_stacks[i];
190
191                 if (!vm_stack)
192                         continue;
193
194                 vfree(vm_stack->addr);
195                 cached_vm_stacks[i] = NULL;
196         }
197
198         return 0;
199 }
200 #endif
201
202 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
203 {
204 #ifdef CONFIG_VMAP_STACK
205         void *stack;
206         int i;
207
208         for (i = 0; i < NR_CACHED_STACKS; i++) {
209                 struct vm_struct *s;
210
211                 s = this_cpu_xchg(cached_stacks[i], NULL);
212
213                 if (!s)
214                         continue;
215
216                 /* Clear stale pointers from reused stack. */
217                 memset(s->addr, 0, THREAD_SIZE);
218
219                 tsk->stack_vm_area = s;
220                 tsk->stack = s->addr;
221                 return s->addr;
222         }
223
224         /*
225          * Allocated stacks are cached and later reused by new threads,
226          * so memcg accounting is performed manually on assigning/releasing
227          * stacks to tasks. Drop __GFP_ACCOUNT.
228          */
229         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
230                                      VMALLOC_START, VMALLOC_END,
231                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
232                                      PAGE_KERNEL,
233                                      0, node, __builtin_return_address(0));
234
235         /*
236          * We can't call find_vm_area() in interrupt context, and
237          * free_thread_stack() can be called in interrupt context,
238          * so cache the vm_struct.
239          */
240         if (stack) {
241                 tsk->stack_vm_area = find_vm_area(stack);
242                 tsk->stack = stack;
243         }
244         return stack;
245 #else
246         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
247                                              THREAD_SIZE_ORDER);
248
249         return page ? page_address(page) : NULL;
250 #endif
251 }
252
253 static inline void free_thread_stack(struct task_struct *tsk)
254 {
255 #ifdef CONFIG_VMAP_STACK
256         struct vm_struct *vm = task_stack_vm_area(tsk);
257
258         if (vm) {
259                 int i;
260
261                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
262                         mod_memcg_page_state(vm->pages[i],
263                                              MEMCG_KERNEL_STACK_KB,
264                                              -(int)(PAGE_SIZE / 1024));
265
266                         memcg_kmem_uncharge(vm->pages[i], 0);
267                 }
268
269                 for (i = 0; i < NR_CACHED_STACKS; i++) {
270                         if (this_cpu_cmpxchg(cached_stacks[i],
271                                         NULL, tsk->stack_vm_area) != NULL)
272                                 continue;
273
274                         return;
275                 }
276
277                 vfree_atomic(tsk->stack);
278                 return;
279         }
280 #endif
281
282         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
283 }
284 # else
285 static struct kmem_cache *thread_stack_cache;
286
287 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
288                                                   int node)
289 {
290         unsigned long *stack;
291         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
292         tsk->stack = stack;
293         return stack;
294 }
295
296 static void free_thread_stack(struct task_struct *tsk)
297 {
298         kmem_cache_free(thread_stack_cache, tsk->stack);
299 }
300
301 void thread_stack_cache_init(void)
302 {
303         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
304                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
305                                         THREAD_SIZE, NULL);
306         BUG_ON(thread_stack_cache == NULL);
307 }
308 # endif
309 #endif
310
311 /* SLAB cache for signal_struct structures (tsk->signal) */
312 static struct kmem_cache *signal_cachep;
313
314 /* SLAB cache for sighand_struct structures (tsk->sighand) */
315 struct kmem_cache *sighand_cachep;
316
317 /* SLAB cache for files_struct structures (tsk->files) */
318 struct kmem_cache *files_cachep;
319
320 /* SLAB cache for fs_struct structures (tsk->fs) */
321 struct kmem_cache *fs_cachep;
322
323 /* SLAB cache for vm_area_struct structures */
324 static struct kmem_cache *vm_area_cachep;
325
326 /* SLAB cache for mm_struct structures (tsk->mm) */
327 static struct kmem_cache *mm_cachep;
328
329 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
330 {
331         struct vm_area_struct *vma;
332
333         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
334         if (vma)
335                 vma_init(vma, mm);
336         return vma;
337 }
338
339 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
340 {
341         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
342
343         if (new) {
344                 *new = *orig;
345                 INIT_LIST_HEAD(&new->anon_vma_chain);
346         }
347         return new;
348 }
349
350 void vm_area_free(struct vm_area_struct *vma)
351 {
352         kmem_cache_free(vm_area_cachep, vma);
353 }
354
355 static void account_kernel_stack(struct task_struct *tsk, int account)
356 {
357         void *stack = task_stack_page(tsk);
358         struct vm_struct *vm = task_stack_vm_area(tsk);
359
360         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
361
362         if (vm) {
363                 int i;
364
365                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
366
367                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
368                         mod_zone_page_state(page_zone(vm->pages[i]),
369                                             NR_KERNEL_STACK_KB,
370                                             PAGE_SIZE / 1024 * account);
371                 }
372         } else {
373                 /*
374                  * All stack pages are in the same zone and belong to the
375                  * same memcg.
376                  */
377                 struct page *first_page = virt_to_page(stack);
378
379                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
380                                     THREAD_SIZE / 1024 * account);
381
382                 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
383                                      account * (THREAD_SIZE / 1024));
384         }
385 }
386
387 static int memcg_charge_kernel_stack(struct task_struct *tsk)
388 {
389 #ifdef CONFIG_VMAP_STACK
390         struct vm_struct *vm = task_stack_vm_area(tsk);
391         int ret;
392
393         if (vm) {
394                 int i;
395
396                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
397                         /*
398                          * If memcg_kmem_charge() fails, page->mem_cgroup
399                          * pointer is NULL, and both memcg_kmem_uncharge()
400                          * and mod_memcg_page_state() in free_thread_stack()
401                          * will ignore this page. So it's safe.
402                          */
403                         ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
404                         if (ret)
405                                 return ret;
406
407                         mod_memcg_page_state(vm->pages[i],
408                                              MEMCG_KERNEL_STACK_KB,
409                                              PAGE_SIZE / 1024);
410                 }
411         }
412 #endif
413         return 0;
414 }
415
416 static void release_task_stack(struct task_struct *tsk)
417 {
418         if (WARN_ON(tsk->state != TASK_DEAD))
419                 return;  /* Better to leak the stack than to free prematurely */
420
421         account_kernel_stack(tsk, -1);
422         free_thread_stack(tsk);
423         tsk->stack = NULL;
424 #ifdef CONFIG_VMAP_STACK
425         tsk->stack_vm_area = NULL;
426 #endif
427 }
428
429 #ifdef CONFIG_THREAD_INFO_IN_TASK
430 void put_task_stack(struct task_struct *tsk)
431 {
432         if (atomic_dec_and_test(&tsk->stack_refcount))
433                 release_task_stack(tsk);
434 }
435 #endif
436
437 void free_task(struct task_struct *tsk)
438 {
439 #ifndef CONFIG_THREAD_INFO_IN_TASK
440         /*
441          * The task is finally done with both the stack and thread_info,
442          * so free both.
443          */
444         release_task_stack(tsk);
445 #else
446         /*
447          * If the task had a separate stack allocation, it should be gone
448          * by now.
449          */
450         WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
451 #endif
452         rt_mutex_debug_task_free(tsk);
453         ftrace_graph_exit_task(tsk);
454         put_seccomp_filter(tsk);
455         arch_release_task_struct(tsk);
456         if (tsk->flags & PF_KTHREAD)
457                 free_kthread_struct(tsk);
458         free_task_struct(tsk);
459 }
460 EXPORT_SYMBOL(free_task);
461
462 #ifdef CONFIG_MMU
463 static __latent_entropy int dup_mmap(struct mm_struct *mm,
464                                         struct mm_struct *oldmm)
465 {
466         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
467         struct rb_node **rb_link, *rb_parent;
468         int retval;
469         unsigned long charge;
470         LIST_HEAD(uf);
471
472         uprobe_start_dup_mmap();
473         if (down_write_killable(&oldmm->mmap_sem)) {
474                 retval = -EINTR;
475                 goto fail_uprobe_end;
476         }
477         flush_cache_dup_mm(oldmm);
478         uprobe_dup_mmap(oldmm, mm);
479         /*
480          * Not linked in yet - no deadlock potential:
481          */
482         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
483
484         /* No ordering required: file already has been exposed. */
485         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
486
487         mm->total_vm = oldmm->total_vm;
488         mm->data_vm = oldmm->data_vm;
489         mm->exec_vm = oldmm->exec_vm;
490         mm->stack_vm = oldmm->stack_vm;
491
492         rb_link = &mm->mm_rb.rb_node;
493         rb_parent = NULL;
494         pprev = &mm->mmap;
495         retval = ksm_fork(mm, oldmm);
496         if (retval)
497                 goto out;
498         retval = khugepaged_fork(mm, oldmm);
499         if (retval)
500                 goto out;
501
502         prev = NULL;
503         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
504                 struct file *file;
505
506                 if (mpnt->vm_flags & VM_DONTCOPY) {
507                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
508                         continue;
509                 }
510                 charge = 0;
511                 /*
512                  * Don't duplicate many vmas if we've been oom-killed (for
513                  * example)
514                  */
515                 if (fatal_signal_pending(current)) {
516                         retval = -EINTR;
517                         goto out;
518                 }
519                 if (mpnt->vm_flags & VM_ACCOUNT) {
520                         unsigned long len = vma_pages(mpnt);
521
522                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
523                                 goto fail_nomem;
524                         charge = len;
525                 }
526                 tmp = vm_area_dup(mpnt);
527                 if (!tmp)
528                         goto fail_nomem;
529                 retval = vma_dup_policy(mpnt, tmp);
530                 if (retval)
531                         goto fail_nomem_policy;
532                 tmp->vm_mm = mm;
533                 retval = dup_userfaultfd(tmp, &uf);
534                 if (retval)
535                         goto fail_nomem_anon_vma_fork;
536                 if (tmp->vm_flags & VM_WIPEONFORK) {
537                         /* VM_WIPEONFORK gets a clean slate in the child. */
538                         tmp->anon_vma = NULL;
539                         if (anon_vma_prepare(tmp))
540                                 goto fail_nomem_anon_vma_fork;
541                 } else if (anon_vma_fork(tmp, mpnt))
542                         goto fail_nomem_anon_vma_fork;
543                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
544                 tmp->vm_next = tmp->vm_prev = NULL;
545                 file = tmp->vm_file;
546                 if (file) {
547                         struct inode *inode = file_inode(file);
548                         struct address_space *mapping = file->f_mapping;
549
550                         get_file(file);
551                         if (tmp->vm_flags & VM_DENYWRITE)
552                                 atomic_dec(&inode->i_writecount);
553                         i_mmap_lock_write(mapping);
554                         if (tmp->vm_flags & VM_SHARED)
555                                 atomic_inc(&mapping->i_mmap_writable);
556                         flush_dcache_mmap_lock(mapping);
557                         /* insert tmp into the share list, just after mpnt */
558                         vma_interval_tree_insert_after(tmp, mpnt,
559                                         &mapping->i_mmap);
560                         flush_dcache_mmap_unlock(mapping);
561                         i_mmap_unlock_write(mapping);
562                 }
563
564                 /*
565                  * Clear hugetlb-related page reserves for children. This only
566                  * affects MAP_PRIVATE mappings. Faults generated by the child
567                  * are not guaranteed to succeed, even if read-only
568                  */
569                 if (is_vm_hugetlb_page(tmp))
570                         reset_vma_resv_huge_pages(tmp);
571
572                 /*
573                  * Link in the new vma and copy the page table entries.
