Auto-update from upstream
[powerpc.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *  BUGS:
6  *    --
7  *
8  *  TODO:
9  *    --
10  *
11  *   This program is free software; you can redistribute it and/or modify
12  *   it under the terms of the GNU General Public License as published by
13  *   the Free Software Foundation; either version 2 of the License, or
14  *   (at your option) any later version.
15  *
16  *   This program is distributed in the hope that it will be useful,
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *   GNU General Public License for more details.
20  *
21  *   You should have received a copy of the GNU General Public License
22  *   along with this program; if not, write to the Free Software
23  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
24  *
25  */
26
27 #include <sound/driver.h>
28 #include <linux/delay.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35
36 #include <sound/core.h>
37 #include <sound/control.h>
38 #include <sound/info.h>
39 #include <sound/ymfpci.h>
40 #include <sound/asoundef.h>
41 #include <sound/mpu401.h>
42
43 #include <asm/io.h>
44
45 /*
46  *  constants
47  */
48
49 /*
50  *  common I/O routines
51  */
52
53 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
54
55 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
56 {
57         return readb(chip->reg_area_virt + offset);
58 }
59
60 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
61 {
62         writeb(val, chip->reg_area_virt + offset);
63 }
64
65 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
66 {
67         return readw(chip->reg_area_virt + offset);
68 }
69
70 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
71 {
72         writew(val, chip->reg_area_virt + offset);
73 }
74
75 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
76 {
77         return readl(chip->reg_area_virt + offset);
78 }
79
80 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
81 {
82         writel(val, chip->reg_area_virt + offset);
83 }
84
85 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
86 {
87         unsigned long end_time;
88         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
89         
90         end_time = jiffies + msecs_to_jiffies(750);
91         do {
92                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
93                         return 0;
94                 set_current_state(TASK_UNINTERRUPTIBLE);
95                 schedule_timeout_uninterruptible(1);
96         } while (time_before(jiffies, end_time));
97         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
98         return -EBUSY;
99 }
100
101 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
102 {
103         struct snd_ymfpci *chip = ac97->private_data;
104         u32 cmd;
105         
106         snd_ymfpci_codec_ready(chip, 0);
107         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
108         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
109 }
110
111 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
112 {
113         struct snd_ymfpci *chip = ac97->private_data;
114
115         if (snd_ymfpci_codec_ready(chip, 0))
116                 return ~0;
117         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
118         if (snd_ymfpci_codec_ready(chip, 0))
119                 return ~0;
120         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
121                 int i;
122                 for (i = 0; i < 600; i++)
123                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
124         }
125         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
126 }
127
128 /*
129  *  Misc routines
130  */
131
132 static u32 snd_ymfpci_calc_delta(u32 rate)
133 {
134         switch (rate) {
135         case 8000:      return 0x02aaab00;
136         case 11025:     return 0x03accd00;
137         case 16000:     return 0x05555500;
138         case 22050:     return 0x07599a00;
139         case 32000:     return 0x0aaaab00;
140         case 44100:     return 0x0eb33300;
141         default:        return ((rate << 16) / 375) << 5;
142         }
143 }
144
145 static u32 def_rate[8] = {
146         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
147 };
148
149 static u32 snd_ymfpci_calc_lpfK(u32 rate)
150 {
151         u32 i;
152         static u32 val[8] = {
153                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
154                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
155         };
156         
157         if (rate == 44100)
158                 return 0x40000000;      /* FIXME: What's the right value? */
159         for (i = 0; i < 8; i++)
160                 if (rate <= def_rate[i])
161                         return val[i];
162         return val[0];
163 }
164
165 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
166 {
167         u32 i;
168         static u32 val[8] = {
169                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
170                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
171         };
172         
173         if (rate == 44100)
174                 return 0x370A0000;
175         for (i = 0; i < 8; i++)
176                 if (rate <= def_rate[i])
177                         return val[i];
178         return val[0];
179 }
180
181 /*
182  *  Hardware start management
183  */
184
185 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
186 {
187         unsigned long flags;
188
189         spin_lock_irqsave(&chip->reg_lock, flags);
190         if (chip->start_count++ > 0)
191                 goto __end;
192         snd_ymfpci_writel(chip, YDSXGR_MODE,
193                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
194         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
195       __end:
196         spin_unlock_irqrestore(&chip->reg_lock, flags);
197 }
198
199 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
200 {
201         unsigned long flags;
202         long timeout = 1000;
203
204         spin_lock_irqsave(&chip->reg_lock, flags);
205         if (--chip->start_count > 0)
206                 goto __end;
207         snd_ymfpci_writel(chip, YDSXGR_MODE,
208                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
209         while (timeout-- > 0) {
210                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
211                         break;
212         }
213         if (atomic_read(&chip->interrupt_sleep_count)) {
214                 atomic_set(&chip->interrupt_sleep_count, 0);
215                 wake_up(&chip->interrupt_sleep);
216         }
217       __end:
218         spin_unlock_irqrestore(&chip->reg_lock, flags);
219 }
220
221 /*
222  *  Playback voice management
223  */
224
225 static int voice_alloc(struct snd_ymfpci *chip,
226                        enum snd_ymfpci_voice_type type, int pair,
227                        struct snd_ymfpci_voice **rvoice)
228 {
229         struct snd_ymfpci_voice *voice, *voice2;
230         int idx;
231         
232         *rvoice = NULL;
233         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
234                 voice = &chip->voices[idx];
235                 voice2 = pair ? &chip->voices[idx+1] : NULL;
236                 if (voice->use || (voice2 && voice2->use))
237                         continue;
238                 voice->use = 1;
239                 if (voice2)
240                         voice2->use = 1;
241                 switch (type) {
242                 case YMFPCI_PCM:
243                         voice->pcm = 1;
244                         if (voice2)
245                                 voice2->pcm = 1;
246                         break;
247                 case YMFPCI_SYNTH:
248                         voice->synth = 1;
249                         break;
250                 case YMFPCI_MIDI:
251                         voice->midi = 1;
252                         break;
253                 }
254                 snd_ymfpci_hw_start(chip);
255                 if (voice2)
256                         snd_ymfpci_hw_start(chip);
257                 *rvoice = voice;
258                 return 0;
259         }
260         return -ENOMEM;
261 }
262
263 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
264                                   enum snd_ymfpci_voice_type type, int pair,
265                                   struct snd_ymfpci_voice **rvoice)
266 {
267         unsigned long flags;
268         int result;
269         
270         snd_assert(rvoice != NULL, return -EINVAL);
271         snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
272         
273         spin_lock_irqsave(&chip->voice_lock, flags);
274         for (;;) {
275                 result = voice_alloc(chip, type, pair, rvoice);
276                 if (result == 0 || type != YMFPCI_PCM)
277                         break;
278                 /* TODO: synth/midi voice deallocation */
279                 break;
280         }
281         spin_unlock_irqrestore(&chip->voice_lock, flags);       
282         return result;          
283 }
284
285 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
286 {
287         unsigned long flags;
288         
289         snd_assert(pvoice != NULL, return -EINVAL);
290         snd_ymfpci_hw_stop(chip);
291         spin_lock_irqsave(&chip->voice_lock, flags);
292         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
293         pvoice->ypcm = NULL;
294         pvoice->interrupt = NULL;
295         spin_unlock_irqrestore(&chip->voice_lock, flags);
296         return 0;
297 }
298
299 /*
300  *  PCM part
301  */
302
303 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
304 {
305         struct snd_ymfpci_pcm *ypcm;
306         u32 pos, delta;
307         
308         if ((ypcm = voice->ypcm) == NULL)
309                 return;
310         if (ypcm->substream == NULL)
311                 return;
312         spin_lock(&chip->reg_lock);
313         if (ypcm->running) {
314                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
315                 if (pos < ypcm->last_pos)
316                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
317                 else
318                         delta = pos - ypcm->last_pos;
319                 ypcm->period_pos += delta;
320                 ypcm->last_pos = pos;
321                 if (ypcm->period_pos >= ypcm->period_size) {
322                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
323                         ypcm->period_pos %= ypcm->period_size;
324                         spin_unlock(&chip->reg_lock);
325                         snd_pcm_period_elapsed(ypcm->substream);
326                         spin_lock(&chip->reg_lock);
327                 }
328
329                 if (unlikely(ypcm->update_pcm_vol)) {
330                         unsigned int subs = ypcm->substream->number;
331                         unsigned int next_bank = 1 - chip->active_bank;
332                         struct snd_ymfpci_playback_bank *bank;
333                         u32 volume;
334                         
335                         bank = &voice->bank[next_bank];
336                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
337                         bank->left_gain_end = volume;
338                         if (ypcm->output_rear)
339                                 bank->eff2_gain_end = volume;
340                         if (ypcm->voices[1])
341                                 bank = &ypcm->voices[1]->bank[next_bank];
342                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
343                         bank->right_gain_end = volume;
344                         if (ypcm->output_rear)
345                                 bank->eff3_gain_end = volume;
346                         ypcm->update_pcm_vol--;
