[PATCH] swsusp: rework memory freeing on resume
[powerpc.git] / kernel / power / swsusp.c
1 /*
2  * linux/kernel/power/swsusp.c
3  *
4  * This file is to realize architecture-independent
5  * machine suspend feature using pretty near only high-level routines
6  *
7  * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
9  *
10  * This file is released under the GPLv2.
11  *
12  * I'd like to thank the following people for their work:
13  *
14  * Pavel Machek <pavel@ucw.cz>:
15  * Modifications, defectiveness pointing, being with me at the very beginning,
16  * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17  *
18  * Steve Doddi <dirk@loth.demon.co.uk>:
19  * Support the possibility of hardware state restoring.
20  *
21  * Raph <grey.havens@earthling.net>:
22  * Support for preserving states of network devices and virtual console
23  * (including X and svgatextmode)
24  *
25  * Kurt Garloff <garloff@suse.de>:
26  * Straightened the critical function in order to prevent compilers from
27  * playing tricks with local variables.
28  *
29  * Andreas Mohr <a.mohr@mailto.de>
30  *
31  * Alex Badea <vampire@go.ro>:
32  * Fixed runaway init
33  *
34  * Andreas Steinmetz <ast@domdv.de>:
35  * Added encrypted suspend option
36  *
37  * More state savers are welcome. Especially for the scsi layer...
38  *
39  * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40  */
41
42 #include <linux/module.h>
43 #include <linux/mm.h>
44 #include <linux/suspend.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/utsname.h>
48 #include <linux/version.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/bitops.h>
52 #include <linux/vt_kern.h>
53 #include <linux/kbd_kern.h>
54 #include <linux/keyboard.h>
55 #include <linux/spinlock.h>
56 #include <linux/genhd.h>
57 #include <linux/kernel.h>
58 #include <linux/major.h>
59 #include <linux/swap.h>
60 #include <linux/pm.h>
61 #include <linux/device.h>
62 #include <linux/buffer_head.h>
63 #include <linux/swapops.h>
64 #include <linux/bootmem.h>
65 #include <linux/syscalls.h>
66 #include <linux/console.h>
67 #include <linux/highmem.h>
68 #include <linux/bio.h>
69 #include <linux/mount.h>
70
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgtable.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #include <linux/random.h>
78 #include <linux/crypto.h>
79 #include <asm/scatterlist.h>
80
81 #include "power.h"
82
83 #define CIPHER "aes"
84 #define MAXKEY 32
85 #define MAXIV  32
86
87 extern char resume_file[];
88
89 /* Local variables that should not be affected by save */
90 unsigned int nr_copy_pages __nosavedata = 0;
91
92 /* Suspend pagedir is allocated before final copy, therefore it
93    must be freed after resume
94
95    Warning: this is evil. There are actually two pagedirs at time of
96    resume. One is "pagedir_save", which is empty frame allocated at
97    time of suspend, that must be freed. Second is "pagedir_nosave",
98    allocated at time of resume, that travels through memory not to
99    collide with anything.
100
101    Warning: this is even more evil than it seems. Pagedirs this file
102    talks about are completely different from page directories used by
103    MMU hardware.
104  */
105 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
106 suspend_pagedir_t *pagedir_save;
107
108 #define SWSUSP_SIG      "S1SUSPEND"
109
110 static struct swsusp_header {
111         char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
112         u8 key_iv[MAXKEY+MAXIV];
113         swp_entry_t swsusp_info;
114         char    orig_sig[10];
115         char    sig[10];
116 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
117
118 static struct swsusp_info swsusp_info;
119
120 /*
121  * Saving part...
