[NET] core: whitespace cleanup
[powerpc.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 /*
142  * Make lock validator output more readable. (we pre-construct these
143  * strings build-time, so that runtime initialization of socket
144  * locks is fast):
145  */
146 static const char *af_family_key_strings[AF_MAX+1] = {
147   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
157   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
158 };
159 static const char *af_family_slock_key_strings[AF_MAX+1] = {
160   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
161   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
162   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
163   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
164   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
165   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
166   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
167   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
168   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
169   "slock-27"       , "slock-28"          , "slock-29"          ,
170   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_MAX"
171 };
172 #endif
173
174 /*
175  * sk_callback_lock locking rules are per-address-family,
176  * so split the lock classes by using a per-AF key:
177  */
178 static struct lock_class_key af_callback_keys[AF_MAX];
179
180 /* Take into consideration the size of the struct sk_buff overhead in the
181  * determination of these values, since that is non-constant across
182  * platforms.  This makes socket queueing behavior and performance
183  * not depend upon such differences.
184  */
185 #define _SK_MEM_PACKETS         256
186 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
187 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
188 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
189
190 /* Run time adjustable parameters. */
191 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
192 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
193 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
194 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
195
196 /* Maximal space eaten by iovec or ancilliary data plus some space */
197 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
198
199 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
200 {
201         struct timeval tv;
202
203         if (optlen < sizeof(tv))
204                 return -EINVAL;
205         if (copy_from_user(&tv, optval, sizeof(tv)))
206                 return -EFAULT;
207
208         *timeo_p = MAX_SCHEDULE_TIMEOUT;
209         if (tv.tv_sec == 0 && tv.tv_usec == 0)
210                 return 0;
211         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
212                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
213         return 0;
214 }
215
216 static void sock_warn_obsolete_bsdism(const char *name)
217 {
218         static int warned;
219         static char warncomm[TASK_COMM_LEN];
220         if (strcmp(warncomm, current->comm) && warned < 5) {
221                 strcpy(warncomm,  current->comm);
222                 printk(KERN_WARNING "process `%s' is using obsolete "
223                        "%s SO_BSDCOMPAT\n", warncomm, name);
224                 warned++;
225         }
226 }
227
228 static void sock_disable_timestamp(struct sock *sk)
229 {
230         if (sock_flag(sk, SOCK_TIMESTAMP)) {
231                 sock_reset_flag(sk, SOCK_TIMESTAMP);
232                 net_disable_timestamp();
233         }
234 }
235
236
237 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
238 {
239         int err = 0;
240         int skb_len;
241
242         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
243            number of warnings when compiling with -W --ANK
244          */
245         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
246             (unsigned)sk->sk_rcvbuf) {
247                 err = -ENOMEM;
248                 goto out;
249         }
250
251         err = sk_filter(sk, skb);
252         if (err)
253                 goto out;
254
255         skb->dev = NULL;
256         skb_set_owner_r(skb, sk);
257
258         /* Cache the SKB length before we tack it onto the receive
259          * queue.  Once it is added it no longer belongs to us and
260          * may be freed by other threads of control pulling packets
261          * from the queue.
262          */
263         skb_len = skb->len;
264
265         skb_queue_tail(&sk->sk_receive_queue, skb);
266
267         if (!sock_flag(sk, SOCK_DEAD))
268                 sk->sk_data_ready(sk, skb_len);
269 out:
270         return err;
271 }
272 EXPORT_SYMBOL(sock_queue_rcv_skb);
273
274 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
275 {
276         int rc = NET_RX_SUCCESS;
277
278         if (sk_filter(sk, skb))
279                 goto discard_and_relse;
280
281         skb->dev = NULL;
282
283         if (nested)
284                 bh_lock_sock_nested(sk);
285         else
286                 bh_lock_sock(sk);
287         if (!sock_owned_by_user(sk)) {
288                 /*
289                  * trylock + unlock semantics:
290                  */
291                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
292
293                 rc = sk->sk_backlog_rcv(sk, skb);
294
295                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
296         } else
297                 sk_add_backlog(sk, skb);
298         bh_unlock_sock(sk);
299 out:
300         sock_put(sk);
301         return rc;
302 discard_and_relse:
303         kfree_skb(skb);
304         goto out;
305 }
306 EXPORT_SYMBOL(sk_receive_skb);
307
308 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
309 {
310         struct dst_entry *dst = sk->sk_dst_cache;
311
312         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
313                 sk->sk_dst_cache = NULL;
314                 dst_release(dst);
315                 return NULL;
316         }
317
318         return dst;
319 }
320 EXPORT_SYMBOL(__sk_dst_check);
321
322 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
323 {
324         struct dst_entry *dst = sk_dst_get(sk);
325
326         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327                 sk_dst_reset(sk);
328                 dst_release(dst);
329                 return NULL;
330         }
331
332         return dst;
333 }
334 EXPORT_SYMBOL(sk_dst_check);
335
336 /*
337  *      This is meant for all protocols to use and covers goings on
338  *      at the socket level. Everything here is generic.
339  */
340
341 int sock_setsockopt(struct socket *sock, int level, int optname,
342                     char __user *optval, int optlen)
343 {
344         struct sock *sk=sock->sk;
345         struct sk_filter *filter;
346         int val;
347         int valbool;
348         struct linger ling;
349         int ret = 0;
350
351         /*
352          *      Options without arguments
353          */
354
355 #ifdef SO_DONTLINGER            /* Compatibility item... */
356         if (optname == SO_DONTLINGER) {
357                 lock_sock(sk);
358                 sock_reset_flag(sk, SOCK_LINGER);
359                 release_sock(sk);
360                 return 0;
361         }
362 #endif
363
364         if (optlen < sizeof(int))
365                 return -EINVAL;
366
367         if (get_user(val, (int __user *)optval))
368                 return -EFAULT;
369
370         valbool = val?1:0;
371
372         lock_sock(sk);
373
374         switch(optname) {
375         case SO_DEBUG:
376                 if (val && !capable(CAP_NET_ADMIN)) {
377                         ret = -EACCES;
378                 }
379                 else if (valbool)
380                         sock_set_flag(sk, SOCK_DBG);
381                 else
382                         sock_reset_flag(sk, SOCK_DBG);
383                 break;
384         case SO_REUSEADDR:
385                 sk->sk_reuse = valbool;
386                 break;
387         case SO_TYPE:
388         case SO_ERROR:
389                 ret = -ENOPROTOOPT;
390                 break;
391         case SO_DONTROUTE:
392                 if (valbool)
393                         sock_set_flag(sk, SOCK_LOCALROUTE);
394                 else
395                         sock_reset_flag(sk, SOCK_LOCALROUTE);
396                 break;
397         case SO_BROADCAST:
398                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
399                 break;
400         case SO_SNDBUF:
401                 /* Don't error on this BSD doesn't and if you think
402                    about it this is right. Otherwise apps have to
403                    play 'guess the biggest size' games. RCVBUF/SNDBUF
404                    are treated in BSD as hints */
405
406                 if (val > sysctl_wmem_max)
407                         val = sysctl_wmem_max;
408 set_sndbuf:
409                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
410                 if ((val * 2) < SOCK_MIN_SNDBUF)
411                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
412                 else
413                         sk->sk_sndbuf = val * 2;
414
415                 /*
416                  *      Wake up sending tasks if we
417                  *      upped the value.