347                 }
348         }
349         spin_unlock(&chip->reg_lock);
350 }
351
352 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
353 {
354         struct snd_pcm_runtime *runtime = substream->runtime;
355         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
356         struct snd_ymfpci *chip = ypcm->chip;
357         u32 pos, delta;
358         
359         spin_lock(&chip->reg_lock);
360         if (ypcm->running) {
361                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
362                 if (pos < ypcm->last_pos)
363                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
364                 else
365                         delta = pos - ypcm->last_pos;
366                 ypcm->period_pos += delta;
367                 ypcm->last_pos = pos;
368                 if (ypcm->period_pos >= ypcm->period_size) {
369                         ypcm->period_pos %= ypcm->period_size;
370                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
371                         spin_unlock(&chip->reg_lock);
372                         snd_pcm_period_elapsed(substream);
373                         spin_lock(&chip->reg_lock);
374                 }
375         }
376         spin_unlock(&chip->reg_lock);
377 }
378
379 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
380                                        int cmd)
381 {
382         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
383         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
384         int result = 0;
385
386         spin_lock(&chip->reg_lock);
387         if (ypcm->voices[0] == NULL) {
388                 result = -EINVAL;
389                 goto __unlock;
390         }
391         switch (cmd) {
392         case SNDRV_PCM_TRIGGER_START:
393         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
394         case SNDRV_PCM_TRIGGER_RESUME:
395                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
396                 if (ypcm->voices[1] != NULL)
397                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
398                 ypcm->running = 1;
399                 break;
400         case SNDRV_PCM_TRIGGER_STOP:
401         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
402         case SNDRV_PCM_TRIGGER_SUSPEND:
403                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
404                 if (ypcm->voices[1] != NULL)
405                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
406                 ypcm->running = 0;
407                 break;
408         default:
409                 result = -EINVAL;
410                 break;
411         }
412       __unlock:
413         spin_unlock(&chip->reg_lock);
414         return result;
415 }
416 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
417                                       int cmd)
418 {
419         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
420         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
421         int result = 0;
422         u32 tmp;
423
424         spin_lock(&chip->reg_lock);
425         switch (cmd) {
426         case SNDRV_PCM_TRIGGER_START:
427         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
428         case SNDRV_PCM_TRIGGER_RESUME:
429                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
430                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
431                 ypcm->running = 1;
432                 break;
433         case SNDRV_PCM_TRIGGER_STOP:
434         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
435         case SNDRV_PCM_TRIGGER_SUSPEND:
436                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
437                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
438                 ypcm->running = 0;
439                 break;
440         default:
441                 result = -EINVAL;
442                 break;
443         }
444         spin_unlock(&chip->reg_lock);
445         return result;
446 }
447
448 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
449 {
450         int err;
451
452         if (ypcm->voices[1] != NULL && voices < 2) {
453                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
454                 ypcm->voices[1] = NULL;
455         }
456         if (voices == 1 && ypcm->voices[0] != NULL)
457                 return 0;               /* already allocated */
458         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
459                 return 0;               /* already allocated */
460         if (voices > 1) {
461                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
462                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
463                         ypcm->voices[0] = NULL;
464                 }               
465         }
466         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
467         if (err < 0)
468                 return err;
469         ypcm->voices[0]->ypcm = ypcm;
470         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
471         if (voices > 1) {
472                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
473                 ypcm->voices[1]->ypcm = ypcm;
474         }
475         return 0;
476 }
477
478 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
479                                       struct snd_pcm_runtime *runtime,
480                                       int has_pcm_volume)
481 {
482         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
483         u32 format;
484         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
485         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
486         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
487         struct snd_ymfpci_playback_bank *bank;
488         unsigned int nbank;
489         u32 vol_left, vol_right;
490         u8 use_left, use_right;
491
492         snd_assert(voice != NULL, return);
493         if (runtime->channels == 1) {
494                 use_left = 1;
495                 use_right = 1;
496         } else {
497                 use_left = (voiceidx & 1) == 0;
498                 use_right = !use_left;
499         }
500         if (has_pcm_volume) {
501                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
502                                        [ypcm->substream->number].left << 15);
503                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
504                                         [ypcm->substream->number].right << 15);
505         } else {
506                 vol_left = cpu_to_le32(0x40000000);
507                 vol_right = cpu_to_le32(0x40000000);
508         }
509         format = runtime->channels == 2 ? 0x00010000 : 0;
510         if (snd_pcm_format_width(runtime->format) == 8)
511                 format |= 0x80000000;
512         if (runtime->channels == 2 && (voiceidx & 1) != 0)
513                 format |= 1;
514         for (nbank = 0; nbank < 2; nbank++) {
515                 bank = &voice->bank[nbank];
516                 memset(bank, 0, sizeof(*bank));
517                 bank->format = cpu_to_le32(format);
518                 bank->base = cpu_to_le32(runtime->dma_addr);
519                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
520                 bank->lpfQ = cpu_to_le32(lpfQ);
521                 bank->delta =
522                 bank->delta_end = cpu_to_le32(delta);
523                 bank->lpfK =
524                 bank->lpfK_end = cpu_to_le32(lpfK);
525                 bank->eg_gain =
526                 bank->eg_gain_end = cpu_to_le32(0x40000000);
527
528                 if (ypcm->output_front) {
529                         if (use_left) {
530                                 bank->left_gain =
531                                 bank->left_gain_end = vol_left;
532                         }
533                         if (use_right) {
534                                 bank->right_gain =
535                                 bank->right_gain_end = vol_right;
536                         }
537                 }
538                 if (ypcm->output_rear) {
539                         if (use_left) {
540                                 bank->eff2_gain =
541                                 bank->eff2_gain_end = vol_left;
542                         }
543                         if (use_right) {
544                                 bank->eff3_gain =
545                                 bank->eff3_gain_end = vol_right;
546                         }
547                 }
548         }
549 }
550
551 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
552 {
553         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
554                                 4096, &chip->ac3_tmp_base) < 0)
555                 return -ENOMEM;
556
557         chip->bank_effect[3][0]->base =
558         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
559         chip->bank_effect[3][0]->loop_end =
560         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
561         chip->bank_effect[4][0]->base =
562         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
563         chip->bank_effect[4][0]->loop_end =
564         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
565
566         spin_lock_irq(&chip->reg_lock);
567         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
568                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
569         spin_unlock_irq(&chip->reg_lock);
570         return 0;
571 }
572
573 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
574 {
575         spin_lock_irq(&chip->reg_lock);
576         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
577                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
578         spin_unlock_irq(&chip->reg_lock);
579         // snd_ymfpci_irq_wait(chip);
580         if (chip->ac3_tmp_base.area) {
581                 snd_dma_free_pages(&chip->ac3_tmp_base);
582                 chip->ac3_tmp_base.area = NULL;
583         }
584         return 0;
585 }
586
587 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
588                                          struct snd_pcm_hw_params *hw_params)
589 {
590         struct snd_pcm_runtime *runtime = substream->runtime;
591         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
592         int err;
593
594         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
595                 return err;
596         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
597                 return err;
598         return 0;
599 }
600
601 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
602 {
603         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
604         struct snd_pcm_runtime *runtime = substream->runtime;
605         struct snd_ymfpci_pcm *ypcm;
606         
607         if (runtime->private_data == NULL)
608                 return 0;
609         ypcm = runtime->private_data;
610
611         /* wait, until the PCI operations are not finished */
612         snd_ymfpci_irq_wait(chip);
613         snd_pcm_lib_free_pages(substream);
614         if (ypcm->voices[1]) {
615                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
616                 ypcm->voices[1] = NULL;
617         }
618         if (ypcm->voices[0]) {
619                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
620                 ypcm->voices[0] = NULL;
621         }
622         return 0;
623 }
624
625 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
626 {
627         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
628         struct snd_pcm_runtime *runtime = substream->runtime;
629         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
630         unsigned int nvoice;
631