122  */
123
124 /* We memorize in swapfile_used what swap devices are used for suspension */
125 #define SWAPFILE_UNUSED    0
126 #define SWAPFILE_SUSPEND   1    /* This is the suspending device */
127 #define SWAPFILE_IGNORED   2    /* Those are other swap devices ignored for suspension */
128
129 static unsigned short swapfile_used[MAX_SWAPFILES];
130 static unsigned short root_swap;
131
132 static int write_page(unsigned long addr, swp_entry_t * loc);
133 static int bio_read_page(pgoff_t page_off, void * page);
134
135 static u8 key_iv[MAXKEY+MAXIV];
136
137 #ifdef CONFIG_SWSUSP_ENCRYPT
138
139 static int crypto_init(int mode, void **mem)
140 {
141         int error = 0;
142         int len;
143         char *modemsg;
144         struct crypto_tfm *tfm;
145
146         modemsg = mode ? "suspend not possible" : "resume not possible";
147
148         tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
149         if(!tfm) {
150                 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
151                 error = -EINVAL;
152                 goto out;
153         }
154
155         if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
156                 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
157                 error = -ENOKEY;
158                 goto fail;
159         }
160
161         if (mode)
162                 get_random_bytes(key_iv, MAXKEY+MAXIV);
163
164         len = crypto_tfm_alg_max_keysize(tfm);
165         if (len > MAXKEY)
166                 len = MAXKEY;
167
168         if (crypto_cipher_setkey(tfm, key_iv, len)) {
169                 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
170                 error = -EKEYREJECTED;
171                 goto fail;
172         }
173
174         len = crypto_tfm_alg_ivsize(tfm);
175
176         if (MAXIV < len) {
177                 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
178                 error = -EOVERFLOW;
179                 goto fail;
180         }
181
182         crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
183
184         *mem=(void *)tfm;
185
186         goto out;
187
188 fail:   crypto_free_tfm(tfm);
189 out:    return error;
190 }
191
192 static __inline__ void crypto_exit(void *mem)
193 {
194         crypto_free_tfm((struct crypto_tfm *)mem);
195 }
196
197 static __inline__ int crypto_write(struct pbe *p, void *mem)
198 {
199         int error = 0;
200         struct scatterlist src, dst;
201
202         src.page   = virt_to_page(p->address);
203         src.offset = 0;
204         src.length = PAGE_SIZE;
205         dst.page   = virt_to_page((void *)&swsusp_header);
206         dst.offset = 0;
207         dst.length = PAGE_SIZE;
208
209         error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
210                                         PAGE_SIZE);
211
212         if (!error)
213                 error = write_page((unsigned long)&swsusp_header,
214                                 &(p->swap_address));
215         return error;
216 }
217
218 static __inline__ int crypto_read(struct pbe *p, void *mem)
219 {
220         int error = 0;
221         struct scatterlist src, dst;
222
223         error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
224         if (!error) {
225                 src.offset = 0;
226                 src.length = PAGE_SIZE;
227                 dst.offset = 0;
228                 dst.length = PAGE_SIZE;
229                 src.page = dst.page = virt_to_page((void *)p->address);
230
231                 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
232                                                 &src, PAGE_SIZE);
233         }
234         return error;
235 }
236 #else
237 static __inline__ int crypto_init(int mode, void *mem)
238 {
239         return 0;
240 }
241
242 static __inline__ void crypto_exit(void *mem)
243 {
244 }
245
246 static __inline__ int crypto_write(struct pbe *p, void *mem)
247 {
248         return write_page(p->address, &(p->swap_address));
249 }
250
251 static __inline__ int crypto_read(struct pbe *p, void *mem)
252 {
253         return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
254 }
255 #endif
256
257 static int mark_swapfiles(swp_entry_t prev)
258 {
259         int error;
260
261         rw_swap_page_sync(READ,
262                           swp_entry(root_swap, 0),
263                           virt_to_page((unsigned long)&swsusp_header));
264         if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
265             !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
266                 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
267                 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
268                 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
269                 swsusp_header.swsusp_info = prev;
270                 error = rw_swap_page_sync(WRITE,
271                                           swp_entry(root_swap, 0),
272                                           virt_to_page((unsigned long)
273                                                        &swsusp_header));
274         } else {
275                 pr_debug("swsusp: Partition is not swap space.\n");
276                 error = -ENODEV;
277         }
278         return error;
279 }
280
281 /*
282  * Check whether the swap device is the specified resume
283  * device, irrespective of whether they are specified by
284  * identical names.
