Merge branch 'for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[linux] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85  * Ordering of locks:
86  *
87  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110                            unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113                                   unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130         if (pfn_valid(pfn))
131                 return PageReserved(pfn_to_page(pfn));
132
133         return true;
134 }
135
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141         int cpu;
142
143         if (mutex_lock_killable(&vcpu->mutex))
144                 return -EINTR;
145         cpu = get_cpu();
146         preempt_notifier_register(&vcpu->preempt_notifier);
147         kvm_arch_vcpu_load(vcpu, cpu);
148         put_cpu();
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155         preempt_disable();
156         kvm_arch_vcpu_put(vcpu);
157         preempt_notifier_unregister(&vcpu->preempt_notifier);
158         preempt_enable();
159         mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169         int i, cpu, me;
170         cpumask_var_t cpus;
171         bool called = true;
172         struct kvm_vcpu *vcpu;
173
174         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176         me = get_cpu();
177         kvm_for_each_vcpu(i, vcpu, kvm) {
178                 kvm_make_request(req, vcpu);
179                 cpu = vcpu->cpu;
180
181                 /* Set ->requests bit before we read ->mode. */
182                 smp_mb__after_atomic();
183
184                 if (cpus != NULL && cpu != -1 && cpu != me &&
185                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186                         cpumask_set_cpu(cpu, cpus);
187         }
188         if (unlikely(cpus == NULL))
189                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190         else if (!cpumask_empty(cpus))
191                 smp_call_function_many(cpus, ack_flush, NULL, 1);
192         else
193                 called = false;
194         put_cpu();
195         free_cpumask_var(cpus);
196         return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         /*
203          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204          * kvm_make_all_cpus_request.
205          */
206         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208         /*
209          * We want to publish modifications to the page tables before reading
210          * mode. Pairs with a memory barrier in arch-specific code.
211          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212          * and smp_mb in walk_shadow_page_lockless_begin/end.
213          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214          *
215          * There is already an smp_mb__after_atomic() before
216          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217          * barrier here.
218          */
219         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220                 ++kvm->stat.remote_tlb_flush;
221         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233         struct page *page;
234         int r;
235
236         mutex_init(&vcpu->mutex);
237         vcpu->cpu = -1;
238         vcpu->kvm = kvm;
239         vcpu->vcpu_id = id;
240         vcpu->pid = NULL;
241         init_swait_queue_head(&vcpu->wq);
242         kvm_async_pf_vcpu_init(vcpu);
243
244         vcpu->pre_pcpu = -1;
245         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248         if (!page) {
249                 r = -ENOMEM;
250                 goto fail;
251         }
252         vcpu->run = page_address(page);
253
254         kvm_vcpu_set_in_spin_loop(vcpu, false);
255         kvm_vcpu_set_dy_eligible(vcpu, false);
256         vcpu->preempted = false;
257
258         r = kvm_arch_vcpu_init(vcpu);
259         if (r < 0)
260                 goto fail_free_run;
261         return 0;
262
263 fail_free_run:
264         free_page((unsigned long)vcpu->run);
265 fail:
266         return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272         put_pid(vcpu->pid);
273         kvm_arch_vcpu_uninit(vcpu);
274         free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281         return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285                                              struct mm_struct *mm,
286                                              unsigned long address)
287 {
288         struct kvm *kvm = mmu_notifier_to_kvm(mn);
289         int need_tlb_flush, idx;
290
291         /*
292          * When ->invalidate_page runs, the linux pte has been zapped
293          * already but the page is still allocated until
294          * ->invalidate_page returns. So if we increase the sequence
295          * here the kvm page fault will notice if the spte can't be
296          * established because the page is going to be freed. If
297          * instead the kvm page fault establishes the spte before
298          * ->invalidate_page runs, kvm_unmap_hva will release it
299          * before returning.
300          *
301          * The sequence increase only need to be seen at spin_unlock
302          * time, and not at spin_lock time.
303          *
304          * Increasing the sequence after the spin_unlock would be
305          * unsafe because the kvm page fault could then establish the
306          * pte after kvm_unmap_hva returned, without noticing the page
307          * is going to be freed.
308          */
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311
312         kvm->mmu_notifier_seq++;
313         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314         /* we've to flush the tlb before the pages can be freed */
315         if (need_tlb_flush)
316                 kvm_flush_remote_tlbs(kvm);
317
318         spin_unlock(&kvm->mmu_lock);
319
320         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322         srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410
411         return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440
441         return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456
457         return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
473         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
475         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
476         .clear_young            = kvm_mmu_notifier_clear_young,
477         .test_young             = kvm_mmu_notifier_test_young,
478         .change_pte             = kvm_mmu_notifier_change_pte,
479         .release                = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492         return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499         int i;
500         struct kvm_memslots *slots;
501
502         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503         if (!slots)
504                 return NULL;
505
506         /*
507          * Init kvm generation close to the maximum to easily test the
508          * code of handling generation number wrap-around.
509          */
510         slots->generation = -150;
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         if (kvm->debugfs_stat_data) {
563                 for (i = 0; i < kvm_debugfs_num_entries; i++)
564                         kfree(kvm->debugfs_stat_data[i]);
565                 kfree(kvm->debugfs_stat_data);
566         }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571         char dir_name[ITOA_MAX_LEN * 2];
572         struct kvm_stat_data *stat_data;
573         struct kvm_stats_debugfs_item *p;
574
575         if (!debugfs_initialized())
576                 return 0;
577
578         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580                                                  kvm_debugfs_dir);
581         if (!kvm->debugfs_dentry)
582                 return -ENOMEM;
583
584         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585                                          sizeof(*kvm->debugfs_stat_data),
586                                          GFP_KERNEL);
587         if (!kvm->debugfs_stat_data)
588                 return -ENOMEM;
589
590         for (p = debugfs_entries; p->name; p++) {
591                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592                 if (!stat_data)
593                         return -ENOMEM;
594
595                 stat_data->kvm = kvm;
596                 stat_data->offset = p->offset;
597                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598                 if (!debugfs_create_file(p->name, 0444,
599                                          kvm->debugfs_dentry,
600                                          stat_data,
601                                          stat_fops_per_vm[p->kind]))
602                         return -ENOMEM;
603         }
604         return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609         int r, i;
610         struct kvm *kvm = kvm_arch_alloc_vm();
611
612         if (!kvm)
613                 return ERR_PTR(-ENOMEM);
614
615         spin_lock_init(&kvm->mmu_lock);
616         atomic_inc(&current->mm->mm_count);
617         kvm->mm = current->mm;
618         kvm_eventfd_init(kvm);
619         mutex_init(&kvm->lock);
620         mutex_init(&kvm->irq_lock);
621         mutex_init(&kvm->slots_lock);
622         atomic_set(&kvm->users_count, 1);
623         INIT_LIST_HEAD(&kvm->devices);
624
625         r = kvm_arch_init_vm(kvm, type);
626         if (r)
627                 goto out_err_no_disable;
628
629         r = hardware_enable_all();
630         if (r)
631                 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639         r = -ENOMEM;
640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641                 kvm->memslots[i] = kvm_alloc_memslots();
642                 if (!kvm->memslots[i])
643                         goto out_err_no_srcu;
644         }
645
646         if (init_srcu_struct(&kvm->srcu))
647                 goto out_err_no_srcu;
648         if (init_srcu_struct(&kvm->irq_srcu))
649                 goto out_err_no_irq_srcu;
650         for (i = 0; i < KVM_NR_BUSES; i++) {
651                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652                                         GFP_KERNEL);
653                 if (!kvm->buses[i])
654                         goto out_err;
655         }
656
657         r = kvm_init_mmu_notifier(kvm);
658         if (r)
659                 goto out_err;
660
661         spin_lock(&kvm_lock);
662         list_add(&kvm->vm_list, &vm_list);
663         spin_unlock(&kvm_lock);
664
665         preempt_notifier_inc();
666
667         return kvm;
668
669 out_err:
670         cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672         cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674         hardware_disable_all();
675 out_err_no_disable:
676         for (i = 0; i < KVM_NR_BUSES; i++)
677                 kfree(kvm->buses[i]);
678         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679                 kvm_free_memslots(kvm, kvm->memslots[i]);
680         kvm_arch_free_vm(kvm);
681         mmdrop(current->mm);
682         return ERR_PTR(r);
683 }
684
685 /*
686  * Avoid using vmalloc for a small buffer.
687  * Should not be used when the size is statically known.
688  */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691         if (size > PAGE_SIZE)
692                 return vzalloc(size);
693         else
694                 return kzalloc(size, GFP_KERNEL);
695 }
696
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699         struct kvm_device *dev, *tmp;
700
701         /*
702          * We do not need to take the kvm->lock here, because nobody else
703          * has a reference to the struct kvm at this point and therefore
704          * cannot access the devices list anyhow.
705          */
706         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707                 list_del(&dev->vm_node);
708                 dev->ops->destroy(dev);
709         }
710 }
711
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714         int i;
715         struct mm_struct *mm = kvm->mm;
716
717         kvm_destroy_vm_debugfs(kvm);
718         kvm_arch_sync_events(kvm);
719         spin_lock(&kvm_lock);
720         list_del(&kvm->vm_list);
721         spin_unlock(&kvm_lock);
722         kvm_free_irq_routing(kvm);
723         for (i = 0; i < KVM_NR_BUSES; i++)
724                 kvm_io_bus_destroy(kvm->buses[i]);
725         kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729         kvm_arch_flush_shadow_all(kvm);
730 #endif
731         kvm_arch_destroy_vm(kvm);
732         kvm_destroy_devices(kvm);
733         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734                 kvm_free_memslots(kvm, kvm->memslots[i]);
735         cleanup_srcu_struct(&kvm->irq_srcu);
736         cleanup_srcu_struct(&kvm->srcu);
737         kvm_arch_free_vm(kvm);
738         preempt_notifier_dec();
739         hardware_disable_all();
740         mmdrop(mm);
741 }
742
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745         atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751         if (atomic_dec_and_test(&kvm->users_count))
752                 kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755
756
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759         struct kvm *kvm = filp->private_data;
760
761         kvm_irqfd_release(kvm);
762
763         kvm_put_kvm(kvm);
764         return 0;
765 }
766
767 /*
768  * Allocation size is twice as large as the actual dirty bitmap size.
769  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770  */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774
775         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776         if (!memslot->dirty_bitmap)
777                 return -ENOMEM;
778
779         return 0;
780 }
781
782 /*
783  * Insert memslot and re-sort memslots based on their GFN,
784  * so binary search could be used to lookup GFN.
785  * Sorting algorithm takes advantage of having initially
786  * sorted array and known changed memslot position.
787  */
788 static void update_memslots(struct kvm_memslots *slots,
789                             struct kvm_memory_slot *new)
790 {
791         int id = new->id;
792         int i = slots->id_to_index[id];
793         struct kvm_memory_slot *mslots = slots->memslots;
794
795         WARN_ON(mslots[i].id != id);
796         if (!new->npages) {
797                 WARN_ON(!mslots[i].npages);
798                 if (mslots[i].npages)
799                         slots->used_slots--;
800         } else {
801                 if (!mslots[i].npages)
802                         slots->used_slots++;
803         }
804
805         while (i < KVM_MEM_SLOTS_NUM - 1 &&
806                new->base_gfn <= mslots[i + 1].base_gfn) {
807                 if (!mslots[i + 1].npages)
808                         break;
809                 mslots[i] = mslots[i + 1];
810                 slots->id_to_index[mslots[i].id] = i;
811                 i++;
812         }
813
814         /*
815          * The ">=" is needed when creating a slot with base_gfn == 0,
816          * so that it moves before all those with base_gfn == npages == 0.