418                  */
419                 sk->sk_write_space(sk);
420                 break;
421
422         case SO_SNDBUFFORCE:
423                 if (!capable(CAP_NET_ADMIN)) {
424                         ret = -EPERM;
425                         break;
426                 }
427                 goto set_sndbuf;
428
429         case SO_RCVBUF:
430                 /* Don't error on this BSD doesn't and if you think
431                    about it this is right. Otherwise apps have to
432                    play 'guess the biggest size' games. RCVBUF/SNDBUF
433                    are treated in BSD as hints */
434
435                 if (val > sysctl_rmem_max)
436                         val = sysctl_rmem_max;
437 set_rcvbuf:
438                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
439                 /*
440                  * We double it on the way in to account for
441                  * "struct sk_buff" etc. overhead.   Applications
442                  * assume that the SO_RCVBUF setting they make will
443                  * allow that much actual data to be received on that
444                  * socket.
445                  *
446                  * Applications are unaware that "struct sk_buff" and
447                  * other overheads allocate from the receive buffer
448                  * during socket buffer allocation.
449                  *
450                  * And after considering the possible alternatives,
451                  * returning the value we actually used in getsockopt
452                  * is the most desirable behavior.
453                  */
454                 if ((val * 2) < SOCK_MIN_RCVBUF)
455                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
456                 else
457                         sk->sk_rcvbuf = val * 2;
458                 break;
459
460         case SO_RCVBUFFORCE:
461                 if (!capable(CAP_NET_ADMIN)) {
462                         ret = -EPERM;
463                         break;
464                 }
465                 goto set_rcvbuf;
466
467         case SO_KEEPALIVE:
468 #ifdef CONFIG_INET
469                 if (sk->sk_protocol == IPPROTO_TCP)
470                         tcp_set_keepalive(sk, valbool);
471 #endif
472                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
473                 break;
474
475         case SO_OOBINLINE:
476                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
477                 break;
478
479         case SO_NO_CHECK:
480                 sk->sk_no_check = valbool;
481                 break;
482
483         case SO_PRIORITY:
484                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
485                         sk->sk_priority = val;
486                 else
487                         ret = -EPERM;
488                 break;
489
490         case SO_LINGER:
491                 if (optlen < sizeof(ling)) {
492                         ret = -EINVAL;  /* 1003.1g */
493                         break;
494                 }
495                 if (copy_from_user(&ling,optval,sizeof(ling))) {
496                         ret = -EFAULT;
497                         break;
498                 }
499                 if (!ling.l_onoff)
500                         sock_reset_flag(sk, SOCK_LINGER);
501                 else {
502 #if (BITS_PER_LONG == 32)
503                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
504                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
505                         else
506 #endif
507                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
508                         sock_set_flag(sk, SOCK_LINGER);
509                 }
510                 break;
511
512         case SO_BSDCOMPAT:
513                 sock_warn_obsolete_bsdism("setsockopt");
514                 break;
515
516         case SO_PASSCRED:
517                 if (valbool)
518                         set_bit(SOCK_PASSCRED, &sock->flags);
519                 else
520                         clear_bit(SOCK_PASSCRED, &sock->flags);
521                 break;
522
523         case SO_TIMESTAMP:
524                 if (valbool)  {
525                         sock_set_flag(sk, SOCK_RCVTSTAMP);
526                         sock_enable_timestamp(sk);
527                 } else
528                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
529                 break;
530
531         case SO_RCVLOWAT:
532                 if (val < 0)
533                         val = INT_MAX;
534                 sk->sk_rcvlowat = val ? : 1;
535                 break;
536
537         case SO_RCVTIMEO:
538                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
539                 break;
540
541         case SO_SNDTIMEO:
542                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
543                 break;
544
545 #ifdef CONFIG_NETDEVICES
546         case SO_BINDTODEVICE:
547         {
548                 char devname[IFNAMSIZ];
549
550                 /* Sorry... */
551                 if (!capable(CAP_NET_RAW)) {
552                         ret = -EPERM;
553                         break;
554                 }
555
556                 /* Bind this socket to a particular device like "eth0",
557                  * as specified in the passed interface name. If the
558                  * name is "" or the option length is zero the socket
559                  * is not bound.
560                  */
561
562                 if (!valbool) {
563                         sk->sk_bound_dev_if = 0;
564                 } else {
565                         if (optlen > IFNAMSIZ - 1)
566                                 optlen = IFNAMSIZ - 1;
567                         memset(devname, 0, sizeof(devname));
568                         if (copy_from_user(devname, optval, optlen)) {
569                                 ret = -EFAULT;
570                                 break;
571                         }
572
573                         /* Remove any cached route for this socket. */
574                         sk_dst_reset(sk);
575
576                         if (devname[0] == '\0') {
577                                 sk->sk_bound_dev_if = 0;
578                         } else {
579                                 struct net_device *dev = dev_get_by_name(devname);
580                                 if (!dev) {
581                                         ret = -ENODEV;
582                                         break;
583                                 }
584                                 sk->sk_bound_dev_if = dev->ifindex;
585                                 dev_put(dev);
586                         }
587                 }
588                 break;
589         }
590 #endif
591
592
593         case SO_ATTACH_FILTER:
594                 ret = -EINVAL;
595                 if (optlen == sizeof(struct sock_fprog)) {
596                         struct sock_fprog fprog;
597
598                         ret = -EFAULT;
599                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
600                                 break;
601
602                         ret = sk_attach_filter(&fprog, sk);
603                 }
604                 break;
605
606         case SO_DETACH_FILTER:
607                 rcu_read_lock_bh();
608                 filter = rcu_dereference(sk->sk_filter);
609                 if (filter) {
610                         rcu_assign_pointer(sk->sk_filter, NULL);
611                         sk_filter_release(sk, filter);
612                         rcu_read_unlock_bh();
613                         break;
614                 }
615                 rcu_read_unlock_bh();
616                 ret = -ENONET;
617                 break;
618
619         case SO_PASSSEC:
620                 if (valbool)
621                         set_bit(SOCK_PASSSEC, &sock->flags);
622                 else
623                         clear_bit(SOCK_PASSSEC, &sock->flags);