632         ypcm->period_size = runtime->period_size;
633         ypcm->buffer_size = runtime->buffer_size;
634         ypcm->period_pos = 0;
635         ypcm->last_pos = 0;
636         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
637                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
638                                           substream->pcm == chip->pcm);
639         return 0;
640 }
641
642 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
643                                         struct snd_pcm_hw_params *hw_params)
644 {
645         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
646 }
647
648 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
649 {
650         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
651
652         /* wait, until the PCI operations are not finished */
653         snd_ymfpci_irq_wait(chip);
654         return snd_pcm_lib_free_pages(substream);
655 }
656
657 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
658 {
659         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
660         struct snd_pcm_runtime *runtime = substream->runtime;
661         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
662         struct snd_ymfpci_capture_bank * bank;
663         int nbank;
664         u32 rate, format;
665
666         ypcm->period_size = runtime->period_size;
667         ypcm->buffer_size = runtime->buffer_size;
668         ypcm->period_pos = 0;
669         ypcm->last_pos = 0;
670         ypcm->shift = 0;
671         rate = ((48000 * 4096) / runtime->rate) - 1;
672         format = 0;
673         if (runtime->channels == 2) {
674                 format |= 2;
675                 ypcm->shift++;
676         }
677         if (snd_pcm_format_width(runtime->format) == 8)
678                 format |= 1;
679         else
680                 ypcm->shift++;
681         switch (ypcm->capture_bank_number) {
682         case 0:
683                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
684                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
685                 break;
686         case 1:
687                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
688                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
689                 break;
690         }
691         for (nbank = 0; nbank < 2; nbank++) {
692                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
693                 bank->base = cpu_to_le32(runtime->dma_addr);
694                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
695                 bank->start = 0;
696                 bank->num_of_loops = 0;
697         }
698         return 0;
699 }
700
701 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
702 {
703         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
704         struct snd_pcm_runtime *runtime = substream->runtime;
705         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
706         struct snd_ymfpci_voice *voice = ypcm->voices[0];
707
708         if (!(ypcm->running && voice))
709                 return 0;
710         return le32_to_cpu(voice->bank[chip->active_bank].start);
711 }
712
713 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
714 {
715         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
716         struct snd_pcm_runtime *runtime = substream->runtime;
717         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
718
719         if (!ypcm->running)
720                 return 0;
721         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
722 }
723
724 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
725 {
726         wait_queue_t wait;
727         int loops = 4;
728
729         while (loops-- > 0) {
730                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
731                         continue;
732                 init_waitqueue_entry(&wait, current);
733                 add_wait_queue(&chip->interrupt_sleep, &wait);
734                 atomic_inc(&chip->interrupt_sleep_count);
735                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
736                 remove_wait_queue(&chip->interrupt_sleep, &wait);
737         }
738 }
739
740 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id, struct pt_regs *regs)
741 {
742         struct snd_ymfpci *chip = dev_id;
743         u32 status, nvoice, mode;
744         struct snd_ymfpci_voice *voice;
745
746         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
747         if (status & 0x80000000) {
748                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
749                 spin_lock(&chip->voice_lock);
750                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
751                         voice = &chip->voices[nvoice];
752                         if (voice->interrupt)
753                                 voice->interrupt(chip, voice);
754                 }
755                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
756                         if (chip->capture_substream[nvoice])
757                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
758                 }
759 #if 0
760                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
761                         if (chip->effect_substream[nvoice])
762                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
763                 }
764 #endif
765                 spin_unlock(&chip->voice_lock);
766                 spin_lock(&chip->reg_lock);
767                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
768                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
769                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
770                 spin_unlock(&chip->reg_lock);
771
772                 if (atomic_read(&chip->interrupt_sleep_count)) {
773                         atomic_set(&chip->interrupt_sleep_count, 0);
774                         wake_up(&chip->interrupt_sleep);
775                 }
776         }
777
778         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
779         if (status & 1) {
780                 if (chip->timer)
781                         snd_timer_interrupt(chip->timer, chip->timer->sticks);
782         }
783         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
784
785         if (chip->rawmidi)
786                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data, regs);
787         return IRQ_HANDLED;
788 }
789
790 static struct snd_pcm_hardware snd_ymfpci_playback =
791 {
792         .info =                 (SNDRV_PCM_INFO_MMAP |
793                                  SNDRV_PCM_INFO_MMAP_VALID | 
794                                  SNDRV_PCM_INFO_INTERLEAVED |
795                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
796                                  SNDRV_PCM_INFO_PAUSE |
797                                  SNDRV_PCM_INFO_RESUME),
798         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
799         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
800         .rate_min =             8000,
801         .rate_max =             48000,
802         .channels_min =         1,
803         .channels_max =         2,
804         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
805         .period_bytes_min =     64,
806         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
807         .periods_min =          3,
808         .periods_max =          1024,
809         .fifo_size =            0,
810 };
811
812 static struct snd_pcm_hardware snd_ymfpci_capture =
813 {
814         .info =                 (SNDRV_PCM_INFO_MMAP |
815                                  SNDRV_PCM_INFO_MMAP_VALID |
816                                  SNDRV_PCM_INFO_INTERLEAVED |
817                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
818                                  SNDRV_PCM_INFO_PAUSE |
819                                  SNDRV_PCM_INFO_RESUME),
820         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
821         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
822         .rate_min =             8000,
823         .rate_max =             48000,
824         .channels_min =         1,
825         .channels_max =         2,
826         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
827         .period_bytes_min =     64,
828         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
829         .periods_min =          3,
830         .periods_max =          1024,
831         .fifo_size =            0,
832 };
833
834 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
835 {
836         kfree(runtime->private_data);
837 }
838
839 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
840 {
841         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
842         struct snd_pcm_runtime *runtime = substream->runtime;
843         struct snd_ymfpci_pcm *ypcm;
844
845         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
846         if (ypcm == NULL)
847                 return -ENOMEM;
848         ypcm->chip = chip;
849         ypcm->type = PLAYBACK_VOICE;
850         ypcm->substream = substream;
851         runtime->hw = snd_ymfpci_playback;
852         runtime->private_data = ypcm;
853         runtime->private_free = snd_ymfpci_pcm_free_substream;
854         /* FIXME? True value is 256/48 = 5.33333 ms */
855         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
856         return 0;
857 }
858
859 /* call with spinlock held */
860 static void ymfpci_open_extension(struct snd_ymfpci *chip)
861 {
862         if (! chip->rear_opened) {
863                 if (! chip->spdif_opened) /* set AC3 */
864                         snd_ymfpci_writel(chip, YDSXGR_MODE,
865                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
866                 /* enable second codec (4CHEN) */
867                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
868                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
869         }
870 }
871
872 /* call with spinlock held */
873 static void ymfpci_close_extension(struct snd_ymfpci *chip)
874 {
875         if (! chip->rear_opened) {
876                 if (! chip->spdif_opened)
877                         snd_ymfpci_writel(chip, YDSXGR_MODE,
878                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
879                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
880                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
881         }
882 }
883
884 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
885 {
886         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
887         struct snd_pcm_runtime *runtime = substream->runtime;
888         struct snd_ymfpci_pcm *ypcm;
889         struct snd_kcontrol *kctl;
890         int err;
891         
892         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
893                 return err;
894         ypcm = runtime->private_data;
895         ypcm->output_front = 1;
896         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
897         spin_lock_irq(&chip->reg_lock);
898         if (ypcm->output_rear) {
899                 ymfpci_open_extension(chip);
900                 chip->rear_opened++;
901         }
902         spin_unlock_irq(&chip->reg_lock);
903
904         kctl = chip->pcm_mixer[substream->number].ctl;
905         kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
906         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
907         return 0;
908 }
909
910 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
911 {
912         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
913         struct snd_pcm_runtime *runtime = substream->runtime;
914         struct snd_ymfpci_pcm *ypcm;
915         int err;
916         