574                  */
575                 *pprev = tmp;
576                 pprev = &tmp->vm_next;
577                 tmp->vm_prev = prev;
578                 prev = tmp;
579
580                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
581                 rb_link = &tmp->vm_rb.rb_right;
582                 rb_parent = &tmp->vm_rb;
583
584                 mm->map_count++;
585                 if (!(tmp->vm_flags & VM_WIPEONFORK))
586                         retval = copy_page_range(mm, oldmm, mpnt);
587
588                 if (tmp->vm_ops && tmp->vm_ops->open)
589                         tmp->vm_ops->open(tmp);
590
591                 if (retval)
592                         goto out;
593         }
594         /* a new mm has just been created */
595         retval = arch_dup_mmap(oldmm, mm);
596 out:
597         up_write(&mm->mmap_sem);
598         flush_tlb_mm(oldmm);
599         up_write(&oldmm->mmap_sem);
600         dup_userfaultfd_complete(&uf);
601 fail_uprobe_end:
602         uprobe_end_dup_mmap();
603         return retval;
604 fail_nomem_anon_vma_fork:
605         mpol_put(vma_policy(tmp));
606 fail_nomem_policy:
607         vm_area_free(tmp);
608 fail_nomem:
609         retval = -ENOMEM;
610         vm_unacct_memory(charge);
611         goto out;
612 }
613
614 static inline int mm_alloc_pgd(struct mm_struct *mm)
615 {
616         mm->pgd = pgd_alloc(mm);
617         if (unlikely(!mm->pgd))
618                 return -ENOMEM;
619         return 0;
620 }
621
622 static inline void mm_free_pgd(struct mm_struct *mm)
623 {
624         pgd_free(mm, mm->pgd);
625 }
626 #else
627 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
628 {
629         down_write(&oldmm->mmap_sem);
630         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
631         up_write(&oldmm->mmap_sem);
632         return 0;
633 }
634 #define mm_alloc_pgd(mm)        (0)
635 #define mm_free_pgd(mm)
636 #endif /* CONFIG_MMU */
637
638 static void check_mm(struct mm_struct *mm)
639 {
640         int i;
641
642         for (i = 0; i < NR_MM_COUNTERS; i++) {
643                 long x = atomic_long_read(&mm->rss_stat.count[i]);
644
645                 if (unlikely(x))
646                         printk(KERN_ALERT "BUG: Bad rss-counter state "
647                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
648         }
649
650         if (mm_pgtables_bytes(mm))
651                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
652                                 mm_pgtables_bytes(mm));
653
654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
655         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
656 #endif
657 }
658
659 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
660 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
661
662 /*
663  * Called when the last reference to the mm
664  * is dropped: either by a lazy thread or by
665  * mmput. Free the page directory and the mm.
666  */
667 void __mmdrop(struct mm_struct *mm)
668 {
669         BUG_ON(mm == &init_mm);
670         WARN_ON_ONCE(mm == current->mm);
671         WARN_ON_ONCE(mm == current->active_mm);
672         mm_free_pgd(mm);
673         destroy_context(mm);
674         hmm_mm_destroy(mm);
675         mmu_notifier_mm_destroy(mm);
676         check_mm(mm);
677         put_user_ns(mm->user_ns);
678         free_mm(mm);
679 }
680 EXPORT_SYMBOL_GPL(__mmdrop);
681
682 static void mmdrop_async_fn(struct work_struct *work)
683 {
684         struct mm_struct *mm;
685
686         mm = container_of(work, struct mm_struct, async_put_work);
687         __mmdrop(mm);
688 }
689
690 static void mmdrop_async(struct mm_struct *mm)
691 {
692         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
693                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
694                 schedule_work(&mm->async_put_work);
695         }
696 }
697
698 static inline void free_signal_struct(struct signal_struct *sig)
699 {
700         taskstats_tgid_free(sig);
701         sched_autogroup_exit(sig);
702         /*
703          * __mmdrop is not safe to call from softirq context on x86 due to
704          * pgd_dtor so postpone it to the async context
705          */
706         if (sig->oom_mm)
707                 mmdrop_async(sig->oom_mm);
708         kmem_cache_free(signal_cachep, sig);
709 }
710
711 static inline void put_signal_struct(struct signal_struct *sig)
712 {
713         if (atomic_dec_and_test(&sig->sigcnt))
714                 free_signal_struct(sig);
715 }
716
717 void __put_task_struct(struct task_struct *tsk)
718 {
719         WARN_ON(!tsk->exit_state);
720         WARN_ON(atomic_read(&tsk->usage));
721         WARN_ON(tsk == current);
722
723         cgroup_free(tsk);
724         task_numa_free(tsk);
725         security_task_free(tsk);
726         exit_creds(tsk);
727         delayacct_tsk_free(tsk);
728         put_signal_struct(tsk->signal);
729
730         if (!profile_handoff_task(tsk))
731                 free_task(tsk);
732 }
733 EXPORT_SYMBOL_GPL(__put_task_struct);
734
735 void __init __weak arch_task_cache_init(void) { }
736
737 /*
738  * set_max_threads
739  */
740 static void set_max_threads(unsigned int max_threads_suggested)
741 {
742         u64 threads;
743         unsigned long nr_pages = totalram_pages();
744
745         /*
746          * The number of threads shall be limited such that the thread
747          * structures may only consume a small part of the available memory.
748          */
749         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
750                 threads = MAX_THREADS;
751         else
752                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
753                                     (u64) THREAD_SIZE * 8UL);
754
755         if (threads > max_threads_suggested)
756                 threads = max_threads_suggested;
757
758         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
759 }
760
761 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
762 /* Initialized by the architecture: */
763 int arch_task_struct_size __read_mostly;
764 #endif
765
766 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
767 {
768         /* Fetch thread_struct whitelist for the architecture. */
769         arch_thread_struct_whitelist(offset, size);
770
771         /*
772          * Handle zero-sized whitelist or empty thread_struct, otherwise
773          * adjust offset to position of thread_struct in task_struct.
774          */
775         if (unlikely(*size == 0))
776                 *offset = 0;
777         else
778                 *offset += offsetof(struct task_struct, thread);
779 }
780
781 void __init fork_init(void)
782 {
783         int i;
784 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
785 #ifndef ARCH_MIN_TASKALIGN
786 #define ARCH_MIN_TASKALIGN      0
787 #endif
788         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
789         unsigned long useroffset, usersize;
790
791         /* create a slab on which task_structs can be allocated */
792         task_struct_whitelist(&useroffset, &usersize);
793         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
794                         arch_task_struct_size, align,
795                         SLAB_PANIC|SLAB_ACCOUNT,
796                         useroffset, usersize, NULL);
797 #endif
798
799         /* do the arch specific task caches init */
800         arch_task_cache_init();
801
802         set_max_threads(MAX_THREADS);
803
804         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
805         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
806         init_task.signal->rlim[RLIMIT_SIGPENDING] =
807                 init_task.signal->rlim[RLIMIT_NPROC];
808
809         for (i = 0; i < UCOUNT_COUNTS; i++) {
810                 init_user_ns.ucount_max[i] = max_threads/2;
811         }
812
813 #ifdef CONFIG_VMAP_STACK
814         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
815                           NULL, free_vm_stack_cache);
816 #endif
817
818         lockdep_init_task(&init_task);
819 }
820
821 int __weak arch_dup_task_struct(struct task_struct *dst,
822                                                struct task_struct *src)
823 {
824         *dst = *src;
825         return 0;
826 }
827
828 void set_task_stack_end_magic(struct task_struct *tsk)
829 {
830         unsigned long *stackend;
831
832         stackend = end_of_stack(tsk);
833         *stackend = STACK_END_MAGIC;    /* for overflow detection */
834 }
835
836 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
837 {
838         struct task_struct *tsk;
839         unsigned long *stack;
840         struct vm_struct *stack_vm_area __maybe_unused;
841         int err;
842
843         if (node == NUMA_NO_NODE)
844                 node = tsk_fork_get_node(orig);
845         tsk = alloc_task_struct_node(node);
846         if (!tsk)
847                 return NULL;
848
849         stack = alloc_thread_stack_node(tsk, node);
850         if (!stack)
851                 goto free_tsk;
852
853         if (memcg_charge_kernel_stack(tsk))
854                 goto free_stack;
855
856         stack_vm_area = task_stack_vm_area(tsk);
857
858         err = arch_dup_task_struct(tsk, orig);
859
860         /*
861          * arch_dup_task_struct() clobbers the stack-related fields.  Make
862          * sure they're properly initialized before using any stack-related
863          * functions again.