624                 break;
625
626                 /* We implement the SO_SNDLOWAT etc to
627                    not be settable (1003.1g 5.3) */
628         default:
629                 ret = -ENOPROTOOPT;
630                 break;
631         }
632         release_sock(sk);
633         return ret;
634 }
635
636
637 int sock_getsockopt(struct socket *sock, int level, int optname,
638                     char __user *optval, int __user *optlen)
639 {
640         struct sock *sk = sock->sk;
641
642         union {
643                 int val;
644                 struct linger ling;
645                 struct timeval tm;
646         } v;
647
648         unsigned int lv = sizeof(int);
649         int len;
650
651         if (get_user(len, optlen))
652                 return -EFAULT;
653         if (len < 0)
654                 return -EINVAL;
655
656         switch(optname) {
657         case SO_DEBUG:
658                 v.val = sock_flag(sk, SOCK_DBG);
659                 break;
660
661         case SO_DONTROUTE:
662                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
663                 break;
664
665         case SO_BROADCAST:
666                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
667                 break;
668
669         case SO_SNDBUF:
670                 v.val = sk->sk_sndbuf;
671                 break;
672
673         case SO_RCVBUF:
674                 v.val = sk->sk_rcvbuf;
675                 break;
676
677         case SO_REUSEADDR:
678                 v.val = sk->sk_reuse;
679                 break;
680
681         case SO_KEEPALIVE:
682                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
683                 break;
684
685         case SO_TYPE:
686                 v.val = sk->sk_type;
687                 break;
688
689         case SO_ERROR:
690                 v.val = -sock_error(sk);
691                 if (v.val==0)
692                         v.val = xchg(&sk->sk_err_soft, 0);
693                 break;
694
695         case SO_OOBINLINE:
696                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
697                 break;
698
699         case SO_NO_CHECK:
700                 v.val = sk->sk_no_check;
701                 break;
702
703         case SO_PRIORITY:
704                 v.val = sk->sk_priority;
705                 break;
706
707         case SO_LINGER:
708                 lv              = sizeof(v.ling);
709                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
710                 v.ling.l_linger = sk->sk_lingertime / HZ;
711                 break;
712
713         case SO_BSDCOMPAT:
714                 sock_warn_obsolete_bsdism("getsockopt");
715                 break;
716
717         case SO_TIMESTAMP:
718                 v.val = sock_flag(sk, SOCK_RCVTSTAMP);
719                 break;
720
721         case SO_RCVTIMEO:
722                 lv=sizeof(struct timeval);
723                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
724                         v.tm.tv_sec = 0;
725                         v.tm.tv_usec = 0;
726                 } else {
727                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
728                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
729                 }
730                 break;
731
732         case SO_SNDTIMEO:
733                 lv=sizeof(struct timeval);
734                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
735                         v.tm.tv_sec = 0;
736                         v.tm.tv_usec = 0;
737                 } else {
738                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
739                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
740                 }
741                 break;
742
743         case SO_RCVLOWAT:
744                 v.val = sk->sk_rcvlowat;
745                 break;
746
747         case SO_SNDLOWAT:
748                 v.val=1;
749                 break;
750
751         case SO_PASSCRED:
752                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
753                 break;
754
755         case SO_PEERCRED:
756                 if (len > sizeof(sk->sk_peercred))
757                         len = sizeof(sk->sk_peercred);
758                 if (copy_to_user(optval, &sk->sk_peercred, len))
759                         return -EFAULT;
760                 goto lenout;
761
762         case SO_PEERNAME:
763         {
764                 char address[128];
765
766                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
767                         return -ENOTCONN;
768                 if (lv < len)
769                         return -EINVAL;
770                 if (copy_to_user(optval, address, len))
771                         return -EFAULT;
772                 goto lenout;
773         }
774
775         /* Dubious BSD thing... Probably nobody even uses it, but
776          * the UNIX standard wants it for whatever reason... -DaveM
777          */
778         case SO_ACCEPTCONN:
779                 v.val = sk->sk_state == TCP_LISTEN;
780                 break;
781
782         case SO_PASSSEC:
783                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
784                 break;
785
786         case SO_PEERSEC:
787                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
788
789         default:
790                 return -ENOPROTOOPT;
791         }
792
793         if (len > lv)
794                 len = lv;
795         if (copy_to_user(optval, &v, len))
796                 return -EFAULT;
797 lenout:
798         if (put_user(len, optlen))
799                 return -EFAULT;
800         return 0;
801 }
802
803 /*
804  * Initialize an sk_lock.
805  *
806  * (We also register the sk_lock with the lock validator.)
807  */
808 static inline void sock_lock_init(struct sock *sk)
809 {
810         sock_lock_init_class_and_name(sk,
811                         af_family_slock_key_strings[sk->sk_family],
812                         af_family_slock_keys + sk->sk_family,
813                         af_family_key_strings[sk->sk_family],
814                         af_family_keys + sk->sk_family);
815 }
816
817 /**
818  *      sk_alloc - All socket objects are allocated here
819  *      @family: protocol family
820  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
821  *      @prot: struct proto associated with this new sock instance
822  *      @zero_it: if we should zero the newly allocated sock
823  */
824 struct sock *sk_alloc(int family, gfp_t priority,
825                       struct proto *prot, int zero_it)
826 {
827         struct sock *sk = NULL;
828         struct kmem_cache *slab = prot->slab;
829
830         if (slab != NULL)
831                 sk = kmem_cache_alloc(slab, priority);
832         else
833                 sk = kmalloc(prot->obj_size, priority);
834
835         if (sk) {
836                 if (zero_it) {
837                         memset(sk, 0, prot->obj_size);
838                         sk->sk_family = family;
839                         /*
840                          * See comment in struct sock definition to understand
841                          * why we need sk_prot_creator -acme
842                          */
843                         sk->sk_prot = sk->sk_prot_creator = prot;
844                         sock_lock_init(sk);
845                 }
846
847                 if (security_sk_alloc(sk, family, priority))
848                         goto out_free;
849
850                 if (!try_module_get(prot->owner))
851                         goto out_free;
852         }
853         return sk;
854
855 out_free:
856         if (slab != NULL)
857                 kmem_cache_free(slab, sk);
858         else
859                 kfree(sk);
860         return NULL;
861 }
862
863 void sk_free(struct sock *sk)
864 {
865         struct sk_filter *filter;
866         struct module *owner = sk->sk_prot_creator->owner;
867
