88e708be1f64e66bbde10b28246f52f3c59de776
[powerpc.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 /*
31  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32  */
33 static DEFINE_SPINLOCK(hugetlb_lock);
34
35 static void clear_huge_page(struct page *page, unsigned long addr)
36 {
37         int i;
38
39         might_sleep();
40         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41                 cond_resched();
42                 clear_user_highpage(page + i, addr);
43         }
44 }
45
46 static void copy_huge_page(struct page *dst, struct page *src,
47                            unsigned long addr, struct vm_area_struct *vma)
48 {
49         int i;
50
51         might_sleep();
52         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53                 cond_resched();
54                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
55         }
56 }
57
58 static void enqueue_huge_page(struct page *page)
59 {
60         int nid = page_to_nid(page);
61         list_add(&page->lru, &hugepage_freelists[nid]);
62         free_huge_pages++;
63         free_huge_pages_node[nid]++;
64 }
65
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67                                 unsigned long address)
68 {
69         int nid = numa_node_id();
70         struct page *page = NULL;
71         struct zonelist *zonelist = huge_zonelist(vma, address);
72         struct zone **z;
73
74         for (z = zonelist->zones; *z; z++) {
75                 nid = zone_to_nid(*z);
76                 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77                     !list_empty(&hugepage_freelists[nid]))
78                         break;
79         }
80
81         if (*z) {
82                 page = list_entry(hugepage_freelists[nid].next,
83                                   struct page, lru);
84                 list_del(&page->lru);
85                 free_huge_pages--;
86                 free_huge_pages_node[nid]--;
87         }
88         return page;
89 }
90
91 static void free_huge_page(struct page *page)
92 {
93         BUG_ON(page_count(page));
94
95         INIT_LIST_HEAD(&page->lru);
96
97         spin_lock(&hugetlb_lock);
98         enqueue_huge_page(page);
99         spin_unlock(&hugetlb_lock);
100 }
101
102 static int alloc_fresh_huge_page(void)
103 {
104         static int nid = 0;
105         struct page *page;
106         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107                                         HUGETLB_PAGE_ORDER);
108         nid = next_node(nid, node_online_map);
109         if (nid == MAX_NUMNODES)
110                 nid = first_node(node_online_map);
111         if (page) {
112                 set_compound_page_dtor(page, free_huge_page);
113                 spin_lock(&hugetlb_lock);
114                 nr_huge_pages++;
115                 nr_huge_pages_node[page_to_nid(page)]++;
116                 spin_unlock(&hugetlb_lock);
117                 put_page(page); /* free it into the hugepage allocator */
118                 return 1;
119         }
120         return 0;
121 }
122
123 static struct page *alloc_huge_page(struct vm_area_struct *vma,
124                                     unsigned long addr)
125 {
126         struct page *page;
127
128         spin_lock(&hugetlb_lock);
129         if (vma->vm_flags & VM_MAYSHARE)
130                 resv_huge_pages--;
131         else if (free_huge_pages <= resv_huge_pages)
132                 goto fail;
133
134         page = dequeue_huge_page(vma, addr);
135         if (!page)
136                 goto fail;
137
138         spin_unlock(&hugetlb_lock);
139         set_page_refcounted(page);
140         return page;
141
142 fail:
143         if (vma->vm_flags & VM_MAYSHARE)
144                 resv_huge_pages++;
145         spin_unlock(&hugetlb_lock);
146         return NULL;
147 }
148
149 static int __init hugetlb_init(void)
150 {
151         unsigned long i;
152
153         if (HPAGE_SHIFT == 0)
154                 return 0;
155
156         for (i = 0; i < MAX_NUMNODES; ++i)
157                 INIT_LIST_HEAD(&hugepage_freelists[i]);
158
159         for (i = 0; i < max_huge_pages; ++i) {
160                 if (!alloc_fresh_huge_page())
161                         break;
162         }