917         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
918                 return err;
919         ypcm = runtime->private_data;
920         ypcm->output_front = 0;
921         ypcm->output_rear = 1;
922         spin_lock_irq(&chip->reg_lock);
923         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
924                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
925         ymfpci_open_extension(chip);
926         chip->spdif_pcm_bits = chip->spdif_bits;
927         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
928         chip->spdif_opened++;
929         spin_unlock_irq(&chip->reg_lock);
930
931         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
932         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
933                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
934         return 0;
935 }
936
937 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
938 {
939         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
940         struct snd_pcm_runtime *runtime = substream->runtime;
941         struct snd_ymfpci_pcm *ypcm;
942         int err;
943         
944         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
945                 return err;
946         ypcm = runtime->private_data;
947         ypcm->output_front = 0;
948         ypcm->output_rear = 1;
949         spin_lock_irq(&chip->reg_lock);
950         ymfpci_open_extension(chip);
951         chip->rear_opened++;
952         spin_unlock_irq(&chip->reg_lock);
953         return 0;
954 }
955
956 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
957                                    u32 capture_bank_number)
958 {
959         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
960         struct snd_pcm_runtime *runtime = substream->runtime;
961         struct snd_ymfpci_pcm *ypcm;
962
963         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
964         if (ypcm == NULL)
965                 return -ENOMEM;
966         ypcm->chip = chip;
967         ypcm->type = capture_bank_number + CAPTURE_REC;
968         ypcm->substream = substream;    
969         ypcm->capture_bank_number = capture_bank_number;
970         chip->capture_substream[capture_bank_number] = substream;
971         runtime->hw = snd_ymfpci_capture;
972         /* FIXME? True value is 256/48 = 5.33333 ms */
973         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
974         runtime->private_data = ypcm;
975         runtime->private_free = snd_ymfpci_pcm_free_substream;
976         snd_ymfpci_hw_start(chip);
977         return 0;
978 }
979
980 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
981 {
982         return snd_ymfpci_capture_open(substream, 0);
983 }
984
985 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
986 {
987         return snd_ymfpci_capture_open(substream, 1);
988 }
989
990 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
991 {
992         return 0;
993 }
994
995 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
996 {
997         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
998         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
999         struct snd_kcontrol *kctl;
1000
1001         spin_lock_irq(&chip->reg_lock);
1002         if (ypcm->output_rear && chip->rear_opened > 0) {
1003                 chip->rear_opened--;
1004                 ymfpci_close_extension(chip);
1005         }
1006         spin_unlock_irq(&chip->reg_lock);
1007         kctl = chip->pcm_mixer[substream->number].ctl;
1008         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1009         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
1010         return snd_ymfpci_playback_close_1(substream);
1011 }
1012
1013 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1014 {
1015         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1016
1017         spin_lock_irq(&chip->reg_lock);
1018         chip->spdif_opened = 0;
1019         ymfpci_close_extension(chip);
1020         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1021                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1022         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1023         spin_unlock_irq(&chip->reg_lock);
1024         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1025         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1026                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1027         return snd_ymfpci_playback_close_1(substream);
1028 }
1029
1030 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1031 {
1032         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1033
1034         spin_lock_irq(&chip->reg_lock);
1035         if (chip->rear_opened > 0) {
1036                 chip->rear_opened--;
1037                 ymfpci_close_extension(chip);
1038         }
1039         spin_unlock_irq(&chip->reg_lock);
1040         return snd_ymfpci_playback_close_1(substream);
1041 }
1042
1043 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1044 {
1045         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1046         struct snd_pcm_runtime *runtime = substream->runtime;
1047         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1048
1049         if (ypcm != NULL) {
1050                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1051                 snd_ymfpci_hw_stop(chip);
1052         }
1053         return 0;
1054 }
1055
1056 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1057         .open =                 snd_ymfpci_playback_open,
1058         .close =                snd_ymfpci_playback_close,
1059         .ioctl =                snd_pcm_lib_ioctl,
1060         .hw_params =            snd_ymfpci_playback_hw_params,
1061         .hw_free =              snd_ymfpci_playback_hw_free,
1062         .prepare =              snd_ymfpci_playback_prepare,
1063         .trigger =              snd_ymfpci_playback_trigger,
1064         .pointer =              snd_ymfpci_playback_pointer,
1065 };
1066
1067 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1068         .open =                 snd_ymfpci_capture_rec_open,
1069         .close =                snd_ymfpci_capture_close,
1070         .ioctl =                snd_pcm_lib_ioctl,
1071         .hw_params =            snd_ymfpci_capture_hw_params,
1072         .hw_free =              snd_ymfpci_capture_hw_free,
1073         .prepare =              snd_ymfpci_capture_prepare,
1074         .trigger =              snd_ymfpci_capture_trigger,
1075         .pointer =              snd_ymfpci_capture_pointer,
1076 };
1077
1078 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1079 {
1080         struct snd_pcm *pcm;
1081         int err;
1082
1083         if (rpcm)
1084                 *rpcm = NULL;
1085         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1086                 return err;
1087         pcm->private_data = chip;
1088
1089         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1090         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1091
1092         /* global setup */
1093         pcm->info_flags = 0;
1094         strcpy(pcm->name, "YMFPCI");
1095         chip->pcm = pcm;
1096
1097         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1098                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1099
1100         if (rpcm)
1101                 *rpcm = pcm;
1102         return 0;
1103 }
1104
1105 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1106         .open =                 snd_ymfpci_capture_ac97_open,
1107         .close =                snd_ymfpci_capture_close,
1108         .ioctl =                snd_pcm_lib_ioctl,
1109         .hw_params =            snd_ymfpci_capture_hw_params,
1110         .hw_free =              snd_ymfpci_capture_hw_free,
1111         .prepare =              snd_ymfpci_capture_prepare,
1112         .trigger =              snd_ymfpci_capture_trigger,
1113         .pointer =              snd_ymfpci_capture_pointer,
1114 };
1115
1116 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1117 {
1118         struct snd_pcm *pcm;
1119         int err;
1120
1121         if (rpcm)
1122                 *rpcm = NULL;
1123         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1124                 return err;
1125         pcm->private_data = chip;
1126
1127         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1128
1129         /* global setup */
1130         pcm->info_flags = 0;
1131         sprintf(pcm->name, "YMFPCI - %s",
1132                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1133         chip->pcm2 = pcm;
1134
1135         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1136                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1137
1138         if (rpcm)
1139                 *rpcm = pcm;
1140         return 0;
1141 }
1142
1143 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1144         .open =                 snd_ymfpci_playback_spdif_open,
1145         .close =                snd_ymfpci_playback_spdif_close,
1146         .ioctl =                snd_pcm_lib_ioctl,
1147         .hw_params =            snd_ymfpci_playback_hw_params,
1148         .hw_free =              snd_ymfpci_playback_hw_free,
1149         .prepare =              snd_ymfpci_playback_prepare,
1150         .trigger =              snd_ymfpci_playback_trigger,
1151         .pointer =              snd_ymfpci_playback_pointer,
1152 };
1153
1154 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1155 {
1156         struct snd_pcm *pcm;
1157         int err;
1158
1159         if (rpcm)
1160                 *rpcm = NULL;
1161         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1162                 return err;
1163         pcm->private_data = chip;
1164
1165         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1166
1167         /* global setup */
1168         pcm->info_flags = 0;
1169         strcpy(pcm->name, "YMFPCI - IEC958");
1170         chip->pcm_spdif = pcm;
1171
1172         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1173                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1174
1175         if (rpcm)
1176                 *rpcm = pcm;
1177         return 0;
1178 }
1179
1180 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1181         .open =                 snd_ymfpci_playback_4ch_open,
1182         .close =                snd_ymfpci_playback_4ch_close,
1183         .ioctl =                snd_pcm_lib_ioctl,
1184         .hw_params =            snd_ymfpci_playback_hw_params,
1185         .hw_free =              snd_ymfpci_playback_hw_free,
1186         .prepare =              snd_ymfpci_playback_prepare,
1187         .trigger =              snd_ymfpci_playback_trigger,
1188         .pointer =              snd_ymfpci_playback_pointer,
1189 };
1190
1191 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1192 {
1193         struct snd_pcm *pcm;
1194         int err;
1195
1196         if (rpcm)
1197                 *rpcm = NULL;
1198         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1199                 return err;
1200         pcm->private_data = chip;
1201
1202         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1203
1204         /* global setup */
1205         pcm->info_flags = 0;
1206         strcpy(pcm->name, "YMFPCI - Rear PCM");
1207         chip->pcm_4ch = pcm;
1208
1209         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1210                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1211
1212         if (rpcm)
1213                 *rpcm = pcm;
1214         return 0;
1215 }
1216
1217 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1218 {
1219         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1220         uinfo->count = 1;