868         if (sk->sk_destruct)
869                 sk->sk_destruct(sk);
870
871         filter = rcu_dereference(sk->sk_filter);
872         if (filter) {
873                 sk_filter_release(sk, filter);
874                 rcu_assign_pointer(sk->sk_filter, NULL);
875         }
876
877         sock_disable_timestamp(sk);
878
879         if (atomic_read(&sk->sk_omem_alloc))
880                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
881                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
882
883         security_sk_free(sk);
884         if (sk->sk_prot_creator->slab != NULL)
885                 kmem_cache_free(sk->sk_prot_creator->slab, sk);
886         else
887                 kfree(sk);
888         module_put(owner);
889 }
890
891 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
892 {
893         struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
894
895         if (newsk != NULL) {
896                 struct sk_filter *filter;
897
898                 sock_copy(newsk, sk);
899
900                 /* SANITY */
901                 sk_node_init(&newsk->sk_node);
902                 sock_lock_init(newsk);
903                 bh_lock_sock(newsk);
904                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
905
906                 atomic_set(&newsk->sk_rmem_alloc, 0);
907                 atomic_set(&newsk->sk_wmem_alloc, 0);
908                 atomic_set(&newsk->sk_omem_alloc, 0);
909                 skb_queue_head_init(&newsk->sk_receive_queue);
910                 skb_queue_head_init(&newsk->sk_write_queue);
911 #ifdef CONFIG_NET_DMA
912                 skb_queue_head_init(&newsk->sk_async_wait_queue);
913 #endif
914
915                 rwlock_init(&newsk->sk_dst_lock);
916                 rwlock_init(&newsk->sk_callback_lock);
917                 lockdep_set_class(&newsk->sk_callback_lock,
918                                    af_callback_keys + newsk->sk_family);
919
920                 newsk->sk_dst_cache     = NULL;
921                 newsk->sk_wmem_queued   = 0;
922                 newsk->sk_forward_alloc = 0;
923                 newsk->sk_send_head     = NULL;
924                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
925
926                 sock_reset_flag(newsk, SOCK_DONE);
927                 skb_queue_head_init(&newsk->sk_error_queue);
928
929                 filter = newsk->sk_filter;
930                 if (filter != NULL)
931                         sk_filter_charge(newsk, filter);
932
933                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
934                         /* It is still raw copy of parent, so invalidate
935                          * destructor and make plain sk_free() */
936                         newsk->sk_destruct = NULL;
937                         sk_free(newsk);
938                         newsk = NULL;
939                         goto out;
940                 }
941
942                 newsk->sk_err      = 0;
943                 newsk->sk_priority = 0;
944                 atomic_set(&newsk->sk_refcnt, 2);
945
946                 /*
947                  * Increment the counter in the same struct proto as the master
948                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
949                  * is the same as sk->sk_prot->socks, as this field was copied
950                  * with memcpy).
951                  *
952                  * This _changes_ the previous behaviour, where
953                  * tcp_create_openreq_child always was incrementing the
954                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
955                  * to be taken into account in all callers. -acme
956                  */
957                 sk_refcnt_debug_inc(newsk);
958                 newsk->sk_socket = NULL;
959                 newsk->sk_sleep  = NULL;
960
961                 if (newsk->sk_prot->sockets_allocated)
962                         atomic_inc(newsk->sk_prot->sockets_allocated);
963         }
964 out:
965         return newsk;
966 }
967
968 EXPORT_SYMBOL_GPL(sk_clone);
969
970 void __init sk_init(void)
971 {
972         if (num_physpages <= 4096) {
973                 sysctl_wmem_max = 32767;
974                 sysctl_rmem_max = 32767;
975                 sysctl_wmem_default = 32767;
976                 sysctl_rmem_default = 32767;
977         } else if (num_physpages >= 131072) {
978                 sysctl_wmem_max = 131071;
979                 sysctl_rmem_max = 131071;
980         }
981 }
982
983 /*
984  *      Simple resource managers for sockets.
985  */
986
987
988 /*
989  * Write buffer destructor automatically called from kfree_skb.
990  */
991 void sock_wfree(struct sk_buff *skb)
992 {
993         struct sock *sk = skb->sk;
994
995         /* In case it might be waiting for more memory. */
996         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
997         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
998                 sk->sk_write_space(sk);
999         sock_put(sk);
1000 }
1001
1002 /*
1003  * Read buffer destructor automatically called from kfree_skb.
1004  */
1005 void sock_rfree(struct sk_buff *skb)
1006 {
1007         struct sock *sk = skb->sk;
1008
1009         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1010 }
1011
1012
1013 int sock_i_uid(struct sock *sk)
1014 {
1015         int uid;
1016
1017         read_lock(&sk->sk_callback_lock);
1018         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1019         read_unlock(&sk->sk_callback_lock);
1020         return uid;
1021 }
1022
1023 unsigned long sock_i_ino(struct sock *sk)
1024 {
1025         unsigned long ino;
1026
1027         read_lock(&sk->sk_callback_lock);
1028         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1029         read_unlock(&sk->sk_callback_lock);
1030         return ino;
1031 }
1032
1033 /*
1034  * Allocate a skb from the socket's send buffer.
1035  */
1036 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1037                              gfp_t priority)
1038 {
1039         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1040                 struct sk_buff * skb = alloc_skb(size, priority);
1041                 if (skb) {
1042                         skb_set_owner_w(skb, sk);
1043                         return skb;
1044                 }
1045         }
1046         return NULL;
1047 }
1048
1049 /*
1050  * Allocate a skb from the socket's receive buffer.
1051  */
1052 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1053                              gfp_t priority)
1054 {
1055         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1056                 struct sk_buff *skb = alloc_skb(size, priority);
1057                 if (skb) {
1058                         skb_set_owner_r(skb, sk);
1059                         return skb;
1060                 }
1061         }
1062         return NULL;
1063 }
1064
1065 /*
1066  * Allocate a memory block from the socket's option memory buffer.
1067  */
1068 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1069 {
1070         if ((unsigned)size <= sysctl_optmem_max &&
1071             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1072                 void *mem;
1073                 /* First do the add, to avoid the race if kmalloc
1074                  * might sleep.
1075                  */
1076                 atomic_add(size, &sk->sk_omem_alloc);
1077                 mem = kmalloc(size, priority);
1078                 if (mem)
1079                         return mem;
1080                 atomic_sub(size, &sk->sk_omem_alloc);
1081         }
1082         return NULL;
1083 }
1084
1085 /*
1086  * Free an option memory block.
1087  */
1088 void sock_kfree_s(struct sock *sk, void *mem, int size)
1089 {
1090         kfree(mem);
1091         atomic_sub(size, &sk->sk_omem_alloc);
1092 }
1093
1094 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1095    I think, these locks should be removed for datagram sockets.
