Subject: Re: [PATCH] Fix SUNRPC wakeup/execute race condition
[powerpc.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  * 
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 static int                      rpc_task_id;
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static kmem_cache_t     *rpc_task_slabp __read_mostly;
38 static kmem_cache_t     *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     __rpc_default_timer(struct rpc_task *task);
43 static void                     rpciod_killall(void);
44 static void                     rpc_async_schedule(void *);
45
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static RPC_WAITQ(delay_queue, "delayq");
50
51 /*
52  * All RPC tasks are linked into this list
53  */
54 static LIST_HEAD(all_tasks);
55
56 /*
57  * rpciod-related stuff
58  */
59 static DEFINE_MUTEX(rpciod_mutex);
60 static unsigned int             rpciod_users;
61 struct workqueue_struct *rpciod_workqueue;
62
63 /*
64  * Spinlock for other critical sections of code.
65  */
66 static DEFINE_SPINLOCK(rpc_sched_lock);
67
68 /*
69  * Disable the timer for a given RPC task. Should be called with
70  * queue->lock and bh_disabled in order to avoid races within
71  * rpc_run_timer().
72  */
73 static inline void
74 __rpc_disable_timer(struct rpc_task *task)
75 {
76         dprintk("RPC: %4d disabling timer\n", task->tk_pid);
77         task->tk_timeout_fn = NULL;
78         task->tk_timeout = 0;
79 }
80
81 /*
82  * Run a timeout function.
83  * We use the callback in order to allow __rpc_wake_up_task()
84  * and friends to disable the timer synchronously on SMP systems
85  * without calling del_timer_sync(). The latter could cause a
86  * deadlock if called while we're holding spinlocks...
87  */
88 static void rpc_run_timer(struct rpc_task *task)
89 {
90         void (*callback)(struct rpc_task *);
91
92         callback = task->tk_timeout_fn;
93         task->tk_timeout_fn = NULL;
94         if (callback && RPC_IS_QUEUED(task)) {
95                 dprintk("RPC: %4d running timer\n", task->tk_pid);
96                 callback(task);
97         }
98         smp_mb__before_clear_bit();
99         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
100         smp_mb__after_clear_bit();
101 }
102
103 /*
104  * Set up a timer for the current task.
105  */
106 static inline void
107 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
108 {
109         if (!task->tk_timeout)
110                 return;
111
112         dprintk("RPC: %4d setting alarm for %lu ms\n",
113                         task->tk_pid, task->tk_timeout * 1000 / HZ);
114
115         if (timer)
116                 task->tk_timeout_fn = timer;
117         else
118                 task->tk_timeout_fn = __rpc_default_timer;
119         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
120         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
121 }
122
123 /*
124  * Delete any timer for the current task. Because we use del_timer_sync(),
125  * this function should never be called while holding queue->lock.
126  */
127 static void
128 rpc_delete_timer(struct rpc_task *task)
129 {
130         if (RPC_IS_QUEUED(task))
131                 return;
132         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
133                 del_singleshot_timer_sync(&task->tk_timer);
134                 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
135         }
136 }
137
138 /*
139  * Add new request to a priority queue.
140  */
141 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
142 {
143         struct list_head *q;
144         struct rpc_task *t;
145
146         INIT_LIST_HEAD(&task->u.tk_wait.links);
147         q = &queue->tasks[task->tk_priority];
148         if (unlikely(task->tk_priority > queue->maxpriority))
149                 q = &queue->tasks[queue->maxpriority];
150         list_for_each_entry(t, q, u.tk_wait.list) {
151                 if (t->tk_cookie == task->tk_cookie) {
152                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153                         return;
154                 }
155         }
156         list_add_tail(&task->u.tk_wait.list, q);
157 }
158
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
168 {
169         BUG_ON (RPC_IS_QUEUED(task));
170
171         if (RPC_IS_PRIORITY(queue))
172                 __rpc_add_wait_queue_priority(queue, task);
173         else if (RPC_IS_SWAPPER(task))
174                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
175         else
176                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
177         task->u.tk_wait.rpc_waitq = queue;
178         queue->qlen++;
179         rpc_set_queued(task);
180
181         dprintk("RPC: %4d added to queue %p \"%s\"\n",
182                                 task->tk_pid, queue, rpc_qname(queue));
183 }
184
185 /*
186  * Remove request from a priority queue.