1221         return 0;
1222 }
1223
1224 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1225                                         struct snd_ctl_elem_value *ucontrol)
1226 {
1227         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1228
1229         spin_lock_irq(&chip->reg_lock);
1230         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1231         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1232         spin_unlock_irq(&chip->reg_lock);
1233         return 0;
1234 }
1235
1236 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1237                                          struct snd_ctl_elem_value *ucontrol)
1238 {
1239         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1240         unsigned int val;
1241         int change;
1242
1243         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1244               (ucontrol->value.iec958.status[1] << 8);
1245         spin_lock_irq(&chip->reg_lock);
1246         change = chip->spdif_bits != val;
1247         chip->spdif_bits = val;
1248         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1249                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1250         spin_unlock_irq(&chip->reg_lock);
1251         return change;
1252 }
1253
1254 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1255 {
1256         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1257         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1258         .info =         snd_ymfpci_spdif_default_info,
1259         .get =          snd_ymfpci_spdif_default_get,
1260         .put =          snd_ymfpci_spdif_default_put
1261 };
1262
1263 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1264 {
1265         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1266         uinfo->count = 1;
1267         return 0;
1268 }
1269
1270 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1271                                       struct snd_ctl_elem_value *ucontrol)
1272 {
1273         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1274
1275         spin_lock_irq(&chip->reg_lock);
1276         ucontrol->value.iec958.status[0] = 0x3e;
1277         ucontrol->value.iec958.status[1] = 0xff;
1278         spin_unlock_irq(&chip->reg_lock);
1279         return 0;
1280 }
1281
1282 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1283 {
1284         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1285         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1286         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1287         .info =         snd_ymfpci_spdif_mask_info,
1288         .get =          snd_ymfpci_spdif_mask_get,
1289 };
1290
1291 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1292 {
1293         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1294         uinfo->count = 1;
1295         return 0;
1296 }
1297
1298 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1299                                         struct snd_ctl_elem_value *ucontrol)
1300 {
1301         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1302
1303         spin_lock_irq(&chip->reg_lock);
1304         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1305         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1306         spin_unlock_irq(&chip->reg_lock);
1307         return 0;
1308 }
1309
1310 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1311                                         struct snd_ctl_elem_value *ucontrol)
1312 {
1313         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1314         unsigned int val;
1315         int change;
1316
1317         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1318               (ucontrol->value.iec958.status[1] << 8);
1319         spin_lock_irq(&chip->reg_lock);
1320         change = chip->spdif_pcm_bits != val;
1321         chip->spdif_pcm_bits = val;
1322         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1323                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1324         spin_unlock_irq(&chip->reg_lock);
1325         return change;
1326 }
1327
1328 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1329 {
1330         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1331         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1332         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1333         .info =         snd_ymfpci_spdif_stream_info,
1334         .get =          snd_ymfpci_spdif_stream_get,
1335         .put =          snd_ymfpci_spdif_stream_put
1336 };
1337
1338 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1339 {
1340         static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1341
1342         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1343         info->count = 1;
1344         info->value.enumerated.items = 3;
1345         if (info->value.enumerated.item > 2)
1346                 info->value.enumerated.item = 2;
1347         strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1348         return 0;
1349 }
1350
1351 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1352 {
1353         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1354         u16 reg;
1355
1356         spin_lock_irq(&chip->reg_lock);
1357         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1358         spin_unlock_irq(&chip->reg_lock);
1359         if (!(reg & 0x100))
1360                 value->value.enumerated.item[0] = 0;
1361         else
1362                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1363         return 0;
1364 }
1365
1366 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1367 {
1368         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1369         u16 reg, old_reg;
1370
1371         spin_lock_irq(&chip->reg_lock);
1372         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1373         if (value->value.enumerated.item[0] == 0)
1374                 reg = old_reg & ~0x100;
1375         else
1376                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1377         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1378         spin_unlock_irq(&chip->reg_lock);
1379         return reg != old_reg;
1380 }
1381
1382 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1383         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1384         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1385         .name =         "Direct Recording Source",
1386         .info =         snd_ymfpci_drec_source_info,
1387         .get =          snd_ymfpci_drec_source_get,
1388         .put =          snd_ymfpci_drec_source_put
1389 };
1390
1391 /*
1392  *  Mixer controls
1393  */
1394
1395 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1396 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1397   .info = snd_ymfpci_info_single, \
1398   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1399   .private_value = ((reg) | ((shift) << 16)) }
1400
1401 static int snd_ymfpci_info_single(struct snd_kcontrol *kcontrol,
1402                                   struct snd_ctl_elem_info *uinfo)
1403 {
1404         int reg = kcontrol->private_value & 0xffff;
1405
1406         switch (reg) {
1407         case YDSXGR_SPDIFOUTCTRL: break;
1408         case YDSXGR_SPDIFINCTRL: break;
1409         default: return -EINVAL;
1410         }
1411         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1412         uinfo->count = 1;
1413         uinfo->value.integer.min = 0;
1414         uinfo->value.integer.max = 1;
1415         return 0;
1416 }
1417
1418 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1419                                  struct snd_ctl_elem_value *ucontrol)
1420 {
1421         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1422         int reg = kcontrol->private_value & 0xffff;
1423         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1424         unsigned int mask = 1;
1425         
1426         switch (reg) {
1427         case YDSXGR_SPDIFOUTCTRL: break;
1428         case YDSXGR_SPDIFINCTRL: break;
1429         default: return -EINVAL;
1430         }
1431         ucontrol->value.integer.value[0] =
1432                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1433         return 0;
1434 }
1435
1436 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1437                                  struct snd_ctl_elem_value *ucontrol)
1438 {
1439         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1440         int reg = kcontrol->private_value & 0xffff;
1441         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1442         unsigned int mask = 1;
1443         int change;
1444         unsigned int val, oval;
1445         
1446         switch (reg) {
1447         case YDSXGR_SPDIFOUTCTRL: break;
1448         case YDSXGR_SPDIFINCTRL: break;
1449         default: return -EINVAL;
1450         }
1451         val = (ucontrol->value.integer.value[0] & mask);
1452         val <<= shift;
1453         spin_lock_irq(&chip->reg_lock);
1454         oval = snd_ymfpci_readl(chip, reg);
1455         val = (oval & ~(mask << shift)) | val;
1456         change = val != oval;
1457         snd_ymfpci_writel(chip, reg, val);
1458         spin_unlock_irq(&chip->reg_lock);
1459         return change;
1460 }
1461
1462 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1463 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1464   .info = snd_ymfpci_info_double, \
1465   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1466   .private_value = reg }
1467
1468 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1469 {
1470         unsigned int reg = kcontrol->private_value;
1471
1472         if (reg < 0x80 || reg >= 0xc0)
1473                 return -EINVAL;
1474         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1475         uinfo->count = 2;
1476         uinfo->value.integer.min = 0;
1477         uinfo->value.integer.max = 16383;
1478         return 0;
1479 }
1480
1481 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1482 {
1483         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1484         unsigned int reg = kcontrol->private_value;
1485         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1486         unsigned int val;
1487         
1488         if (reg < 0x80 || reg >= 0xc0)
1489                 return -EINVAL;
1490         spin_lock_irq(&chip->reg_lock);
1491         val = snd_ymfpci_readl(chip, reg);
1492         spin_unlock_irq(&chip->reg_lock);
1493         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1494         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1495         return 0;
1496 }
1497
1498 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1499 {
1500         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1501         unsigned int reg = kcontrol->private_value;
1502         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1503         int change;
1504         unsigned int val1, val2, oval;
1505         
1506         if (reg < 0x80 || reg >= 0xc0)
1507                 return -EINVAL;
1508         val1 = ucontrol->value.integer.value[0] & mask;
1509         val2 = ucontrol->value.integer.value[1] & mask;
1510         val1 <<= shift_left;
1511         val2 <<= shift_right;
1512         spin_lock_irq(&chip->reg_lock);
1513         oval = snd_ymfpci_readl(chip, reg);
1514         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1515         change = val1 != oval;
1516         snd_ymfpci_writel(chip, reg, val1);
1517         spin_unlock_irq(&chip->reg_lock);
1518         return change;
1519 }
1520
1521 /*
1522  * 4ch duplication
1523  */
1524 static int snd_ymfpci_info_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1525 {
1526         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1527         uinfo->count = 1;