1096  */
1097 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1098 {
1099         DEFINE_WAIT(wait);
1100
1101         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1102         for (;;) {
1103                 if (!timeo)
1104                         break;
1105                 if (signal_pending(current))
1106                         break;
1107                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1108                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1109                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1110                         break;
1111                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1112                         break;
1113                 if (sk->sk_err)
1114                         break;
1115                 timeo = schedule_timeout(timeo);
1116         }
1117         finish_wait(sk->sk_sleep, &wait);
1118         return timeo;
1119 }
1120
1121
1122 /*
1123  *      Generic send/receive buffer handlers
1124  */
1125
1126 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1127                                             unsigned long header_len,
1128                                             unsigned long data_len,
1129                                             int noblock, int *errcode)
1130 {
1131         struct sk_buff *skb;
1132         gfp_t gfp_mask;
1133         long timeo;
1134         int err;
1135
1136         gfp_mask = sk->sk_allocation;
1137         if (gfp_mask & __GFP_WAIT)
1138                 gfp_mask |= __GFP_REPEAT;
1139
1140         timeo = sock_sndtimeo(sk, noblock);
1141         while (1) {
1142                 err = sock_error(sk);
1143                 if (err != 0)
1144                         goto failure;
1145
1146                 err = -EPIPE;
1147                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1148                         goto failure;
1149
1150                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1151                         skb = alloc_skb(header_len, gfp_mask);
1152                         if (skb) {
1153                                 int npages;
1154                                 int i;
1155
1156                                 /* No pages, we're done... */
1157                                 if (!data_len)
1158                                         break;
1159
1160                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1161                                 skb->truesize += data_len;
1162                                 skb_shinfo(skb)->nr_frags = npages;
1163                                 for (i = 0; i < npages; i++) {
1164                                         struct page *page;
1165                                         skb_frag_t *frag;
1166
1167                                         page = alloc_pages(sk->sk_allocation, 0);
1168                                         if (!page) {
1169                                                 err = -ENOBUFS;
1170                                                 skb_shinfo(skb)->nr_frags = i;
1171                                                 kfree_skb(skb);
1172                                                 goto failure;
1173                                         }
1174
1175                                         frag = &skb_shinfo(skb)->frags[i];
1176                                         frag->page = page;
1177                                         frag->page_offset = 0;
1178                                         frag->size = (data_len >= PAGE_SIZE ?
1179                                                       PAGE_SIZE :
1180                                                       data_len);
1181                                         data_len -= PAGE_SIZE;
1182                                 }
1183
1184                                 /* Full success... */
1185                                 break;
1186                         }
1187                         err = -ENOBUFS;
1188                         goto failure;
1189                 }
1190                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1191                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1192                 err = -EAGAIN;
1193                 if (!timeo)
1194                         goto failure;
1195                 if (signal_pending(current))
1196                         goto interrupted;
1197                 timeo = sock_wait_for_wmem(sk, timeo);
1198         }
1199
1200         skb_set_owner_w(skb, sk);
1201         return skb;
1202
1203 interrupted:
1204         err = sock_intr_errno(timeo);
1205 failure:
1206         *errcode = err;
1207         return NULL;
1208 }
1209
1210 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1211                                     int noblock, int *errcode)
1212 {
1213         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1214 }
1215
1216 static void __lock_sock(struct sock *sk)
1217 {
1218         DEFINE_WAIT(wait);
1219
1220         for (;;) {
1221                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1222                                         TASK_UNINTERRUPTIBLE);
1223                 spin_unlock_bh(&sk->sk_lock.slock);
1224                 schedule();
1225                 spin_lock_bh(&sk->sk_lock.slock);
1226                 if (!sock_owned_by_user(sk))
1227                         break;
1228         }
1229         finish_wait(&sk->sk_lock.wq, &wait);
1230 }
1231
1232 static void __release_sock(struct sock *sk)
1233 {
1234         struct sk_buff *skb = sk->sk_backlog.head;
1235
1236         do {
1237                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1238                 bh_unlock_sock(sk);
1239
1240                 do {
1241                         struct sk_buff *next = skb->next;
1242
1243                         skb->next = NULL;
1244                         sk->sk_backlog_rcv(sk, skb);
1245
1246                         /*
1247                          * We are in process context here with softirqs
1248                          * disabled, use cond_resched_softirq() to preempt.
1249                          * This is safe to do because we've taken the backlog
1250                          * queue private:
1251                          */
1252                         cond_resched_softirq();
1253
1254                         skb = next;
1255                 } while (skb != NULL);
1256
1257                 bh_lock_sock(sk);
1258         } while ((skb = sk->sk_backlog.head) != NULL);
1259 }
1260
1261 /**
1262  * sk_wait_data - wait for data to arrive at sk_receive_queue
1263  * @sk:    sock to wait on
1264  * @timeo: for how long
1265  *
1266  * Now socket state including sk->sk_err is changed only under lock,
1267  * hence we may omit checks after joining wait queue.
1268  * We check receive queue before schedule() only as optimization;
1269  * it is very likely that release_sock() added new data.
1270  */
1271 int sk_wait_data(struct sock *sk, long *timeo)
1272 {
1273         int rc;
1274         DEFINE_WAIT(wait);
1275
1276         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1277         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1278         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1279         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1280         finish_wait(sk->sk_sleep, &wait);
1281         return rc;
1282 }
1283
1284 EXPORT_SYMBOL(sk_wait_data);
1285
1286 /*
1287  * Set of default routines for initialising struct proto_ops when
1288  * the protocol does not support a particular function. In certain
1289  * cases where it makes no sense for a protocol to have a "do nothing"
1290  * function, some default processing is provided.