285  *
286  * (Thus, device inode aliasing is allowed.  You can say /dev/hda4
287  * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
288  * and they'll be considered the same device.  This is *necessary* for
289  * devfs, since the resume code can only recognize the form /dev/hda4,
290  * but the suspend code would see the long name.)
291  */
292 static int is_resume_device(const struct swap_info_struct *swap_info)
293 {
294         struct file *file = swap_info->swap_file;
295         struct inode *inode = file->f_dentry->d_inode;
296
297         return S_ISBLK(inode->i_mode) &&
298                 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
299 }
300
301 static int swsusp_swap_check(void) /* This is called before saving image */
302 {
303         int i, len;
304
305         len=strlen(resume_file);
306         root_swap = 0xFFFF;
307
308         spin_lock(&swap_lock);
309         for (i=0; i<MAX_SWAPFILES; i++) {
310                 if (!(swap_info[i].flags & SWP_WRITEOK)) {
311                         swapfile_used[i]=SWAPFILE_UNUSED;
312                 } else {
313                         if (!len) {
314                                 printk(KERN_WARNING "resume= option should be used to set suspend device" );
315                                 if (root_swap == 0xFFFF) {
316                                         swapfile_used[i] = SWAPFILE_SUSPEND;
317                                         root_swap = i;
318                                 } else
319                                         swapfile_used[i] = SWAPFILE_IGNORED;
320                         } else {
321                                 /* we ignore all swap devices that are not the resume_file */
322                                 if (is_resume_device(&swap_info[i])) {
323                                         swapfile_used[i] = SWAPFILE_SUSPEND;
324                                         root_swap = i;
325                                 } else {
326                                         swapfile_used[i] = SWAPFILE_IGNORED;
327                                 }
328                         }
329                 }
330         }
331         spin_unlock(&swap_lock);
332         return (root_swap != 0xffff) ? 0 : -ENODEV;
333 }
334
335 /**
336  * This is called after saving image so modification
337  * will be lost after resume... and that's what we want.
338  * we make the device unusable. A new call to
339  * lock_swapdevices can unlock the devices.
340  */
341 static void lock_swapdevices(void)
342 {
343         int i;
344
345         spin_lock(&swap_lock);
346         for (i = 0; i< MAX_SWAPFILES; i++)
347                 if (swapfile_used[i] == SWAPFILE_IGNORED) {
348                         swap_info[i].flags ^= SWP_WRITEOK;
349                 }
350         spin_unlock(&swap_lock);
351 }
352
353 /**
354  *      write_page - Write one page to a fresh swap location.
355  *      @addr:  Address we're writing.
356  *      @loc:   Place to store the entry we used.
357  *
358  *      Allocate a new swap entry and 'sync' it. Note we discard -EIO
359  *      errors. That is an artifact left over from swsusp. It did not
360  *      check the return of rw_swap_page_sync() at all, since most pages
361  *      written back to swap would return -EIO.
362  *      This is a partial improvement, since we will at least return other
363  *      errors, though we need to eventually fix the damn code.
364  */
365 static int write_page(unsigned long addr, swp_entry_t * loc)
366 {
367         swp_entry_t entry;
368         int error = 0;
369
370         entry = get_swap_page();
371         if (swp_offset(entry) &&
372             swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
373                 error = rw_swap_page_sync(WRITE, entry,
374                                           virt_to_page(addr));
375                 if (error == -EIO)
376                         error = 0;
377                 if (!error)
378                         *loc = entry;
379         } else
380                 error = -ENOSPC;
381         return error;
382 }
383
384 /**
385  *      data_free - Free the swap entries used by the saved image.