864          */
865         tsk->stack = stack;
866 #ifdef CONFIG_VMAP_STACK
867         tsk->stack_vm_area = stack_vm_area;
868 #endif
869 #ifdef CONFIG_THREAD_INFO_IN_TASK
870         atomic_set(&tsk->stack_refcount, 1);
871 #endif
872
873         if (err)
874                 goto free_stack;
875
876 #ifdef CONFIG_SECCOMP
877         /*
878          * We must handle setting up seccomp filters once we're under
879          * the sighand lock in case orig has changed between now and
880          * then. Until then, filter must be NULL to avoid messing up
881          * the usage counts on the error path calling free_task.
882          */
883         tsk->seccomp.filter = NULL;
884 #endif
885
886         setup_thread_stack(tsk, orig);
887         clear_user_return_notifier(tsk);
888         clear_tsk_need_resched(tsk);
889         set_task_stack_end_magic(tsk);
890
891 #ifdef CONFIG_STACKPROTECTOR
892         tsk->stack_canary = get_random_canary();
893 #endif
894
895         /*
896          * One for us, one for whoever does the "release_task()" (usually
897          * parent)
898          */
899         atomic_set(&tsk->usage, 2);
900 #ifdef CONFIG_BLK_DEV_IO_TRACE
901         tsk->btrace_seq = 0;
902 #endif
903         tsk->splice_pipe = NULL;
904         tsk->task_frag.page = NULL;
905         tsk->wake_q.next = NULL;
906
907         account_kernel_stack(tsk, 1);
908
909         kcov_task_init(tsk);
910
911 #ifdef CONFIG_FAULT_INJECTION
912         tsk->fail_nth = 0;
913 #endif
914
915 #ifdef CONFIG_BLK_CGROUP
916         tsk->throttle_queue = NULL;
917         tsk->use_memdelay = 0;
918 #endif
919
920 #ifdef CONFIG_MEMCG
921         tsk->active_memcg = NULL;
922         tsk->memcg_high_reclaim = NULL;
923 #endif
924         return tsk;
925
926 free_stack:
927         free_thread_stack(tsk);
928 free_tsk:
929         free_task_struct(tsk);
930         return NULL;
931 }
932
933 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
934
935 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
936
937 static int __init coredump_filter_setup(char *s)
938 {
939         default_dump_filter =
940                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
941                 MMF_DUMP_FILTER_MASK;
942         return 1;
943 }
944
945 __setup("coredump_filter=", coredump_filter_setup);
946
947 #include <linux/init_task.h>
948
949 static void mm_init_aio(struct mm_struct *mm)
950 {
951 #ifdef CONFIG_AIO
952         spin_lock_init(&mm->ioctx_lock);
953         mm->ioctx_table = NULL;
954 #endif
955 }
956
957 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
958 {
959 #ifdef CONFIG_MEMCG
960         mm->owner = p;
961 #endif
962 }
963
964 static void mm_init_uprobes_state(struct mm_struct *mm)
965 {
966 #ifdef CONFIG_UPROBES
967         mm->uprobes_state.xol_area = NULL;
968 #endif
969 }
970
971 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
972         struct user_namespace *user_ns)
973 {
974         mm->mmap = NULL;
975         mm->mm_rb = RB_ROOT;
976         mm->vmacache_seqnum = 0;
977         atomic_set(&mm->mm_users, 1);
978         atomic_set(&mm->mm_count, 1);
979         init_rwsem(&mm->mmap_sem);
980         INIT_LIST_HEAD(&mm->mmlist);
981         mm->core_state = NULL;
982         mm_pgtables_bytes_init(mm);
983         mm->map_count = 0;
984         mm->locked_vm = 0;
985         atomic64_set(&mm->pinned_vm, 0);
986         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
987         spin_lock_init(&mm->page_table_lock);
988         spin_lock_init(&mm->arg_lock);
989         mm_init_cpumask(mm);
990         mm_init_aio(mm);
991         mm_init_owner(mm, p);
992         RCU_INIT_POINTER(mm->exe_file, NULL);
993         mmu_notifier_mm_init(mm);
994         hmm_mm_init(mm);
995         init_tlb_flush_pending(mm);
996 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
997         mm->pmd_huge_pte = NULL;
998 #endif
999         mm_init_uprobes_state(mm);
1000
1001         if (current->mm) {
1002                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1003                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1004         } else {
1005                 mm->flags = default_dump_filter;
1006                 mm->def_flags = 0;
1007         }
1008
1009         if (mm_alloc_pgd(mm))
1010                 goto fail_nopgd;
1011
1012         if (init_new_context(p, mm))
1013                 goto fail_nocontext;
1014
1015         mm->user_ns = get_user_ns(user_ns);
1016         return mm;
1017
1018 fail_nocontext:
1019         mm_free_pgd(mm);
1020 fail_nopgd:
1021         free_mm(mm);
1022         return NULL;
1023 }
1024
1025 /*
1026  * Allocate and initialize an mm_struct.
1027  */
1028 struct mm_struct *mm_alloc(void)
1029 {
1030         struct mm_struct *mm;
1031
1032         mm = allocate_mm();
1033         if (!mm)
1034                 return NULL;
1035
1036         memset(mm, 0, sizeof(*mm));
1037         return mm_init(mm, current, current_user_ns());
1038 }
1039
1040 static inline void __mmput(struct mm_struct *mm)
1041 {
1042         VM_BUG_ON(atomic_read(&mm->mm_users));
1043
1044         uprobe_clear_state(mm);
1045         exit_aio(mm);
1046         ksm_exit(mm);
1047         khugepaged_exit(mm); /* must run before exit_mmap */
1048         exit_mmap(mm);
1049         mm_put_huge_zero_page(mm);
1050         set_mm_exe_file(mm, NULL);
1051         if (!list_empty(&mm->mmlist)) {
1052                 spin_lock(&mmlist_lock);
1053                 list_del(&mm->mmlist);
1054                 spin_unlock(&mmlist_lock);
1055         }
1056         if (mm->binfmt)
1057                 module_put(mm->binfmt->module);
1058         mmdrop(mm);
1059 }
1060
1061 /*
1062  * Decrement the use count and release all resources for an mm.
1063  */
1064 void mmput(struct mm_struct *mm)
1065 {
1066         might_sleep();
1067
1068         if (atomic_dec_and_test(&mm->mm_users))
1069                 __mmput(mm);
1070 }
1071 EXPORT_SYMBOL_GPL(mmput);
1072
1073 #ifdef CONFIG_MMU
1074 static void mmput_async_fn(struct work_struct *work)
1075 {
1076         struct mm_struct *mm = container_of(work, struct mm_struct,
1077                                             async_put_work);
1078
1079         __mmput(mm);
1080 }
1081
1082 void mmput_async(struct mm_struct *mm)
1083 {
1084         if (atomic_dec_and_test(&mm->mm_users)) {
1085                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1086                 schedule_work(&mm->async_put_work);
1087         }
1088 }
1089 #endif
1090
1091 /**
1092  * set_mm_exe_file - change a reference to the mm's executable file
1093  *
1094  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1095  *
1096  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1097  * invocations: in mmput() nobody alive left, in execve task is single
1098  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1099  * mm->exe_file, but does so without using set_mm_exe_file() in order
1100  * to do avoid the need for any locks.
1101  */
1102 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1103 {
1104         struct file *old_exe_file;
1105
1106         /*
1107          * It is safe to dereference the exe_file without RCU as
1108          * this function is only called if nobody else can access
1109          * this mm -- see comment above for justification.
1110          */
1111         old_exe_file = rcu_dereference_raw(mm->exe_file);
1112
1113         if (new_exe_file)
1114                 get_file(new_exe_file);
1115         rcu_assign_pointer(mm->exe_file, new_exe_file);
1116         if (old_exe_file)
1117                 fput(old_exe_file);
1118 }
1119
1120 /**
1121  * get_mm_exe_file - acquire a reference to the mm's executable file
1122  *
1123  * Returns %NULL if mm has no associated executable file.
1124  * User must release file via fput().
1125  */
1126 struct file *get_mm_exe_file(struct mm_struct *mm)
1127 {
1128         struct file *exe_file;
1129
1130         rcu_read_lock();
1131         exe_file = rcu_dereference(mm->exe_file);
1132         if (exe_file && !get_file_rcu(exe_file))
1133                 exe_file = NULL;
1134         rcu_read_unlock();
1135         return exe_file;
1136 }
1137 EXPORT_SYMBOL(get_mm_exe_file);
1138
1139 /**
1140  * get_task_exe_file - acquire a reference to the task's executable file
1141  *
1142  * Returns %NULL if task's mm (if any) has no associated executable file or
1143  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1144  * User must release file via fput().