187  */
188 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
189 {
190         struct rpc_task *t;
191
192         if (!list_empty(&task->u.tk_wait.links)) {
193                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
194                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
195                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
196         }
197         list_del(&task->u.tk_wait.list);
198 }
199
200 /*
201  * Remove request from queue.
202  * Note: must be called with spin lock held.
203  */
204 static void __rpc_remove_wait_queue(struct rpc_task *task)
205 {
206         struct rpc_wait_queue *queue;
207         queue = task->u.tk_wait.rpc_waitq;
208
209         if (RPC_IS_PRIORITY(queue))
210                 __rpc_remove_wait_queue_priority(task);
211         else
212                 list_del(&task->u.tk_wait.list);
213         queue->qlen--;
214         dprintk("RPC: %4d removed from queue %p \"%s\"\n",
215                                 task->tk_pid, queue, rpc_qname(queue));
216 }
217
218 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
219 {
220         queue->priority = priority;
221         queue->count = 1 << (priority * 2);
222 }
223
224 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
225 {
226         queue->cookie = cookie;
227         queue->nr = RPC_BATCH_COUNT;
228 }
229
230 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
231 {
232         rpc_set_waitqueue_priority(queue, queue->maxpriority);
233         rpc_set_waitqueue_cookie(queue, 0);
234 }
235
236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
237 {
238         int i;
239
240         spin_lock_init(&queue->lock);
241         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
242                 INIT_LIST_HEAD(&queue->tasks[i]);
243         queue->maxpriority = maxprio;
244         rpc_reset_waitqueue_priority(queue);
245 #ifdef RPC_DEBUG
246         queue->name = qname;
247 #endif
248 }
249
250 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
251 {
252         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
253 }
254
255 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
256 {
257         __rpc_init_priority_wait_queue(queue, qname, 0);
258 }
259 EXPORT_SYMBOL(rpc_init_wait_queue);
260
261 static int rpc_wait_bit_interruptible(void *word)
262 {
263         if (signal_pending(current))
264                 return -ERESTARTSYS;
265         schedule();
266         return 0;
267 }
268
269 /*
270  * Mark an RPC call as having completed by clearing the 'active' bit
271  */
272 static inline void rpc_mark_complete_task(struct rpc_task *task)
273 {
274         rpc_clear_active(task);
275         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
276 }
277
278 /*
279  * Allow callers to wait for completion of an RPC call
280  */
281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
282 {
283         if (action == NULL)
284                 action = rpc_wait_bit_interruptible;
285         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
286                         action, TASK_INTERRUPTIBLE);
287 }
288 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
289
290 /*
291  * Make an RPC task runnable.
292  *
293  * Note: If the task is ASYNC, this must be called with 
294  * the spinlock held to protect the wait queue operation.
295  */
296 static void rpc_make_runnable(struct rpc_task *task)
297 {
298         BUG_ON(task->tk_timeout_fn);
299         rpc_clear_queued(task);
300         if (rpc_test_and_set_running(task))
301                 return;
302         /* We might have raced */
303         if (RPC_IS_QUEUED(task)) {
304                 rpc_clear_running(task);
305                 return;
306         }
307         if (RPC_IS_ASYNC(task)) {
308                 int status;
309
310                 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
311                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
312                 if (status < 0) {
313                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
314                         task->tk_status = status;
315                         return;
316                 }
317         } else
318                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
319 }
320
321 /*
322  * Prepare for sleeping on a wait queue.