386  *
387  *      Walk the list of used swap entries and free each one.
388  *      This is only used for cleanup when suspend fails.
389  */
390 static void data_free(void)
391 {
392         swp_entry_t entry;
393         struct pbe * p;
394
395         for_each_pbe(p, pagedir_nosave) {
396                 entry = p->swap_address;
397                 if (entry.val)
398                         swap_free(entry);
399                 else
400                         break;
401         }
402 }
403
404 /**
405  *      data_write - Write saved image to swap.
406  *
407  *      Walk the list of pages in the image and sync each one to swap.
408  */
409 static int data_write(void)
410 {
411         int error = 0, i = 0;
412         unsigned int mod = nr_copy_pages / 100;
413         struct pbe *p;
414         void *tfm;
415
416         if ((error = crypto_init(1, &tfm)))
417                 return error;
418
419         if (!mod)
420                 mod = 1;
421
422         printk( "Writing data to swap (%d pages)...     ", nr_copy_pages );
423         for_each_pbe (p, pagedir_nosave) {
424                 if (!(i%mod))
425                         printk( "\b\b\b\b%3d%%", i / mod );
426                 if ((error = crypto_write(p, tfm))) {
427                         crypto_exit(tfm);
428                         return error;
429                 }
430                 i++;
431         }
432         printk("\b\b\b\bdone\n");
433         crypto_exit(tfm);
434         return error;
435 }
436
437 static void dump_info(void)
438 {
439         pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
440         pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
441         pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
442         pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
443         pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
444         pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
445         pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
446         pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
447         pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
448         pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
449         pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
450 }
451
452 static void init_header(void)
453 {
454         memset(&swsusp_info, 0, sizeof(swsusp_info));
455         swsusp_info.version_code = LINUX_VERSION_CODE;
456         swsusp_info.num_physpages = num_physpages;
457         memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
458
459         swsusp_info.suspend_pagedir = pagedir_nosave;
460         swsusp_info.cpus = num_online_cpus();
461         swsusp_info.image_pages = nr_copy_pages;
462 }
463
464 static int close_swap(void)
465 {
466         swp_entry_t entry;
467         int error;
468
469         dump_info();
470         error = write_page((unsigned long)&swsusp_info, &entry);
471         if (!error) {
472                 printk( "S" );
473                 error = mark_swapfiles(entry);
474                 printk( "|\n" );
475         }
476         return error;
477 }
478
479 /**
480  *      free_pagedir_entries - Free pages used by the page directory.
481  *
482  *      This is used during suspend for error recovery.
483  */
484
485 static void free_pagedir_entries(void)
486 {
487         int i;
488
489         for (i = 0; i < swsusp_info.pagedir_pages; i++)
490                 swap_free(swsusp_info.pagedir[i]);
491 }
492
493
494 /**
495  *      write_pagedir - Write the array of pages holding the page directory.
496  *      @last:  Last swap entry we write (needed for header).
497  */
498
499 static int write_pagedir(void)
500 {
501         int error = 0;
502         unsigned n = 0;
503         struct pbe * pbe;
504
505         printk( "Writing pagedir...");
506         for_each_pb_page (pbe, pagedir_nosave) {
507                 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
508                         return error;
509         }
510
511         swsusp_info.pagedir_pages = n;
512         printk("done (%u pages)\n", n);
513         return error;
514 }
515
516 /**
517  *      write_suspend_image - Write entire image and metadata.
518  *
519  */
520 static int write_suspend_image(void)
521 {
522         int error;
523
524         init_header();
525         if ((error = data_write()))
526                 goto FreeData;
527
528         if ((error = write_pagedir()))
529                 goto FreePagedir;
530
531         if ((error = close_swap()))
532                 goto FreePagedir;
533  Done:
534         memset(key_iv, 0, MAXKEY+MAXIV);
535         return error;
536  FreePagedir:
537         free_pagedir_entries();
538  FreeData:
539         data_free();
540         goto Done;
541 }
542
543 /**
544  *      enough_swap - Make sure we have enough swap to save the image.