1145  */
1146 struct file *get_task_exe_file(struct task_struct *task)
1147 {
1148         struct file *exe_file = NULL;
1149         struct mm_struct *mm;
1150
1151         task_lock(task);
1152         mm = task->mm;
1153         if (mm) {
1154                 if (!(task->flags & PF_KTHREAD))
1155                         exe_file = get_mm_exe_file(mm);
1156         }
1157         task_unlock(task);
1158         return exe_file;
1159 }
1160 EXPORT_SYMBOL(get_task_exe_file);
1161
1162 /**
1163  * get_task_mm - acquire a reference to the task's mm
1164  *
1165  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1166  * this kernel workthread has transiently adopted a user mm with use_mm,
1167  * to do its AIO) is not set and if so returns a reference to it, after
1168  * bumping up the use count.  User must release the mm via mmput()
1169  * after use.  Typically used by /proc and ptrace.
1170  */
1171 struct mm_struct *get_task_mm(struct task_struct *task)
1172 {
1173         struct mm_struct *mm;
1174
1175         task_lock(task);
1176         mm = task->mm;
1177         if (mm) {
1178                 if (task->flags & PF_KTHREAD)
1179                         mm = NULL;
1180                 else
1181                         mmget(mm);
1182         }
1183         task_unlock(task);
1184         return mm;
1185 }
1186 EXPORT_SYMBOL_GPL(get_task_mm);
1187
1188 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1189 {
1190         struct mm_struct *mm;
1191         int err;
1192
1193         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1194         if (err)
1195                 return ERR_PTR(err);
1196
1197         mm = get_task_mm(task);
1198         if (mm && mm != current->mm &&
1199                         !ptrace_may_access(task, mode)) {
1200                 mmput(mm);
1201                 mm = ERR_PTR(-EACCES);
1202         }
1203         mutex_unlock(&task->signal->cred_guard_mutex);
1204
1205         return mm;
1206 }
1207
1208 static void complete_vfork_done(struct task_struct *tsk)
1209 {
1210         struct completion *vfork;
1211
1212         task_lock(tsk);
1213         vfork = tsk->vfork_done;
1214         if (likely(vfork)) {
1215                 tsk->vfork_done = NULL;
1216                 complete(vfork);
1217         }
1218         task_unlock(tsk);
1219 }
1220
1221 static int wait_for_vfork_done(struct task_struct *child,
1222                                 struct completion *vfork)
1223 {
1224         int killed;
1225
1226         freezer_do_not_count();
1227         killed = wait_for_completion_killable(vfork);
1228         freezer_count();
1229
1230         if (killed) {
1231                 task_lock(child);
1232                 child->vfork_done = NULL;
1233                 task_unlock(child);
1234         }
1235
1236         put_task_struct(child);
1237         return killed;
1238 }
1239
1240 /* Please note the differences between mmput and mm_release.
1241  * mmput is called whenever we stop holding onto a mm_struct,
1242  * error success whatever.
1243  *
1244  * mm_release is called after a mm_struct has been removed
1245  * from the current process.
1246  *
1247  * This difference is important for error handling, when we
1248  * only half set up a mm_struct for a new process and need to restore
1249  * the old one.  Because we mmput the new mm_struct before
1250  * restoring the old one. . .
1251  * Eric Biederman 10 January 1998
1252  */
1253 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1254 {
1255         /* Get rid of any futexes when releasing the mm */
1256 #ifdef CONFIG_FUTEX
1257         if (unlikely(tsk->robust_list)) {
1258                 exit_robust_list(tsk);
1259                 tsk->robust_list = NULL;
1260         }
1261 #ifdef CONFIG_COMPAT
1262         if (unlikely(tsk->compat_robust_list)) {
1263                 compat_exit_robust_list(tsk);
1264                 tsk->compat_robust_list = NULL;
1265         }
1266 #endif
1267         if (unlikely(!list_empty(&tsk->pi_state_list)))
1268                 exit_pi_state_list(tsk);
1269 #endif
1270
1271         uprobe_free_utask(tsk);
1272
1273         /* Get rid of any cached register state */
1274         deactivate_mm(tsk, mm);
1275
1276         /*
1277          * Signal userspace if we're not exiting with a core dump
1278          * because we want to leave the value intact for debugging
1279          * purposes.
1280          */
1281         if (tsk->clear_child_tid) {
1282                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1283                     atomic_read(&mm->mm_users) > 1) {
1284                         /*
1285                          * We don't check the error code - if userspace has
1286                          * not set up a proper pointer then tough luck.
1287                          */
1288                         put_user(0, tsk->clear_child_tid);
1289                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1290                                         1, NULL, NULL, 0, 0);
1291                 }
1292                 tsk->clear_child_tid = NULL;
1293         }
1294
1295         /*
1296          * All done, finally we can wake up parent and return this mm to him.
1297          * Also kthread_stop() uses this completion for synchronization.
1298          */
1299         if (tsk->vfork_done)
1300                 complete_vfork_done(tsk);
1301 }
1302
1303 /*
1304  * Allocate a new mm structure and copy contents from the
1305  * mm structure of the passed in task structure.
1306  */
1307 static struct mm_struct *dup_mm(struct task_struct *tsk)
1308 {
1309         struct mm_struct *mm, *oldmm = current->mm;
1310         int err;
1311
1312         mm = allocate_mm();
1313         if (!mm)
1314                 goto fail_nomem;
1315
1316         memcpy(mm, oldmm, sizeof(*mm));
1317
1318         if (!mm_init(mm, tsk, mm->user_ns))
1319                 goto fail_nomem;
1320
1321         err = dup_mmap(mm, oldmm);
1322         if (err)
1323                 goto free_pt;
1324
1325         mm->hiwater_rss = get_mm_rss(mm);
1326         mm->hiwater_vm = mm->total_vm;
1327
1328         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1329                 goto free_pt;
1330
1331         return mm;
1332
1333 free_pt:
1334         /* don't put binfmt in mmput, we haven't got module yet */
1335         mm->binfmt = NULL;
1336         mmput(mm);
1337
1338 fail_nomem:
1339         return NULL;
1340 }
1341
1342 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1343 {
1344         struct mm_struct *mm, *oldmm;
1345         int retval;
1346
1347         tsk->min_flt = tsk->maj_flt = 0;
1348         tsk->nvcsw = tsk->nivcsw = 0;
1349 #ifdef CONFIG_DETECT_HUNG_TASK
1350         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1351         tsk->last_switch_time = 0;
1352 #endif
1353
1354         tsk->mm = NULL;
1355         tsk->active_mm = NULL;
1356
1357         /*
1358          * Are we cloning a kernel thread?
1359          *
1360          * We need to steal a active VM for that..
1361          */
1362         oldmm = current->mm;
1363         if (!oldmm)
1364                 return 0;
1365
1366         /* initialize the new vmacache entries */
1367         vmacache_flush(tsk);
1368
1369         if (clone_flags & CLONE_VM) {
1370                 mmget(oldmm);
1371                 mm = oldmm;
1372                 goto good_mm;
1373         }
1374
1375         retval = -ENOMEM;
1376         mm = dup_mm(tsk);
1377         if (!mm)
1378                 goto fail_nomem;
1379
1380 good_mm:
1381         tsk->mm = mm;
1382         tsk->active_mm = mm;
1383         return 0;
1384
1385 fail_nomem:
1386         return retval;
1387 }
1388
1389 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1390 {
1391         struct fs_struct *fs = current->fs;
1392         if (clone_flags & CLONE_FS) {
1393                 /* tsk->fs is already what we want */
1394                 spin_lock(&fs->lock);
1395                 if (fs->in_exec) {
1396                         spin_unlock(&fs->lock);
1397                         return -EAGAIN;
1398                 }
1399                 fs->users++;
1400                 spin_unlock(&fs->lock);
1401                 return 0;
1402         }
1403         tsk->fs = copy_fs_struct(fs);
1404         if (!tsk->fs)
1405                 return -ENOMEM;
1406         return 0;
1407 }
1408
1409 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1410 {
1411         struct files_struct *oldf, *newf;
1412         int error = 0;
1413
1414         /*
1415          * A background process may not have any files ...
1416          */
1417         oldf = current->files;
1418         if (!oldf)
1419                 goto out;
1420
1421         if (clone_flags & CLONE_FILES) {
1422                 atomic_inc(&oldf->count);
1423                 goto out;
1424         }
1425
1426         newf = dup_fd(oldf, &error);
1427         if (!newf)
1428                 goto out;
1429
1430         tsk->files = newf;
1431         error = 0;
1432 out:
1433         return error;
1434 }
1435
1436 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1437 {
1438 #ifdef CONFIG_BLOCK
1439         struct io_context *ioc = current->io_context;
1440         struct io_context *new_ioc;
1441
1442         if (!ioc)
1443                 return 0;
1444         /*
1445          * Share io context with parent, if CLONE_IO is set
1446          */
1447         if (clone_flags & CLONE_IO) {
1448                 ioc_task_link(ioc);
1449                 tsk->io_context = ioc;
1450         } else if (ioprio_valid(ioc->ioprio)) {
1451                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1452                 if (unlikely(!new_ioc))
1453                         return -ENOMEM;
1454
1455                 new_ioc->ioprio = ioc->ioprio;
1456                 put_io_context(new_ioc);
1457         }
1458 #endif
1459         return 0;
1460 }
1461
1462 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1463 {
1464         struct sighand_struct *sig;
1465
1466         if (clone_flags & CLONE_SIGHAND) {
1467                 atomic_inc(&current->sighand->count);
1468                 return 0;
1469         }
1470         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1471         rcu_assign_pointer(tsk->sighand, sig);
1472         if (!sig)
1473                 return -ENOMEM;
1474
1475         atomic_set(&sig->count, 1);
1476         spin_lock_irq(&current->sighand->siglock);
1477         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1478         spin_unlock_irq(&current->sighand->siglock);
1479         return 0;
1480 }
1481
1482 void __cleanup_sighand(struct sighand_struct *sighand)
1483 {
1484         if (atomic_dec_and_test(&sighand->count)) {
1485                 signalfd_cleanup(sighand);
1486                 /*
1487                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1488                  * without an RCU grace period, see __lock_task_sighand().