323  * By always appending tasks to the list we ensure FIFO behavior.
324  * NB: An RPC task will only receive interrupt-driven events as long
325  * as it's on a wait queue.
326  */
327 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
328                         rpc_action action, rpc_action timer)
329 {
330         dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
331                                 rpc_qname(q), jiffies);
332
333         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
334                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
335                 return;
336         }
337
338         /* Mark the task as being activated if so needed */
339         rpc_set_active(task);
340
341         __rpc_add_wait_queue(q, task);
342
343         BUG_ON(task->tk_callback != NULL);
344         task->tk_callback = action;
345         __rpc_add_timer(task, timer);
346 }
347
348 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
349                                 rpc_action action, rpc_action timer)
350 {
351         /*
352          * Protect the queue operations.
353          */
354         spin_lock_bh(&q->lock);
355         __rpc_sleep_on(q, task, action, timer);
356         spin_unlock_bh(&q->lock);
357 }
358
359 /**
360  * __rpc_do_wake_up_task - wake up a single rpc_task
361  * @task: task to be woken up
362  *
363  * Caller must hold queue->lock, and have cleared the task queued flag.
364  */
365 static void __rpc_do_wake_up_task(struct rpc_task *task)
366 {
367         dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
368
369 #ifdef RPC_DEBUG
370         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
371 #endif
372         /* Has the task been executed yet? If not, we cannot wake it up! */
373         if (!RPC_IS_ACTIVATED(task)) {
374                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
375                 return;
376         }
377
378         __rpc_disable_timer(task);
379         __rpc_remove_wait_queue(task);
380
381         rpc_make_runnable(task);
382
383         dprintk("RPC:      __rpc_wake_up_task done\n");
384 }
385
386 /*
387  * Wake up the specified task
388  */
389 static void __rpc_wake_up_task(struct rpc_task *task)
390 {
391         if (rpc_start_wakeup(task)) {
392                 if (RPC_IS_QUEUED(task))
393                         __rpc_do_wake_up_task(task);
394                 rpc_finish_wakeup(task);
395         }
396 }
397
398 /*
399  * Default timeout handler if none specified by user
400  */
401 static void
402 __rpc_default_timer(struct rpc_task *task)
403 {
404         dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
405         task->tk_status = -ETIMEDOUT;
406         rpc_wake_up_task(task);
407 }
408
409 /*
410  * Wake up the specified task
411  */
412 void rpc_wake_up_task(struct rpc_task *task)
413 {
414         if (rpc_start_wakeup(task)) {
415                 if (RPC_IS_QUEUED(task)) {
416                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
417
418                         spin_lock_bh(&queue->lock);
419                         __rpc_do_wake_up_task(task);
420                         spin_unlock_bh(&queue->lock);
421                 }
422                 rpc_finish_wakeup(task);
423         }
424 }
425
426 /*
427  * Wake up the next task on a priority queue.
428  */
429 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
430 {
431         struct list_head *q;
432         struct rpc_task *task;
433
434         /*
435          * Service a batch of tasks from a single cookie.
436          */
437         q = &queue->tasks[queue->priority];
438         if (!list_empty(q)) {
439                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
440                 if (queue->cookie == task->tk_cookie) {
441                         if (--queue->nr)
442                                 goto out;
443                         list_move_tail(&task->u.tk_wait.list, q);
444                 }
445                 /*
446                  * Check if we need to switch queues.
447                  */
448                 if (--queue->count)
449                         goto new_cookie;
450         }
451
452         /*
453          * Service the next queue.
454          */
455         do {
456                 if (q == &queue->tasks[0])
457                         q = &queue->tasks[queue->maxpriority];
458                 else
459                         q = q - 1;
460                 if (!list_empty(q)) {
461                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
462                         goto new_queue;
463                 }
464         } while (q != &queue->tasks[queue->priority]);
465
466         rpc_reset_waitqueue_priority(queue);
467         return NULL;
468
469 new_queue:
470         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
471 new_cookie:
472         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
473 out:
474         __rpc_wake_up_task(task);
475         return task;
476 }
477
478 /*
479  * Wake up the next task on the wait queue.