545  *
546  *      Returns TRUE or FALSE after checking the total amount of swap
547  *      space avaiable.
548  *
549  *      FIXME: si_swapinfo(&i) returns all swap devices information.
550  *      We should only consider resume_device.
551  */
552
553 int enough_swap(unsigned nr_pages)
554 {
555         struct sysinfo i;
556
557         si_swapinfo(&i);
558         pr_debug("swsusp: available swap: %lu pages\n", i.freeswap);
559         return i.freeswap > (nr_pages + PAGES_FOR_IO +
560                 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
561 }
562
563
564 /* It is important _NOT_ to umount filesystems at this point. We want
565  * them synced (in case something goes wrong) but we DO not want to mark
566  * filesystem clean: it is not. (And it does not matter, if we resume
567  * correctly, we'll mark system clean, anyway.)
568  */
569 int swsusp_write(void)
570 {
571         int error;
572         device_resume();
573         lock_swapdevices();
574         error = write_suspend_image();
575         /* This will unlock ignored swap devices since writing is finished */
576         lock_swapdevices();
577         return error;
578
579 }
580
581
582
583 int swsusp_suspend(void)
584 {
585         int error;
586         if ((error = arch_prepare_suspend()))
587                 return error;
588         local_irq_disable();
589         /* At this point, device_suspend() has been called, but *not*
590          * device_power_down(). We *must* device_power_down() now.
591          * Otherwise, drivers for some devices (e.g. interrupt controllers)
592          * become desynchronized with the actual state of the hardware
593          * at resume time, and evil weirdness ensues.
594          */
595         if ((error = device_power_down(PMSG_FREEZE))) {
596                 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
597                 local_irq_enable();
598                 return error;
599         }
600
601         if ((error = swsusp_swap_check())) {
602                 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
603                 device_power_up();
604                 local_irq_enable();
605                 return error;
606         }
607
608         save_processor_state();
609         if ((error = swsusp_arch_suspend()))
610                 printk(KERN_ERR "Error %d suspending\n", error);
611         /* Restore control flow magically appears here */
612         restore_processor_state();
613         restore_highmem();
614         device_power_up();
615         local_irq_enable();
616         return error;
617 }
618
619 int swsusp_resume(void)
620 {
621         int error;
622         local_irq_disable();
623         if (device_power_down(PMSG_FREEZE))
624                 printk(KERN_ERR "Some devices failed to power down, very bad\n");
625         /* We'll ignore saved state, but this gets preempt count (etc) right */
626         save_processor_state();
627         error = swsusp_arch_resume();
628         /* Code below is only ever reached in case of failure. Otherwise
629          * execution continues at place where swsusp_arch_suspend was called
630          */
631         BUG_ON(!error);
632         /* The only reason why swsusp_arch_resume() can fail is memory being
633          * very tight, so we have to free it as soon as we can to avoid
634          * subsequent failures
635          */
636         swsusp_free();
637         restore_processor_state();
638         restore_highmem();
639         touch_softlockup_watchdog();
640         device_power_up();
641         local_irq_enable();
642         return error;
643 }
644
645 /**
646  *      On resume, for storing the PBE list and the image,
647  *      we can only use memory pages that do not conflict with the pages
648  *      which had been used before suspend.
649  *
650  *      We don't know which pages are usable until we allocate them.