1489                  */
1490                 kmem_cache_free(sighand_cachep, sighand);
1491         }
1492 }
1493
1494 #ifdef CONFIG_POSIX_TIMERS
1495 /*
1496  * Initialize POSIX timer handling for a thread group.
1497  */
1498 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1499 {
1500         unsigned long cpu_limit;
1501
1502         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1503         if (cpu_limit != RLIM_INFINITY) {
1504                 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1505                 sig->cputimer.running = true;
1506         }
1507
1508         /* The timer lists. */
1509         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1510         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1511         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1512 }
1513 #else
1514 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1515 #endif
1516
1517 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1518 {
1519         struct signal_struct *sig;
1520
1521         if (clone_flags & CLONE_THREAD)
1522                 return 0;
1523
1524         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1525         tsk->signal = sig;
1526         if (!sig)
1527                 return -ENOMEM;
1528
1529         sig->nr_threads = 1;
1530         atomic_set(&sig->live, 1);
1531         atomic_set(&sig->sigcnt, 1);
1532
1533         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1534         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1535         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1536
1537         init_waitqueue_head(&sig->wait_chldexit);
1538         sig->curr_target = tsk;
1539         init_sigpending(&sig->shared_pending);
1540         INIT_HLIST_HEAD(&sig->multiprocess);
1541         seqlock_init(&sig->stats_lock);
1542         prev_cputime_init(&sig->prev_cputime);
1543
1544 #ifdef CONFIG_POSIX_TIMERS
1545         INIT_LIST_HEAD(&sig->posix_timers);
1546         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1547         sig->real_timer.function = it_real_fn;
1548 #endif
1549
1550         task_lock(current->group_leader);
1551         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1552         task_unlock(current->group_leader);
1553
1554         posix_cpu_timers_init_group(sig);
1555
1556         tty_audit_fork(sig);
1557         sched_autogroup_fork(sig);
1558
1559         sig->oom_score_adj = current->signal->oom_score_adj;
1560         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1561
1562         mutex_init(&sig->cred_guard_mutex);
1563
1564         return 0;
1565 }
1566
1567 static void copy_seccomp(struct task_struct *p)
1568 {
1569 #ifdef CONFIG_SECCOMP
1570         /*
1571          * Must be called with sighand->lock held, which is common to
1572          * all threads in the group. Holding cred_guard_mutex is not
1573          * needed because this new task is not yet running and cannot
1574          * be racing exec.
1575          */
1576         assert_spin_locked(&current->sighand->siglock);
1577
1578         /* Ref-count the new filter user, and assign it. */
1579         get_seccomp_filter(current);
1580         p->seccomp = current->seccomp;
1581
1582         /*
1583          * Explicitly enable no_new_privs here in case it got set
1584          * between the task_struct being duplicated and holding the
1585          * sighand lock. The seccomp state and nnp must be in sync.
1586          */
1587         if (task_no_new_privs(current))
1588                 task_set_no_new_privs(p);
1589
1590         /*
1591          * If the parent gained a seccomp mode after copying thread
1592          * flags and between before we held the sighand lock, we have
1593          * to manually enable the seccomp thread flag here.
1594          */
1595         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1596                 set_tsk_thread_flag(p, TIF_SECCOMP);
1597 #endif
1598 }
1599
1600 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1601 {
1602         current->clear_child_tid = tidptr;
1603
1604         return task_pid_vnr(current);
1605 }
1606
1607 static void rt_mutex_init_task(struct task_struct *p)
1608 {
1609         raw_spin_lock_init(&p->pi_lock);
1610 #ifdef CONFIG_RT_MUTEXES
1611         p->pi_waiters = RB_ROOT_CACHED;
1612         p->pi_top_task = NULL;
1613         p->pi_blocked_on = NULL;
1614 #endif
1615 }
1616
1617 #ifdef CONFIG_POSIX_TIMERS
1618 /*
1619  * Initialize POSIX timer handling for a single task.
1620  */
1621 static void posix_cpu_timers_init(struct task_struct *tsk)
1622 {
1623         tsk->cputime_expires.prof_exp = 0;
1624         tsk->cputime_expires.virt_exp = 0;
1625         tsk->cputime_expires.sched_exp = 0;
1626         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1627         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1628         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1629 }
1630 #else
1631 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1632 #endif
1633
1634 static inline void init_task_pid_links(struct task_struct *task)
1635 {
1636         enum pid_type type;
1637
1638         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1639                 INIT_HLIST_NODE(&task->pid_links[type]);
1640         }
1641 }
1642
1643 static inline void
1644 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1645 {
1646         if (type == PIDTYPE_PID)
1647                 task->thread_pid = pid;
1648         else
1649                 task->signal->pids[type] = pid;
1650 }
1651
1652 static inline void rcu_copy_process(struct task_struct *p)
1653 {
1654 #ifdef CONFIG_PREEMPT_RCU
1655         p->rcu_read_lock_nesting = 0;
1656         p->rcu_read_unlock_special.s = 0;
1657         p->rcu_blocked_node = NULL;
1658         INIT_LIST_HEAD(&p->rcu_node_entry);
1659 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1660 #ifdef CONFIG_TASKS_RCU
1661         p->rcu_tasks_holdout = false;
1662         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1663         p->rcu_tasks_idle_cpu = -1;
1664 #endif /* #ifdef CONFIG_TASKS_RCU */
1665 }
1666
1667 /*
1668  * This creates a new process as a copy of the old one,
1669  * but does not actually start it yet.
1670  *
1671  * It copies the registers, and all the appropriate
1672  * parts of the process environment (as per the clone
1673  * flags). The actual kick-off is left to the caller.
1674  */
1675 static __latent_entropy struct task_struct *copy_process(
1676                                         unsigned long clone_flags,
1677                                         unsigned long stack_start,
1678                                         unsigned long stack_size,
1679                                         int __user *child_tidptr,
1680                                         struct pid *pid,
1681                                         int trace,
1682                                         unsigned long tls,
1683                                         int node)
1684 {
1685         int retval;
1686         struct task_struct *p;
1687         struct multiprocess_signals delayed;
1688
1689         /*
1690          * Don't allow sharing the root directory with processes in a different
1691          * namespace
1692          */
1693         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1694                 return ERR_PTR(-EINVAL);
1695
1696         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1697                 return ERR_PTR(-EINVAL);
1698
1699         /*
1700          * Thread groups must share signals as well, and detached threads
1701          * can only be started up within the thread group.
1702          */
1703         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1704                 return ERR_PTR(-EINVAL);
1705
1706         /*
1707          * Shared signal handlers imply shared VM. By way of the above,
1708          * thread groups also imply shared VM. Blocking this case allows
1709          * for various simplifications in other code.
1710          */
1711         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1712                 return ERR_PTR(-EINVAL);
1713
1714         /*
1715          * Siblings of global init remain as zombies on exit since they are
1716          * not reaped by their parent (swapper). To solve this and to avoid
1717          * multi-rooted process trees, prevent global and container-inits
1718          * from creating siblings.
1719          */
1720         if ((clone_flags & CLONE_PARENT) &&
1721                                 current->signal->flags & SIGNAL_UNKILLABLE)
1722                 return ERR_PTR(-EINVAL);
1723
1724         /*
1725          * If the new process will be in a different pid or user namespace
1726          * do not allow it to share a thread group with the forking task.
1727          */
1728         if (clone_flags & CLONE_THREAD) {
1729                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1730                     (task_active_pid_ns(current) !=
1731                                 current->nsproxy->pid_ns_for_children))
1732                         return ERR_PTR(-EINVAL);
1733         }
1734
1735         /*
1736          * Force any signals received before this point to be delivered
1737          * before the fork happens.  Collect up signals sent to multiple
1738          * processes that happen during the fork and delay them so that
1739          * they appear to happen after the fork.
1740          */
1741         sigemptyset(&delayed.signal);
1742         INIT_HLIST_NODE(&delayed.node);
1743
1744         spin_lock_irq(&current->sighand->siglock);
1745         if (!(clone_flags & CLONE_THREAD))
1746                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1747         recalc_sigpending();
1748         spin_unlock_irq(&current->sighand->siglock);
1749         retval = -ERESTARTNOINTR;
1750         if (signal_pending(current))
1751                 goto fork_out;
1752
1753         retval = -ENOMEM;
1754         p = dup_task_struct(current, node);
1755         if (!p)
1756                 goto fork_out;
1757
1758         /*
1759          * This _must_ happen before we call free_task(), i.e. before we jump
1760          * to any of the bad_fork_* labels. This is to avoid freeing
1761          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1762          * kernel threads (PF_KTHREAD).
1763          */
1764         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1765         /*
1766          * Clear TID on mm_release()?
1767          */
1768         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1769
1770         ftrace_graph_init_task(p);
1771
1772         rt_mutex_init_task(p);
1773
1774 #ifdef CONFIG_PROVE_LOCKING
1775         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1776         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1777 #endif
1778         retval = -EAGAIN;
1779         if (atomic_read(&p->real_cred->user->processes) >=
1780                         task_rlimit(p, RLIMIT_NPROC)) {
1781                 if (p->real_cred->user != INIT_USER &&
1782                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1783                         goto bad_fork_free;
1784         }
1785         current->flags &= ~PF_NPROC_EXCEEDED;
1786
1787         retval = copy_creds(p, clone_flags);
1788         if (retval < 0)
1789                 goto bad_fork_free;
1790
1791         /*
1792          * If multiple threads are within copy_process(), then this check
1793          * triggers too late. This doesn't hurt, the check is only there
1794          * to stop root fork bombs.