1291  */
1292
1293 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1294 {
1295         return -EOPNOTSUPP;
1296 }
1297
1298 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1299                     int len, int flags)
1300 {
1301         return -EOPNOTSUPP;
1302 }
1303
1304 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1305 {
1306         return -EOPNOTSUPP;
1307 }
1308
1309 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1310 {
1311         return -EOPNOTSUPP;
1312 }
1313
1314 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1315                     int *len, int peer)
1316 {
1317         return -EOPNOTSUPP;
1318 }
1319
1320 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1321 {
1322         return 0;
1323 }
1324
1325 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1326 {
1327         return -EOPNOTSUPP;
1328 }
1329
1330 int sock_no_listen(struct socket *sock, int backlog)
1331 {
1332         return -EOPNOTSUPP;
1333 }
1334
1335 int sock_no_shutdown(struct socket *sock, int how)
1336 {
1337         return -EOPNOTSUPP;
1338 }
1339
1340 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1341                     char __user *optval, int optlen)
1342 {
1343         return -EOPNOTSUPP;
1344 }
1345
1346 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1347                     char __user *optval, int __user *optlen)
1348 {
1349         return -EOPNOTSUPP;
1350 }
1351
1352 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1353                     size_t len)
1354 {
1355         return -EOPNOTSUPP;
1356 }
1357
1358 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1359                     size_t len, int flags)
1360 {
1361         return -EOPNOTSUPP;
1362 }
1363
1364 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1365 {
1366         /* Mirror missing mmap method error code */
1367         return -ENODEV;
1368 }
1369
1370 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1371 {
1372         ssize_t res;
1373         struct msghdr msg = {.msg_flags = flags};
1374         struct kvec iov;
1375         char *kaddr = kmap(page);
1376         iov.iov_base = kaddr + offset;
1377         iov.iov_len = size;
1378         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1379         kunmap(page);
1380         return res;
1381 }
1382
1383 /*
1384  *      Default Socket Callbacks
1385  */
1386
1387 static void sock_def_wakeup(struct sock *sk)
1388 {
1389         read_lock(&sk->sk_callback_lock);
1390         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1391                 wake_up_interruptible_all(sk->sk_sleep);
1392         read_unlock(&sk->sk_callback_lock);
1393 }
1394
1395 static void sock_def_error_report(struct sock *sk)
1396 {
1397         read_lock(&sk->sk_callback_lock);
1398         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1399                 wake_up_interruptible(sk->sk_sleep);
1400         sk_wake_async(sk,0,POLL_ERR);
1401         read_unlock(&sk->sk_callback_lock);
1402 }
1403
1404 static void sock_def_readable(struct sock *sk, int len)
1405 {
1406         read_lock(&sk->sk_callback_lock);
1407         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1408                 wake_up_interruptible(sk->sk_sleep);
1409         sk_wake_async(sk,1,POLL_IN);
1410         read_unlock(&sk->sk_callback_lock);
1411 }
1412
1413 static void sock_def_write_space(struct sock *sk)
1414 {
1415         read_lock(&sk->sk_callback_lock);
1416
1417         /* Do not wake up a writer until he can make "significant"
1418          * progress.  --DaveM
1419          */
1420         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1421                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1422                         wake_up_interruptible(sk->sk_sleep);
1423
1424                 /* Should agree with poll, otherwise some programs break */
1425                 if (sock_writeable(sk))
1426                         sk_wake_async(sk, 2, POLL_OUT);
1427         }
1428
1429         read_unlock(&sk->sk_callback_lock);
1430 }
1431
1432 static void sock_def_destruct(struct sock *sk)
1433 {
1434         kfree(sk->sk_protinfo);
1435 }
1436
1437 void sk_send_sigurg(struct sock *sk)
1438 {
1439         if (sk->sk_socket && sk->sk_socket->file)
1440                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1441                         sk_wake_async(sk, 3, POLL_PRI);
1442 }
1443
1444 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1445                     unsigned long expires)
1446 {
1447         if (!mod_timer(timer, expires))
1448                 sock_hold(sk);
1449 }
1450
1451 EXPORT_SYMBOL(sk_reset_timer);
1452
1453 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1454 {
1455         if (timer_pending(timer) && del_timer(timer))
1456                 __sock_put(sk);
1457 }
1458
1459 EXPORT_SYMBOL(sk_stop_timer);
1460
1461 void sock_init_data(struct socket *sock, struct sock *sk)
1462 {
1463         skb_queue_head_init(&sk->sk_receive_queue);
1464         skb_queue_head_init(&sk->sk_write_queue);
1465         skb_queue_head_init(&sk->sk_error_queue);
1466 #ifdef CONFIG_NET_DMA
1467         skb_queue_head_init(&sk->sk_async_wait_queue);
1468 #endif
1469
1470         sk->sk_send_head        =       NULL;
1471
1472         init_timer(&sk->sk_timer);
1473
1474         sk->sk_allocation       =       GFP_KERNEL;
1475         sk->sk_rcvbuf           =       sysctl_rmem_default;
1476         sk->sk_sndbuf           =       sysctl_wmem_default;
1477         sk->sk_state            =       TCP_CLOSE;
1478         sk->sk_socket           =       sock;
1479
1480         sock_set_flag(sk, SOCK_ZAPPED);
1481
1482         if (sock) {
1483                 sk->sk_type     =       sock->type;
1484                 sk->sk_sleep    =       &sock->wait;
1485                 sock->sk        =       sk;
1486         } else
1487                 sk->sk_sleep    =       NULL;
1488
1489         rwlock_init(&sk->sk_dst_lock);
1490         rwlock_init(&sk->sk_callback_lock);
1491         lockdep_set_class(&sk->sk_callback_lock,
1492                            af_callback_keys + sk->sk_family);
1493
1494         sk->sk_state_change     =       sock_def_wakeup;
1495         sk->sk_data_ready       =       sock_def_readable;
1496         sk->sk_write_space      =       sock_def_write_space;
1497         sk->sk_error_report     =       sock_def_error_report;
1498         sk->sk_destruct         =       sock_def_destruct;
1499
1500         sk->sk_sndmsg_page      =       NULL;
1501         sk->sk_sndmsg_off       =       0;
1502
1503         sk->sk_peercred.pid     =       0;
1504         sk->sk_peercred.uid     =       -1;
1505         sk->sk_peercred.gid     =       -1;
1506         sk->sk_write_pending    =       0;
1507         sk->sk_rcvlowat         =       1;
1508         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1509         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1510
1511         sk->sk_stamp = ktime_set(-1L, -1L);
1512
1513         atomic_set(&sk->sk_refcnt, 1);
1514 }
1515
1516 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1517 {
1518         might_sleep();
1519         spin_lock_bh(&sk->sk_lock.slock);
1520         if (sk->sk_lock.owner)
1521                 __lock_sock(sk);
1522         sk->sk_lock.owner = (void *)1;
1523         spin_unlock(&sk->sk_lock.slock);
1524         /*
1525          * The sk_lock has mutex_lock() semantics here:
1526          */
1527         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1528         local_bh_enable();
1529 }
1530
1531 EXPORT_SYMBOL(lock_sock_nested);
1532
1533 void fastcall release_sock(struct sock *sk)
1534 {
1535         /*
1536          * The sk_lock has mutex_unlock() semantics:
1537          */
1538         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1539
1540         spin_lock_bh(&sk->sk_lock.slock);
1541         if (sk->sk_backlog.tail)
1542                 __release_sock(sk);
1543         sk->sk_lock.owner = NULL;
1544         if (waitqueue_active(&sk->sk_lock.wq))
1545                 wake_up(&sk->sk_lock.wq);
1546         spin_unlock_bh(&sk->sk_lock.slock);
1547 }
1548 EXPORT_SYMBOL(release_sock);
1549
1550 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1551 {
1552         struct timeval tv;
1553         if (!sock_flag(sk, SOCK_TIMESTAMP))
1554                 sock_enable_timestamp(sk);
1555         tv = ktime_to_timeval(sk->sk_stamp);
1556         if (tv.tv_sec == -1)
1557                 return -ENOENT;
1558         if (tv.tv_sec == 0) {
1559                 sk->sk_stamp = ktime_get_real();
1560                 tv = ktime_to_timeval(sk->sk_stamp);
1561         }
1562         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1563 }
1564 EXPORT_SYMBOL(sock_get_timestamp);
1565
1566 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1567 {
1568         struct timespec ts;
1569         if (!sock_flag(sk, SOCK_TIMESTAMP))
1570                 sock_enable_timestamp(sk);
1571         ts = ktime_to_timespec(sk->sk_stamp);
1572         if (ts.tv_sec == -1)
1573                 return -ENOENT;
1574         if (ts.tv_sec == 0) {
1575                 sk->sk_stamp = ktime_get_real();
1576                 ts = ktime_to_timespec(sk->sk_stamp);
1577         }
1578         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1579 }
1580 EXPORT_SYMBOL(sock_get_timestampns);
1581
1582 void sock_enable_timestamp(struct sock *sk)
1583 {
1584         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1585                 sock_set_flag(sk, SOCK_TIMESTAMP);
1586                 net_enable_timestamp();
1587         }
1588 }
1589 EXPORT_SYMBOL(sock_enable_timestamp);
1590
1591 /*
1592  *      Get a socket option on an socket.