817          *
818          * On the other hand, if new->npages is zero, the above loop has
819          * already left i pointing to the beginning of the empty part of
820          * mslots, and the ">=" would move the hole backwards in this
821          * case---which is wrong.  So skip the loop when deleting a slot.
822          */
823         if (new->npages) {
824                 while (i > 0 &&
825                        new->base_gfn >= mslots[i - 1].base_gfn) {
826                         mslots[i] = mslots[i - 1];
827                         slots->id_to_index[mslots[i].id] = i;
828                         i--;
829                 }
830         } else
831                 WARN_ON_ONCE(i != slots->used_slots);
832
833         mslots[i] = *new;
834         slots->id_to_index[mslots[i].id] = i;
835 }
836
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840
841 #ifdef __KVM_HAVE_READONLY_MEM
842         valid_flags |= KVM_MEM_READONLY;
843 #endif
844
845         if (mem->flags & ~valid_flags)
846                 return -EINVAL;
847
848         return 0;
849 }
850
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852                 int as_id, struct kvm_memslots *slots)
853 {
854         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855
856         /*
857          * Set the low bit in the generation, which disables SPTE caching
858          * until the end of synchronize_srcu_expedited.
859          */
860         WARN_ON(old_memslots->generation & 1);
861         slots->generation = old_memslots->generation + 1;
862
863         rcu_assign_pointer(kvm->memslots[as_id], slots);
864         synchronize_srcu_expedited(&kvm->srcu);
865
866         /*
867          * Increment the new memslot generation a second time. This prevents
868          * vm exits that race with memslot updates from caching a memslot
869          * generation that will (potentially) be valid forever.
870          */
871         slots->generation++;
872
873         kvm_arch_memslots_updated(kvm, slots);
874
875         return old_memslots;
876 }
877
878 /*
879  * Allocate some memory and give it an address in the guest physical address
880  * space.
881  *
882  * Discontiguous memory is allowed, mostly for framebuffers.
883  *
884  * Must be called holding kvm->slots_lock for write.
885  */
886 int __kvm_set_memory_region(struct kvm *kvm,
887                             const struct kvm_userspace_memory_region *mem)
888 {
889         int r;
890         gfn_t base_gfn;
891         unsigned long npages;
892         struct kvm_memory_slot *slot;
893         struct kvm_memory_slot old, new;
894         struct kvm_memslots *slots = NULL, *old_memslots;
895         int as_id, id;
896         enum kvm_mr_change change;
897
898         r = check_memory_region_flags(mem);
899         if (r)
900                 goto out;
901
902         r = -EINVAL;
903         as_id = mem->slot >> 16;
904         id = (u16)mem->slot;
905
906         /* General sanity checks */
907         if (mem->memory_size & (PAGE_SIZE - 1))
908                 goto out;
909         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910                 goto out;
911         /* We can read the guest memory with __xxx_user() later on. */
912         if ((id < KVM_USER_MEM_SLOTS) &&
913             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914              !access_ok(VERIFY_WRITE,
915                         (void __user *)(unsigned long)mem->userspace_addr,
916                         mem->memory_size)))
917                 goto out;
918         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919                 goto out;
920         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921                 goto out;
922
923         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925         npages = mem->memory_size >> PAGE_SHIFT;
926
927         if (npages > KVM_MEM_MAX_NR_PAGES)
928                 goto out;
929
930         new = old = *slot;
931
932         new.id = id;
933         new.base_gfn = base_gfn;
934         new.npages = npages;
935         new.flags = mem->flags;
936
937         if (npages) {
938                 if (!old.npages)
939                         change = KVM_MR_CREATE;
940                 else { /* Modify an existing slot. */
941                         if ((mem->userspace_addr != old.userspace_addr) ||
942                             (npages != old.npages) ||
943                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944                                 goto out;
945
946                         if (base_gfn != old.base_gfn)
947                                 change = KVM_MR_MOVE;
948                         else if (new.flags != old.flags)
949                                 change = KVM_MR_FLAGS_ONLY;
950                         else { /* Nothing to change. */
951                                 r = 0;
952                                 goto out;
953                         }
954                 }
955         } else {
956                 if (!old.npages)
957                         goto out;
958
959                 change = KVM_MR_DELETE;
960                 new.base_gfn = 0;
961                 new.flags = 0;
962         }
963
964         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965                 /* Check for overlaps */
966                 r = -EEXIST;
967                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969                             (slot->id == id))
970                                 continue;
971                         if (!((base_gfn + npages <= slot->base_gfn) ||
972                               (base_gfn >= slot->base_gfn + slot->npages)))
973                                 goto out;
974                 }
975         }
976
977         /* Free page dirty bitmap if unneeded */
978         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979                 new.dirty_bitmap = NULL;
980
981         r = -ENOMEM;
982         if (change == KVM_MR_CREATE) {
983                 new.userspace_addr = mem->userspace_addr;
984
985                 if (kvm_arch_create_memslot(kvm, &new, npages))
986                         goto out_free;
987         }
988
989         /* Allocate page dirty bitmap if needed */
990         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991                 if (kvm_create_dirty_bitmap(&new) < 0)
992                         goto out_free;
993         }
994
995         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996         if (!slots)
997                 goto out_free;
998         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999
1000         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001                 slot = id_to_memslot(slots, id);
1002                 slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004                 old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006                 /* slot was deleted or moved, clear iommu mapping */
1007                 kvm_iommu_unmap_pages(kvm, &old);
1008                 /* From this point no new shadow pages pointing to a deleted,
1009                  * or moved, memslot will be created.
1010                  *
1011                  * validation of sp->gfn happens in:
1012                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013                  *      - kvm_is_visible_gfn (mmu_check_roots)
1014                  */
1015                 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017                 /*
1018                  * We can re-use the old_memslots from above, the only difference
1019                  * from the currently installed memslots is the invalid flag.  This
1020                  * will get overwritten by update_memslots anyway.
1021                  */
1022                 slots = old_memslots;
1023         }
1024
1025         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026         if (r)
1027                 goto out_slots;
1028
1029         /* actual memory is freed via old in kvm_free_memslot below */
1030         if (change == KVM_MR_DELETE) {
1031                 new.dirty_bitmap = NULL;
1032                 memset(&new.arch, 0, sizeof(new.arch));
1033         }
1034
1035         update_memslots(slots, &new);
1036         old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040         kvm_free_memslot(kvm, &old, &new);
1041         kvfree(old_memslots);
1042
1043         /*
1044          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1045          * un-mapped and re-mapped if their base changes.  Since base change
1046          * unmapping is handled above with slot deletion, mapping alone is
1047          * needed here.  Anything else the iommu might care about for existing
1048          * slots (size changes, userspace addr changes and read-only flag
1049          * changes) is disallowed above, so any other attribute changes getting
1050          * here can be skipped.
1051          */
1052         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053                 r = kvm_iommu_map_pages(kvm, &new);
1054                 return r;
1055         }
1056
1057         return 0;
1058
1059 out_slots:
1060         kvfree(slots);
1061 out_free:
1062         kvm_free_memslot(kvm, &new, &old);
1063 out:
1064         return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068 int kvm_set_memory_region(struct kvm *kvm,
1069                           const struct kvm_userspace_memory_region *mem)
1070 {
1071         int r;
1072
1073         mutex_lock(&kvm->slots_lock);
1074         r = __kvm_set_memory_region(kvm, mem);
1075         mutex_unlock(&kvm->slots_lock);
1076         return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081                                           struct kvm_userspace_memory_region *mem)
1082 {
1083         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084                 return -EINVAL;
1085
1086         return kvm_set_memory_region(kvm, mem);
1087 }
1088
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090                         struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092         struct kvm_memslots *slots;
1093         struct kvm_memory_slot *memslot;
1094         int r, i, as_id, id;
1095         unsigned long n;
1096         unsigned long any = 0;
1097
1098         r = -EINVAL;
1099         as_id = log->slot >> 16;
1100         id = (u16)log->slot;
1101         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102                 goto out;
1103
1104         slots = __kvm_memslots(kvm, as_id);
1105         memslot = id_to_memslot(slots, id);
1106         r = -ENOENT;
1107         if (!memslot->dirty_bitmap)
1108                 goto out;
1109
1110         n = kvm_dirty_bitmap_bytes(memslot);
1111
1112         for (i = 0; !any && i < n/sizeof(long); ++i)
1113                 any = memslot->dirty_bitmap[i];
1114
1115         r = -EFAULT;
1116         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117                 goto out;
1118
1119         if (any)
1120                 *is_dirty = 1;
1121
1122         r = 0;
1123 out:
1124         return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *      are dirty write protect them for next write.
1132  * @kvm:        pointer to kvm instance
1133  * @log:        slot id and address to which we copy the log
1134  * @is_dirty:   flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152                         struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154         struct kvm_memslots *slots;
1155         struct kvm_memory_slot *memslot;
1156         int r, i, as_id, id;
1157         unsigned long n;
1158         unsigned long *dirty_bitmap;
1159         unsigned long *dirty_bitmap_buffer;
1160
1161         r = -EINVAL;
1162         as_id = log->slot >> 16;
1163         id = (u16)log->slot;
1164         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165                 goto out;
1166
1167         slots = __kvm_memslots(kvm, as_id);
1168         memslot = id_to_memslot(slots, id);
1169
1170         dirty_bitmap = memslot->dirty_bitmap;
1171         r = -ENOENT;
1172         if (!dirty_bitmap)
1173                 goto out;
1174
1175         n = kvm_dirty_bitmap_bytes(memslot);
1176
1177         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178         memset(dirty_bitmap_buffer, 0, n);
1179
1180         spin_lock(&kvm->mmu_lock);
1181         *is_dirty = false;
1182         for (i = 0; i < n / sizeof(long); i++) {
1183                 unsigned long mask;
1184                 gfn_t offset;
1185
1186                 if (!dirty_bitmap[i])
1187                         continue;
1188
1189                 *is_dirty = true;
1190
1191                 mask = xchg(&dirty_bitmap[i], 0);
1192                 dirty_bitmap_buffer[i] = mask;
1193
1194                 if (mask) {
1195                         offset = i * BITS_PER_LONG;
1196                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197                                                                 offset, mask);
1198                 }
1199         }
1200
1201         spin_unlock(&kvm->mmu_lock);
1202
1203         r = -EFAULT;
1204         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205                 goto out;
1206
1207         r = 0;
1208 out:
1209         return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216         return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221         largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241               memslot->flags & KVM_MEMSLOT_INVALID)
1242                 return false;
1243
1244         return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250         struct vm_area_struct *vma;
1251         unsigned long addr, size;
1252
1253         size = PAGE_SIZE;
1254
1255         addr = gfn_to_hva(kvm, gfn);
1256         if (kvm_is_error_hva(addr))
1257                 return PAGE_SIZE;
1258
1259         down_read(&current->mm->mmap_sem);
1260         vma = find_vma(current->mm, addr);
1261         if (!vma)
1262                 goto out;
1263
1264         size = vma_kernel_pagesize(vma);
1265
1266 out:
1267         up_read(&current->mm->mmap_sem);
1268
1269         return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274         return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278                                        gfn_t *nr_pages, bool write)
1279 {
1280         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281                 return KVM_HVA_ERR_BAD;
1282
1283         if (memslot_is_readonly(slot) && write)
1284                 return KVM_HVA_ERR_RO_BAD;
1285
1286         if (nr_pages)
1287                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289         return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293                                      gfn_t *nr_pages)
1294 {
1295         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299                                         gfn_t gfn)
1300 {
1301         return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318  * If writable is set to false, the hva returned by this function is only
1319  * allowed to be read.