1795          */
1796         retval = -EAGAIN;
1797         if (nr_threads >= max_threads)
1798                 goto bad_fork_cleanup_count;
1799
1800         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1801         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1802         p->flags |= PF_FORKNOEXEC;
1803         INIT_LIST_HEAD(&p->children);
1804         INIT_LIST_HEAD(&p->sibling);
1805         rcu_copy_process(p);
1806         p->vfork_done = NULL;
1807         spin_lock_init(&p->alloc_lock);
1808
1809         init_sigpending(&p->pending);
1810
1811         p->utime = p->stime = p->gtime = 0;
1812 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1813         p->utimescaled = p->stimescaled = 0;
1814 #endif
1815         prev_cputime_init(&p->prev_cputime);
1816
1817 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1818         seqcount_init(&p->vtime.seqcount);
1819         p->vtime.starttime = 0;
1820         p->vtime.state = VTIME_INACTIVE;
1821 #endif
1822
1823 #if defined(SPLIT_RSS_COUNTING)
1824         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1825 #endif
1826
1827         p->default_timer_slack_ns = current->timer_slack_ns;
1828
1829 #ifdef CONFIG_PSI
1830         p->psi_flags = 0;
1831 #endif
1832
1833         task_io_accounting_init(&p->ioac);
1834         acct_clear_integrals(p);
1835
1836         posix_cpu_timers_init(p);
1837
1838         p->io_context = NULL;
1839         audit_set_context(p, NULL);
1840         cgroup_fork(p);
1841 #ifdef CONFIG_NUMA
1842         p->mempolicy = mpol_dup(p->mempolicy);
1843         if (IS_ERR(p->mempolicy)) {
1844                 retval = PTR_ERR(p->mempolicy);
1845                 p->mempolicy = NULL;
1846                 goto bad_fork_cleanup_threadgroup_lock;
1847         }
1848 #endif
1849 #ifdef CONFIG_CPUSETS
1850         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1851         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1852         seqcount_init(&p->mems_allowed_seq);
1853 #endif
1854 #ifdef CONFIG_TRACE_IRQFLAGS
1855         p->irq_events = 0;
1856         p->hardirqs_enabled = 0;
1857         p->hardirq_enable_ip = 0;
1858         p->hardirq_enable_event = 0;
1859         p->hardirq_disable_ip = _THIS_IP_;
1860         p->hardirq_disable_event = 0;
1861         p->softirqs_enabled = 1;
1862         p->softirq_enable_ip = _THIS_IP_;
1863         p->softirq_enable_event = 0;
1864         p->softirq_disable_ip = 0;
1865         p->softirq_disable_event = 0;
1866         p->hardirq_context = 0;
1867         p->softirq_context = 0;
1868 #endif
1869
1870         p->pagefault_disabled = 0;
1871
1872 #ifdef CONFIG_LOCKDEP
1873         p->lockdep_depth = 0; /* no locks held yet */
1874         p->curr_chain_key = 0;
1875         p->lockdep_recursion = 0;
1876         lockdep_init_task(p);
1877 #endif
1878
1879 #ifdef CONFIG_DEBUG_MUTEXES
1880         p->blocked_on = NULL; /* not blocked yet */
1881 #endif
1882 #ifdef CONFIG_BCACHE
1883         p->sequential_io        = 0;
1884         p->sequential_io_avg    = 0;
1885 #endif
1886
1887         /* Perform scheduler related setup. Assign this task to a CPU. */
1888         retval = sched_fork(clone_flags, p);
1889         if (retval)
1890                 goto bad_fork_cleanup_policy;
1891
1892         retval = perf_event_init_task(p);
1893         if (retval)
1894                 goto bad_fork_cleanup_policy;
1895         retval = audit_alloc(p);
1896         if (retval)
1897                 goto bad_fork_cleanup_perf;
1898         /* copy all the process information */
1899         shm_init_task(p);
1900         retval = security_task_alloc(p, clone_flags);
1901         if (retval)
1902                 goto bad_fork_cleanup_audit;
1903         retval = copy_semundo(clone_flags, p);
1904         if (retval)
1905                 goto bad_fork_cleanup_security;
1906         retval = copy_files(clone_flags, p);
1907         if (retval)
1908                 goto bad_fork_cleanup_semundo;
1909         retval = copy_fs(clone_flags, p);
1910         if (retval)
1911                 goto bad_fork_cleanup_files;
1912         retval = copy_sighand(clone_flags, p);
1913         if (retval)
1914                 goto bad_fork_cleanup_fs;
1915         retval = copy_signal(clone_flags, p);
1916         if (retval)
1917                 goto bad_fork_cleanup_sighand;
1918         retval = copy_mm(clone_flags, p);
1919         if (retval)
1920                 goto bad_fork_cleanup_signal;
1921         retval = copy_namespaces(clone_flags, p);
1922         if (retval)
1923                 goto bad_fork_cleanup_mm;
1924         retval = copy_io(clone_flags, p);
1925         if (retval)
1926                 goto bad_fork_cleanup_namespaces;
1927         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1928         if (retval)
1929                 goto bad_fork_cleanup_io;
1930
1931         stackleak_task_init(p);
1932
1933         if (pid != &init_struct_pid) {
1934                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1935                 if (IS_ERR(pid)) {
1936                         retval = PTR_ERR(pid);
1937                         goto bad_fork_cleanup_thread;
1938                 }
1939         }
1940
1941 #ifdef CONFIG_BLOCK
1942         p->plug = NULL;
1943 #endif
1944 #ifdef CONFIG_FUTEX
1945         p->robust_list = NULL;
1946 #ifdef CONFIG_COMPAT
1947         p->compat_robust_list = NULL;
1948 #endif
1949         INIT_LIST_HEAD(&p->pi_state_list);
1950         p->pi_state_cache = NULL;
1951 #endif
1952         /*
1953          * sigaltstack should be cleared when sharing the same VM
1954          */
1955         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1956                 sas_ss_reset(p);
1957
1958         /*
1959          * Syscall tracing and stepping should be turned off in the
1960          * child regardless of CLONE_PTRACE.
1961          */
1962         user_disable_single_step(p);
1963         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1964 #ifdef TIF_SYSCALL_EMU
1965         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1966 #endif
1967         clear_all_latency_tracing(p);
1968
1969         /* ok, now we should be set up.. */
1970         p->pid = pid_nr(pid);
1971         if (clone_flags & CLONE_THREAD) {
1972                 p->exit_signal = -1;
1973                 p->group_leader = current->group_leader;
1974                 p->tgid = current->tgid;
1975         } else {
1976                 if (clone_flags & CLONE_PARENT)
1977                         p->exit_signal = current->group_leader->exit_signal;
1978                 else
1979                         p->exit_signal = (clone_flags & CSIGNAL);
1980                 p->group_leader = p;
1981                 p->tgid = p->pid;
1982         }
1983
1984         p->nr_dirtied = 0;
1985         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1986         p->dirty_paused_when = 0;
1987
1988         p->pdeath_signal = 0;
1989         INIT_LIST_HEAD(&p->thread_group);
1990         p->task_works = NULL;
1991
1992         cgroup_threadgroup_change_begin(current);
1993         /*
1994          * Ensure that the cgroup subsystem policies allow the new process to be
1995          * forked. It should be noted the the new process's css_set can be changed
1996          * between here and cgroup_post_fork() if an organisation operation is in
1997          * progress.
1998          */
1999         retval = cgroup_can_fork(p);
2000         if (retval)
2001                 goto bad_fork_free_pid;
2002
2003         /*
2004          * From this point on we must avoid any synchronous user-space
2005          * communication until we take the tasklist-lock. In particular, we do
2006          * not want user-space to be able to predict the process start-time by
2007          * stalling fork(2) after we recorded the start_time but before it is
2008          * visible to the system.
2009          */
2010
2011         p->start_time = ktime_get_ns();
2012         p->real_start_time = ktime_get_boot_ns();
2013
2014         /*
2015          * Make it visible to the rest of the system, but dont wake it up yet.
2016          * Need tasklist lock for parent etc handling!
2017          */
2018         write_lock_irq(&tasklist_lock);
2019
2020         /* CLONE_PARENT re-uses the old parent */
2021         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2022                 p->real_parent = current->real_parent;
2023                 p->parent_exec_id = current->parent_exec_id;
2024         } else {
2025                 p->real_parent = current;
2026                 p->parent_exec_id = current->self_exec_id;
2027         }
2028
2029         klp_copy_process(p);
2030
2031         spin_lock(&current->sighand->siglock);
2032
2033         /*
2034          * Copy seccomp details explicitly here, in case they were changed
2035          * before holding sighand lock.
2036          */
2037         copy_seccomp(p);
2038
2039         rseq_fork(p, clone_flags);
2040
2041         /* Don't start children in a dying pid namespace */
2042         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2043                 retval = -ENOMEM;
2044                 goto bad_fork_cancel_cgroup;
2045         }
2046
2047         /* Let kill terminate clone/fork in the middle */
2048         if (fatal_signal_pending(current)) {
2049                 retval = -EINTR;
2050                 goto bad_fork_cancel_cgroup;
2051         }
2052
2053
2054         init_task_pid_links(p);
2055         if (likely(p->pid)) {
2056                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2057
2058                 init_task_pid(p, PIDTYPE_PID, pid);
2059                 if (thread_group_leader(p)) {
2060                         init_task_pid(p, PIDTYPE_TGID, pid);
2061                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2062                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2063
2064                         if (is_child_reaper(pid)) {
2065                                 ns_of_pid(pid)->child_reaper = p;
2066                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2067                         }
2068                         p->signal->shared_pending.signal = delayed.signal;
2069                         p->signal->tty = tty_kref_get(current->signal->tty);
2070                         /*
2071                          * Inherit has_child_subreaper flag under the same
2072                          * tasklist_lock with adding child to the process tree
2073                          * for propagate_has_child_subreaper optimization.