163         max_huge_pages = free_huge_pages = nr_huge_pages = i;
164         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
165         return 0;
166 }
167 module_init(hugetlb_init);
168
169 static int __init hugetlb_setup(char *s)
170 {
171         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
172                 max_huge_pages = 0;
173         return 1;
174 }
175 __setup("hugepages=", hugetlb_setup);
176
177 #ifdef CONFIG_SYSCTL
178 static void update_and_free_page(struct page *page)
179 {
180         int i;
181         nr_huge_pages--;
182         nr_huge_pages_node[page_to_nid(page)]--;
183         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
184                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
185                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
186                                 1 << PG_private | 1<< PG_writeback);
187         }
188         page[1].lru.next = NULL;
189         set_page_refcounted(page);
190         __free_pages(page, HUGETLB_PAGE_ORDER);
191 }
192
193 #ifdef CONFIG_HIGHMEM
194 static void try_to_free_low(unsigned long count)
195 {
196         int i;
197
198         for (i = 0; i < MAX_NUMNODES; ++i) {
199                 struct page *page, *next;
200                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
201                         if (PageHighMem(page))
202                                 continue;
203                         list_del(&page->lru);
204                         update_and_free_page(page);
205                         free_huge_pages--;
206                         free_huge_pages_node[page_to_nid(page)]--;
207                         if (count >= nr_huge_pages)
208                                 return;
209                 }
210         }
211 }
212 #else
213 static inline void try_to_free_low(unsigned long count)
214 {
215 }
216 #endif
217
218 static unsigned long set_max_huge_pages(unsigned long count)
219 {
220         while (count > nr_huge_pages) {
221                 if (!alloc_fresh_huge_page())
222                         return nr_huge_pages;
223         }
224         if (count >= nr_huge_pages)
225                 return nr_huge_pages;
226
227         spin_lock(&hugetlb_lock);
228         count = max(count, resv_huge_pages);
229         try_to_free_low(count);
230         while (count < nr_huge_pages) {
231                 struct page *page = dequeue_huge_page(NULL, 0);
232                 if (!page)
233                         break;
234                 update_and_free_page(page);
235         }
236         spin_unlock(&hugetlb_lock);
237         return nr_huge_pages;
238 }
239
240 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
241                            struct file *file, void __user *buffer,
242                            size_t *length, loff_t *ppos)
243 {
244         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
245         max_huge_pages = set_max_huge_pages(max_huge_pages);
246         return 0;
247 }
248 #endif /* CONFIG_SYSCTL */
249
250 int hugetlb_report_meminfo(char *buf)
251 {
252         return sprintf(buf,
253                         "HugePages_Total: %5lu\n"
254                         "HugePages_Free:  %5lu\n"
255                         "HugePages_Rsvd:  %5lu\n"
256                         "Hugepagesize:    %5lu kB\n",
257                         nr_huge_pages,
258                         free_huge_pages,
259                         resv_huge_pages,
260                         HPAGE_SIZE/1024);
261 }
262
263 int hugetlb_report_node_meminfo(int nid, char *buf)
264 {
265         return sprintf(buf,
266                 "Node %d HugePages_Total: %5u\n"
267                 "Node %d HugePages_Free:  %5u\n",
268                 nid, nr_huge_pages_node[nid],
269                 nid, free_huge_pages_node[nid]);
270 }
271
272 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
273 unsigned long hugetlb_total_pages(void)
274 {
275         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
276 }
277
278 /*
279  * We cannot handle pagefaults against hugetlb pages at all.  They cause
280  * handle_mm_fault() to try to instantiate regular-sized pages in the
281  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
282  * this far.