1528         uinfo->value.integer.min = 0;
1529         uinfo->value.integer.max = 1;
1530         return 0;
1531 }
1532
1533 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1534 {
1535         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1536         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1537         return 0;
1538 }
1539
1540 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1541 {
1542         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1543         int change;
1544         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1545         if (change)
1546                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1547         return change;
1548 }
1549
1550
1551 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1552 YMFPCI_DOUBLE("Wave Playback Volume", 0, YDSXGR_NATIVEDACOUTVOL),
1553 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1554 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1555 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1556 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1557 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1558 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1559 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1560 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1561 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1562 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1563 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1564 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1565 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1566 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1567 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1568 {
1569         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1570         .name = "4ch Duplication",
1571         .info = snd_ymfpci_info_dup4ch,
1572         .get = snd_ymfpci_get_dup4ch,
1573         .put = snd_ymfpci_put_dup4ch,
1574 },
1575 };
1576
1577
1578 /*
1579  * GPIO
1580  */
1581
1582 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1583 {
1584         u16 reg, mode;
1585         unsigned long flags;
1586
1587         spin_lock_irqsave(&chip->reg_lock, flags);
1588         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1589         reg &= ~(1 << (pin + 8));
1590         reg |= (1 << pin);
1591         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1592         /* set the level mode for input line */
1593         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1594         mode &= ~(3 << (pin * 2));
1595         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1596         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1597         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1598         spin_unlock_irqrestore(&chip->reg_lock, flags);
1599         return (mode >> pin) & 1;
1600 }
1601
1602 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1603 {
1604         u16 reg;
1605         unsigned long flags;
1606
1607         spin_lock_irqsave(&chip->reg_lock, flags);
1608         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1609         reg &= ~(1 << pin);
1610         reg &= ~(1 << (pin + 8));
1611         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1612         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1613         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1614         spin_unlock_irqrestore(&chip->reg_lock, flags);
1615
1616         return 0;
1617 }
1618
1619 static int snd_ymfpci_gpio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1620 {
1621         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1622         uinfo->count = 1;
1623         uinfo->value.integer.min = 0;
1624         uinfo->value.integer.max = 1;
1625         return 0;
1626 }
1627
1628 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1629 {
1630         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1631         int pin = (int)kcontrol->private_value;
1632         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1633         return 0;
1634 }
1635
1636 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1637 {
1638         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1639         int pin = (int)kcontrol->private_value;
1640
1641         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1642                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1643                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1644                 return 1;
1645         }
1646         return 0;
1647 }
1648
1649 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1650         .name = "Shared Rear/Line-In Switch",
1651         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1652         .info = snd_ymfpci_gpio_sw_info,
1653         .get = snd_ymfpci_gpio_sw_get,
1654         .put = snd_ymfpci_gpio_sw_put,
1655         .private_value = 2,
1656 };
1657
1658 /*
1659  * PCM voice volume
1660  */
1661
1662 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1663                                    struct snd_ctl_elem_info *uinfo)
1664 {
1665         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1666         uinfo->count = 2;
1667         uinfo->value.integer.min = 0;
1668         uinfo->value.integer.max = 0x8000;
1669         return 0;
1670 }
1671
1672 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1673                                   struct snd_ctl_elem_value *ucontrol)
1674 {
1675         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1676         unsigned int subs = kcontrol->id.subdevice;
1677
1678         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1679         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1680         return 0;
1681 }
1682
1683 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1684                                   struct snd_ctl_elem_value *ucontrol)
1685 {
1686         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1687         unsigned int subs = kcontrol->id.subdevice;
1688         struct snd_pcm_substream *substream;
1689         unsigned long flags;
1690
1691         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1692             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1693                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1694                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1695
1696                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1697                 spin_lock_irqsave(&chip->voice_lock, flags);
1698                 if (substream->runtime && substream->runtime->private_data) {
1699                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1700                         ypcm->update_pcm_vol = 2;
1701                 }
1702                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1703                 return 1;
1704         }
1705         return 0;
1706 }
1707
1708 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1709         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1710         .name = "PCM Playback Volume",
1711         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1712                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1713         .info = snd_ymfpci_pcm_vol_info,
1714         .get = snd_ymfpci_pcm_vol_get,
1715         .put = snd_ymfpci_pcm_vol_put,
1716 };
1717
1718
1719 /*
1720  *  Mixer routines
1721  */
1722
1723 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1724 {
1725         struct snd_ymfpci *chip = bus->private_data;
1726         chip->ac97_bus = NULL;
1727 }
1728
1729 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1730 {
1731         struct snd_ymfpci *chip = ac97->private_data;
1732         chip->ac97 = NULL;
1733 }
1734
1735 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1736 {
1737         struct snd_ac97_template ac97;
1738         struct snd_kcontrol *kctl;
1739         struct snd_pcm_substream *substream;
1740         unsigned int idx;
1741         int err;
1742         static struct snd_ac97_bus_ops ops = {
1743                 .write = snd_ymfpci_codec_write,
1744                 .read = snd_ymfpci_codec_read,
1745         };
1746
1747         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1748                 return err;
1749         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1750         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1751
1752         memset(&ac97, 0, sizeof(ac97));
1753         ac97.private_data = chip;
1754         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1755         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1756                 return err;
1757
1758         /* to be sure */
1759         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1760                              AC97_EA_VRA|AC97_EA_VRM, 0);
1761
1762         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1763                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1764                         return err;
1765         }
1766
1767         /* add S/PDIF control */
1768         snd_assert(chip->pcm_spdif != NULL, return -EIO);
1769         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1770                 return err;
1771         kctl->id.device = chip->pcm_spdif->device;
1772         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1773                 return err;
1774         kctl->id.device = chip->pcm_spdif->device;
1775         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1776                 return err;
1777         kctl->id.device = chip->pcm_spdif->device;
1778         chip->spdif_pcm_ctl = kctl;
1779
1780         /* direct recording source */
1781         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1782             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1783                 return err;
1784
1785         /*
1786          * shared rear/line-in
1787          */
1788         if (rear_switch) {
1789                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1790                         return err;
1791         }
1792
1793         /* per-voice volume */
1794         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1795         for (idx = 0; idx < 32; ++idx) {
1796                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1797                 if (!kctl)
1798                         return -ENOMEM;
1799                 kctl->id.device = chip->pcm->device;
1800                 kctl->id.subdevice = idx;
1801                 kctl->private_value = (unsigned long)substream;
1802                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1803                         return err;
1804                 chip->pcm_mixer[idx].left = 0x8000;
1805                 chip->pcm_mixer[idx].right = 0x8000;
1806                 chip->pcm_mixer[idx].ctl = kctl;
1807                 substream = substream->next;
1808         }
1809
1810         return 0;
1811 }
1812
1813
1814 /*
1815  * timer
1816  */
1817
1818 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1819 {
1820         struct snd_ymfpci *chip;
1821         unsigned long flags;
1822         unsigned int count;
1823
1824         chip = snd_timer_chip(timer);
1825         count = (timer->sticks << 1) - 1;
1826         spin_lock_irqsave(&chip->reg_lock, flags);
1827         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1828         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1829         spin_unlock_irqrestore(&chip->reg_lock, flags);
1830         return 0;
1831 }
1832
1833 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1834 {
1835         struct snd_ymfpci *chip;
1836         unsigned long flags;
1837
1838         chip = snd_timer_chip(timer);
1839         spin_lock_irqsave(&chip->reg_lock, flags);