651  *
652  *      Allocated but unusable (ie eaten) memory pages are marked so that
653  *      swsusp_free() can release them
654  */
655
656 unsigned long get_safe_page(gfp_t gfp_mask)
657 {
658         unsigned long m;
659
660         do {
661                 m = get_zeroed_page(gfp_mask);
662                 if (m && PageNosaveFree(virt_to_page(m)))
663                         /* This is for swsusp_free() */
664                         SetPageNosave(virt_to_page(m));
665         } while (m && PageNosaveFree(virt_to_page(m)));
666         if (m) {
667                 /* This is for swsusp_free() */
668                 SetPageNosave(virt_to_page(m));
669                 SetPageNosaveFree(virt_to_page(m));
670         }
671         return m;
672 }
673
674 /**
675  *      check_pagedir - We ensure here that pages that the PBEs point to
676  *      won't collide with pages where we're going to restore from the loaded
677  *      pages later
678  */
679
680 static int check_pagedir(struct pbe *pblist)
681 {
682         struct pbe *p;
683
684         /* This is necessary, so that we can free allocated pages
685          * in case of failure
686          */
687         for_each_pbe (p, pblist)
688                 p->address = 0UL;
689
690         for_each_pbe (p, pblist) {
691                 p->address = get_safe_page(GFP_ATOMIC);
692                 if (!p->address)
693                         return -ENOMEM;
694         }
695         return 0;
696 }
697
698 /**
699  *      swsusp_pagedir_relocate - It is possible, that some memory pages
700  *      occupied by the list of PBEs collide with pages where we're going to
701  *      restore from the loaded pages later.  We relocate them here.
702  */
703
704 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
705 {
706         struct zone *zone;
707         unsigned long zone_pfn;
708         struct pbe *pbpage, *tail, *p;
709         void *m;
710         int rel = 0;
711
712         if (!pblist) /* a sanity check */
713                 return NULL;
714
715         pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
716                         swsusp_info.pagedir_pages);
717
718         /* Clear page flags */
719
720         for_each_zone (zone) {
721                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
722                         if (pfn_valid(zone_pfn + zone->zone_start_pfn))
723                                 ClearPageNosaveFree(pfn_to_page(zone_pfn +
724                                         zone->zone_start_pfn));
725         }
726
727         /* Mark orig addresses */
728
729         for_each_pbe (p, pblist)
730                 SetPageNosaveFree(virt_to_page(p->orig_address));
731
732         tail = pblist + PB_PAGE_SKIP;
733
734         /* Relocate colliding pages */
735
736         for_each_pb_page (pbpage, pblist) {
737                 if (PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
738                         m = (void *)get_safe_page(GFP_ATOMIC | __GFP_COLD);
739                         if (!m)
740                                 return NULL;
741                         memcpy(m, (void *)pbpage, PAGE_SIZE);
742                         if (pbpage == pblist)
743                                 pblist = (struct pbe *)m;
744                         else
745                                 tail->next = (struct pbe *)m;
746                         pbpage = (struct pbe *)m;
747
748                         /* We have to link the PBEs again */
749                         for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
750                                 if (p->next) /* needed to save the end */
751                                         p->next = p + 1;
752
753                         rel++;
754                 }
755                 tail = pbpage + PB_PAGE_SKIP;
756         }
757
758         /* This is for swsusp_free() */
759         for_each_pb_page (pbpage, pblist) {
760                 SetPageNosave(virt_to_page(pbpage));
761                 SetPageNosaveFree(virt_to_page(pbpage));
762         }
763
764         printk("swsusp: Relocated %d pages\n", rel);
765
766         return pblist;
767 }
768
769 /*
770  *      Using bio to read from swap.
771  *      This code requires a bit more work than just using buffer heads
772  *      but, it is the recommended way for 2.5/2.6.
773  *      The following are to signal the beginning and end of I/O. Bios
774  *      finish asynchronously, while we want them to happen synchronously.
775  *      A simple atomic_t, and a wait loop take care of this problem.
776  */
777
778 static atomic_t io_done = ATOMIC_INIT(0);
779
780 static int end_io(struct bio * bio, unsigned int num, int err)
781 {
782         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
783                 panic("I/O error reading memory image");
784         atomic_set(&io_done, 0);
785         return 0;
786 }
787
788 static struct block_device * resume_bdev;
789
790 /**
791  *      submit - submit BIO request.
792  *      @rw:    READ or WRITE.