2074                          */
2075                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2076                                                          p->real_parent->signal->is_child_subreaper;
2077                         list_add_tail(&p->sibling, &p->real_parent->children);
2078                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2079                         attach_pid(p, PIDTYPE_TGID);
2080                         attach_pid(p, PIDTYPE_PGID);
2081                         attach_pid(p, PIDTYPE_SID);
2082                         __this_cpu_inc(process_counts);
2083                 } else {
2084                         current->signal->nr_threads++;
2085                         atomic_inc(&current->signal->live);
2086                         atomic_inc(&current->signal->sigcnt);
2087                         task_join_group_stop(p);
2088                         list_add_tail_rcu(&p->thread_group,
2089                                           &p->group_leader->thread_group);
2090                         list_add_tail_rcu(&p->thread_node,
2091                                           &p->signal->thread_head);
2092                 }
2093                 attach_pid(p, PIDTYPE_PID);
2094                 nr_threads++;
2095         }
2096         total_forks++;
2097         hlist_del_init(&delayed.node);
2098         spin_unlock(&current->sighand->siglock);
2099         syscall_tracepoint_update(p);
2100         write_unlock_irq(&tasklist_lock);
2101
2102         proc_fork_connector(p);
2103         cgroup_post_fork(p);
2104         cgroup_threadgroup_change_end(current);
2105         perf_event_fork(p);
2106
2107         trace_task_newtask(p, clone_flags);
2108         uprobe_copy_process(p, clone_flags);
2109
2110         return p;
2111
2112 bad_fork_cancel_cgroup:
2113         spin_unlock(&current->sighand->siglock);
2114         write_unlock_irq(&tasklist_lock);
2115         cgroup_cancel_fork(p);
2116 bad_fork_free_pid:
2117         cgroup_threadgroup_change_end(current);
2118         if (pid != &init_struct_pid)
2119                 free_pid(pid);
2120 bad_fork_cleanup_thread:
2121         exit_thread(p);
2122 bad_fork_cleanup_io:
2123         if (p->io_context)
2124                 exit_io_context(p);
2125 bad_fork_cleanup_namespaces:
2126         exit_task_namespaces(p);
2127 bad_fork_cleanup_mm:
2128         if (p->mm)
2129                 mmput(p->mm);
2130 bad_fork_cleanup_signal:
2131         if (!(clone_flags & CLONE_THREAD))
2132                 free_signal_struct(p->signal);
2133 bad_fork_cleanup_sighand:
2134         __cleanup_sighand(p->sighand);
2135 bad_fork_cleanup_fs:
2136         exit_fs(p); /* blocking */
2137 bad_fork_cleanup_files:
2138         exit_files(p); /* blocking */
2139 bad_fork_cleanup_semundo:
2140         exit_sem(p);
2141 bad_fork_cleanup_security:
2142         security_task_free(p);
2143 bad_fork_cleanup_audit:
2144         audit_free(p);
2145 bad_fork_cleanup_perf:
2146         perf_event_free_task(p);
2147 bad_fork_cleanup_policy:
2148         lockdep_free_task(p);
2149 #ifdef CONFIG_NUMA
2150         mpol_put(p->mempolicy);
2151 bad_fork_cleanup_threadgroup_lock:
2152 #endif
2153         delayacct_tsk_free(p);
2154 bad_fork_cleanup_count:
2155         atomic_dec(&p->cred->user->processes);
2156         exit_creds(p);
2157 bad_fork_free:
2158         p->state = TASK_DEAD;
2159         put_task_stack(p);
2160         free_task(p);
2161 fork_out:
2162         spin_lock_irq(&current->sighand->siglock);
2163         hlist_del_init(&delayed.node);
2164         spin_unlock_irq(&current->sighand->siglock);
2165         return ERR_PTR(retval);
2166 }
2167
2168 static inline void init_idle_pids(struct task_struct *idle)
2169 {
2170         enum pid_type type;
2171
2172         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2173                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2174                 init_task_pid(idle, type, &init_struct_pid);
2175         }
2176 }
2177
2178 struct task_struct *fork_idle(int cpu)
2179 {
2180         struct task_struct *task;
2181         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2182                             cpu_to_node(cpu));
2183         if (!IS_ERR(task)) {
2184                 init_idle_pids(task);
2185                 init_idle(task, cpu);
2186         }
2187
2188         return task;
2189 }
2190
2191 /*
2192  *  Ok, this is the main fork-routine.
2193  *
2194  * It copies the process, and if successful kick-starts
2195  * it and waits for it to finish using the VM if required.
2196  */
2197 long _do_fork(unsigned long clone_flags,
2198               unsigned long stack_start,
2199               unsigned long stack_size,
2200               int __user *parent_tidptr,
2201               int __user *child_tidptr,
2202               unsigned long tls)
2203 {
2204         struct completion vfork;
2205         struct pid *pid;
2206         struct task_struct *p;
2207         int trace = 0;
2208         long nr;
2209
2210         /*
2211          * Determine whether and which event to report to ptracer.  When
2212          * called from kernel_thread or CLONE_UNTRACED is explicitly
2213          * requested, no event is reported; otherwise, report if the event
2214          * for the type of forking is enabled.
2215          */
2216         if (!(clone_flags & CLONE_UNTRACED)) {
2217                 if (clone_flags & CLONE_VFORK)
2218                         trace = PTRACE_EVENT_VFORK;
2219                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2220                         trace = PTRACE_EVENT_CLONE;
2221                 else
2222                         trace = PTRACE_EVENT_FORK;
2223
2224                 if (likely(!ptrace_event_enabled(current, trace)))
2225                         trace = 0;
2226         }
2227
2228         p = copy_process(clone_flags, stack_start, stack_size,
2229                          child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2230         add_latent_entropy();
2231
2232         if (IS_ERR(p))
2233                 return PTR_ERR(p);
2234
2235         /*
2236          * Do this prior waking up the new thread - the thread pointer
2237          * might get invalid after that point, if the thread exits quickly.
2238          */
2239         trace_sched_process_fork(current, p);
2240
2241         pid = get_task_pid(p, PIDTYPE_PID);
2242         nr = pid_vnr(pid);
2243
2244         if (clone_flags & CLONE_PARENT_SETTID)
2245                 put_user(nr, parent_tidptr);
2246
2247         if (clone_flags & CLONE_VFORK) {
2248                 p->vfork_done = &vfork;
2249                 init_completion(&vfork);
2250                 get_task_struct(p);
2251         }
2252
2253         wake_up_new_task(p);
2254
2255         /* forking complete and child started to run, tell ptracer */
2256         if (unlikely(trace))
2257                 ptrace_event_pid(trace, pid);
2258
2259         if (clone_flags & CLONE_VFORK) {
2260                 if (!wait_for_vfork_done(p, &vfork))
2261                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2262         }
2263
2264         put_pid(pid);
2265         return nr;
2266 }
2267
2268 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2269 /* For compatibility with architectures that call do_fork directly rather than
2270  * using the syscall entry points below. */
2271 long do_fork(unsigned long clone_flags,
2272               unsigned long stack_start,
2273               unsigned long stack_size,
2274               int __user *parent_tidptr,
2275               int __user *child_tidptr)
2276 {
2277         return _do_fork(clone_flags, stack_start, stack_size,
2278                         parent_tidptr, child_tidptr, 0);
2279 }
2280 #endif
2281
2282 /*
2283  * Create a kernel thread.