480  */
481 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
482 {
483         struct rpc_task *task = NULL;
484
485         dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
486         spin_lock_bh(&queue->lock);
487         if (RPC_IS_PRIORITY(queue))
488                 task = __rpc_wake_up_next_priority(queue);
489         else {
490                 task_for_first(task, &queue->tasks[0])
491                         __rpc_wake_up_task(task);
492         }
493         spin_unlock_bh(&queue->lock);
494
495         return task;
496 }
497
498 /**
499  * rpc_wake_up - wake up all rpc_tasks
500  * @queue: rpc_wait_queue on which the tasks are sleeping
501  *
502  * Grabs queue->lock
503  */
504 void rpc_wake_up(struct rpc_wait_queue *queue)
505 {
506         struct rpc_task *task, *next;
507         struct list_head *head;
508
509         spin_lock_bh(&queue->lock);
510         head = &queue->tasks[queue->maxpriority];
511         for (;;) {
512                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
513                         __rpc_wake_up_task(task);
514                 if (head == &queue->tasks[0])
515                         break;
516                 head--;
517         }
518         spin_unlock_bh(&queue->lock);
519 }
520
521 /**
522  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
523  * @queue: rpc_wait_queue on which the tasks are sleeping
524  * @status: status value to set
525  *
526  * Grabs queue->lock
527  */
528 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
529 {
530         struct rpc_task *task, *next;
531         struct list_head *head;
532
533         spin_lock_bh(&queue->lock);
534         head = &queue->tasks[queue->maxpriority];
535         for (;;) {
536                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
537                         task->tk_status = status;
538                         __rpc_wake_up_task(task);
539                 }
540                 if (head == &queue->tasks[0])
541                         break;
542                 head--;
543         }
544         spin_unlock_bh(&queue->lock);
545 }
546
547 static void __rpc_atrun(struct rpc_task *task)
548 {
549         rpc_wake_up_task(task);
550 }
551
552 /*
553  * Run a task at a later time
554  */
555 void rpc_delay(struct rpc_task *task, unsigned long delay)
556 {
557         task->tk_timeout = delay;
558         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
559 }
560
561 /*
562  * Helper to call task->tk_ops->rpc_call_prepare
563  */
564 static void rpc_prepare_task(struct rpc_task *task)
565 {
566         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
567 }
568
569 /*
570  * Helper that calls task->tk_ops->rpc_call_done if it exists
571  */
572 void rpc_exit_task(struct rpc_task *task)
573 {
574         task->tk_action = NULL;
575         if (task->tk_ops->rpc_call_done != NULL) {
576                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
577                 if (task->tk_action != NULL) {
578                         WARN_ON(RPC_ASSASSINATED(task));
579                         /* Always release the RPC slot and buffer memory */
580                         xprt_release(task);
581                 }
582         }
583 }
584 EXPORT_SYMBOL(rpc_exit_task);
585
586 /*
587  * This is the RPC `scheduler' (or rather, the finite state machine).
588  */
589 static int __rpc_execute(struct rpc_task *task)
590 {
591         int             status = 0;
592
593         dprintk("RPC: %4d rpc_execute flgs %x\n",
594                                 task->tk_pid, task->tk_flags);
595
596         BUG_ON(RPC_IS_QUEUED(task));
597
598         for (;;) {
599                 /*
600                  * Garbage collection of pending timers...
601                  */
602                 rpc_delete_timer(task);
603
604                 /*
605                  * Execute any pending callback.
606                  */
607                 if (RPC_DO_CALLBACK(task)) {
608                         /* Define a callback save pointer */
609                         void (*save_callback)(struct rpc_task *);
610         
611                         /* 
612                          * If a callback exists, save it, reset it,
613                          * call it.