1840         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1841         spin_unlock_irqrestore(&chip->reg_lock, flags);
1842         return 0;
1843 }
1844
1845 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1846                                                unsigned long *num, unsigned long *den)
1847 {
1848         *num = 1;
1849         *den = 48000;
1850         return 0;
1851 }
1852
1853 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1854         .flags = SNDRV_TIMER_HW_AUTO,
1855         .resolution = 20833, /* 1/fs = 20.8333...us */
1856         .ticks = 0x8000,
1857         .start = snd_ymfpci_timer_start,
1858         .stop = snd_ymfpci_timer_stop,
1859         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1860 };
1861
1862 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1863 {
1864         struct snd_timer *timer = NULL;
1865         struct snd_timer_id tid;
1866         int err;
1867
1868         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1869         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1870         tid.card = chip->card->number;
1871         tid.device = device;
1872         tid.subdevice = 0;
1873         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1874                 strcpy(timer->name, "YMFPCI timer");
1875                 timer->private_data = chip;
1876                 timer->hw = snd_ymfpci_timer_hw;
1877         }
1878         chip->timer = timer;
1879         return err;
1880 }
1881
1882
1883 /*
1884  *  proc interface
1885  */
1886
1887 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1888                                  struct snd_info_buffer *buffer)
1889 {
1890         struct snd_ymfpci *chip = entry->private_data;
1891         int i;
1892         
1893         snd_iprintf(buffer, "YMFPCI\n\n");
1894         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1895                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1896 }
1897
1898 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1899 {
1900         struct snd_info_entry *entry;
1901         
1902         if (! snd_card_proc_new(card, "ymfpci", &entry))
1903                 snd_info_set_text_ops(entry, chip, 1024, snd_ymfpci_proc_read);
1904         return 0;
1905 }
1906
1907 /*
1908  *  initialization routines
1909  */
1910
1911 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1912 {
1913         u8 cmd;
1914
1915         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1916 #if 0 // force to reset
1917         if (cmd & 0x03) {
1918 #endif
1919                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1920                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1921                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1922                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1923                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1924 #if 0
1925         }
1926 #endif
1927 }
1928
1929 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1930 {
1931         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1932 }
1933
1934 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1935 {
1936         u32 val;
1937         int timeout = 1000;
1938
1939         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1940         if (val)
1941                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1942         while (timeout-- > 0) {
1943                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1944                 if ((val & 0x00000002) == 0)
1945                         break;
1946         }
1947 }
1948
1949 #include "ymfpci_image.h"
1950
1951 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
1952 {
1953         int i;
1954         u16 ctrl;
1955         unsigned long *inst;
1956
1957         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
1958         snd_ymfpci_disable_dsp(chip);
1959         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
1960         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
1961         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
1962         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
1963         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
1964         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
1965         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
1966         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1967         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
1968
1969         /* setup DSP instruction code */
1970         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
1971                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), DspInst[i]);
1972
1973         /* setup control instruction code */
1974         switch (chip->device_id) {
1975         case PCI_DEVICE_ID_YAMAHA_724F:
1976         case PCI_DEVICE_ID_YAMAHA_740C:
1977         case PCI_DEVICE_ID_YAMAHA_744:
1978         case PCI_DEVICE_ID_YAMAHA_754:
1979                 inst = CntrlInst1E;
1980                 break;
1981         default:
1982                 inst = CntrlInst;
1983                 break;
1984         }
1985         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
1986                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
1987
1988         snd_ymfpci_enable_dsp(chip);
1989 }
1990
1991 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
1992 {
1993         long size, playback_ctrl_size;
1994         int voice, bank, reg;
1995         u8 *ptr;
1996         dma_addr_t ptr_addr;
1997
1998         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
1999         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2000         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2001         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2002         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2003         
2004         size = ((playback_ctrl_size + 0x00ff) & ~0x00ff) +
2005                ((chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES + 0x00ff) & ~0x00ff) +
2006                ((chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES + 0x00ff) & ~0x00ff) +
2007                ((chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES + 0x00ff) & ~0x00ff) +
2008                chip->work_size;
2009         /* work_ptr must be aligned to 256 bytes, but it's already
2010            covered with the kernel page allocation mechanism */
2011         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2012                                 size, &chip->work_ptr) < 0) 
2013                 return -ENOMEM;
2014         ptr = chip->work_ptr.area;
2015         ptr_addr = chip->work_ptr.addr;
2016         memset(ptr, 0, size);   /* for sure */
2017
2018         chip->bank_base_playback = ptr;
2019         chip->bank_base_playback_addr = ptr_addr;
2020         chip->ctrl_playback = (u32 *)ptr;
2021         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2022         ptr += (playback_ctrl_size + 0x00ff) & ~0x00ff;
2023         ptr_addr += (playback_ctrl_size + 0x00ff) & ~0x00ff;
2024         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2025                 chip->voices[voice].number = voice;
2026                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2027                 chip->voices[voice].bank_addr = ptr_addr;
2028                 for (bank = 0; bank < 2; bank++) {
2029                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2030                         ptr += chip->bank_size_playback;
2031                         ptr_addr += chip->bank_size_playback;
2032                 }
2033         }
2034         ptr = (char *)(((unsigned long)ptr + 0x00ff) & ~0x00ff);
2035         ptr_addr = (ptr_addr + 0x00ff) & ~0x00ff;
2036         chip->bank_base_capture = ptr;
2037         chip->bank_base_capture_addr = ptr_addr;
2038         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2039                 for (bank = 0; bank < 2; bank++) {
2040                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2041                         ptr += chip->bank_size_capture;
2042                         ptr_addr += chip->bank_size_capture;
2043                 }
2044         ptr = (char *)(((unsigned long)ptr + 0x00ff) & ~0x00ff);
2045         ptr_addr = (ptr_addr + 0x00ff) & ~0x00ff;
2046         chip->bank_base_effect = ptr;
2047         chip->bank_base_effect_addr = ptr_addr;
2048         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2049                 for (bank = 0; bank < 2; bank++) {
2050                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2051                         ptr += chip->bank_size_effect;
2052                         ptr_addr += chip->bank_size_effect;
2053                 }
2054         ptr = (char *)(((unsigned long)ptr + 0x00ff) & ~0x00ff);
2055         ptr_addr = (ptr_addr + 0x00ff) & ~0x00ff;
2056         chip->work_base = ptr;
2057         chip->work_base_addr = ptr_addr;
2058         
2059         snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2060
2061         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2062         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2063         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2064         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2065         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2066
2067         /* S/PDIF output initialization */
2068         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2069         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2070         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2071
2072         /* S/PDIF input initialization */
2073         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2074
2075         /* digital mixer setup */
2076         for (reg = 0x80; reg < 0xc0; reg += 4)
2077                 snd_ymfpci_writel(chip, reg, 0);
2078         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2079         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2080         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2081         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2082         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2083         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2084         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2085         
2086         return 0;
2087 }
2088
2089 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2090 {
2091         u16 ctrl;
2092
2093         snd_assert(chip != NULL, return -EINVAL);
2094
2095         if (chip->res_reg_area) {       /* don't touch busy hardware */
2096                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2097                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2098                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2099                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2100                 snd_ymfpci_disable_dsp(chip);
2101                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2102                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2103                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2104                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2105                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2106                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2107                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2108         }
2109
2110         snd_ymfpci_ac3_done(chip);
2111
2112         /* Set PCI device to D3 state */
2113 #if 0
2114         /* FIXME: temporarily disabled, otherwise we cannot fire up
2115          * the chip again unless reboot.  ACPI bug?