1320  */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322                                       gfn_t gfn, bool *writable)
1323 {
1324         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326         if (!kvm_is_error_hva(hva) && writable)
1327                 *writable = !memslot_is_readonly(slot);
1328
1329         return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347                 struct page **page)
1348 {
1349         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350
1351         if (write)
1352                 flags |= FOLL_WRITE;
1353
1354         return get_user_pages(start, 1, flags, page, NULL);
1355 }
1356
1357 static inline int check_user_page_hwpoison(unsigned long addr)
1358 {
1359         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360
1361         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362         return rc == -EHWPOISON;
1363 }
1364
1365 /*
1366  * The atomic path to get the writable pfn which will be stored in @pfn,
1367  * true indicates success, otherwise false is returned.
1368  */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372         struct page *page[1];
1373         int npages;
1374
1375         if (!(async || atomic))
1376                 return false;
1377
1378         /*
1379          * Fast pin a writable pfn only if it is a write fault request
1380          * or the caller allows to map a writable pfn for a read fault
1381          * request.
1382          */
1383         if (!(write_fault || writable))
1384                 return false;
1385
1386         npages = __get_user_pages_fast(addr, 1, 1, page);
1387         if (npages == 1) {
1388                 *pfn = page_to_pfn(page[0]);
1389
1390                 if (writable)
1391                         *writable = true;
1392                 return true;
1393         }
1394
1395         return false;
1396 }
1397
1398 /*
1399  * The slow path to get the pfn of the specified host virtual address,
1400  * 1 indicates success, -errno is returned if error is detected.
1401  */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403                            bool *writable, kvm_pfn_t *pfn)
1404 {
1405         struct page *page[1];
1406         int npages = 0;
1407
1408         might_sleep();
1409
1410         if (writable)
1411                 *writable = write_fault;
1412
1413         if (async) {
1414                 down_read(&current->mm->mmap_sem);
1415                 npages = get_user_page_nowait(addr, write_fault, page);
1416                 up_read(&current->mm->mmap_sem);
1417         } else {
1418                 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1419
1420                 if (write_fault)
1421                         flags |= FOLL_WRITE;
1422
1423                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1424                                                    page, flags);
1425         }
1426         if (npages != 1)
1427                 return npages;
1428
1429         /* map read fault as writable if possible */
1430         if (unlikely(!write_fault) && writable) {
1431                 struct page *wpage[1];
1432
1433                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1434                 if (npages == 1) {
1435                         *writable = true;
1436                         put_page(page[0]);
1437                         page[0] = wpage[0];
1438                 }
1439
1440                 npages = 1;
1441         }
1442         *pfn = page_to_pfn(page[0]);
1443         return npages;
1444 }
1445
1446 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1447 {
1448         if (unlikely(!(vma->vm_flags & VM_READ)))
1449                 return false;
1450
1451         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1452                 return false;
1453
1454         return true;
1455 }
1456
1457 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1458                                unsigned long addr, bool *async,
1459                                bool write_fault, kvm_pfn_t *p_pfn)
1460 {
1461         unsigned long pfn;
1462         int r;
1463
1464         r = follow_pfn(vma, addr, &pfn);
1465         if (r) {
1466                 /*
1467                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1468                  * not call the fault handler, so do it here.
1469                  */
1470                 bool unlocked = false;
1471                 r = fixup_user_fault(current, current->mm, addr,
1472                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1473                                      &unlocked);
1474                 if (unlocked)
1475                         return -EAGAIN;
1476                 if (r)
1477                         return r;
1478
1479                 r = follow_pfn(vma, addr, &pfn);
1480                 if (r)
1481                         return r;
1482
1483         }
1484
1485
1486         /*
1487          * Get a reference here because callers of *hva_to_pfn* and
1488          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1489          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1490          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1491          * simply do nothing for reserved pfns.
1492          *
1493          * Whoever called remap_pfn_range is also going to call e.g.
1494          * unmap_mapping_range before the underlying pages are freed,
1495          * causing a call to our MMU notifier.
1496          */ 
1497         kvm_get_pfn(pfn);
1498
1499         *p_pfn = pfn;
1500         return 0;
1501 }
1502
1503 /*
1504  * Pin guest page in memory and return its pfn.
1505  * @addr: host virtual address which maps memory to the guest
1506  * @atomic: whether this function can sleep
1507  * @async: whether this function need to wait IO complete if the
1508  *         host page is not in the memory
1509  * @write_fault: whether we should get a writable host page
1510  * @writable: whether it allows to map a writable host page for !@write_fault
1511  *
1512  * The function will map a writable host page for these two cases:
1513  * 1): @write_fault = true
1514  * 2): @write_fault = false && @writable, @writable will tell the caller
1515  *     whether the mapping is writable.
1516  */
1517 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1518                         bool write_fault, bool *writable)
1519 {
1520         struct vm_area_struct *vma;
1521         kvm_pfn_t pfn = 0;
1522         int npages, r;
1523
1524         /* we can do it either atomically or asynchronously, not both */
1525         BUG_ON(atomic && async);
1526
1527         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1528                 return pfn;
1529
1530         if (atomic)
1531                 return KVM_PFN_ERR_FAULT;
1532
1533         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1534         if (npages == 1)
1535                 return pfn;
1536
1537         down_read(&current->mm->mmap_sem);
1538         if (npages == -EHWPOISON ||
1539               (!async && check_user_page_hwpoison(addr))) {
1540                 pfn = KVM_PFN_ERR_HWPOISON;
1541                 goto exit;
1542         }
1543
1544 retry:
1545         vma = find_vma_intersection(current->mm, addr, addr + 1);
1546
1547         if (vma == NULL)
1548                 pfn = KVM_PFN_ERR_FAULT;
1549         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1550                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1551                 if (r == -EAGAIN)
1552                         goto retry;
1553                 if (r < 0)
1554                         pfn = KVM_PFN_ERR_FAULT;
1555         } else {
1556                 if (async && vma_is_valid(vma, write_fault))
1557                         *async = true;
1558                 pfn = KVM_PFN_ERR_FAULT;
1559         }
1560 exit:
1561         up_read(&current->mm->mmap_sem);
1562         return pfn;
1563 }
1564
1565 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1566                                bool atomic, bool *async, bool write_fault,
1567                                bool *writable)
1568 {
1569         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1570
1571         if (addr == KVM_HVA_ERR_RO_BAD) {
1572                 if (writable)
1573                         *writable = false;
1574                 return KVM_PFN_ERR_RO_FAULT;
1575         }
1576
1577         if (kvm_is_error_hva(addr)) {
1578                 if (writable)
1579                         *writable = false;
1580                 return KVM_PFN_NOSLOT;
1581         }
1582
1583         /* Do not map writable pfn in the readonly memslot. */
1584         if (writable && memslot_is_readonly(slot)) {
1585                 *writable = false;
1586                 writable = NULL;
1587         }
1588
1589         return hva_to_pfn(addr, atomic, async, write_fault,
1590                           writable);
1591 }
1592 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1593
1594 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1595                       bool *writable)
1596 {
1597         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1598                                     write_fault, writable);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1601
1602 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1603 {
1604         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1605 }
1606 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1607
1608 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1609 {
1610         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1613
1614 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1615 {
1616         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1617 }
1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1619
1620 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1621 {
1622         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1625
1626 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1627 {
1628         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1631
1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1637
1638 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1639                             struct page **pages, int nr_pages)
1640 {
1641         unsigned long addr;
1642         gfn_t entry;
1643
1644         addr = gfn_to_hva_many(slot, gfn, &entry);
1645         if (kvm_is_error_hva(addr))
1646                 return -1;
1647
1648         if (entry < nr_pages)
1649                 return 0;
1650
1651         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1652 }
1653 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1654
1655 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1656 {
1657         if (is_error_noslot_pfn(pfn))
1658                 return KVM_ERR_PTR_BAD_PAGE;
1659
1660         if (kvm_is_reserved_pfn(pfn)) {
1661                 WARN_ON(1);
1662                 return KVM_ERR_PTR_BAD_PAGE;
1663         }
1664
1665         return pfn_to_page(pfn);
1666 }
1667
1668 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1669 {
1670         kvm_pfn_t pfn;
1671
1672         pfn = gfn_to_pfn(kvm, gfn);
1673
1674         return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(gfn_to_page);
1677
1678 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1679 {
1680         kvm_pfn_t pfn;
1681
1682         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1683
1684         return kvm_pfn_to_page(pfn);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1687
1688 void kvm_release_page_clean(struct page *page)
1689 {
1690         WARN_ON(is_error_page(page));
1691
1692         kvm_release_pfn_clean(page_to_pfn(page));
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1695
1696 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1697 {
1698         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1699                 put_page(pfn_to_page(pfn));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1702
1703 void kvm_release_page_dirty(struct page *page)
1704 {
1705         WARN_ON(is_error_page(page));
1706
1707         kvm_release_pfn_dirty(page_to_pfn(page));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1710
1711 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1712 {
1713         kvm_set_pfn_dirty(pfn);
1714         kvm_release_pfn_clean(pfn);
1715 }
1716
1717 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1718 {
1719         if (!kvm_is_reserved_pfn(pfn)) {
1720                 struct page *page = pfn_to_page(pfn);
1721
1722                 if (!PageReserved(page))
1723                         SetPageDirty(page);
1724         }
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1727
1728 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1729 {
1730         if (!kvm_is_reserved_pfn(pfn))
1731                 mark_page_accessed(pfn_to_page(pfn));
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1734
1735 void kvm_get_pfn(kvm_pfn_t pfn)
1736 {
1737         if (!kvm_is_reserved_pfn(pfn))
1738                 get_page(pfn_to_page(pfn));
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1741
1742 static int next_segment(unsigned long len, int offset)
1743 {
1744         if (len > PAGE_SIZE - offset)
1745                 return PAGE_SIZE - offset;
1746         else
1747                 return len;
1748 }
1749
1750 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1751                                  void *data, int offset, int len)
1752 {
1753         int r;
1754         unsigned long addr;
1755
1756         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1757         if (kvm_is_error_hva(addr))
1758                 return -EFAULT;
1759         r = __copy_from_user(data, (void __user *)addr + offset, len);
1760         if (r)
1761                 return -EFAULT;
1762         return 0;
1763 }
1764
1765 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1766                         int len)
1767 {
1768         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1769
1770         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1773
1774 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1775                              int offset, int len)
1776 {
1777         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1778
1779         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1782
1783 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1784 {
1785         gfn_t gfn = gpa >> PAGE_SHIFT;
1786         int seg;
1787         int offset = offset_in_page(gpa);
1788         int ret;
1789
1790         while ((seg = next_segment(len, offset)) != 0) {
1791                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1792                 if (ret < 0)
1793                         return ret;
1794                 offset = 0;
1795                 len -= seg;
1796                 data += seg;
1797                 ++gfn;
1798         }
1799         return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_read_guest);
1802
1803 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1804 {
1805         gfn_t gfn = gpa >> PAGE_SHIFT;
1806         int seg;
1807         int offset = offset_in_page(gpa);
1808         int ret;
1809
1810         while ((seg = next_segment(len, offset)) != 0) {
1811                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1812                 if (ret < 0)
1813                         return ret;
1814                 offset = 0;
1815                 len -= seg;
1816                 data += seg;
1817                 ++gfn;
1818         }
1819         return 0;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1822
1823 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1824                                    void *data, int offset, unsigned long len)
1825 {
1826         int r;
1827         unsigned long addr;
1828
1829         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1830         if (kvm_is_error_hva(addr))
1831                 return -EFAULT;
1832         pagefault_disable();
1833         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1834         pagefault_enable();
1835         if (r)
1836                 return -EFAULT;
1837         return 0;
1838 }
1839
1840 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1841                           unsigned long len)
1842 {
1843         gfn_t gfn = gpa >> PAGE_SHIFT;
1844         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1845         int offset = offset_in_page(gpa);
1846
1847         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1850
1851 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1852                                void *data, unsigned long len)
1853 {
1854         gfn_t gfn = gpa >> PAGE_SHIFT;
1855         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1856         int offset = offset_in_page(gpa);
1857
1858         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1861
1862 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1863                                   const void *data, int offset, int len)
1864 {
1865         int r;
1866         unsigned long addr;
1867
1868         addr = gfn_to_hva_memslot(memslot, gfn);
1869         if (kvm_is_error_hva(addr))
1870                 return -EFAULT;
1871         r = __copy_to_user((void __user *)addr + offset, data, len);
1872         if (r)
1873                 return -EFAULT;
1874         mark_page_dirty_in_slot(memslot, gfn);
1875         return 0;
1876 }
1877
1878 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1879                          const void *data, int offset, int len)
1880 {
1881         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1882
1883         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1886
1887 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1888                               const void *data, int offset, int len)
1889 {
1890         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1891
1892         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1895
1896 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1897                     unsigned long len)
1898 {
1899         gfn_t gfn = gpa >> PAGE_SHIFT;
1900         int seg;
1901         int offset = offset_in_page(gpa);
1902         int ret;
1903
1904         while ((seg = next_segment(len, offset)) != 0) {
1905                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1906                 if (ret < 0)
1907                         return ret;
1908                 offset = 0;
1909                 len -= seg;
1910                 data += seg;
1911                 ++gfn;
1912         }
1913         return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_write_guest);
1916
1917 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1918                          unsigned long len)
1919 {
1920         gfn_t gfn = gpa >> PAGE_SHIFT;
1921         int seg;
1922         int offset = offset_in_page(gpa);
1923         int ret;
1924
1925         while ((seg = next_segment(len, offset)) != 0) {
1926                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1927                 if (ret < 0)
1928                         return ret;
1929                 offset = 0;
1930                 len -= seg;
1931                 data += seg;
1932                 ++gfn;
1933         }
1934         return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1937
1938 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1939                               gpa_t gpa, unsigned long len)
1940 {
1941         struct kvm_memslots *slots = kvm_memslots(kvm);
1942         int offset = offset_in_page(gpa);
1943         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1944         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1945         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1946         gfn_t nr_pages_avail;
1947
1948         ghc->gpa = gpa;
1949         ghc->generation = slots->generation;
1950         ghc->len = len;
1951         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1953         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1954                 ghc->hva += offset;
1955         } else {
1956                 /*
1957                  * If the requested region crosses two memslots, we still
1958                  * verify that the entire region is valid here.