2284  */
2285 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2286 {
2287         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2288                 (unsigned long)arg, NULL, NULL, 0);
2289 }
2290
2291 #ifdef __ARCH_WANT_SYS_FORK
2292 SYSCALL_DEFINE0(fork)
2293 {
2294 #ifdef CONFIG_MMU
2295         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2296 #else
2297         /* can not support in nommu mode */
2298         return -EINVAL;
2299 #endif
2300 }
2301 #endif
2302
2303 #ifdef __ARCH_WANT_SYS_VFORK
2304 SYSCALL_DEFINE0(vfork)
2305 {
2306         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2307                         0, NULL, NULL, 0);
2308 }
2309 #endif
2310
2311 #ifdef __ARCH_WANT_SYS_CLONE
2312 #ifdef CONFIG_CLONE_BACKWARDS
2313 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2314                  int __user *, parent_tidptr,
2315                  unsigned long, tls,
2316                  int __user *, child_tidptr)
2317 #elif defined(CONFIG_CLONE_BACKWARDS2)
2318 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2319                  int __user *, parent_tidptr,
2320                  int __user *, child_tidptr,
2321                  unsigned long, tls)
2322 #elif defined(CONFIG_CLONE_BACKWARDS3)
2323 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2324                 int, stack_size,
2325                 int __user *, parent_tidptr,
2326                 int __user *, child_tidptr,
2327                 unsigned long, tls)
2328 #else
2329 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2330                  int __user *, parent_tidptr,
2331                  int __user *, child_tidptr,
2332                  unsigned long, tls)
2333 #endif
2334 {
2335         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2336 }
2337 #endif
2338
2339 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2340 {
2341         struct task_struct *leader, *parent, *child;
2342         int res;
2343
2344         read_lock(&tasklist_lock);
2345         leader = top = top->group_leader;
2346 down:
2347         for_each_thread(leader, parent) {
2348                 list_for_each_entry(child, &parent->children, sibling) {
2349                         res = visitor(child, data);
2350                         if (res) {
2351                                 if (res < 0)
2352                                         goto out;
2353                                 leader = child;
2354                                 goto down;
2355                         }
2356 up:
2357                         ;
2358                 }
2359         }
2360
2361         if (leader != top) {
2362                 child = leader;
2363                 parent = child->real_parent;
2364                 leader = parent->group_leader;
2365                 goto up;
2366         }
2367 out:
2368         read_unlock(&tasklist_lock);
2369 }
2370
2371 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2372 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2373 #endif
2374
2375 static void sighand_ctor(void *data)
2376 {
2377         struct sighand_struct *sighand = data;
2378
2379         spin_lock_init(&sighand->siglock);
2380         init_waitqueue_head(&sighand->signalfd_wqh);
2381 }
2382
2383 void __init proc_caches_init(void)
2384 {
2385         unsigned int mm_size;
2386
2387         sighand_cachep = kmem_cache_create("sighand_cache",
2388                         sizeof(struct sighand_struct), 0,
2389                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2390                         SLAB_ACCOUNT, sighand_ctor);
2391         signal_cachep = kmem_cache_create("signal_cache",
2392                         sizeof(struct signal_struct), 0,
2393                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2394                         NULL);
2395         files_cachep = kmem_cache_create("files_cache",
2396                         sizeof(struct files_struct), 0,
2397                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2398                         NULL);
2399         fs_cachep = kmem_cache_create("fs_cache",
2400                         sizeof(struct fs_struct), 0,
2401                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2402                         NULL);
2403
2404         /*
2405          * The mm_cpumask is located at the end of mm_struct, and is
2406          * dynamically sized based on the maximum CPU number this system
2407          * can have, taking hotplug into account (nr_cpu_ids).
2408          */
2409         mm_size = sizeof(struct mm_struct) + cpumask_size();
2410
2411         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2412                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2413                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2414                         offsetof(struct mm_struct, saved_auxv),
2415                         sizeof_field(struct mm_struct, saved_auxv),
2416                         NULL);
2417         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2418         mmap_init();
2419         nsproxy_cache_init();
2420 }
2421
2422 /*
2423  * Check constraints on flags passed to the unshare system call.
2424  */
2425 static int check_unshare_flags(unsigned long unshare_flags)
2426 {
2427         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2428                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2429                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2430                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2431                 return -EINVAL;
2432         /*
2433          * Not implemented, but pretend it works if there is nothing
2434          * to unshare.  Note that unsharing the address space or the
2435          * signal handlers also need to unshare the signal queues (aka
2436          * CLONE_THREAD).
2437          */
2438         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2439                 if (!thread_group_empty(current))
2440                         return -EINVAL;
2441         }
2442         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2443                 if (atomic_read(&current->sighand->count) > 1)
2444                         return -EINVAL;
2445         }
2446         if (unshare_flags & CLONE_VM) {
2447                 if (!current_is_single_threaded())
2448                         return -EINVAL;
2449         }
2450
2451         return 0;
2452 }
2453
2454 /*
2455  * Unshare the filesystem structure if it is being shared
2456  */
2457 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2458 {
2459         struct fs_struct *fs = current->fs;
2460
2461         if (!(unshare_flags & CLONE_FS) || !fs)
2462                 return 0;
2463
2464         /* don't need lock here; in the worst case we'll do useless copy */
2465         if (fs->users == 1)
2466                 return 0;
2467
2468         *new_fsp = copy_fs_struct(fs);
2469         if (!*new_fsp)
2470                 return -ENOMEM;
2471
2472         return 0;
2473 }
2474
2475 /*
2476  * Unshare file descriptor table if it is being shared
2477  */
2478 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2479 {
2480         struct files_struct *fd = current->files;
2481         int error = 0;
2482
2483         if ((unshare_flags & CLONE_FILES) &&
2484             (fd && atomic_read(&fd->count) > 1)) {
2485                 *new_fdp = dup_fd(fd, &error);
2486                 if (!*new_fdp)
2487                         return error;
2488         }
2489
2490         return 0;
2491 }
2492
2493 /*
2494  * unshare allows a process to 'unshare' part of the process
2495  * context which was originally shared using clone.  copy_*
2496  * functions used by do_fork() cannot be used here directly
2497  * because they modify an inactive task_struct that is being
2498  * constructed. Here we are modifying the current, active,
2499  * task_struct.
2500  */
2501 int ksys_unshare(unsigned long unshare_flags)
2502 {
2503         struct fs_struct *fs, *new_fs = NULL;
2504         struct files_struct *fd, *new_fd = NULL;
2505         struct cred *new_cred = NULL;
2506         struct nsproxy *new_nsproxy = NULL;
2507         int do_sysvsem = 0;
2508         int err;
2509
2510         /*
2511          * If unsharing a user namespace must also unshare the thread group
2512          * and unshare the filesystem root and working directories.
2513          */
2514         if (unshare_flags & CLONE_NEWUSER)
2515                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2516         /*
2517          * If unsharing vm, must also unshare signal handlers.
2518          */
2519         if (unshare_flags & CLONE_VM)
2520                 unshare_flags |= CLONE_SIGHAND;
2521         /*
2522          * If unsharing a signal handlers, must also unshare the signal queues.
2523          */
2524         if (unshare_flags & CLONE_SIGHAND)
2525                 unshare_flags |= CLONE_THREAD;
2526         /*
2527          * If unsharing namespace, must also unshare filesystem information.
2528          */
2529         if (unshare_flags & CLONE_NEWNS)
2530                 unshare_flags |= CLONE_FS;
2531
2532         err = check_unshare_flags(unshare_flags);
2533         if (err)
2534                 goto bad_unshare_out;
2535         /*
2536          * CLONE_NEWIPC must also detach from the undolist: after switching
2537          * to a new ipc namespace, the semaphore arrays from the old
2538          * namespace are unreachable.
2539          */
2540         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2541                 do_sysvsem = 1;
2542         err = unshare_fs(unshare_flags, &new_fs);
2543         if (err)
2544                 goto bad_unshare_out;
2545         err = unshare_fd(unshare_flags, &new_fd);
2546         if (err)
2547                 goto bad_unshare_cleanup_fs;
2548         err = unshare_userns(unshare_flags, &new_cred);
2549         if (err)
2550                 goto bad_unshare_cleanup_fd;
2551         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2552                                          new_cred, new_fs);
2553         if (err)
2554                 goto bad_unshare_cleanup_cred;
2555
2556         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2557                 if (do_sysvsem) {
2558                         /*
2559                          * CLONE_SYSVSEM is equivalent to sys_exit().
2560                          */
2561                         exit_sem(current);
2562                 }
2563                 if (unshare_flags & CLONE_NEWIPC) {
2564                         /* Orphan segments in old ns (see sem above). */
2565                         exit_shm(current);
2566                         shm_init_task(current);
2567                 }
2568
2569                 if (new_nsproxy)
2570                         switch_task_namespaces(current, new_nsproxy);
2571
2572                 task_lock(current);
2573
2574                 if (new_fs) {
2575                         fs = current->fs;
2576                         spin_lock(&fs->lock);
2577                         current->fs = new_fs;
2578                         if (--fs->users)
2579                                 new_fs = NULL;
2580                         else
2581                                 new_fs = fs;
2582                         spin_unlock(&fs->lock);
2583                 }
2584
2585                 if (new_fd) {
2586                         fd = current->files;
2587                         current->files = new_fd;
2588                         new_fd = fd;
2589                 }
2590
2591                 task_unlock(current);
2592
2593                 if (new_cred) {
2594                         /* Install the new user namespace */
2595                         commit_creds(new_cred);
2596                         new_cred = NULL;
2597                 }
2598         }
2599
2600         perf_event_namespaces(current);
2601
2602 bad_unshare_cleanup_cred:
2603         if (new_cred)
2604                 put_cred(new_cred);
2605 bad_unshare_cleanup_fd:
2606         if (new_fd)
2607                 put_files_struct(new_fd);
2608
2609 bad_unshare_cleanup_fs:
2610         if (new_fs)
2611                 free_fs_struct(new_fs);
2612
2613 bad_unshare_out:
2614         return err;
2615 }
2616
2617 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2618 {
2619         return ksys_unshare(unshare_flags);
2620 }
2621
2622 /*
2623  *      Helper to unshare the files of the current task.
2624  *      We don't want to expose copy_files internals to
2625  *      the exec layer of the kernel.
2626  */
2627
2628 int unshare_files(struct files_struct **displaced)
2629 {
2630         struct task_struct *task = current;
2631         struct files_struct *copy = NULL;
2632         int error;
2633
2634         error = unshare_fd(CLONE_FILES, &copy);
2635         if (error || !copy) {
2636                 *displaced = NULL;
2637                 return error;
2638         }
2639         *displaced = task->files;
2640         task_lock(task);
2641         task->files = copy;
2642         task_unlock(task);
2643         return 0;
2644 }
2645
2646 int sysctl_max_threads(struct ctl_table *table, int write,
2647                        void __user *buffer, size_t *lenp, loff_t *ppos)
2648 {
2649         struct ctl_table t;
2650         int ret;
2651         int threads = max_threads;
2652         int min = MIN_THREADS;
2653         int max = MAX_THREADS;
2654
2655         t = *table;
2656         t.data = &threads;
2657         t.extra1 = &min;
2658         t.extra2 = &max;
2659
2660         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2661         if (ret || !write)
2662                 return ret;
2663
2664         set_max_threads(threads);
2665
2666         return 0;
2667 }