614                          * The save is needed to stop from resetting
615                          * another callback set within the callback handler
616                          * - Dave
617                          */
618                         save_callback=task->tk_callback;
619                         task->tk_callback=NULL;
620                         lock_kernel();
621                         save_callback(task);
622                         unlock_kernel();
623                 }
624
625                 /*
626                  * Perform the next FSM step.
627                  * tk_action may be NULL when the task has been killed
628                  * by someone else.
629                  */
630                 if (!RPC_IS_QUEUED(task)) {
631                         if (task->tk_action == NULL)
632                                 break;
633                         lock_kernel();
634                         task->tk_action(task);
635                         unlock_kernel();
636                 }
637
638                 /*
639                  * Lockless check for whether task is sleeping or not.
640                  */
641                 if (!RPC_IS_QUEUED(task))
642                         continue;
643                 rpc_clear_running(task);
644                 if (RPC_IS_ASYNC(task)) {
645                         /* Careful! we may have raced... */
646                         if (RPC_IS_QUEUED(task))
647                                 return 0;
648                         if (rpc_test_and_set_running(task))
649                                 return 0;
650                         continue;
651                 }
652
653                 /* sync task: sleep here */
654                 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
655                 /* Note: Caller should be using rpc_clnt_sigmask() */
656                 status = out_of_line_wait_on_bit(&task->tk_runstate,
657                                 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
658                                 TASK_INTERRUPTIBLE);
659                 if (status == -ERESTARTSYS) {
660                         /*
661                          * When a sync task receives a signal, it exits with
662                          * -ERESTARTSYS. In order to catch any callbacks that
663                          * clean up after sleeping on some queue, we don't
664                          * break the loop here, but go around once more.
665                          */
666                         dprintk("RPC: %4d got signal\n", task->tk_pid);
667                         task->tk_flags |= RPC_TASK_KILLED;
668                         rpc_exit(task, -ERESTARTSYS);
669                         rpc_wake_up_task(task);
670                 }
671                 rpc_set_running(task);
672                 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
673         }
674
675         dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
676         /* Wake up anyone who is waiting for task completion */
677         rpc_mark_complete_task(task);
678         /* Release all resources associated with the task */
679         rpc_release_task(task);
680         return status;
681 }
682
683 /*
684  * User-visible entry point to the scheduler.
685  *
686  * This may be called recursively if e.g. an async NFS task updates
687  * the attributes and finds that dirty pages must be flushed.
688  * NOTE: Upon exit of this function the task is guaranteed to be
689  *       released. In particular note that tk_release() will have
690  *       been called, so your task memory may have been freed.
691  */
692 int
693 rpc_execute(struct rpc_task *task)
694 {
695         rpc_set_active(task);
696         rpc_set_running(task);
697         return __rpc_execute(task);
698 }
699
700 static void rpc_async_schedule(void *arg)
701 {
702         __rpc_execute((struct rpc_task *)arg);
703 }
704
705 /**
706  * rpc_malloc - allocate an RPC buffer
707  * @task: RPC task that will use this buffer
708  * @size: requested byte size
709  *
710  * We try to ensure that some NFS reads and writes can always proceed
711  * by using a mempool when allocating 'small' buffers.