283  */
284 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
285                                 unsigned long address, int *unused)
286 {
287         BUG();
288         return NULL;
289 }
290
291 struct vm_operations_struct hugetlb_vm_ops = {
292         .nopage = hugetlb_nopage,
293 };
294
295 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
296                                 int writable)
297 {
298         pte_t entry;
299
300         if (writable) {
301                 entry =
302                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
303         } else {
304                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
305         }
306         entry = pte_mkyoung(entry);
307         entry = pte_mkhuge(entry);
308
309         return entry;
310 }
311
312 static void set_huge_ptep_writable(struct vm_area_struct *vma,
313                                    unsigned long address, pte_t *ptep)
314 {
315         pte_t entry;
316
317         entry = pte_mkwrite(pte_mkdirty(*ptep));
318         ptep_set_access_flags(vma, address, ptep, entry, 1);
319         update_mmu_cache(vma, address, entry);
320         lazy_mmu_prot_update(entry);
321 }
322
323
324 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
325                             struct vm_area_struct *vma)
326 {
327         pte_t *src_pte, *dst_pte, entry;
328         struct page *ptepage;
329         unsigned long addr;
330         int cow;
331
332         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
333
334         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
335                 src_pte = huge_pte_offset(src, addr);
336                 if (!src_pte)
337                         continue;
338                 dst_pte = huge_pte_alloc(dst, addr);
339                 if (!dst_pte)
340                         goto nomem;
341                 spin_lock(&dst->page_table_lock);
342                 spin_lock(&src->page_table_lock);
343                 if (!pte_none(*src_pte)) {
344                         if (cow)
345                                 ptep_set_wrprotect(src, addr, src_pte);
346                         entry = *src_pte;
347                         ptepage = pte_page(entry);
348                         get_page(ptepage);
349                         set_huge_pte_at(dst, addr, dst_pte, entry);
350                 }
351                 spin_unlock(&src->page_table_lock);
352                 spin_unlock(&dst->page_table_lock);
353         }
354         return 0;
355
356 nomem:
357         return -ENOMEM;
358 }
359
360 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
361                             unsigned long end)
362 {
363         struct mm_struct *mm = vma->vm_mm;
364         unsigned long address;
365         pte_t *ptep;
366         pte_t pte;
367         struct page *page;
368         struct page *tmp;
369         /*
370          * A page gathering list, protected by per file i_mmap_lock. The
371          * lock is used to avoid list corruption from multiple unmapping
372          * of the same page since we are using page->lru.
373          */
374         LIST_HEAD(page_list);
375
376         WARN_ON(!is_vm_hugetlb_page(vma));
377         BUG_ON(start & ~HPAGE_MASK);
378         BUG_ON(end & ~HPAGE_MASK);
379
380         spin_lock(&mm->page_table_lock);
381         for (address = start; address < end; address += HPAGE_SIZE) {
382                 ptep = huge_pte_offset(mm, address);
383                 if (!ptep)
384                         continue;
385
386                 if (huge_pmd_unshare(mm, &address, ptep))
387                         continue;
388
389                 pte = huge_ptep_get_and_clear(mm, address, ptep);
390                 if (pte_none(pte))
391                         continue;
392
393                 page = pte_page(pte);
394                 if (pte_dirty(pte))
395                         set_page_dirty(page);
396                 list_add(&page->lru, &page_list);
397         }
398         spin_unlock(&mm->page_table_lock);
399         flush_tlb_range(vma, start, end);
400         list_for_each_entry_safe(page, tmp, &page_list, lru) {
401                 list_del(&page->lru);
402                 put_page(page);
403         }
404 }
405
406 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
407                           unsigned long end)
408 {
409         /*
410          * It is undesirable to test vma->vm_file as it should be non-null
411          * for valid hugetlb area. However, vm_file will be NULL in the error
412          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
413          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
414          * to clean up. Since no pte has actually been setup, it is safe to
415          * do nothing in this case.