1593  *
1594  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1595  *      asynchronous errors should be reported by getsockopt. We assume
1596  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1597  */
1598 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1599                            char __user *optval, int __user *optlen)
1600 {
1601         struct sock *sk = sock->sk;
1602
1603         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1604 }
1605
1606 EXPORT_SYMBOL(sock_common_getsockopt);
1607
1608 #ifdef CONFIG_COMPAT
1609 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1610                                   char __user *optval, int __user *optlen)
1611 {
1612         struct sock *sk = sock->sk;
1613
1614         if (sk->sk_prot->compat_getsockopt != NULL)
1615                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1616                                                       optval, optlen);
1617         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1618 }
1619 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1620 #endif
1621
1622 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1623                         struct msghdr *msg, size_t size, int flags)
1624 {
1625         struct sock *sk = sock->sk;
1626         int addr_len = 0;
1627         int err;
1628
1629         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1630                                    flags & ~MSG_DONTWAIT, &addr_len);
1631         if (err >= 0)
1632                 msg->msg_namelen = addr_len;
1633         return err;
1634 }
1635
1636 EXPORT_SYMBOL(sock_common_recvmsg);
1637
1638 /*
1639  *      Set socket options on an inet socket.
1640  */
1641 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1642                            char __user *optval, int optlen)
1643 {
1644         struct sock *sk = sock->sk;
1645
1646         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1647 }
1648
1649 EXPORT_SYMBOL(sock_common_setsockopt);
1650
1651 #ifdef CONFIG_COMPAT
1652 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1653                                   char __user *optval, int optlen)
1654 {
1655         struct sock *sk = sock->sk;
1656
1657         if (sk->sk_prot->compat_setsockopt != NULL)
1658                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1659                                                       optval, optlen);
1660         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1661 }
1662 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1663 #endif
1664
1665 void sk_common_release(struct sock *sk)
1666 {
1667         if (sk->sk_prot->destroy)
1668                 sk->sk_prot->destroy(sk);
1669
1670         /*
1671          * Observation: when sock_common_release is called, processes have
1672          * no access to socket. But net still has.
1673          * Step one, detach it from networking:
1674          *
1675          * A. Remove from hash tables.
1676          */
1677
1678         sk->sk_prot->unhash(sk);
1679
1680         /*
1681          * In this point socket cannot receive new packets, but it is possible
1682          * that some packets are in flight because some CPU runs receiver and
1683          * did hash table lookup before we unhashed socket. They will achieve
1684          * receive queue and will be purged by socket destructor.
1685          *
1686          * Also we still have packets pending on receive queue and probably,
1687          * our own packets waiting in device queues. sock_destroy will drain
1688          * receive queue, but transmitted packets will delay socket destruction
1689          * until the last reference will be released.
1690          */
1691
1692         sock_orphan(sk);
1693
1694         xfrm_sk_free_policy(sk);
1695
1696         sk_refcnt_debug_release(sk);
1697         sock_put(sk);
1698 }
1699
1700 EXPORT_SYMBOL(sk_common_release);
1701
1702 static DEFINE_RWLOCK(proto_list_lock);
1703 static LIST_HEAD(proto_list);
1704
1705 int proto_register(struct proto *prot, int alloc_slab)
1706 {
1707         char *request_sock_slab_name = NULL;
1708         char *timewait_sock_slab_name;
1709         int rc = -ENOBUFS;
1710
1711         if (alloc_slab) {
1712                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1713                                                SLAB_HWCACHE_ALIGN, NULL, NULL);
1714
1715                 if (prot->slab == NULL) {
1716                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1717                                prot->name);
1718                         goto out;
1719                 }
1720
1721                 if (prot->rsk_prot != NULL) {
1722                         static const char mask[] = "request_sock_%s";
1723
1724                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1725                         if (request_sock_slab_name == NULL)
1726                                 goto out_free_sock_slab;
1727
1728                         sprintf(request_sock_slab_name, mask, prot->name);
1729                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1730                                                                  prot->rsk_prot->obj_size, 0,
1731                                                                  SLAB_HWCACHE_ALIGN, NULL, NULL);
1732
1733                         if (prot->rsk_prot->slab == NULL) {
1734                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1735                                        prot->name);
1736                                 goto out_free_request_sock_slab_name;
1737                         }
1738                 }
1739
1740                 if (prot->twsk_prot != NULL) {
1741                         static const char mask[] = "tw_sock_%s";
1742
1743                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1744
1745                         if (timewait_sock_slab_name == NULL)
1746                                 goto out_free_request_sock_slab;
1747
1748                         sprintf(timewait_sock_slab_name, mask, prot->name);
1749                         prot->twsk_prot->twsk_slab =
1750                                 kmem_cache_create(timewait_sock_slab_name,
1751                                                   prot->twsk_prot->twsk_obj_size,
1752                                                   0, SLAB_HWCACHE_ALIGN,
1753                                                   NULL, NULL);
1754                         if (prot->twsk_prot->twsk_slab == NULL)
1755                                 goto out_free_timewait_sock_slab_name;
1756                 }
1757         }
1758
1759         write_lock(&proto_list_lock);
1760         list_add(&prot->node, &proto_list);
1761         write_unlock(&proto_list_lock);
1762         rc = 0;
1763 out:
1764         return rc;
1765 out_free_timewait_sock_slab_name:
1766         kfree(timewait_sock_slab_name);
1767 out_free_request_sock_slab:
1768         if (prot->rsk_prot && prot->rsk_prot->slab) {
1769                 kmem_cache_destroy(prot->rsk_prot->slab);
1770                 prot->rsk_prot->slab = NULL;
1771         }
1772 out_free_request_sock_slab_name:
1773         kfree(request_sock_slab_name);
1774 out_free_sock_slab:
1775         kmem_cache_destroy(prot->slab);