712  * In order to avoid memory starvation triggering more writebacks of
713  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
714  */
715 void * rpc_malloc(struct rpc_task *task, size_t size)
716 {
717         struct rpc_rqst *req = task->tk_rqstp;
718         gfp_t   gfp;
719
720         if (task->tk_flags & RPC_TASK_SWAPPER)
721                 gfp = GFP_ATOMIC;
722         else
723                 gfp = GFP_NOFS;
724
725         if (size > RPC_BUFFER_MAXSIZE) {
726                 req->rq_buffer = kmalloc(size, gfp);
727                 if (req->rq_buffer)
728                         req->rq_bufsize = size;
729         } else {
730                 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
731                 if (req->rq_buffer)
732                         req->rq_bufsize = RPC_BUFFER_MAXSIZE;
733         }
734         return req->rq_buffer;
735 }
736
737 /**
738  * rpc_free - free buffer allocated via rpc_malloc
739  * @task: RPC task with a buffer to be freed
740  *
741  */
742 void rpc_free(struct rpc_task *task)
743 {
744         struct rpc_rqst *req = task->tk_rqstp;
745
746         if (req->rq_buffer) {
747                 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
748                         mempool_free(req->rq_buffer, rpc_buffer_mempool);
749                 else
750                         kfree(req->rq_buffer);
751                 req->rq_buffer = NULL;
752                 req->rq_bufsize = 0;
753         }
754 }
755
756 /*
757  * Creation and deletion of RPC task structures
758  */
759 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
760 {
761         memset(task, 0, sizeof(*task));
762         init_timer(&task->tk_timer);
763         task->tk_timer.data     = (unsigned long) task;
764         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
765         atomic_set(&task->tk_count, 1);
766         task->tk_client = clnt;
767         task->tk_flags  = flags;
768         task->tk_ops = tk_ops;
769         if (tk_ops->rpc_call_prepare != NULL)
770                 task->tk_action = rpc_prepare_task;
771         task->tk_calldata = calldata;
772
773         /* Initialize retry counters */
774         task->tk_garb_retry = 2;
775         task->tk_cred_retry = 2;
776
777         task->tk_priority = RPC_PRIORITY_NORMAL;
778         task->tk_cookie = (unsigned long)current;
779
780         /* Initialize workqueue for async tasks */
781         task->tk_workqueue = rpciod_workqueue;
782
783         if (clnt) {
784                 atomic_inc(&clnt->cl_users);
785                 if (clnt->cl_softrtry)
786                         task->tk_flags |= RPC_TASK_SOFT;
787                 if (!clnt->cl_intr)
788                         task->tk_flags |= RPC_TASK_NOINTR;
789         }
790
791 #ifdef RPC_DEBUG
792         task->tk_magic = RPC_TASK_MAGIC_ID;
793         task->tk_pid = rpc_task_id++;
794 #endif
795         /* Add to global list of all tasks */
796         spin_lock(&rpc_sched_lock);
797         list_add_tail(&task->tk_task, &all_tasks);
798         spin_unlock(&rpc_sched_lock);
799
800         BUG_ON(task->tk_ops == NULL);
801
802         /* starting timestamp */
803         task->tk_start = jiffies;
804
805         dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
806                                 current->pid);
807 }
808
809 static struct rpc_task *
810 rpc_alloc_task(void)
811 {
812         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
813 }
814
815 static void rpc_free_task(struct rpc_task *task)
816 {
817         dprintk("RPC: %4d freeing task\n", task->tk_pid);
818         mempool_free(task, rpc_task_mempool);
819 }
820
821 /*
822  * Create a new task for the specified client.  We have to
823  * clean up after an allocation failure, as the client may
824  * have specified "oneshot".