793  *      @off    physical offset of page.
794  *      @page:  page we're reading or writing.
795  *
796  *      Straight from the textbook - allocate and initialize the bio.
797  *      If we're writing, make sure the page is marked as dirty.
798  *      Then submit it and wait.
799  */
800
801 static int submit(int rw, pgoff_t page_off, void * page)
802 {
803         int error = 0;
804         struct bio * bio;
805
806         bio = bio_alloc(GFP_ATOMIC, 1);
807         if (!bio)
808                 return -ENOMEM;
809         bio->bi_sector = page_off * (PAGE_SIZE >> 9);
810         bio_get(bio);
811         bio->bi_bdev = resume_bdev;
812         bio->bi_end_io = end_io;
813
814         if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
815                 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
816                 error = -EFAULT;
817                 goto Done;
818         }
819
820         if (rw == WRITE)
821                 bio_set_pages_dirty(bio);
822
823         atomic_set(&io_done, 1);
824         submit_bio(rw | (1 << BIO_RW_SYNC), bio);
825         while (atomic_read(&io_done))
826                 yield();
827
828  Done:
829         bio_put(bio);
830         return error;
831 }
832
833 static int bio_read_page(pgoff_t page_off, void * page)
834 {
835         return submit(READ, page_off, page);
836 }
837
838 static int bio_write_page(pgoff_t page_off, void * page)
839 {
840         return submit(WRITE, page_off, page);
841 }
842
843 /*
844  * Sanity check if this image makes sense with this kernel/swap context
845  * I really don't think that it's foolproof but more than nothing..
846  */
847
848 static const char * sanity_check(void)
849 {
850         dump_info();
851         if (swsusp_info.version_code != LINUX_VERSION_CODE)
852                 return "kernel version";
853         if (swsusp_info.num_physpages != num_physpages)
854                 return "memory size";
855         if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
856                 return "system type";
857         if (strcmp(swsusp_info.uts.release,system_utsname.release))
858                 return "kernel release";
859         if (strcmp(swsusp_info.uts.version,system_utsname.version))
860                 return "version";
861         if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
862                 return "machine";
863 #if 0
864         /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
865         if (swsusp_info.cpus != num_possible_cpus())
866                 return "number of cpus";
867 #endif
868         return NULL;
869 }
870
871
872 static int check_header(void)
873 {
874         const char * reason = NULL;
875         int error;
876
877         if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
878                 return error;
879
880         /* Is this same machine? */
881         if ((reason = sanity_check())) {
882                 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
883                 return -EPERM;
884         }
885         nr_copy_pages = swsusp_info.image_pages;
886         return error;
887 }
888
889 static int check_sig(void)
890 {
891         int error;
892
893         memset(&swsusp_header, 0, sizeof(swsusp_header));
894         if ((error = bio_read_page(0, &swsusp_header)))
895                 return error;
896         if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
897                 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
898                 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
899                 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
900
901                 /*
902                  * Reset swap signature now.
903                  */
904                 error = bio_write_page(0, &swsusp_header);
905         } else { 
906                 return -EINVAL;
907         }
908         if (!error)
909                 pr_debug("swsusp: Signature found, resuming\n");
910         return error;
911 }
912
913 /**
914  *      data_read - Read image pages from swap.
915  *
916  *      You do not need to check for overlaps, check_pagedir()
917  *      already did that.