1959                  */
1960                 while (start_gfn <= end_gfn) {
1961                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1962                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1963                                                    &nr_pages_avail);
1964                         if (kvm_is_error_hva(ghc->hva))
1965                                 return -EFAULT;
1966                         start_gfn += nr_pages_avail;
1967                 }
1968                 /* Use the slow path for cross page reads and writes. */
1969                 ghc->memslot = NULL;
1970         }
1971         return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1974
1975 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1976                            void *data, int offset, unsigned long len)
1977 {
1978         struct kvm_memslots *slots = kvm_memslots(kvm);
1979         int r;
1980         gpa_t gpa = ghc->gpa + offset;
1981
1982         BUG_ON(len + offset > ghc->len);
1983
1984         if (slots->generation != ghc->generation)
1985                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1986
1987         if (unlikely(!ghc->memslot))
1988                 return kvm_write_guest(kvm, gpa, data, len);
1989
1990         if (kvm_is_error_hva(ghc->hva))
1991                 return -EFAULT;
1992
1993         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1994         if (r)
1995                 return -EFAULT;
1996         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1997
1998         return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2001
2002 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2003                            void *data, unsigned long len)
2004 {
2005         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2006 }
2007 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2008
2009 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2010                            void *data, unsigned long len)
2011 {
2012         struct kvm_memslots *slots = kvm_memslots(kvm);
2013         int r;
2014
2015         BUG_ON(len > ghc->len);
2016
2017         if (slots->generation != ghc->generation)
2018                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2019
2020         if (unlikely(!ghc->memslot))
2021                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2022
2023         if (kvm_is_error_hva(ghc->hva))
2024                 return -EFAULT;
2025
2026         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2027         if (r)
2028                 return -EFAULT;
2029
2030         return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2033
2034 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2035 {
2036         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2037
2038         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2041
2042 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2043 {
2044         gfn_t gfn = gpa >> PAGE_SHIFT;
2045         int seg;
2046         int offset = offset_in_page(gpa);
2047         int ret;
2048
2049         while ((seg = next_segment(len, offset)) != 0) {
2050                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2051                 if (ret < 0)
2052                         return ret;
2053                 offset = 0;
2054                 len -= seg;
2055                 ++gfn;
2056         }
2057         return 0;
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2060
2061 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2062                                     gfn_t gfn)
2063 {
2064         if (memslot && memslot->dirty_bitmap) {
2065                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2066
2067                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2068         }
2069 }
2070
2071 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2072 {
2073         struct kvm_memory_slot *memslot;
2074
2075         memslot = gfn_to_memslot(kvm, gfn);
2076         mark_page_dirty_in_slot(memslot, gfn);
2077 }
2078 EXPORT_SYMBOL_GPL(mark_page_dirty);
2079
2080 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2081 {
2082         struct kvm_memory_slot *memslot;
2083
2084         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2085         mark_page_dirty_in_slot(memslot, gfn);
2086 }
2087 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2088
2089 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2090 {
2091         unsigned int old, val, grow;
2092
2093         old = val = vcpu->halt_poll_ns;
2094         grow = READ_ONCE(halt_poll_ns_grow);
2095         /* 10us base */
2096         if (val == 0 && grow)
2097                 val = 10000;
2098         else
2099                 val *= grow;
2100
2101         if (val > halt_poll_ns)
2102                 val = halt_poll_ns;
2103
2104         vcpu->halt_poll_ns = val;
2105         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2106 }
2107
2108 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 {
2110         unsigned int old, val, shrink;
2111
2112         old = val = vcpu->halt_poll_ns;
2113         shrink = READ_ONCE(halt_poll_ns_shrink);
2114         if (shrink == 0)
2115                 val = 0;
2116         else
2117                 val /= shrink;
2118
2119         vcpu->halt_poll_ns = val;
2120         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2121 }
2122
2123 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2124 {
2125         if (kvm_arch_vcpu_runnable(vcpu)) {
2126                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2127                 return -EINTR;
2128         }
2129         if (kvm_cpu_has_pending_timer(vcpu))
2130                 return -EINTR;
2131         if (signal_pending(current))
2132                 return -EINTR;
2133
2134         return 0;
2135 }
2136
2137 /*
2138  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2139  */
2140 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2141 {
2142         ktime_t start, cur;
2143         DECLARE_SWAITQUEUE(wait);
2144         bool waited = false;
2145         u64 block_ns;
2146
2147         start = cur = ktime_get();
2148         if (vcpu->halt_poll_ns) {
2149                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2150
2151                 ++vcpu->stat.halt_attempted_poll;
2152                 do {
2153                         /*
2154                          * This sets KVM_REQ_UNHALT if an interrupt
2155                          * arrives.
2156                          */
2157                         if (kvm_vcpu_check_block(vcpu) < 0) {
2158                                 ++vcpu->stat.halt_successful_poll;
2159                                 if (!vcpu_valid_wakeup(vcpu))
2160                                         ++vcpu->stat.halt_poll_invalid;
2161                                 goto out;
2162                         }
2163                         cur = ktime_get();
2164                 } while (single_task_running() && ktime_before(cur, stop));
2165         }
2166
2167         kvm_arch_vcpu_blocking(vcpu);
2168
2169         for (;;) {
2170                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2171
2172                 if (kvm_vcpu_check_block(vcpu) < 0)
2173                         break;
2174
2175                 waited = true;
2176                 schedule();
2177         }
2178
2179         finish_swait(&vcpu->wq, &wait);
2180         cur = ktime_get();
2181
2182         kvm_arch_vcpu_unblocking(vcpu);
2183 out:
2184         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2185
2186         if (!vcpu_valid_wakeup(vcpu))
2187                 shrink_halt_poll_ns(vcpu);
2188         else if (halt_poll_ns) {
2189                 if (block_ns <= vcpu->halt_poll_ns)
2190                         ;
2191                 /* we had a long block, shrink polling */
2192                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2193                         shrink_halt_poll_ns(vcpu);
2194                 /* we had a short halt and our poll time is too small */
2195                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2196                         block_ns < halt_poll_ns)
2197                         grow_halt_poll_ns(vcpu);
2198         } else
2199                 vcpu->halt_poll_ns = 0;
2200
2201         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2202         kvm_arch_vcpu_block_finish(vcpu);
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2205
2206 #ifndef CONFIG_S390
2207 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2208 {
2209         struct swait_queue_head *wqp;
2210
2211         wqp = kvm_arch_vcpu_wq(vcpu);
2212         if (swait_active(wqp)) {
2213                 swake_up(wqp);
2214                 ++vcpu->stat.halt_wakeup;
2215         }
2216
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2219
2220 /*
2221  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2222  */
2223 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2224 {
2225         int me;
2226         int cpu = vcpu->cpu;
2227
2228         kvm_vcpu_wake_up(vcpu);
2229         me = get_cpu();
2230         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2231                 if (kvm_arch_vcpu_should_kick(vcpu))
2232                         smp_send_reschedule(cpu);
2233         put_cpu();
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2236 #endif /* !CONFIG_S390 */
2237
2238 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2239 {
2240         struct pid *pid;
2241         struct task_struct *task = NULL;
2242         int ret = 0;
2243
2244         rcu_read_lock();
2245         pid = rcu_dereference(target->pid);
2246         if (pid)
2247                 task = get_pid_task(pid, PIDTYPE_PID);
2248         rcu_read_unlock();
2249         if (!task)
2250                 return ret;
2251         ret = yield_to(task, 1);
2252         put_task_struct(task);
2253
2254         return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2257
2258 /*
2259  * Helper that checks whether a VCPU is eligible for directed yield.
2260  * Most eligible candidate to yield is decided by following heuristics:
2261  *
2262  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2263  *  (preempted lock holder), indicated by @in_spin_loop.
2264  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2265  *
2266  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2267  *  chance last time (mostly it has become eligible now since we have probably
2268  *  yielded to lockholder in last iteration. This is done by toggling
2269  *  @dy_eligible each time a VCPU checked for eligibility.)
2270  *
2271  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2272  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2273  *  burning. Giving priority for a potential lock-holder increases lock
2274  *  progress.
2275  *
2276  *  Since algorithm is based on heuristics, accessing another VCPU data without
2277  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2278  *  and continue with next VCPU and so on.
2279  */
2280 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2281 {
2282 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2283         bool eligible;
2284
2285         eligible = !vcpu->spin_loop.in_spin_loop ||
2286                     vcpu->spin_loop.dy_eligible;
2287
2288         if (vcpu->spin_loop.in_spin_loop)
2289                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2290
2291         return eligible;
2292 #else
2293         return true;
2294 #endif
2295 }
2296
2297 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2298 {
2299         struct kvm *kvm = me->kvm;
2300         struct kvm_vcpu *vcpu;
2301         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2302         int yielded = 0;
2303         int try = 3;
2304         int pass;
2305         int i;
2306
2307         kvm_vcpu_set_in_spin_loop(me, true);
2308         /*
2309          * We boost the priority of a VCPU that is runnable but not
2310          * currently running, because it got preempted by something
2311          * else and called schedule in __vcpu_run.  Hopefully that
2312          * VCPU is holding the lock that we need and will release it.