825  */
826 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
827 {
828         struct rpc_task *task;
829
830         task = rpc_alloc_task();
831         if (!task)
832                 goto cleanup;
833
834         rpc_init_task(task, clnt, flags, tk_ops, calldata);
835
836         dprintk("RPC: %4d allocated task\n", task->tk_pid);
837         task->tk_flags |= RPC_TASK_DYNAMIC;
838 out:
839         return task;
840
841 cleanup:
842         /* Check whether to release the client */
843         if (clnt) {
844                 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
845                         atomic_read(&clnt->cl_users), clnt->cl_oneshot);
846                 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
847                 rpc_release_client(clnt);
848         }
849         goto out;
850 }
851
852 void rpc_release_task(struct rpc_task *task)
853 {
854         const struct rpc_call_ops *tk_ops = task->tk_ops;
855         void *calldata = task->tk_calldata;
856
857 #ifdef RPC_DEBUG
858         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
859 #endif
860         if (!atomic_dec_and_test(&task->tk_count))
861                 return;
862         dprintk("RPC: %4d release task\n", task->tk_pid);
863
864         /* Remove from global task list */
865         spin_lock(&rpc_sched_lock);
866         list_del(&task->tk_task);
867         spin_unlock(&rpc_sched_lock);
868
869         BUG_ON (RPC_IS_QUEUED(task));
870
871         /* Synchronously delete any running timer */
872         rpc_delete_timer(task);
873
874         /* Release resources */
875         if (task->tk_rqstp)
876                 xprt_release(task);
877         if (task->tk_msg.rpc_cred)
878                 rpcauth_unbindcred(task);
879         if (task->tk_client) {
880                 rpc_release_client(task->tk_client);
881                 task->tk_client = NULL;
882         }
883
884 #ifdef RPC_DEBUG
885         task->tk_magic = 0;
886 #endif
887         if (task->tk_flags & RPC_TASK_DYNAMIC)
888                 rpc_free_task(task);
889         if (tk_ops->rpc_release)
890                 tk_ops->rpc_release(calldata);
891 }
892
893 /**
894  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
895  * @clnt: pointer to RPC client
896  * @flags: RPC flags
897  * @ops: RPC call ops
898  * @data: user call data
899  */
900 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
901                                         const struct rpc_call_ops *ops,
902                                         void *data)
903 {
904         struct rpc_task *task;
905         task = rpc_new_task(clnt, flags, ops, data);
906         if (task == NULL) {
907                 if (ops->rpc_release != NULL)
908                         ops->rpc_release(data);
909                 return ERR_PTR(-ENOMEM);
910         }
911         atomic_inc(&task->tk_count);
912         rpc_execute(task);
913         return task;
914 }
915 EXPORT_SYMBOL(rpc_run_task);
916
917 /*
918  * Kill all tasks for the given client.
919  * XXX: kill their descendants as well?
920  */
921 void rpc_killall_tasks(struct rpc_clnt *clnt)
922 {
923         struct rpc_task *rovr;
924         struct list_head *le;
925
926         dprintk("RPC:      killing all tasks for client %p\n", clnt);
927
928         /*
929          * Spin lock all_tasks to prevent changes...
930          */
931         spin_lock(&rpc_sched_lock);
932         alltask_for_each(rovr, le, &all_tasks) {
933                 if (! RPC_IS_ACTIVATED(rovr))
934                         continue;
935                 if (!clnt || rovr->tk_client == clnt) {
936                         rovr->tk_flags |= RPC_TASK_KILLED;
937                         rpc_exit(rovr, -EIO);
938                         rpc_wake_up_task(rovr);
939                 }
940         }
941         spin_unlock(&rpc_sched_lock);
942 }
943
944 static DECLARE_MUTEX_LOCKED(rpciod_running);
945
946 static void rpciod_killall(void)
947 {
948         unsigned long flags;
949
950         while (!list_empty(&all_tasks)) {
951                 clear_thread_flag(TIF_SIGPENDING);
952                 rpc_killall_tasks(NULL);
953                 flush_workqueue(rpciod_workqueue);
954                 if (!list_empty(&all_tasks)) {
955                         dprintk("rpciod_killall: waiting for tasks to exit\n");
956                         yield();
957                 }
958         }
959
960         spin_lock_irqsave(&current->sighand->siglock, flags);
961         recalc_sigpending();
962         spin_unlock_irqrestore(&current->sighand->siglock, flags);
963 }
964
965 /*
966  * Start up the rpciod process if it's not already running.
967  */
968 int
969 rpciod_up(void)
970 {
971         struct workqueue_struct *wq;
972         int error = 0;
973
974         mutex_lock(&rpciod_mutex);
975         dprintk("rpciod_up: users %d\n", rpciod_users);
976         rpciod_users++;
977         if (rpciod_workqueue)
978                 goto out;
979         /*
980          * If there's no pid, we should be the first user.