416          */
417         if (vma->vm_file) {
418                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
419                 __unmap_hugepage_range(vma, start, end);
420                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
421         }
422 }
423
424 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
425                         unsigned long address, pte_t *ptep, pte_t pte)
426 {
427         struct page *old_page, *new_page;
428         int avoidcopy;
429
430         old_page = pte_page(pte);
431
432         /* If no-one else is actually using this page, avoid the copy
433          * and just make the page writable */
434         avoidcopy = (page_count(old_page) == 1);
435         if (avoidcopy) {
436                 set_huge_ptep_writable(vma, address, ptep);
437                 return VM_FAULT_MINOR;
438         }
439
440         page_cache_get(old_page);
441         new_page = alloc_huge_page(vma, address);
442
443         if (!new_page) {
444                 page_cache_release(old_page);
445                 return VM_FAULT_OOM;
446         }
447
448         spin_unlock(&mm->page_table_lock);
449         copy_huge_page(new_page, old_page, address, vma);
450         spin_lock(&mm->page_table_lock);
451
452         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
453         if (likely(pte_same(*ptep, pte))) {
454                 /* Break COW */
455                 set_huge_pte_at(mm, address, ptep,
456                                 make_huge_pte(vma, new_page, 1));
457                 /* Make the old page be freed below */
458                 new_page = old_page;
459         }
460         page_cache_release(new_page);
461         page_cache_release(old_page);
462         return VM_FAULT_MINOR;
463 }
464
465 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
466                         unsigned long address, pte_t *ptep, int write_access)
467 {
468         int ret = VM_FAULT_SIGBUS;
469         unsigned long idx;
470         unsigned long size;
471         struct page *page;
472         struct address_space *mapping;
473         pte_t new_pte;
474
475         mapping = vma->vm_file->f_mapping;
476         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
477                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
478
479         /*
480          * Use page lock to guard against racing truncation
481          * before we get page_table_lock.
482          */
483 retry:
484         page = find_lock_page(mapping, idx);
485         if (!page) {
486                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
487                 if (idx >= size)
488                         goto out;
489                 if (hugetlb_get_quota(mapping))
490                         goto out;
491                 page = alloc_huge_page(vma, address);
492                 if (!page) {
493                         hugetlb_put_quota(mapping);
494                         ret = VM_FAULT_OOM;
495                         goto out;
496                 }
497                 clear_huge_page(page, address);
498
499                 if (vma->vm_flags & VM_SHARED) {
500                         int err;
501
502                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
503                         if (err) {
504                                 put_page(page);
505                                 hugetlb_put_quota(mapping);
506                                 if (err == -EEXIST)
507                                         goto retry;
508                                 goto out;
509                         }
510                 } else
511                         lock_page(page);
512         }
513
514         spin_lock(&mm->page_table_lock);
515         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
516         if (idx >= size)
517                 goto backout;
518
519         ret = VM_FAULT_MINOR;
520         if (!pte_none(*ptep))
521                 goto backout;
522
523         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
524                                 && (vma->vm_flags & VM_SHARED)));
525         set_huge_pte_at(mm, address, ptep, new_pte);
526
527         if (write_access && !(vma->vm_flags & VM_SHARED)) {
528                 /* Optimization, do the COW without a second fault */
529                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
530         }
531
532         spin_unlock(&mm->page_table_lock);
533         unlock_page(page);
534 out:
535         return ret;
536
537 backout:
538         spin_unlock(&mm->page_table_lock);
539         hugetlb_put_quota(mapping);
540         unlock_page(page);
541         put_page(page);
542         goto out;
543 }
544
545 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
546                         unsigned long address, int write_access)
547 {
548         pte_t *ptep;
549         pte_t entry;
550         int ret;
551         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
552
553         ptep = huge_pte_alloc(mm, address);
554         if (!ptep)
555                 return VM_FAULT_OOM;
556
557         /*
558          * Serialize hugepage allocation and instantiation, so that we don't
559          * get spurious allocation failures if two CPUs race to instantiate
560          * the same page in the page cache.