1776         prot->slab = NULL;
1777         goto out;
1778 }
1779
1780 EXPORT_SYMBOL(proto_register);
1781
1782 void proto_unregister(struct proto *prot)
1783 {
1784         write_lock(&proto_list_lock);
1785         list_del(&prot->node);
1786         write_unlock(&proto_list_lock);
1787
1788         if (prot->slab != NULL) {
1789                 kmem_cache_destroy(prot->slab);
1790                 prot->slab = NULL;
1791         }
1792
1793         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1794                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1795
1796                 kmem_cache_destroy(prot->rsk_prot->slab);
1797                 kfree(name);
1798                 prot->rsk_prot->slab = NULL;
1799         }
1800
1801         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1802                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1803
1804                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1805                 kfree(name);
1806                 prot->twsk_prot->twsk_slab = NULL;
1807         }
1808 }
1809
1810 EXPORT_SYMBOL(proto_unregister);
1811
1812 #ifdef CONFIG_PROC_FS
1813 static inline struct proto *__proto_head(void)
1814 {
1815         return list_entry(proto_list.next, struct proto, node);
1816 }
1817
1818 static inline struct proto *proto_head(void)
1819 {
1820         return list_empty(&proto_list) ? NULL : __proto_head();
1821 }
1822
1823 static inline struct proto *proto_next(struct proto *proto)
1824 {
1825         return proto->node.next == &proto_list ? NULL :
1826                 list_entry(proto->node.next, struct proto, node);
1827 }
1828
1829 static inline struct proto *proto_get_idx(loff_t pos)
1830 {
1831         struct proto *proto;
1832         loff_t i = 0;
1833
1834         list_for_each_entry(proto, &proto_list, node)
1835                 if (i++ == pos)
1836                         goto out;
1837
1838         proto = NULL;
1839 out:
1840         return proto;
1841 }
1842
1843 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1844 {
1845         read_lock(&proto_list_lock);
1846         return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1847 }
1848
1849 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1850 {
1851         ++*pos;
1852         return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1853 }
1854
1855 static void proto_seq_stop(struct seq_file *seq, void *v)
1856 {
1857         read_unlock(&proto_list_lock);
1858 }
1859
1860 static char proto_method_implemented(const void *method)
1861 {
1862         return method == NULL ? 'n' : 'y';
1863 }
1864
1865 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1866 {
1867         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1868                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1869                    proto->name,
1870                    proto->obj_size,
1871                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1872                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1873                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1874                    proto->max_header,
1875                    proto->slab == NULL ? "no" : "yes",
1876                    module_name(proto->owner),
1877                    proto_method_implemented(proto->close),
1878                    proto_method_implemented(proto->connect),
1879                    proto_method_implemented(proto->disconnect),
1880                    proto_method_implemented(proto->accept),
1881                    proto_method_implemented(proto->ioctl),
1882                    proto_method_implemented(proto->init),
1883                    proto_method_implemented(proto->destroy),
1884                    proto_method_implemented(proto->shutdown),
1885                    proto_method_implemented(proto->setsockopt),
1886                    proto_method_implemented(proto->getsockopt),
1887                    proto_method_implemented(proto->sendmsg),
1888                    proto_method_implemented(proto->recvmsg),
1889                    proto_method_implemented(proto->sendpage),
1890                    proto_method_implemented(proto->bind),
1891                    proto_method_implemented(proto->backlog_rcv),
1892                    proto_method_implemented(proto->hash),
1893                    proto_method_implemented(proto->unhash),
1894                    proto_method_implemented(proto->get_port),
1895                    proto_method_implemented(proto->enter_memory_pressure));
1896 }
1897
1898 static int proto_seq_show(struct seq_file *seq, void *v)
1899 {
1900         if (v == SEQ_START_TOKEN)
1901                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1902                            "protocol",
1903                            "size",
1904                            "sockets",
1905                            "memory",
1906                            "press",
1907                            "maxhdr",
1908                            "slab",
1909                            "module",
1910                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1911         else
1912                 proto_seq_printf(seq, v);
1913         return 0;
1914 }
1915
1916 static struct seq_operations proto_seq_ops = {
1917         .start  = proto_seq_start,
1918         .next   = proto_seq_next,
1919         .stop   = proto_seq_stop,
1920         .show   = proto_seq_show,
1921 };
1922
1923 static int proto_seq_open(struct inode *inode, struct file *file)
1924 {
1925         return seq_open(file, &proto_seq_ops);
1926 }
1927
1928 static const struct file_operations proto_seq_fops = {
1929         .owner          = THIS_MODULE,
1930         .open           = proto_seq_open,
1931         .read           = seq_read,
1932         .llseek         = seq_lseek,
1933         .release        = seq_release,
1934 };
1935
1936 static int __init proto_init(void)
1937 {
1938         /* register /proc/net/protocols */
1939         return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1940 }
1941
1942 subsys_initcall(proto_init);
1943
1944 #endif /* PROC_FS */
1945
1946 EXPORT_SYMBOL(sk_alloc);
1947 EXPORT_SYMBOL(sk_free);
1948 EXPORT_SYMBOL(sk_send_sigurg);
1949 EXPORT_SYMBOL(sock_alloc_send_skb);
1950 EXPORT_SYMBOL(sock_init_data);
1951 EXPORT_SYMBOL(sock_kfree_s);
1952 EXPORT_SYMBOL(sock_kmalloc);
1953 EXPORT_SYMBOL(sock_no_accept);
1954 EXPORT_SYMBOL(sock_no_bind);
1955 EXPORT_SYMBOL(sock_no_connect);
1956 EXPORT_SYMBOL(sock_no_getname);
1957 EXPORT_SYMBOL(sock_no_getsockopt);
1958 EXPORT_SYMBOL(sock_no_ioctl);
1959 EXPORT_SYMBOL(sock_no_listen);
1960 EXPORT_SYMBOL(sock_no_mmap);
1961 EXPORT_SYMBOL(sock_no_poll);
1962 EXPORT_SYMBOL(sock_no_recvmsg);
1963 EXPORT_SYMBOL(sock_no_sendmsg);
1964 EXPORT_SYMBOL(sock_no_sendpage);
1965 EXPORT_SYMBOL(sock_no_setsockopt);
1966 EXPORT_SYMBOL(sock_no_shutdown);
1967 EXPORT_SYMBOL(sock_no_socketpair);
1968 EXPORT_SYMBOL(sock_rfree);
1969 EXPORT_SYMBOL(sock_setsockopt);
1970 EXPORT_SYMBOL(sock_wfree);
1971 EXPORT_SYMBOL(sock_wmalloc);
1972 EXPORT_SYMBOL(sock_i_uid);
1973 EXPORT_SYMBOL(sock_i_ino);
1974 EXPORT_SYMBOL(sysctl_optmem_max);
1975 #ifdef CONFIG_SYSCTL
1976 EXPORT_SYMBOL(sysctl_rmem_max);
1977 EXPORT_SYMBOL(sysctl_wmem_max);
1978 #endif