981          */
982         if (rpciod_users > 1)
983                 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
984         /*
985          * Create the rpciod thread and wait for it to start.
986          */
987         error = -ENOMEM;
988         wq = create_workqueue("rpciod");
989         if (wq == NULL) {
990                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
991                 rpciod_users--;
992                 goto out;
993         }
994         rpciod_workqueue = wq;
995         error = 0;
996 out:
997         mutex_unlock(&rpciod_mutex);
998         return error;
999 }
1000
1001 void
1002 rpciod_down(void)
1003 {
1004         mutex_lock(&rpciod_mutex);
1005         dprintk("rpciod_down sema %d\n", rpciod_users);
1006         if (rpciod_users) {
1007                 if (--rpciod_users)
1008                         goto out;
1009         } else
1010                 printk(KERN_WARNING "rpciod_down: no users??\n");
1011
1012         if (!rpciod_workqueue) {
1013                 dprintk("rpciod_down: Nothing to do!\n");
1014                 goto out;
1015         }
1016         rpciod_killall();
1017
1018         destroy_workqueue(rpciod_workqueue);
1019         rpciod_workqueue = NULL;
1020  out:
1021         mutex_unlock(&rpciod_mutex);
1022 }
1023
1024 #ifdef RPC_DEBUG
1025 void rpc_show_tasks(void)
1026 {
1027         struct list_head *le;
1028         struct rpc_task *t;
1029
1030         spin_lock(&rpc_sched_lock);
1031         if (list_empty(&all_tasks)) {
1032                 spin_unlock(&rpc_sched_lock);
1033                 return;
1034         }
1035         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1036                 "-rpcwait -action- ---ops--\n");
1037         alltask_for_each(t, le, &all_tasks) {
1038                 const char *rpc_waitq = "none";
1039
1040                 if (RPC_IS_QUEUED(t))
1041                         rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1042
1043                 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1044                         t->tk_pid,
1045                         (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1046                         t->tk_flags, t->tk_status,
1047                         t->tk_client,
1048                         (t->tk_client ? t->tk_client->cl_prog : 0),
1049                         t->tk_rqstp, t->tk_timeout,
1050                         rpc_waitq,
1051                         t->tk_action, t->tk_ops);
1052         }
1053         spin_unlock(&rpc_sched_lock);
1054 }
1055 #endif
1056
1057 void
1058 rpc_destroy_mempool(void)
1059 {
1060         if (rpc_buffer_mempool)
1061                 mempool_destroy(rpc_buffer_mempool);
1062         if (rpc_task_mempool)
1063                 mempool_destroy(rpc_task_mempool);
1064         if (rpc_task_slabp)
1065                 kmem_cache_destroy(rpc_task_slabp);
1066         if (rpc_buffer_slabp)
1067                 kmem_cache_destroy(rpc_buffer_slabp);
1068 }
1069
1070 int
1071 rpc_init_mempool(void)
1072 {
1073         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1074                                              sizeof(struct rpc_task),
1075                                              0, SLAB_HWCACHE_ALIGN,
1076                                              NULL, NULL);
1077         if (!rpc_task_slabp)
1078                 goto err_nomem;
1079         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1080                                              RPC_BUFFER_MAXSIZE,
1081                                              0, SLAB_HWCACHE_ALIGN,
1082                                              NULL, NULL);
1083         if (!rpc_buffer_slabp)
1084                 goto err_nomem;
1085         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1086                                                     rpc_task_slabp);
1087         if (!rpc_task_mempool)
1088                 goto err_nomem;
1089         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1090                                                       rpc_buffer_slabp);
1091         if (!rpc_buffer_mempool)
1092                 goto err_nomem;
1093         return 0;
1094 err_nomem:
1095         rpc_destroy_mempool();
1096         return -ENOMEM;
1097 }