561          */
562         mutex_lock(&hugetlb_instantiation_mutex);
563         entry = *ptep;
564         if (pte_none(entry)) {
565                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
566                 mutex_unlock(&hugetlb_instantiation_mutex);
567                 return ret;
568         }
569
570         ret = VM_FAULT_MINOR;
571
572         spin_lock(&mm->page_table_lock);
573         /* Check for a racing update before calling hugetlb_cow */
574         if (likely(pte_same(entry, *ptep)))
575                 if (write_access && !pte_write(entry))
576                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
577         spin_unlock(&mm->page_table_lock);
578         mutex_unlock(&hugetlb_instantiation_mutex);
579
580         return ret;
581 }
582
583 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
584                         struct page **pages, struct vm_area_struct **vmas,
585                         unsigned long *position, int *length, int i)
586 {
587         unsigned long pfn_offset;
588         unsigned long vaddr = *position;
589         int remainder = *length;
590
591         spin_lock(&mm->page_table_lock);
592         while (vaddr < vma->vm_end && remainder) {
593                 pte_t *pte;
594                 struct page *page;
595
596                 /*
597                  * Some archs (sparc64, sh*) have multiple pte_ts to
598                  * each hugepage.  We have to make * sure we get the
599                  * first, for the page indexing below to work.
600                  */
601                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
602
603                 if (!pte || pte_none(*pte)) {
604                         int ret;
605
606                         spin_unlock(&mm->page_table_lock);
607                         ret = hugetlb_fault(mm, vma, vaddr, 0);
608                         spin_lock(&mm->page_table_lock);
609                         if (ret == VM_FAULT_MINOR)
610                                 continue;
611
612                         remainder = 0;
613                         if (!i)
614                                 i = -EFAULT;
615                         break;
616                 }
617
618                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
619                 page = pte_page(*pte);
620 same_page:
621                 if (pages) {
622                         get_page(page);
623                         pages[i] = page + pfn_offset;
624                 }
625
626                 if (vmas)
627                         vmas[i] = vma;
628
629                 vaddr += PAGE_SIZE;
630                 ++pfn_offset;
631                 --remainder;
632                 ++i;
633                 if (vaddr < vma->vm_end && remainder &&
634                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
635                         /*
636                          * We use pfn_offset to avoid touching the pageframes
637                          * of this compound page.
638                          */
639                         goto same_page;
640                 }
641         }
642         spin_unlock(&mm->page_table_lock);
643         *length = remainder;
644         *position = vaddr;
645
646         return i;
647 }
648
649 void hugetlb_change_protection(struct vm_area_struct *vma,
650                 unsigned long address, unsigned long end, pgprot_t newprot)
651 {
652         struct mm_struct *mm = vma->vm_mm;
653         unsigned long start = address;
654         pte_t *ptep;
655         pte_t pte;
656
657         BUG_ON(address >= end);
658         flush_cache_range(vma, address, end);
659
660         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
661         spin_lock(&mm->page_table_lock);
662         for (; address < end; address += HPAGE_SIZE) {
663                 ptep = huge_pte_offset(mm, address);
664                 if (!ptep)
665                         continue;
666                 if (huge_pmd_unshare(mm, &address, ptep))
667                         continue;
668                 if (!pte_none(*ptep)) {
669                         pte = huge_ptep_get_and_clear(mm, address, ptep);
670                         pte = pte_mkhuge(pte_modify(pte, newprot));
671                         set_huge_pte_at(mm, address, ptep, pte);
672                         lazy_mmu_prot_update(pte);
673                 }
674         }
675         spin_unlock(&mm->page_table_lock);
676         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
677
678         flush_tlb_range(vma, start, end);
679 }
680
681 struct file_region {
682         struct list_head link;
683         long from;
684         long to;
685 };
686
687 static long region_add(struct list_head *head, long f, long t)
688 {
689         struct file_region *rg, *nrg, *trg;
690
691         /* Locate the region we are either in or before. */
692         list_for_each_entry(rg, head, link)
693                 if (f <= rg->to)
694                         break;
695
696         /* Round our left edge to the current segment if it encloses us. */
697         if (f > rg->from)
698                 f = rg->from;
699
700         /* Check for and consume any regions we now overlap with. */
701         nrg = rg;
702         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
703                 if (&rg->link == head)
704                         break;
705                 if (rg->from > t)
706                         break;
707
708                 /* If this area reaches higher then extend our area to
709                  * include it completely.  If this is not the first area
710                  * which we intend to reuse, free it. */
711                 if (rg->to > t)
712                         t = rg->to;
713                 if (rg != nrg) {
714                         list_del(&rg->link);
715                         kfree(rg);
716                 }
717         }
718         nrg->from = f;
719         nrg->to = t;
720         return 0;
721 }
722
723 static long region_chg(struct list_head *head, long f, long t)
724 {
725         struct file_region *rg, *nrg;
726         long chg = 0;
727
728         /* Locate the region we are before or in. */
729         list_for_each_entry(rg, head, link)
730                 if (f <= rg->to)
731                         break;
732
733         /* If we are below the current region then a new region is required.