2116          */
2117         pci_set_power_state(chip->pci, 3);
2118 #endif
2119
2120 #ifdef CONFIG_PM
2121         vfree(chip->saved_regs);
2122 #endif
2123         release_and_free_resource(chip->mpu_res);
2124         release_and_free_resource(chip->fm_res);
2125         snd_ymfpci_free_gameport(chip);
2126         if (chip->reg_area_virt)
2127                 iounmap(chip->reg_area_virt);
2128         if (chip->work_ptr.area)
2129                 snd_dma_free_pages(&chip->work_ptr);
2130         
2131         if (chip->irq >= 0)
2132                 free_irq(chip->irq, (void *)chip);
2133         release_and_free_resource(chip->res_reg_area);
2134
2135         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2136         
2137         pci_disable_device(chip->pci);
2138         kfree(chip);
2139         return 0;
2140 }
2141
2142 static int snd_ymfpci_dev_free(struct snd_device *device)
2143 {
2144         struct snd_ymfpci *chip = device->device_data;
2145         return snd_ymfpci_free(chip);
2146 }
2147
2148 #ifdef CONFIG_PM
2149 static int saved_regs_index[] = {
2150         /* spdif */
2151         YDSXGR_SPDIFOUTCTRL,
2152         YDSXGR_SPDIFOUTSTATUS,
2153         YDSXGR_SPDIFINCTRL,
2154         /* volumes */
2155         YDSXGR_PRIADCLOOPVOL,
2156         YDSXGR_NATIVEDACINVOL,
2157         YDSXGR_NATIVEDACOUTVOL,
2158         // YDSXGR_BUF441OUTVOL,
2159         YDSXGR_NATIVEADCINVOL,
2160         YDSXGR_SPDIFLOOPVOL,
2161         YDSXGR_SPDIFOUTVOL,
2162         YDSXGR_ZVOUTVOL,
2163         YDSXGR_LEGACYOUTVOL,
2164         /* address bases */
2165         YDSXGR_PLAYCTRLBASE,
2166         YDSXGR_RECCTRLBASE,
2167         YDSXGR_EFFCTRLBASE,
2168         YDSXGR_WORKBASE,
2169         /* capture set up */
2170         YDSXGR_MAPOFREC,
2171         YDSXGR_RECFORMAT,
2172         YDSXGR_RECSLOTSR,
2173         YDSXGR_ADCFORMAT,
2174         YDSXGR_ADCSLOTSR,
2175 };
2176 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2177
2178 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2179 {
2180         struct snd_card *card = pci_get_drvdata(pci);
2181         struct snd_ymfpci *chip = card->private_data;
2182         unsigned int i;
2183         
2184         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2185         snd_pcm_suspend_all(chip->pcm);
2186         snd_pcm_suspend_all(chip->pcm2);
2187         snd_pcm_suspend_all(chip->pcm_spdif);
2188         snd_pcm_suspend_all(chip->pcm_4ch);
2189         snd_ac97_suspend(chip->ac97);
2190         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2191                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2192         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2193         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2194         snd_ymfpci_disable_dsp(chip);
2195         pci_disable_device(pci);
2196         pci_save_state(pci);
2197         return 0;
2198 }
2199
2200 int snd_ymfpci_resume(struct pci_dev *pci)
2201 {
2202         struct snd_card *card = pci_get_drvdata(pci);
2203         struct snd_ymfpci *chip = card->private_data;
2204         unsigned int i;
2205
2206         pci_restore_state(pci);
2207         pci_enable_device(pci);
2208         pci_set_master(pci);
2209         snd_ymfpci_aclink_reset(pci);
2210         snd_ymfpci_codec_ready(chip, 0);
2211         snd_ymfpci_download_image(chip);
2212         udelay(100);
2213
2214         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2215                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2216
2217         snd_ac97_resume(chip->ac97);
2218
2219         /* start hw again */
2220         if (chip->start_count > 0) {
2221                 spin_lock_irq(&chip->reg_lock);
2222                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2223                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2224                 spin_unlock_irq(&chip->reg_lock);
2225         }
2226         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2227         return 0;
2228 }
2229 #endif /* CONFIG_PM */
2230
2231 int __devinit snd_ymfpci_create(struct snd_card *card,
2232                                 struct pci_dev * pci,
2233                                 unsigned short old_legacy_ctrl,
2234                                 struct snd_ymfpci ** rchip)
2235 {
2236         struct snd_ymfpci *chip;
2237         int err;
2238         static struct snd_device_ops ops = {
2239                 .dev_free =     snd_ymfpci_dev_free,
2240         };
2241         
2242         *rchip = NULL;
2243
2244         /* enable PCI device */
2245         if ((err = pci_enable_device(pci)) < 0)
2246                 return err;
2247
2248         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2249         if (chip == NULL) {
2250                 pci_disable_device(pci);
2251                 return -ENOMEM;
2252         }
2253         chip->old_legacy_ctrl = old_legacy_ctrl;
2254         spin_lock_init(&chip->reg_lock);
2255         spin_lock_init(&chip->voice_lock);
2256         init_waitqueue_head(&chip->interrupt_sleep);
2257         atomic_set(&chip->interrupt_sleep_count, 0);
2258         chip->card = card;
2259         chip->pci = pci;
2260         chip->irq = -1;
2261         chip->device_id = pci->device;
2262         pci_read_config_byte(pci, PCI_REVISION_ID, (u8 *)&chip->rev);
2263         chip->reg_area_phys = pci_resource_start(pci, 0);
2264         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2265         pci_set_master(pci);
2266
2267         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2268                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2269                 snd_ymfpci_free(chip);
2270                 return -EBUSY;
2271         }
2272         if (request_irq(pci->irq, snd_ymfpci_interrupt, SA_INTERRUPT|SA_SHIRQ, "YMFPCI", (void *) chip)) {
2273                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2274                 snd_ymfpci_free(chip);
2275                 return -EBUSY;
2276         }
2277         chip->irq = pci->irq;
2278
2279         snd_ymfpci_aclink_reset(pci);
2280         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2281                 snd_ymfpci_free(chip);
2282                 return -EIO;
2283         }
2284
2285         snd_ymfpci_download_image(chip);
2286
2287         udelay(100); /* seems we need a delay after downloading image.. */
2288
2289         if (snd_ymfpci_memalloc(chip) < 0) {
2290                 snd_ymfpci_free(chip);
2291                 return -EIO;
2292         }
2293
2294         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2295                 snd_ymfpci_free(chip);
2296                 return err;
2297         }
2298
2299 #ifdef CONFIG_PM
2300         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2301         if (chip->saved_regs == NULL) {
2302                 snd_ymfpci_free(chip);
2303                 return -ENOMEM;
2304         }
2305 #endif
2306
2307         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2308                 snd_ymfpci_free(chip);
2309                 return err;
2310         }
2311
2312         snd_ymfpci_proc_init(card, chip);
2313
2314         snd_card_set_dev(card, &pci->dev);
2315
2316         *rchip = chip;
2317         return 0;
2318 }