2313          * We approximate round-robin by starting at the last boosted VCPU.
2314          */
2315         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2316                 kvm_for_each_vcpu(i, vcpu, kvm) {
2317                         if (!pass && i <= last_boosted_vcpu) {
2318                                 i = last_boosted_vcpu;
2319                                 continue;
2320                         } else if (pass && i > last_boosted_vcpu)
2321                                 break;
2322                         if (!ACCESS_ONCE(vcpu->preempted))
2323                                 continue;
2324                         if (vcpu == me)
2325                                 continue;
2326                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2327                                 continue;
2328                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2329                                 continue;
2330
2331                         yielded = kvm_vcpu_yield_to(vcpu);
2332                         if (yielded > 0) {
2333                                 kvm->last_boosted_vcpu = i;
2334                                 break;
2335                         } else if (yielded < 0) {
2336                                 try--;
2337                                 if (!try)
2338                                         break;
2339                         }
2340                 }
2341         }
2342         kvm_vcpu_set_in_spin_loop(me, false);
2343
2344         /* Ensure vcpu is not eligible during next spinloop */
2345         kvm_vcpu_set_dy_eligible(me, false);
2346 }
2347 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2348
2349 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2350 {
2351         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2352         struct page *page;
2353
2354         if (vmf->pgoff == 0)
2355                 page = virt_to_page(vcpu->run);
2356 #ifdef CONFIG_X86
2357         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2358                 page = virt_to_page(vcpu->arch.pio_data);
2359 #endif
2360 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2361         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2362                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2363 #endif
2364         else
2365                 return kvm_arch_vcpu_fault(vcpu, vmf);
2366         get_page(page);
2367         vmf->page = page;
2368         return 0;
2369 }
2370
2371 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2372         .fault = kvm_vcpu_fault,
2373 };
2374
2375 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2376 {
2377         vma->vm_ops = &kvm_vcpu_vm_ops;
2378         return 0;
2379 }
2380
2381 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2382 {
2383         struct kvm_vcpu *vcpu = filp->private_data;
2384
2385         debugfs_remove_recursive(vcpu->debugfs_dentry);
2386         kvm_put_kvm(vcpu->kvm);
2387         return 0;
2388 }
2389
2390 static struct file_operations kvm_vcpu_fops = {
2391         .release        = kvm_vcpu_release,
2392         .unlocked_ioctl = kvm_vcpu_ioctl,
2393 #ifdef CONFIG_KVM_COMPAT
2394         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2395 #endif
2396         .mmap           = kvm_vcpu_mmap,
2397         .llseek         = noop_llseek,
2398 };
2399
2400 /*
2401  * Allocates an inode for the vcpu.
2402  */
2403 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2404 {
2405         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2406 }
2407
2408 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2409 {
2410         char dir_name[ITOA_MAX_LEN * 2];
2411         int ret;
2412
2413         if (!kvm_arch_has_vcpu_debugfs())
2414                 return 0;
2415
2416         if (!debugfs_initialized())
2417                 return 0;
2418
2419         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2420         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2421                                                                 vcpu->kvm->debugfs_dentry);
2422         if (!vcpu->debugfs_dentry)
2423                 return -ENOMEM;
2424
2425         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2426         if (ret < 0) {
2427                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2428                 return ret;
2429         }
2430
2431         return 0;
2432 }
2433
2434 /*
2435  * Creates some virtual cpus.  Good luck creating more than one.
2436  */
2437 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2438 {
2439         int r;
2440         struct kvm_vcpu *vcpu;
2441
2442         if (id >= KVM_MAX_VCPU_ID)
2443                 return -EINVAL;
2444
2445         mutex_lock(&kvm->lock);
2446         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2447                 mutex_unlock(&kvm->lock);
2448                 return -EINVAL;
2449         }
2450
2451         kvm->created_vcpus++;
2452         mutex_unlock(&kvm->lock);
2453
2454         vcpu = kvm_arch_vcpu_create(kvm, id);
2455         if (IS_ERR(vcpu)) {
2456                 r = PTR_ERR(vcpu);
2457                 goto vcpu_decrement;
2458         }
2459
2460         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2461
2462         r = kvm_arch_vcpu_setup(vcpu);
2463         if (r)
2464                 goto vcpu_destroy;
2465
2466         r = kvm_create_vcpu_debugfs(vcpu);
2467         if (r)
2468                 goto vcpu_destroy;
2469
2470         mutex_lock(&kvm->lock);
2471         if (kvm_get_vcpu_by_id(kvm, id)) {
2472                 r = -EEXIST;
2473                 goto unlock_vcpu_destroy;
2474         }
2475
2476         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2477
2478         /* Now it's all set up, let userspace reach it */
2479         kvm_get_kvm(kvm);
2480         r = create_vcpu_fd(vcpu);
2481         if (r < 0) {
2482                 kvm_put_kvm(kvm);
2483                 goto unlock_vcpu_destroy;
2484         }
2485
2486         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2487
2488         /*
2489          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2490          * before kvm->online_vcpu's incremented value.
2491          */
2492         smp_wmb();
2493         atomic_inc(&kvm->online_vcpus);
2494
2495         mutex_unlock(&kvm->lock);
2496         kvm_arch_vcpu_postcreate(vcpu);
2497         return r;
2498
2499 unlock_vcpu_destroy:
2500         mutex_unlock(&kvm->lock);
2501         debugfs_remove_recursive(vcpu->debugfs_dentry);
2502 vcpu_destroy:
2503         kvm_arch_vcpu_destroy(vcpu);
2504 vcpu_decrement:
2505         mutex_lock(&kvm->lock);
2506         kvm->created_vcpus--;
2507         mutex_unlock(&kvm->lock);
2508         return r;
2509 }
2510
2511 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2512 {
2513         if (sigset) {
2514                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2515                 vcpu->sigset_active = 1;
2516                 vcpu->sigset = *sigset;
2517         } else
2518                 vcpu->sigset_active = 0;
2519         return 0;
2520 }
2521
2522 static long kvm_vcpu_ioctl(struct file *filp,
2523                            unsigned int ioctl, unsigned long arg)
2524 {
2525         struct kvm_vcpu *vcpu = filp->private_data;
2526         void __user *argp = (void __user *)arg;
2527         int r;
2528         struct kvm_fpu *fpu = NULL;
2529         struct kvm_sregs *kvm_sregs = NULL;
2530
2531         if (vcpu->kvm->mm != current->mm)
2532                 return -EIO;
2533
2534         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2535                 return -EINVAL;
2536
2537 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2538         /*
2539          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2540          * so vcpu_load() would break it.
2541          */
2542         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2543                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2544 #endif
2545
2546
2547         r = vcpu_load(vcpu);
2548         if (r)
2549                 return r;
2550         switch (ioctl) {
2551         case KVM_RUN:
2552                 r = -EINVAL;
2553                 if (arg)
2554                         goto out;
2555                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2556                         /* The thread running this VCPU changed. */
2557                         struct pid *oldpid = vcpu->pid;
2558                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2559
2560                         rcu_assign_pointer(vcpu->pid, newpid);
2561                         if (oldpid)
2562                                 synchronize_rcu();
2563                         put_pid(oldpid);
2564                 }
2565                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2566                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2567                 break;
2568         case KVM_GET_REGS: {
2569                 struct kvm_regs *kvm_regs;
2570
2571                 r = -ENOMEM;
2572                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2573                 if (!kvm_regs)
2574                         goto out;
2575                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2576                 if (r)
2577                         goto out_free1;
2578                 r = -EFAULT;
2579                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2580                         goto out_free1;
2581                 r = 0;
2582 out_free1:
2583                 kfree(kvm_regs);
2584                 break;
2585         }
2586         case KVM_SET_REGS: {
2587                 struct kvm_regs *kvm_regs;
2588
2589                 r = -ENOMEM;
2590                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2591                 if (IS_ERR(kvm_regs)) {
2592                         r = PTR_ERR(kvm_regs);
2593                         goto out;
2594                 }
2595                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2596                 kfree(kvm_regs);
2597                 break;
2598         }
2599         case KVM_GET_SREGS: {
2600                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2601                 r = -ENOMEM;
2602                 if (!kvm_sregs)
2603                         goto out;
2604                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2605                 if (r)
2606                         goto out;
2607                 r = -EFAULT;
2608                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2609                         goto out;
2610                 r = 0;
2611                 break;
2612         }
2613         case KVM_SET_SREGS: {
2614                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2615                 if (IS_ERR(kvm_sregs)) {
2616                         r = PTR_ERR(kvm_sregs);
2617                         kvm_sregs = NULL;
2618                         goto out;
2619                 }
2620                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2621                 break;
2622         }
2623         case KVM_GET_MP_STATE: {
2624                 struct kvm_mp_state mp_state;
2625
2626                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2627                 if (r)
2628                         goto out;
2629                 r = -EFAULT;
2630                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2631                         goto out;
2632                 r = 0;
2633                 break;
2634         }
2635         case KVM_SET_MP_STATE: {
2636                 struct kvm_mp_state mp_state;
2637
2638                 r = -EFAULT;
2639                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2640                         goto out;
2641                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2642                 break;
2643         }
2644         case KVM_TRANSLATE: {
2645                 struct kvm_translation tr;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&tr, argp, sizeof(tr)))
2649                         goto out;
2650                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2651                 if (r)
2652                         goto out;
2653                 r = -EFAULT;
2654                 if (copy_to_user(argp, &tr, sizeof(tr)))
2655                         goto out;
2656                 r = 0;
2657                 break;
2658         }
2659         case KVM_SET_GUEST_DEBUG: {
2660                 struct kvm_guest_debug dbg;
2661
2662                 r = -EFAULT;
2663                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2664                         goto out;
2665                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2666                 break;
2667         }
2668         case KVM_SET_SIGNAL_MASK: {
2669                 struct kvm_signal_mask __user *sigmask_arg = argp;
2670                 struct kvm_signal_mask kvm_sigmask;
2671                 sigset_t sigset, *p;
2672
2673                 p = NULL;
2674                 if (argp) {
2675                         r = -EFAULT;
2676                         if (copy_from_user(&kvm_sigmask, argp,
2677                                            sizeof(kvm_sigmask)))
2678                                 goto out;
2679                         r = -EINVAL;
2680                         if (kvm_sigmask.len != sizeof(sigset))
2681                                 goto out;
2682                         r = -EFAULT;
2683                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2684                                            sizeof(sigset)))
2685                                 goto out;
2686                         p = &sigset;
2687                 }