734          * Subtle, allocate a new region at the position but make it zero
735          * size such that we can guarentee to record the reservation. */
736         if (&rg->link == head || t < rg->from) {
737                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
738                 if (nrg == 0)
739                         return -ENOMEM;
740                 nrg->from = f;
741                 nrg->to   = f;
742                 INIT_LIST_HEAD(&nrg->link);
743                 list_add(&nrg->link, rg->link.prev);
744
745                 return t - f;
746         }
747
748         /* Round our left edge to the current segment if it encloses us. */
749         if (f > rg->from)
750                 f = rg->from;
751         chg = t - f;
752
753         /* Check for and consume any regions we now overlap with. */
754         list_for_each_entry(rg, rg->link.prev, link) {
755                 if (&rg->link == head)
756                         break;
757                 if (rg->from > t)
758                         return chg;
759
760                 /* We overlap with this area, if it extends futher than
761                  * us then we must extend ourselves.  Account for its
762                  * existing reservation. */
763                 if (rg->to > t) {
764                         chg += rg->to - t;
765                         t = rg->to;
766                 }
767                 chg -= rg->to - rg->from;
768         }
769         return chg;
770 }
771
772 static long region_truncate(struct list_head *head, long end)
773 {
774         struct file_region *rg, *trg;
775         long chg = 0;
776
777         /* Locate the region we are either in or before. */
778         list_for_each_entry(rg, head, link)
779                 if (end <= rg->to)
780                         break;
781         if (&rg->link == head)
782                 return 0;
783
784         /* If we are in the middle of a region then adjust it. */
785         if (end > rg->from) {
786                 chg = rg->to - end;
787                 rg->to = end;
788                 rg = list_entry(rg->link.next, typeof(*rg), link);
789         }
790
791         /* Drop any remaining regions. */
792         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
793                 if (&rg->link == head)
794                         break;
795                 chg += rg->to - rg->from;
796                 list_del(&rg->link);
797                 kfree(rg);
798         }
799         return chg;
800 }
801
802 static int hugetlb_acct_memory(long delta)
803 {
804         int ret = -ENOMEM;
805
806         spin_lock(&hugetlb_lock);
807         if ((delta + resv_huge_pages) <= free_huge_pages) {
808                 resv_huge_pages += delta;
809                 ret = 0;
810         }
811         spin_unlock(&hugetlb_lock);
812         return ret;
813 }
814
815 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
816 {
817         long ret, chg;
818
819         chg = region_chg(&inode->i_mapping->private_list, from, to);
820         if (chg < 0)
821                 return chg;
822         ret = hugetlb_acct_memory(chg);
823         if (ret < 0)
824                 return ret;
825         region_add(&inode->i_mapping->private_list, from, to);
826         return 0;
827 }
828
829 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
830 {
831         long chg = region_truncate(&inode->i_mapping->private_list, offset);
832         hugetlb_acct_memory(freed - chg);
833 }