918  */
919
920 static int data_read(struct pbe *pblist)
921 {
922         struct pbe * p;
923         int error = 0;
924         int i = 0;
925         int mod = swsusp_info.image_pages / 100;
926         void *tfm;
927
928         if ((error = crypto_init(0, &tfm)))
929                 return error;
930
931         if (!mod)
932                 mod = 1;
933
934         printk("swsusp: Reading image data (%lu pages):     ",
935                         swsusp_info.image_pages);
936
937         for_each_pbe (p, pblist) {
938                 if (!(i % mod))
939                         printk("\b\b\b\b%3d%%", i / mod);
940
941                 if ((error = crypto_read(p, tfm))) {
942                         crypto_exit(tfm);
943                         return error;
944                 }
945
946                 i++;
947         }
948         printk("\b\b\b\bdone\n");
949         crypto_exit(tfm);
950         return error;
951 }
952
953 /**
954  *      read_pagedir - Read page backup list pages from swap
955  */
956
957 static int read_pagedir(struct pbe *pblist)
958 {
959         struct pbe *pbpage, *p;
960         unsigned i = 0;
961         int error;
962
963         if (!pblist)
964                 return -EFAULT;
965
966         printk("swsusp: Reading pagedir (%lu pages)\n",
967                         swsusp_info.pagedir_pages);
968
969         for_each_pb_page (pbpage, pblist) {
970                 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
971
972                 error = -EFAULT;
973                 if (offset) {
974                         p = (pbpage + PB_PAGE_SKIP)->next;
975                         error = bio_read_page(offset, (void *)pbpage);
976                         (pbpage + PB_PAGE_SKIP)->next = p;
977                 }
978                 if (error)
979                         break;
980         }
981
982         if (!error)
983                 BUG_ON(i != swsusp_info.pagedir_pages);
984
985         return error;
986 }
987
988
989 static int check_suspend_image(void)
990 {
991         int error = 0;
992
993         if ((error = check_sig()))
994                 return error;
995
996         if ((error = check_header()))
997                 return error;
998
999         return 0;
1000 }
1001
1002 static int read_suspend_image(void)
1003 {
1004         int error = 0;
1005         struct pbe *p;
1006
1007         if (!(p = alloc_pagedir(nr_copy_pages)))
1008                 return -ENOMEM;
1009
1010         if ((error = read_pagedir(p)))
1011                 return error;
1012
1013         create_pbe_list(p, nr_copy_pages);
1014
1015         if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1016                 return -ENOMEM;
1017
1018         /* Allocate memory for the image and read the data from swap */
1019
1020         error = check_pagedir(pagedir_nosave);
1021
1022         if (!error)
1023                 error = data_read(pagedir_nosave);
1024
1025         return error;
1026 }
1027
1028 /**
1029  *      swsusp_check - Check for saved image in swap
1030  */
1031
1032 int swsusp_check(void)
1033 {
1034         int error;
1035
1036         resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1037         if (!IS_ERR(resume_bdev)) {
1038                 set_blocksize(resume_bdev, PAGE_SIZE);
1039                 error = check_suspend_image();
1040                 if (error)
1041                     blkdev_put(resume_bdev);
1042         } else
1043                 error = PTR_ERR(resume_bdev);
1044
1045         if (!error)
1046                 pr_debug("swsusp: resume file found\n");
1047         else
1048                 pr_debug("swsusp: Error %d check for resume file\n", error);
1049         return error;
1050 }
1051
1052 /**
1053  *      swsusp_read - Read saved image from swap.
1054  */
1055
1056 int swsusp_read(void)
1057 {
1058         int error;
1059
1060         if (IS_ERR(resume_bdev)) {
1061                 pr_debug("swsusp: block device not initialised\n");
1062                 return PTR_ERR(resume_bdev);
1063         }
1064
1065         error = read_suspend_image();
1066         blkdev_put(resume_bdev);
1067         memset(key_iv, 0, MAXKEY+MAXIV);
1068
1069         if (!error)
1070                 pr_debug("swsusp: Reading resume file was successful\n");
1071         else
1072                 pr_debug("swsusp: Error %d resuming\n", error);
1073         return error;
1074 }
1075
1076 /**
1077  *      swsusp_close - close swap device.
1078  */
1079
1080 void swsusp_close(void)
1081 {
1082         if (IS_ERR(resume_bdev)) {
1083                 pr_debug("swsusp: block device not initialised\n");
1084                 return;
1085         }
1086
1087         blkdev_put(resume_bdev);
1088 }