2688                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2689                 break;
2690         }
2691         case KVM_GET_FPU: {
2692                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2693                 r = -ENOMEM;
2694                 if (!fpu)
2695                         goto out;
2696                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2697                 if (r)
2698                         goto out;
2699                 r = -EFAULT;
2700                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2701                         goto out;
2702                 r = 0;
2703                 break;
2704         }
2705         case KVM_SET_FPU: {
2706                 fpu = memdup_user(argp, sizeof(*fpu));
2707                 if (IS_ERR(fpu)) {
2708                         r = PTR_ERR(fpu);
2709                         fpu = NULL;
2710                         goto out;
2711                 }
2712                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2713                 break;
2714         }
2715         default:
2716                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2717         }
2718 out:
2719         vcpu_put(vcpu);
2720         kfree(fpu);
2721         kfree(kvm_sregs);
2722         return r;
2723 }
2724
2725 #ifdef CONFIG_KVM_COMPAT
2726 static long kvm_vcpu_compat_ioctl(struct file *filp,
2727                                   unsigned int ioctl, unsigned long arg)
2728 {
2729         struct kvm_vcpu *vcpu = filp->private_data;
2730         void __user *argp = compat_ptr(arg);
2731         int r;
2732
2733         if (vcpu->kvm->mm != current->mm)
2734                 return -EIO;
2735
2736         switch (ioctl) {
2737         case KVM_SET_SIGNAL_MASK: {
2738                 struct kvm_signal_mask __user *sigmask_arg = argp;
2739                 struct kvm_signal_mask kvm_sigmask;
2740                 compat_sigset_t csigset;
2741                 sigset_t sigset;
2742
2743                 if (argp) {
2744                         r = -EFAULT;
2745                         if (copy_from_user(&kvm_sigmask, argp,
2746                                            sizeof(kvm_sigmask)))
2747                                 goto out;
2748                         r = -EINVAL;
2749                         if (kvm_sigmask.len != sizeof(csigset))
2750                                 goto out;
2751                         r = -EFAULT;
2752                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2753                                            sizeof(csigset)))
2754                                 goto out;
2755                         sigset_from_compat(&sigset, &csigset);
2756                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2757                 } else
2758                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2759                 break;
2760         }
2761         default:
2762                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2763         }
2764
2765 out:
2766         return r;
2767 }
2768 #endif
2769
2770 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2771                                  int (*accessor)(struct kvm_device *dev,
2772                                                  struct kvm_device_attr *attr),
2773                                  unsigned long arg)
2774 {
2775         struct kvm_device_attr attr;
2776
2777         if (!accessor)
2778                 return -EPERM;
2779
2780         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2781                 return -EFAULT;
2782
2783         return accessor(dev, &attr);
2784 }
2785
2786 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2787                              unsigned long arg)
2788 {
2789         struct kvm_device *dev = filp->private_data;
2790
2791         switch (ioctl) {
2792         case KVM_SET_DEVICE_ATTR:
2793                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2794         case KVM_GET_DEVICE_ATTR:
2795                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2796         case KVM_HAS_DEVICE_ATTR:
2797                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2798         default:
2799                 if (dev->ops->ioctl)
2800                         return dev->ops->ioctl(dev, ioctl, arg);
2801
2802                 return -ENOTTY;
2803         }
2804 }
2805
2806 static int kvm_device_release(struct inode *inode, struct file *filp)
2807 {
2808         struct kvm_device *dev = filp->private_data;
2809         struct kvm *kvm = dev->kvm;
2810
2811         kvm_put_kvm(kvm);
2812         return 0;
2813 }
2814
2815 static const struct file_operations kvm_device_fops = {
2816         .unlocked_ioctl = kvm_device_ioctl,
2817 #ifdef CONFIG_KVM_COMPAT
2818         .compat_ioctl = kvm_device_ioctl,
2819 #endif
2820         .release = kvm_device_release,
2821 };
2822
2823 struct kvm_device *kvm_device_from_filp(struct file *filp)
2824 {
2825         if (filp->f_op != &kvm_device_fops)
2826                 return NULL;
2827
2828         return filp->private_data;
2829 }
2830
2831 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2832 #ifdef CONFIG_KVM_MPIC
2833         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2834         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2835 #endif
2836
2837 #ifdef CONFIG_KVM_XICS
2838         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2839 #endif
2840 };
2841
2842 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2843 {
2844         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2845                 return -ENOSPC;
2846
2847         if (kvm_device_ops_table[type] != NULL)
2848                 return -EEXIST;
2849
2850         kvm_device_ops_table[type] = ops;
2851         return 0;
2852 }
2853
2854 void kvm_unregister_device_ops(u32 type)
2855 {
2856         if (kvm_device_ops_table[type] != NULL)
2857                 kvm_device_ops_table[type] = NULL;
2858 }
2859
2860 static int kvm_ioctl_create_device(struct kvm *kvm,
2861                                    struct kvm_create_device *cd)
2862 {
2863         struct kvm_device_ops *ops = NULL;
2864         struct kvm_device *dev;
2865         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2866         int ret;
2867
2868         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2869                 return -ENODEV;
2870
2871         ops = kvm_device_ops_table[cd->type];
2872         if (ops == NULL)
2873                 return -ENODEV;
2874
2875         if (test)
2876                 return 0;
2877
2878         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2879         if (!dev)
2880                 return -ENOMEM;
2881
2882         dev->ops = ops;
2883         dev->kvm = kvm;
2884
2885         mutex_lock(&kvm->lock);
2886         ret = ops->create(dev, cd->type);
2887         if (ret < 0) {
2888                 mutex_unlock(&kvm->lock);
2889                 kfree(dev);
2890                 return ret;
2891         }
2892         list_add(&dev->vm_node, &kvm->devices);
2893         mutex_unlock(&kvm->lock);
2894
2895         if (ops->init)
2896                 ops->init(dev);
2897
2898         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2899         if (ret < 0) {
2900                 mutex_lock(&kvm->lock);
2901                 list_del(&dev->vm_node);
2902                 mutex_unlock(&kvm->lock);
2903                 ops->destroy(dev);
2904                 return ret;
2905         }
2906
2907         kvm_get_kvm(kvm);
2908         cd->fd = ret;
2909         return 0;
2910 }
2911
2912 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2913 {
2914         switch (arg) {
2915         case KVM_CAP_USER_MEMORY:
2916         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2917         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2918         case KVM_CAP_INTERNAL_ERROR_DATA:
2919 #ifdef CONFIG_HAVE_KVM_MSI
2920         case KVM_CAP_SIGNAL_MSI:
2921 #endif
2922 #ifdef CONFIG_HAVE_KVM_IRQFD
2923         case KVM_CAP_IRQFD:
2924         case KVM_CAP_IRQFD_RESAMPLE:
2925 #endif
2926         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2927         case KVM_CAP_CHECK_EXTENSION_VM:
2928                 return 1;
2929 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2930         case KVM_CAP_IRQ_ROUTING:
2931                 return KVM_MAX_IRQ_ROUTES;
2932 #endif
2933 #if KVM_ADDRESS_SPACE_NUM > 1
2934         case KVM_CAP_MULTI_ADDRESS_SPACE:
2935                 return KVM_ADDRESS_SPACE_NUM;
2936 #endif
2937         case KVM_CAP_MAX_VCPU_ID:
2938                 return KVM_MAX_VCPU_ID;
2939         default:
2940                 break;
2941         }
2942         return kvm_vm_ioctl_check_extension(kvm, arg);
2943 }
2944
2945 static long kvm_vm_ioctl(struct file *filp,
2946                            unsigned int ioctl, unsigned long arg)
2947 {
2948         struct kvm *kvm = filp->private_data;
2949         void __user *argp = (void __user *)arg;
2950         int r;
2951
2952         if (kvm->mm != current->mm)
2953                 return -EIO;
2954         switch (ioctl) {
2955         case KVM_CREATE_VCPU:
2956                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2957                 break;
2958         case KVM_SET_USER_MEMORY_REGION: {
2959                 struct kvm_userspace_memory_region kvm_userspace_mem;
2960
2961                 r = -EFAULT;
2962                 if (copy_from_user(&kvm_userspace_mem, argp,
2963                                                 sizeof(kvm_userspace_mem)))
2964                         goto out;
2965
2966                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2967                 break;
2968         }
2969         case KVM_GET_DIRTY_LOG: {
2970                 struct kvm_dirty_log log;
2971
2972                 r = -EFAULT;
2973                 if (copy_from_user(&log, argp, sizeof(log)))
2974                         goto out;
2975                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2976                 break;
2977         }
2978 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2979         case KVM_REGISTER_COALESCED_MMIO: {
2980                 struct kvm_coalesced_mmio_zone zone;
2981
2982                 r = -EFAULT;
2983                 if (copy_from_user(&zone, argp, sizeof(zone)))
2984                         goto out;
2985                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2986                 break;
2987         }
2988         case KVM_UNREGISTER_COALESCED_MMIO: {
2989                 struct kvm_coalesced_mmio_zone zone;
2990
2991                 r = -EFAULT;
2992                 if (copy_from_user(&zone, argp, sizeof(zone)))
2993                         goto out;
2994                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2995                 break;
2996         }
2997 #endif
2998         case KVM_IRQFD: {
2999                 struct kvm_irqfd data;
3000
3001                 r = -EFAULT;
3002                 if (copy_from_user(&data, argp, sizeof(data)))
3003                         goto out;
3004                 r = kvm_irqfd(kvm, &data);
3005                 break;
3006         }
3007         case KVM_IOEVENTFD: {
3008                 struct kvm_ioeventfd data;
3009
3010                 r = -EFAULT;
3011                 if (copy_from_user(&data, argp, sizeof(data)))
3012                         goto out;
3013                 r = kvm_ioeventfd(kvm, &data);
3014                 break;
3015         }
3016 #ifdef CONFIG_HAVE_KVM_MSI
3017         case KVM_SIGNAL_MSI: {
3018                 struct kvm_msi msi;
3019
3020                 r = -EFAULT;
3021                 if (copy_from_user(&msi, argp, sizeof(msi)))
3022                         goto out;
3023                 r = kvm_send_userspace_msi(kvm, &msi);
3024                 break;
3025         }
3026 #endif
3027 #ifdef __KVM_HAVE_IRQ_LINE
3028         case KVM_IRQ_LINE_STATUS:
3029         case KVM_IRQ_LINE: {
3030                 struct kvm_irq_level irq_event;
3031
3032                 r = -EFAULT;
3033                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3034                         goto out;
3035
3036                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3037                                         ioctl == KVM_IRQ_LINE_STATUS);
3038                 if (r)
3039                         goto out;
3040
3041                 r = -EFAULT;
3042                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3043                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3044                                 goto out;
3045                 }
3046
3047                 r = 0;
3048                 break;
3049         }
3050 #endif
3051 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3052         case KVM_SET_GSI_ROUTING: {
3053                 struct kvm_irq_routing routing;
3054                 struct kvm_irq_routing __user *urouting;
3055                 struct kvm_irq_routing_entry *entries = NULL;
3056
3057                 r = -EFAULT;
3058                 if (copy_from_user(&routing, argp, sizeof(routing)))
3059                         goto out;
3060                 r = -EINVAL;
3061                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3062                         goto out;
3063                 if (routing.flags)
3064                         goto out;
3065                 if (routing.nr) {
3066                         r = -ENOMEM;
3067                         entries = vmalloc(routing.nr * sizeof(*entries));
3068                         if (!entries)
3069                                 goto out;
3070                         r = -EFAULT;
3071                         urouting = argp;
3072                         if (copy_from_user(entries, urouting->entries,
3073                                            routing.nr * sizeof(*entries)))
3074                                 goto out_free_irq_routing;
3075                 }
3076                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3077                                         routing.flags);
3078 out_free_irq_routing:
3079                 vfree(entries);
3080                 break;
3081         }
3082 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3083         case KVM_CREATE_DEVICE: {
3084                 struct kvm_create_device cd;
3085
3086                 r = -EFAULT;
3087                 if (copy_from_user(&cd, argp, sizeof(cd)))
3088                         goto out;
3089
3090                 r = kvm_ioctl_create_device(kvm, &cd);
3091                 if (r)
3092                         goto out;
3093
3094                 r = -EFAULT;
3095                 if (copy_to_user(argp, &cd, sizeof(cd)))
3096                         goto out;
3097
3098                 r = 0;
3099                 break;
3100         }
3101         case KVM_CHECK_EXTENSION:
3102                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3103                 break;
3104         default:
3105                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3106         }
3107 out:
3108         return r;
3109 }
3110
3111 #ifdef CONFIG_KVM_COMPAT
3112 struct compat_kvm_dirty_log {
3113         __u32 slot;
3114         __u32 padding1;
3115         union {
3116                 compat_uptr_t dirty_bitmap; /* one bit per page */
3117                 __u64 padding2;
3118         };
3119 };
3120
3121 static long kvm_vm_compat_ioctl(struct file *filp,
3122                            unsigned int ioctl, unsigned long arg)
3123 {
3124         struct kvm *kvm = filp->private_data;
3125         int r;
3126
3127         if (kvm->mm != current->mm)
3128                 return -EIO;
3129         switch (ioctl) {
3130         case KVM_GET_DIRTY_LOG: {
3131                 struct compat_kvm_dirty_log compat_log;
3132                 struct kvm_dirty_log log;
3133
3134                 r = -EFAULT;
3135                 if (copy_from_user(&compat_log, (void __user *)arg,
3136                                    sizeof(compat_log)))
3137                         goto out;
3138                 log.slot         = compat_log.slot;
3139                 log.padding1     = compat_log.padding1;
3140                 log.padding2     = compat_log.padding2;
3141                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3142
3143                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3144                 break;
3145         }
3146         default:
3147                 r = kvm_vm_ioctl(filp, ioctl, arg);
3148         }
3149
3150 out:
3151         return r;
3152 }
3153 #endif
3154
3155 static struct file_operations kvm_vm_fops = {
3156         .release        = kvm_vm_release,
3157         .unlocked_ioctl = kvm_vm_ioctl,
3158 #ifdef CONFIG_KVM_COMPAT
3159         .compat_ioctl   = kvm_vm_compat_ioctl,
3160 #endif
3161         .llseek         = noop_llseek,
3162 };
3163
3164 static int kvm_dev_ioctl_create_vm(unsigned long type)
3165 {
3166         int r;
3167         struct kvm *kvm;
3168         struct file *file;
3169
3170         kvm = kvm_create_vm(type);
3171         if (IS_ERR(kvm))
3172                 return PTR_ERR(kvm);
3173 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3174         r = kvm_coalesced_mmio_init(kvm);
3175         if (r < 0) {
3176                 kvm_put_kvm(kvm);
3177                 return r;
3178         }
3179 #endif
3180         r = get_unused_fd_flags(O_CLOEXEC);
3181         if (r < 0) {
3182                 kvm_put_kvm(kvm);
3183                 return r;
3184         }
3185         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3186         if (IS_ERR(file)) {
3187                 put_unused_fd(r);
3188                 kvm_put_kvm(kvm);
3189                 return PTR_ERR(file);
3190         }
3191
3192         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3193                 put_unused_fd(r);
3194                 fput(file);
3195                 return -ENOMEM;
3196         }
3197
3198         fd_install(r, file);
3199         return r;
3200 }
3201
3202 static long kvm_dev_ioctl(struct file *filp,
3203                           unsigned int ioctl, unsigned long arg)
3204 {
3205         long r = -EINVAL;
3206
3207         switch (ioctl) {
3208         case KVM_GET_API_VERSION:
3209                 if (arg)
3210                         goto out;
3211                 r = KVM_API_VERSION;
3212                 break;
3213         case KVM_CREATE_VM:
3214                 r = kvm_dev_ioctl_create_vm(arg);
3215                 break;
3216         case KVM_CHECK_EXTENSION:
3217                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3218                 break;
3219         case KVM_GET_VCPU_MMAP_SIZE:
3220                 if (arg)
3221                         goto out;
3222                 r = PAGE_SIZE;     /* struct kvm_run */
3223 #ifdef CONFIG_X86
3224                 r += PAGE_SIZE;    /* pio data page */
3225 #endif
3226 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3227                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3228 #endif
3229                 break;
3230         case KVM_TRACE_ENABLE:
3231         case KVM_TRACE_PAUSE:
3232         case KVM_TRACE_DISABLE:
3233                 r = -EOPNOTSUPP;
3234                 break;
3235         default:
3236                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3237         }
3238 out:
3239         return r;
3240 }
3241
3242 static struct file_operations kvm_chardev_ops = {
3243         .unlocked_ioctl = kvm_dev_ioctl,
3244         .compat_ioctl   = kvm_dev_ioctl,
3245         .llseek         = noop_llseek,
3246 };
3247
3248 static struct miscdevice kvm_dev = {
3249         KVM_MINOR,
3250         "kvm",
3251         &kvm_chardev_ops,
3252 };
3253
3254 static void hardware_enable_nolock(void *junk)
3255 {
3256         int cpu = raw_smp_processor_id();
3257         int r;
3258
3259         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3260                 return;
3261
3262         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3263
3264         r = kvm_arch_hardware_enable();
3265
3266         if (r) {
3267                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3268                 atomic_inc(&hardware_enable_failed);
3269                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3270         }
3271 }
3272
3273 static int kvm_starting_cpu(unsigned int cpu)
3274 {
3275         raw_spin_lock(&kvm_count_lock);
3276         if (kvm_usage_count)
3277                 hardware_enable_nolock(NULL);
3278         raw_spin_unlock(&kvm_count_lock);
3279         return 0;
3280 }
3281
3282 static void hardware_disable_nolock(void *junk)
3283 {
3284         int cpu = raw_smp_processor_id();
3285
3286         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287                 return;
3288         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3289         kvm_arch_hardware_disable();
3290 }
3291
3292 static int kvm_dying_cpu(unsigned int cpu)
3293 {
3294         raw_spin_lock(&kvm_count_lock);
3295         if (kvm_usage_count)
3296                 hardware_disable_nolock(NULL);
3297         raw_spin_unlock(&kvm_count_lock);
3298         return 0;
3299 }
3300
3301 static void hardware_disable_all_nolock(void)
3302 {
3303         BUG_ON(!kvm_usage_count);
3304
3305         kvm_usage_count--;
3306         if (!kvm_usage_count)
3307                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3308 }
3309
3310 static void hardware_disable_all(void)
3311 {
3312         raw_spin_lock(&kvm_count_lock);
3313         hardware_disable_all_nolock();
3314         raw_spin_unlock(&kvm_count_lock);
3315 }
3316
3317 static int hardware_enable_all(void)
3318 {
3319         int r = 0;
3320
3321         raw_spin_lock(&kvm_count_lock);
3322
3323         kvm_usage_count++;
3324         if (kvm_usage_count == 1) {
3325                 atomic_set(&hardware_enable_failed, 0);
3326                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3327
3328                 if (atomic_read(&hardware_enable_failed)) {
3329                         hardware_disable_all_nolock();
3330                         r = -EBUSY;
3331                 }
3332         }
3333
3334         raw_spin_unlock(&kvm_count_lock);
3335
3336         return r;
3337 }
3338
3339 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3340                       void *v)
3341 {
3342         /*
3343          * Some (well, at least mine) BIOSes hang on reboot if
3344          * in vmx root mode.
3345          *
3346          * And Intel TXT required VMX off for all cpu when system shutdown.
3347          */
3348         pr_info("kvm: exiting hardware virtualization\n");
3349         kvm_rebooting = true;
3350         on_each_cpu(hardware_disable_nolock, NULL, 1);
3351         return NOTIFY_OK;
3352 }
3353
3354 static struct notifier_block kvm_reboot_notifier = {
3355         .notifier_call = kvm_reboot,
3356         .priority = 0,
3357 };
3358
3359 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3360 {
3361         int i;
3362
3363         for (i = 0; i < bus->dev_count; i++) {
3364                 struct kvm_io_device *pos = bus->range[i].dev;
3365
3366                 kvm_iodevice_destructor(pos);
3367         }
3368         kfree(bus);
3369 }
3370
3371 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3372                                  const struct kvm_io_range *r2)
3373 {
3374         gpa_t addr1 = r1->addr;
3375         gpa_t addr2 = r2->addr;
3376
3377         if (addr1 < addr2)
3378                 return -1;
3379
3380         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3381          * accept any overlapping write.  Any order is acceptable for
3382          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3383          * we process all of them.
3384          */
3385         if (r2->len) {
3386                 addr1 += r1->len;
3387                 addr2 += r2->len;
3388         }
3389
3390         if (addr1 > addr2)
3391                 return 1;
3392
3393         return 0;
3394 }
3395
3396 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3397 {
3398         return kvm_io_bus_cmp(p1, p2);
3399 }
3400
3401 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3402                           gpa_t addr, int len)
3403 {
3404         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3405                 .addr = addr,
3406                 .len = len,
3407                 .dev = dev,
3408         };
3409
3410         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3411                 kvm_io_bus_sort_cmp, NULL);
3412
3413         return 0;
3414 }
3415
3416 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3417                              gpa_t addr, int len)
3418 {
3419         struct kvm_io_range *range, key;
3420         int off;
3421
3422         key = (struct kvm_io_range) {
3423                 .addr = addr,
3424                 .len = len,
3425         };
3426
3427         range = bsearch(&key, bus->range, bus->dev_count,
3428                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3429         if (range == NULL)
3430                 return -ENOENT;
3431
3432         off = range - bus->range;
3433
3434         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3435                 off--;
3436
3437         return off;
3438 }
3439
3440 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3441                               struct kvm_io_range *range, const void *val)
3442 {
3443         int idx;
3444
3445         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3446         if (idx < 0)
3447                 return -EOPNOTSUPP;
3448
3449         while (idx < bus->dev_count &&
3450                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3451                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3452                                         range->len, val))
3453                         return idx;
3454                 idx++;
3455         }
3456
3457         return -EOPNOTSUPP;
3458 }
3459
3460 /* kvm_io_bus_write - called under kvm->slots_lock */
3461 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3462                      int len, const void *val)
3463 {
3464         struct kvm_io_bus *bus;
3465         struct kvm_io_range range;
3466         int r;
3467
3468         range = (struct kvm_io_range) {
3469                 .addr = addr,
3470                 .len = len,
3471         };
3472
3473         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3474         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3475         return r < 0 ? r : 0;
3476 }
3477
3478 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3479 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3480                             gpa_t addr, int len, const void *val, long cookie)
3481 {
3482         struct kvm_io_bus *bus;
3483         struct kvm_io_range range;
3484
3485         range = (struct kvm_io_range) {
3486                 .addr = addr,
3487                 .len = len,
3488         };
3489
3490         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3491
3492         /* First try the device referenced by cookie. */
3493         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3494             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3495                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3496                                         val))
3497                         return cookie;
3498
3499         /*
3500          * cookie contained garbage; fall back to search and return the
3501          * correct cookie value.
3502          */
3503         return __kvm_io_bus_write(vcpu, bus, &range, val);
3504 }
3505
3506 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3507                              struct kvm_io_range *range, void *val)
3508 {
3509         int idx;
3510
3511         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3512         if (idx < 0)
3513                 return -EOPNOTSUPP;
3514
3515         while (idx < bus->dev_count &&
3516                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3517                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3518                                        range->len, val))
3519                         return idx;
3520                 idx++;
3521         }
3522
3523         return -EOPNOTSUPP;
3524 }
3525 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3526
3527 /* kvm_io_bus_read - called under kvm->slots_lock */
3528 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3529                     int len, void *val)
3530 {
3531         struct kvm_io_bus *bus;
3532         struct kvm_io_range range;
3533         int r;
3534
3535         range = (struct kvm_io_range) {
3536                 .addr = addr,
3537                 .len = len,
3538         };
3539
3540         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3541         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3542         return r < 0 ? r : 0;
3543 }
3544
3545
3546 /* Caller must hold slots_lock. */
3547 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3548                             int len, struct kvm_io_device *dev)
3549 {
3550         struct kvm_io_bus *new_bus, *bus;
3551
3552         bus = kvm->buses[bus_idx];
3553         /* exclude ioeventfd which is limited by maximum fd */
3554         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3555                 return -ENOSPC;
3556
3557         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3558                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3559         if (!new_bus)
3560                 return -ENOMEM;
3561         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3562                sizeof(struct kvm_io_range)));
3563         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3564         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3565         synchronize_srcu_expedited(&kvm->srcu);
3566         kfree(bus);
3567
3568         return 0;
3569 }
3570
3571 /* Caller must hold slots_lock. */
3572 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3573                               struct kvm_io_device *dev)
3574 {
3575         int i, r;
3576         struct kvm_io_bus *new_bus, *bus;
3577
3578         bus = kvm->buses[bus_idx];
3579         r = -ENOENT;
3580         for (i = 0; i < bus->dev_count; i++)
3581                 if (bus->range[i].dev == dev) {
3582                         r = 0;
3583                         break;
3584                 }
3585
3586         if (r)
3587                 return r;
3588
3589         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3590                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3591         if (!new_bus)
3592                 return -ENOMEM;
3593
3594         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3595         new_bus->dev_count--;
3596         memcpy(new_bus->range + i, bus->range + i + 1,
3597                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3598
3599         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3600         synchronize_srcu_expedited(&kvm->srcu);
3601         kfree(bus);
3602         return r;
3603 }
3604
3605 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3606                                          gpa_t addr)
3607 {
3608         struct kvm_io_bus *bus;
3609         int dev_idx, srcu_idx;
3610         struct kvm_io_device *iodev = NULL;
3611
3612         srcu_idx = srcu_read_lock(&kvm->srcu);
3613
3614         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3615
3616         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3617         if (dev_idx < 0)
3618                 goto out_unlock;
3619
3620         iodev = bus->range[dev_idx].dev;
3621
3622 out_unlock:
3623         srcu_read_unlock(&kvm->srcu, srcu_idx);
3624
3625         return iodev;
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3628
3629 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3630                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3631                            const char *fmt)
3632 {
3633         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3634                                           inode->i_private;
3635
3636         /* The debugfs files are a reference to the kvm struct which
3637          * is still valid when kvm_destroy_vm is called.
3638          * To avoid the race between open and the removal of the debugfs
3639          * directory we test against the users count.
3640          */
3641         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3642                 return -ENOENT;
3643
3644         if (simple_attr_open(inode, file, get, set, fmt)) {
3645                 kvm_put_kvm(stat_data->kvm);
3646                 return -ENOMEM;
3647         }
3648
3649         return 0;
3650 }
3651
3652 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3653 {
3654         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3655                                           inode->i_private;
3656
3657         simple_attr_release(inode, file);
3658         kvm_put_kvm(stat_data->kvm);
3659
3660         return 0;
3661 }
3662
3663 static int vm_stat_get_per_vm(void *data, u64 *val)
3664 {
3665         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3666
3667         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3668
3669         return 0;
3670 }
3671
3672 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3673 {
3674         __simple_attr_check_format("%llu\n", 0ull);
3675         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3676                                 NULL, "%llu\n");
3677 }
3678
3679 static const struct file_operations vm_stat_get_per_vm_fops = {
3680         .owner   = THIS_MODULE,
3681         .open    = vm_stat_get_per_vm_open,
3682         .release = kvm_debugfs_release,
3683         .read    = simple_attr_read,
3684         .write   = simple_attr_write,
3685         .llseek  = generic_file_llseek,
3686 };
3687
3688 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3689 {
3690         int i;
3691         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3692         struct kvm_vcpu *vcpu;
3693
3694         *val = 0;
3695
3696         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3697                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3698
3699         return 0;
3700 }
3701
3702 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3703 {
3704         __simple_attr_check_format("%llu\n", 0ull);
3705         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3706                                  NULL, "%llu\n");
3707 }
3708
3709 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3710         .owner   = THIS_MODULE,
3711         .open    = vcpu_stat_get_per_vm_open,
3712         .release = kvm_debugfs_release,
3713         .read    = simple_attr_read,
3714         .write   = simple_attr_write,
3715         .llseek  = generic_file_llseek,
3716 };
3717
3718 static const struct file_operations *stat_fops_per_vm[] = {
3719         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3720         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3721 };
3722
3723 static int vm_stat_get(void *_offset, u64 *val)
3724 {
3725         unsigned offset = (long)_offset;
3726         struct kvm *kvm;
3727         struct kvm_stat_data stat_tmp = {.offset = offset};
3728         u64 tmp_val;
3729
3730         *val = 0;
3731         spin_lock(&kvm_lock);
3732         list_for_each_entry(kvm, &vm_list, vm_list) {
3733                 stat_tmp.kvm = kvm;
3734                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3735                 *val += tmp_val;
3736         }
3737         spin_unlock(&kvm_lock);
3738         return 0;
3739 }
3740
3741 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3742
3743 static int vcpu_stat_get(void *_offset, u64 *val)
3744 {
3745         unsigned offset = (long)_offset;
3746         struct kvm *kvm;
3747         struct kvm_stat_data stat_tmp = {.offset = offset};
3748         u64 tmp_val;
3749
3750         *val = 0;
3751         spin_lock(&kvm_lock);
3752         list_for_each_entry(kvm, &vm_list, vm_list) {
3753                 stat_tmp.kvm = kvm;
3754                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3755                 *val += tmp_val;
3756         }
3757         spin_unlock(&kvm_lock);
3758         return 0;
3759 }
3760
3761 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3762
3763 static const struct file_operations *stat_fops[] = {
3764         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3765         [KVM_STAT_VM]   = &vm_stat_fops,
3766 };
3767
3768 static int kvm_init_debug(void)
3769 {
3770         int r = -EEXIST;
3771         struct kvm_stats_debugfs_item *p;
3772
3773         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3774         if (kvm_debugfs_dir == NULL)
3775                 goto out;
3776
3777         kvm_debugfs_num_entries = 0;
3778         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3779                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3780                                          (void *)(long)p->offset,
3781                                          stat_fops[p->kind]))
3782                         goto out_dir;
3783         }
3784
3785         return 0;
3786
3787 out_dir:
3788         debugfs_remove_recursive(kvm_debugfs_dir);
3789 out:
3790         return r;
3791 }
3792
3793 static int kvm_suspend(void)
3794 {
3795         if (kvm_usage_count)
3796                 hardware_disable_nolock(NULL);
3797         return 0;
3798 }
3799
3800 static void kvm_resume(void)
3801 {
3802         if (kvm_usage_count) {
3803                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3804                 hardware_enable_nolock(NULL);
3805         }
3806 }
3807
3808 static struct syscore_ops kvm_syscore_ops = {
3809         .suspend = kvm_suspend,
3810         .resume = kvm_resume,
3811 };
3812
3813 static inline
3814 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3815 {
3816         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3817 }
3818
3819 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3820 {
3821         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3822
3823         if (vcpu->preempted)
3824                 vcpu->preempted = false;
3825
3826         kvm_arch_sched_in(vcpu, cpu);
3827
3828         kvm_arch_vcpu_load(vcpu, cpu);
3829 }
3830
3831 static void kvm_sched_out(struct preempt_notifier *pn,
3832                           struct task_struct *next)
3833 {
3834         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3835
3836         if (current->state == TASK_RUNNING)
3837                 vcpu->preempted = true;
3838         kvm_arch_vcpu_put(vcpu);
3839 }
3840
3841 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3842                   struct module *module)
3843 {
3844         int r;
3845         int cpu;
3846
3847         r = kvm_arch_init(opaque);
3848         if (r)
3849                 goto out_fail;
3850
3851         /*
3852          * kvm_arch_init makes sure there's at most one caller
3853          * for architectures that support multiple implementations,
3854          * like intel and amd on x86.
3855          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3856          * conflicts in case kvm is already setup for another implementation.
3857          */
3858         r = kvm_irqfd_init();
3859         if (r)
3860                 goto out_irqfd;
3861
3862         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3863                 r = -ENOMEM;
3864                 goto out_free_0;
3865         }
3866
3867         r = kvm_arch_hardware_setup();
3868         if (r < 0)
3869                 goto out_free_0a;
3870
3871         for_each_online_cpu(cpu) {
3872                 smp_call_function_single(cpu,
3873                                 kvm_arch_check_processor_compat,
3874                                 &r, 1);
3875                 if (r < 0)
3876                         goto out_free_1;
3877         }
3878
3879         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3880                                       kvm_starting_cpu, kvm_dying_cpu);
3881         if (r)
3882                 goto out_free_2;
3883         register_reboot_notifier(&kvm_reboot_notifier);
3884
3885         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3886         if (!vcpu_align)
3887                 vcpu_align = __alignof__(struct kvm_vcpu);
3888         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3889                                            0, NULL);
3890         if (!kvm_vcpu_cache) {
3891                 r = -ENOMEM;
3892                 goto out_free_3;
3893         }
3894
3895         r = kvm_async_pf_init();
3896         if (r)
3897                 goto out_free;
3898
3899         kvm_chardev_ops.owner = module;
3900         kvm_vm_fops.owner = module;
3901         kvm_vcpu_fops.owner = module;
3902
3903         r = misc_register(&kvm_dev);
3904         if (r) {
3905                 pr_err("kvm: misc device register failed\n");
3906                 goto out_unreg;
3907         }
3908
3909         register_syscore_ops(&kvm_syscore_ops);
3910
3911         kvm_preempt_ops.sched_in = kvm_sched_in;
3912         kvm_preempt_ops.sched_out = kvm_sched_out;
3913
3914         r = kvm_init_debug();
3915         if (r) {
3916                 pr_err("kvm: create debugfs files failed\n");
3917                 goto out_undebugfs;
3918         }
3919
3920         r = kvm_vfio_ops_init();
3921         WARN_ON(r);
3922
3923         return 0;
3924
3925 out_undebugfs:
3926         unregister_syscore_ops(&kvm_syscore_ops);
3927         misc_deregister(&kvm_dev);
3928 out_unreg:
3929         kvm_async_pf_deinit();
3930 out_free:
3931         kmem_cache_destroy(kvm_vcpu_cache);
3932 out_free_3:
3933         unregister_reboot_notifier(&kvm_reboot_notifier);
3934         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3935 out_free_2:
3936 out_free_1:
3937         kvm_arch_hardware_unsetup();
3938 out_free_0a:
3939         free_cpumask_var(cpus_hardware_enabled);
3940 out_free_0:
3941         kvm_irqfd_exit();
3942 out_irqfd:
3943         kvm_arch_exit();
3944 out_fail:
3945         return r;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_init);
3948
3949 void kvm_exit(void)
3950 {
3951         debugfs_remove_recursive(kvm_debugfs_dir);
3952         misc_deregister(&kvm_dev);
3953         kmem_cache_destroy(kvm_vcpu_cache);
3954         kvm_async_pf_deinit();
3955         unregister_syscore_ops(&kvm_syscore_ops);
3956         unregister_reboot_notifier(&kvm_reboot_notifier);
3957         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3958         on_each_cpu(hardware_disable_nolock, NULL, 1);
3959         kvm_arch_hardware_unsetup();
3960         kvm_arch_exit();
3961         kvm_irqfd_exit();
3962         free_cpumask_var(cpus_hardware_enabled);
3963         kvm_vfio_ops_exit();
3964 }
3965 EXPORT_SYMBOL_GPL(kvm_exit);